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Abstract
The big bang and the Schwarzschild singularities are space-like. They are gener-
ally regarded as the ‘final frontiers’ at which space–time ends and general relativity
breaks down. We review the status of such space-like singularities from three increas-
ingly more general perspectives. They are provided by (i) A reformulation of classical
general relativity motivated by the Belinskii, Khalatnikov, Lifshitz conjecture on the
behavior of the gravitational field near space-like singularities; (ii) The use of test
quantum fields to probe the nature of these singularities; and, (iii) An analysis of the
fate of these singularities in loop quantum gravity due to quantum geometry effects. At
all three levels singularities turn out to be less menacing than one might a priori expect
from classical general relativity. Our goal is to present an overview of the emerging
conceptual picture and suggest lines for further work. In line with the Introduction to
Current Research theme, we have made an attempt to make it easily accessible to all
researchers in gravitational physics.
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1 Introduction

One of the first papers that Professor Padmanabhan—or Paddy, as he was known in
the community—wrote as a Ph.D. student was “Quantum conformal fluctuations in
a singular space–time", co-authored with his advisor Jayant Narlikar [1]. First two
sentences of the abstract set the stage for the subsequent discussion: “The cosmological
solutions of Einstein’s general relativistic equations lead inevitably to space–time
singularities. However, general relativity is only an approximation to a fully quantized
theory of gravity and we need to consider whether singularity persists in the quantum
domain." The paper goes on to argue that quantum considerations imply that the
classical prediction cannot be trusted. In honor of Paddy’s memory, we will provide
a contemporary perspective on this issue, drawing on results that have appeared over
the last 15 years and from ongoing research (see, in particular, [2–14]). While there
is a uniform underlying theme, it is difficult for non-experts to appreciate that these
results are synergistic and complement each other because the results are spread quite
a bit in the literature and presented using different notation and emphasis. We hope
that this brief, unifying survey will provide all researchers in gravitational physics
with a broad overview of the current status.

We will focus on space-like singularities—such as the big bang and the big crunch
that Paddy referred to, and the one inside the horizon of the Schwarzschild solution—
as they are generally considered to be places where space–time ends and physics
comes to a halt. The abundance of such singularities in physically motivated solutions
to Einstein’s equations is brought to forefront by the celebrated singularity theorems
of Penrose, Hawking, Geroch and others (see, e.g., [15]). The key notion underlying
these theorems is geodesic incompleteness. Physically, this corresponds to the property
that trajectories of test particles come to an abrupt end and the tidal forces between
them diverge. This then implies that the description of the physical world provided
by general relativity using (pseudo-)Riemannian geometry fails at these singularities.
The question is whether this is a genuine physical impasse or only a reflection of
the inadequacy of notions normally used in general relativity. One can investigate
this issue at several levels, using more and more sophisticated tools to incorporate an
increasing number of features of the physical world, thereby making the discussion
more and more reliable. We will discuss three such levels that provide new insights
from different perspectives, each suggesting that these singularities are not as drastic
as the standard framework of general relativity suggests.

In the first, one adopts the view that even at the classical level, Riemannian geometry
of space–time should be regarded as ‘emergent’ or ‘secondary notion’ that arises in
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‘tame’ circumstances. While it is tremendously powerful when available, perhaps
there is a more ‘fundamental’ mathematical framework in terms of new variables from
which space–time metric can be constructed. Dynamics of these variables may remain
perfectly well-defined at space-like singularities where the Riemannian framework
breaks down. If so, one would switch to the new variables close to the singularity
where Riemannian geometry is still well-defined, use the ‘fundamental framework’
to evolve the system across the singularity, and then reintroduce the metric variables
once we are ‘on the other side’. Of course the metric description will continue to fail
at the singularity, but the premise is that the ‘more fundamental’ description would
not. In Sect. 2 we provide a concrete illustration of this possibility. Interestingly,
the new description will not carry fields with space–time/manifold indices; the new
variables will be (density weighted) space–time scalars that carry only ‘internal’ SU(2)
indices [6, 7]. Explicit calculations have been carried out in simple systems that exhibit
the most interesting space-like singularities. They show that the ‘more fundamental’
description does not break down. The dynamical equations for the new variables are
available also for full general relativity, without any symmetry reduction. However,
so far equations and their properties have not been analyzed in any detail for the full
theory. Thus, level 1 should only be regarded as raising an unforeseen possibility rather
than providing conclusive arguments.

Indeed, even in the simple examples, it is still true that the tidal forces between test
particles become infinite there because curvature of the space–time metric diverges.
Is this not a fundamental limitation of the framework? In our view this line of reason-
ing has a fundamental limitation. For, it is physically inappropriate to use classical
test particles as probes once the curvature becomes Planckian. Presumably, in this
domain one has to use full quantum gravity. Nonetheless, already in the context of
a classical space–time one can ask whether the singularity is a ‘death sentence’ also
to quantum probes. Now, near space-like singularities, geometry is dynamical (not
only in cosmology but also near the Schwarzschild singularity). Therefore one can-
not meaningfully use single quantum particles as probes. Instead, probes have to be
quantum fields. The question then is: Can we evolve quantum fields in the larger,
extended space–time, e.g. of Sect. 2, across the singularity of the Riemannian geom-
etry? To phrase this question precisely let us first recall that, already in Minkowski
space–time, quantum fields φ̂(x) are not operators but operator valued distributions
(OVDs). Therefore, we are led to ask if φ̂(x) continues to be well-defined as an OVD
even across the singularity? Again, rather surprisingly, the answer turns out to be in
the affirmative. Encouraged by this result, one can ask more ambitious questions: Do
the bi-distributions 〈φ̂(x) φ̂(x ′)〉 continue to be well-defined? And what about the
renormalized operator products 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren? Do they also continue to
be well-defined as distributions? Answers turn out to be in the affirmative in spatially
flat FLRW universes [2], open and closed FLRW universes [4]. This tame behavior
does not owe its origin to conformal flatness of FLRW space–times. In particular the
field �̂(x) need not be conformally coupled. It also extends to the Schwarzschild
singularity where the Weyl curvature diverges [3]. Thus, when probed with quantum
fields these singularities are tame. We will summarize these results in Sect. 3.
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These results suggest that the menace posed by space-like singularities in standard,
classical general relativity may be illusive. However, the framework used in Sect. 3
is unsatisfactory for a fundamental reason: it uses a hybrid paradigm where geometry
is treated classically and probes quantum mechanically. A full, self-consistent theory
has to treat both quantum mechanically, and allow them to interact in a consistent
manner. Since matter fields are OVDs, and expectation values such as 〈T̂ab(x)〉ren
are distributions, this suggests that quantum geometry will also have a distributional
character. While we do not have a complete, fully satisfactory quantum gravity theory,
loop quantum gravity already provides a detailed realization of this idea because its
underlying quantum geometry is distributional in a precise sense [16–20]. Thanks to
this distributional nature, fundamental geometrical operators have discrete eigenval-
ues. In particular, there is an area gap �—the lowest non-zero eigenvalue of the area
operator. As we explain in Sect. 4, in cosmological models, there is an upper bound on
matter density and curvature, proportional to (�)−3. Therefore, there is no singularity.
In place of a big-bang, there is a quantum bounce. The bounce has been studied in
detail in loop quantum cosmology using a large number of models (summarized in
[13, 14]), whence results on a natural singularity resolution due to quantum geometry
are robust.

Thus, at all three levels, the most important space-like singularities of classical
general relativity appear to be harmless. Moreover, in these models, the three levels
appear to be intertwined synergistically. However, as we discuss in Sect. 5, there is
much room for further exploration to obtain a systematic understanding.

2 Level 1: reformulation of classical general relativity

While the powerful singularity theorems bring out the fact that it is rather common
for the gravitational field to develop singularities in general relativity, they provide
little insight into the nature of these singularities. The BKL conjecture [21] provides
a key step in filling this important gap. It posits that, as one approaches space-like
singularities, time derivatives dominate over spatial derivatives, implying that the
asymptotic dynamics would be well described by an ordinary differential equation.
While the conjecture seems very surprising at first, by now there is considerable
evidence in its favor [22–27]. These investigations have shown that we can generally
ignore matter in the analysis of the BKL behavior—the only matter that matters is
a massless scalar field (or, phenomenologically, a stiff fluid). Therefore, without a
great loss of generality one can restrict oneself to the gravitational sector of general
relativity.1 The reformulation summarized in this section provides precise statements
of the (weak and strong forms of the) BKL conjecture in terms of variables that could
be taken over to quantum theory more directly [6, 7]. In this section, however, we will
focus only on the classical aspects.

1 The interesting case of a massless scalar field is discussed in [10] for FLRW cosmologies using the
framework summarized here, and in [8] for Bianchi IX models, using a technically different approach that
also leads to a well-defined evolution through the big-bang.
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Consider 4-dimensional space–times (M, gab) with M = M × R. For simplicity
of presentation, in this section we assume that the 3-manifold M is compact without
boundary. Let us first consider a triad version [16, 18, 28, 29] of the Arnowitt, Deser,
Misner (ADM) 3 + 1 formulation of general relativity [30]. Thus, our canonically
conjugate gravitational variables will be pairs (Ea

i , K i
a)of fields on M, where a, b, c . . .

are tensor indices and i, j, k . . . are SO(3) internal indices (which can be freely raised
and lowered using the Cartan Killing metric on so(3)). Ea

i represents an orthonormal
triad on M with density weight 1 that determines a positive definite metric qab on M

via Ea
i Ebi = q qab, where q is the determinant of qab. Similarly, on solutions, K i

a

determines the extrinsic curvature of M via Kab = (1/
√

q) qc(b Ec
i K i

a). The scalar,
vector and Gauss constraints of vacuum general relativity are given by

S := −q R − 2Ea
[i Eb

j] K i
a K j

b = 0, Va := 4 D[a
(

K i
b]E

b
I

)
= 0,

Gk := εi
jk Ea

j Ka
i = 0, (2.1)

where D and R denote the derivative operator and the Ricci scalar of qab. The Gauss
constraint—which is absent in the ADM framework—arises because there is more
information in triads than in the metric; it simply ensures that the SO(3) triad rotations
are gauge transformations. As in any background independent theory, the Hamiltonian
generating dynamics is a linear combination of these constraints.

The triad Ea
i determines a unique SO(3) (or spin-)connection �i

a through Da Eb
i +

εi j
k�

j
a Eb

k = 0. (Recall that D is determined by qab; it ignores internal indices, treating
fields with only internal indices as scalars.) For our purposes, it is more convenient
to use all three fields, �i

a, K i
a, Ea

i , keeping in mind that �i
a is determined by Ea

i . The
key idea behind the reformulation of general relativity equations is then the following.
We first recall that at the big bang, big crunch and the Schwarzschild singularities
the metric qab becomes degenerate. Since its determinant q vanishes there, one might
expect that fields that are rescaled by appropriate powers of q would remain well
behaved at the singularity. Similarly, while the covariant spatial derivatives Da f of
a field f may diverge at the singularity, derivatives Di f := Ea

i Da f could well be
regular because of the

√
q factor in the density weighted triad Ea

i .2 These motivations
lead one to regard the following fields with only internal indices

Ci
j := Ea

i �
j
a − Ea

k �k
a δ

j
i , and Pi

j := Ea
i K j

a − Ea
k K k

a δ
j
i (2.2)

as basic variables. When qab is invertible, one can freely pass between (Ci
j , Pi

j )

and (�i
a, K i

a). However, because of the taming factor
√

q in each of Ea
i , Ci

j , and
Pi

j could be well defined at the singularity even when �i
a, K i

a diverge. Interestingly,

2 This strategy is similar to that used in discussions of the BKL conjecture where one divides geometric
fields by the trace K of the extrinsic curvature which is expected to diverge at the singularity to obtain the
so-called “Hubble normalized fields" (see, e.g., [31]). A key difference is that whereas the focus in those
treatments is on differential equations, here the focus is on a Hamiltonian framework that can serve as a
point of departure for quantum theory.
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constraints can be re-expressed entirely in terms of these new variables and their Di

derivatives3:

S := 2εi jk Di (C jk) + 4C[i j]C [i j] + Ci j C
ji − 1

2
C2 + Pi j P ji − 1

2
P2 ≈ 0

Vi := −2D j Pi
j − 2ε jkl Pi

j Ckl + εi jk(2P jlCl
k − C P jk) ≈ 0

Gk := εi jk Pji ≈ 0 . (2.3)

Note that the right sides contain low order polynomials of (density weighted) space–
time scalars; tensor indices never appear. Furthermore, (Ci

j , Pi
j ) are closed under

Poisson brackets:

{∫ fi j (x)Pi j (x),
∫

gkl(y)Pkl(y)} = ∫ (
fk j (x)gk

i (x) − fik gk
j
)
Pi j

{∫ fi j (x)Pi j (x),
∫

gkl(y)Ckl(y)} = ∫ (
fi j gkl(C

kjδil + C jlδik) + ε jlmδik gkl Dm fi j
)

{∫ fi j Ci j (x),
∫

glk(y)Ckl(y)} = 0 , (2.4)

where fi j (x) and gkl(x) are smooth test scalar fields. The Poisson brackets between
Ea

i and Ci j , Pi j are also simple:

{∫ ωi
a Ea

i ,
∫

f jk P jk} = ∫ (
ωk

a f j
k Ea

j − ωi
a f j

j Ea
i

); {∫ ωi
a Ea

i ,
∫

f jk C jk} = 0 ,

(2.5)

where ωi
a is a Lie-algebra valued, smooth, test 1-form. Since the dynamics is gen-

erated by constraints, evolution equations of Ci j and Pi j involve at most quadratic
combinations of these variables and their Di derivatives. Given any scalar density s(n)

of weight 1, one can obtain the evolution equation of Di s(n) using (2.5) and the right

side involves only a linear term in P j
i and Di Pj

j .4 Thanks to this simplicity, one can
hope that the evolution of Ci j and Pi j would be well-defined across the singularity.

As indicated in Sect. 1, these equations are to be used as follows. Consider a Cauchy
surface M near the singularity where qab is well defined and non-degenerate. Then
we can construct (Ci j , Pi j , Di ) from a pair (Ea

i , K i
a) of canonical variables. We can

then work exclusively with the triplet (Ci j , Pi j , Di ). On M, the pair (Ea
i , K i

a) satisfies
constraints if and only if the triplet satisfies (2.3)–(2.3). Given such a triplet, we can
evolve it using their Poisson brackets with constraints, without having to refer back
to Ea

i . The end product of this evolution would provide us with a 1-parameter family
of fields Ci j (t), Pi j (t) and the operator Di (t) with only internal indices. However,

3 Details on results summarized below can be found in [7]. The operator Di := Ea
i Da is linear and satisfies

the Leibnitz rule. Since Da is determined by qab , it ignores internal indices. Hence Di also treats fields with
internal indices as scalars. Note however that, given a function f on M, Di f does not yield the exterior
derivative d f . Thus, Di is not a connection on M. If we were to formally treat as a connection, it would
have torsion determined by Ci

j : D[i D j] f = −T k
i j Dk f where T k

i j = εkl[i C l
j] [5, 7].

4 By contrast, evolution equations of the ADM variables (qab, Pab) as well as their triad analogs (Ea
i , K i

a)

involve non-polynomial functions of these variables and, furthermore Pab and K i
a themselves diverge at

the FLRW big bang.
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to recover the familiar description in terms of Riemannian geometry, one does need
the density weighted triad. One can calculate the Poisson bracket between Ea

i and the
constraints using (2.5) to obtain the time derivative of Ea

i in terms of Ci j (t), Pi j (t) and
Ea

i itself. Given Ci j (t), Pi j (t), one should be able to solve this ordinary differential
equation to obtain Ea

i at the singularity and evolve it further.
So far this program has been carried out [10] only in models with a high degree of

symmetry: (i) Friedmann cosmologies with a massless scalar field as source. In this
case matter does matter, affecting, for example, the BKL behavior [25] because the
blow up of matter density is much more severe than in other commonly used sources;
(ii) Bianchi I and Bianchi IX models; and (iii) The portion of the Schwarzschild space–
time inside the horizon. In all these cases, the basic fields Ci j , Pi j remain well-defined
at the singularity and, as expected, the density weighted triad Ea

i vanishes there.
Therefore one can evolve across the singularity. From the viewpoint of differential
equations, this is not surprising because, as pointed out in [32], a singularity can arise
if equations are written in terms of inconvenient variables as in the following trivial
example: while a solution y = 1/ sin t of y ÿ− ẏ2+y2 = 0 is singular at t = 0, in terms
of x = 1/y the equation becomes ẍ + x = 0 for which the solution x(t) = sin(x) can
be continued across x = 0 smoothly. The question of course is which variables are
the physical ones. Even if one were to say that y is the physical variable, passage to x
provides a trivially streamlined procedure to continue the solution beyond t = 0. In
our examples, the situation is better in that not only are the new variables Ci j , Pi j and
Ea

i well-defined at the singularity but the 3-metric qab is also well-defined as a tensor
field. From the perspective of Riemannian geometry, the problem is that qab becomes
degenerate at the singularity causing the space–time curvature to diverge. As discussed
in Sect. 1, the question is whether these divergences imply that physics breaks down
rather than just the classical description in terms of Riemannian geometry. Regularity
of equations in terms of Ci j , Pi j , Di in physically interesting models is an indication
that it may be the latter.

3 Level 2: using quantum fields as probes

To begin with, let us focus on the big-bang of cosmological models and probe the
singularity with test fields rather than test-particles. Because FLRW models are con-
formally flat, the conformally invariant classical Maxwell field Fab remains regular
at the big-bang. The situation is different for scalar fields. When evolved back in time,
solutions φ(x) to the minimally coupled scalar field equations, for example, generi-
cally diverge at the big bang. (The situation is the same also for conformally coupled
scalar fields because the equation they satisfy is only conformally covariant; not con-
formally invariant.) Now, in physical applications of the classical theory one expects
φ(x) to be a suitably smooth function that obeys its field equation in the corresponding
smooth sense. A blow-up of φ(x) signals a blow-up of physical observables such as
energy density. In quantum theory, one generally expands the quantum analog φ̂(x)

of φ(x) as a sum of creation and annihilation operators with a basis of positive and
negative frequency classical solutions as coefficients. Since these solutions diverge at
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the big-bang, one’s first reaction may be that the quantum field φ̂(x) is also ill-defined
there.

Note, however, that there is a key conceptual and mathematical difference between
a classical field φ(x) and its quantum analog φ̂(x). Already in Minkowski space, φ̂◦(x)

is an operator valued distribution (OVD): we have to smear it with test fields f (x)

to obtain well-defined operators φ◦( f ) := ∫
M̊ φ◦(x) f (x)d4x on the Fock space [33].

(Throughout, fields in Minkowski space–time will carry a marker ◦.) The distributional
character is not a mere technicality; it lies at the foundation of quantum field theory.
In particular, for φ̂◦(x) satisfying the wave equation with respect to the Minkowski
metric

g̊abdxadxb ≡ ds̊2 = −dη2 + d	x 2,

we have:

[φ̂◦(x), φ̂◦(x ′) ] = i� (Gad − Gret)(x, x ′) Î and

〈φ̂◦(x) φ̂◦(x ′)〉 = �

4π2

1

|	x − 	x ′|2 − ((η − η ′) − iε)2 (3.1)

where the right sides are genuine distributions. In the second equation one has to first
integrate 〈φ̂◦(x) φ̂◦(x ′)〉 with iε against test functions and then take the limit ε → 0.
More importantly, products (φ̂◦)2(x) have to be regularized precisely because φ̂◦(x)

is an OVD. Thus, if taken literally, the textbook terminology of ‘field operators’ and
‘2-point functions’ can be quite misleading, just as the term Dirac ‘δ function’ is.

Since φ̂(x) is an OVD already in Minkowski space–time, we cannot hope for a
smoother behavior in FLRW space–times. Thus, we are led to ask: do the operators
φ̂( f ) := ∫

d4V φ̂(x) f (x), smeared with test functions f (x), remain well-defined and
continue to satisfy the field equation � φ̂(x) = 0 in the distributional sense (i.e.,∫

d4V φ̂(x) (� f (x)) = 0), even when the support of the test field f (x) includes
the singularity? As usual, here d4V is the space–time volume element determined
by the space–time metric gab of the FLRW space–time. Now, in these space–times,
the volume element shrinks at the big bang because the scale factor vanishes there.
Therefore, it is ‘easier’ for φ̂(x) (as well as the classical solutions φ(x)) to be well-
defined as distributions. A simple analogy is provided by h(	r) := 1/r on R

3: it is
singular as a function but well-defined as a distribution. Indeed, we routinely use the
equation 	∇2 h(	r) = −4π δ(	r) in the distributional sense.

It turns out that the divergence of the basis functions is exactly compensated by
the vanishing of the volume element, making φ̂(x) a well-defined OVD in spite of the
big-bang singularity. One can see a shadow of this phenomenon already in the clas-
sical theory. Consider the ‘symplectic product’ �(φ1, φ2) := ∫

M◦ [φ1(x)∇aφ2(x) −
φ1(x)∇aφ2(x)] na d3V between any two solutions, where M◦ is a Cauchy surface
and na is the unit normal to it. Since φ1(x) and φ2(x) both diverge at the singularity,
one might first think that the right side would diverge as we push M̊ to the big-bang.
However, the symplectic product is conserved, i.e., is independent of the choice of
M̊ . Therefore we can take M̊ to be a t = const surface, where t is the proper-time of
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the FLRW metric, and take limit as t → 0, i.e., approach the big bang. The limit of
�(φ1, φ2) is obviously well-defined (since it remains constant in the process) although
φ1(x) and φ2(x) diverge. This is because the divergence is exactly compensated by
the shrinking of the volume element.

For brevity, let us focus on spatially flat FLRW space–times. As is well-known the
analysis of quantum fields simplifies if one uses conformal time η. With this choice,
the metric has a manifestly conformally flat form: gabdxadxb = a2(η)g̊abdxadxb ≡
a2(η)(−dη2 + d	x 2), where a(η) = aβηβ with aβ a constant and β ≥ 0. The case
β = 0 corresponds, of course, to Minkowski space–time for which η runs over the full
real line of the Minkowski 4-manifold M̊ . Next, β = 1 corresponds to the radiation
filled universe and β = 2 to the dust filled universe. In these cases, we have a big bang
at η = 0 and physical space–time corresponds only to the portion η > 0 of Minkowski
space–time (M̊, g̊ab). The question is: Can the evolution of the quantum field φ̂(x) be
nonetheless extended to all of M̊? To explain the main ideas, we will restrict ourselves
to the simplest non-trivial case of a radiation-filled universe. Treatment of higher
values of β is slightly more complicated because of a technical infrared issue that are
unrelated to the big-bang singularity. We will only indicate these complications and
refer the reader to [2] for details. Qualitative features of the behavior of quantum fields
are the same for higher values of β.

To analyze the evolution across the big-bang, we need to extend the metric gab to
full M̊ , i.e., to η ≤ 0. We will achieve this simply by extending the conformal factor
a2(η) in the obvious manner. In the radiation-filled universe, then, a2(η) = a2

1 η2 for
all η ∈ R and gab is in fact smooth as a tensor field on all of M̊ . (This is also the
extension provided by the framework of Sect. 1.) But gab fails to be invertible at η = 0,
whence its curvature diverges there. The key issue is whether our test quantum fields
experience this divergence and, if they do, whether it is as fatal for them as it is for
classical test particles.

This issue has been analyzed in the general setting provided by tempered distri-
butions [34, 35] where test functions are taken to lie in the Schwartz space S of C∞
functions that decay faster than any polynomial at infinity (in the Cartesian coordi-
nates of Minkowski space (M̊, g̊ab)). S is a more convenient choice of test functions
than the more commonly used space C∞

0 of smooth functions of compact support
because, while S is stable under Fourier transforms, the space C∞

0 is not. Note that
since C∞

0 ⊂ S, a tempered distribution is in particular an ordinary distribution which
acts on smooth functions of compact support. Therefore, if φ̂(x) is well-defined as
a tempered OVD, it is in particular a well-defined OVD over C∞

0 . A key fact about
tempered distributions is that, while the function η−m is divergent at η = 0 on the real
line, it is a well-defined tempered distribution [34, 35], denoted by η−m :

η−m := (−1)m−1

(m − 1)!
dm ln |η|

dηm
; i.e., η−m : f (η) → (−1)m

(m − 1)!
∫

dη ln |η| dm f

dηm

(3.2)

for all f ∈ S. This definition of η−m is completely analogous to the definition of the
more familiar distribution δm(x)—the m-th derivative of the Dirac distribution—which

123



   45 Page 10 of 19 A. Ashtekar et al.

is defined as the (m + 1)th derivative of the locally integrable but non-differentiable
step function.

With these notions at hand, we can now summarize the results [2]. Let us consider
the OVD φ̂(x) in radiation-filled FLRW space–time (M, gab) satisfying the wave
equation �φ̂(x) = 0 (for η > 0). Then, φ̂◦(x) := (a1η)φ̂(x) satisfies �̊ φ̂◦(x) = 0
with respect to the Minkowski metric g̊ab. Therefore, we can use the Minkowskian
expansion of φ̂◦(x) in terms of its creation and annihilation operators (which is well-
defined on full M̊) and obtain a putative OVD φ̂(x) := (a1η)−1 φ̂◦(x) on M. Is it a
well-defined OVD on our extended FLRW space–time on which gab is degenerate at
η = 0 (and has a curvature singularity there)? Using the fact that the volume elements
of the two metrics are related by d4V = (a1η)4 d4x , we obtain

φ̂( f ) :=
∫

M̊
d4V φ̂(x) f (x) =

∫

M̊
d4x φ̂◦(x)((a1η)3 f (x)) (3.3)

and the right side is a well-defined operator on the Minkowski Fock space since
(η3 f (x)) is in the Schwartz space S if f is. Since f can have support at η ≤ 0,
φ̂(x) is a well-defined OVD on the full extended FLRW space–time; its explicit action
can be given in terms of the creation and annihilation operators of the Minkowski
Fock space. Similar argument shows that φ̂(x) satisfies

∫
M̊ d4V φ̂(x)(� f (x)) = 0

even when f has support on η ≤ 0; thus our OVD satisfies the wave equa-
tion on the extended space–time. For the bi-distribution 〈φ̂(x) φ̂(x ′)〉 we obtain:
〈φ̂(x) φ̂(x ′)〉 = 1

a2
1ηη′ 〈φ̂◦(x) φ̂◦(x ′)〉◦ which is a well-defined bi-distribution on

the extended FLRW space–time, again because the double volume element goes as
(a2

1ηη′)4. By considering the physical geodesic distance between two points one can
check that the singularity structure has the Hadamard form. (For a discussion of the
Hadamard form, see, e.g. [36, 37].)

Finally, one can consider renormalized products of OVDs 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren.
The renormalization procedure involves subtracting a counter term that removes the
‘universal’ part of the divergence. The standard strategy is to first carry out point
splitting [38–41] and then subtract the DeWitt–Schwinger subtraction term [39], con-
structed from curvature tensors of the background space–time metric. Applying this
procedure to the radiation filled universe, one obtains 〈φ̂2(x)〉ren = 0 and

〈T̂ab(x)〉ren = �

720π2a2
1η6

∇aη∇bη + �

576π2a2
1η6

g̊ab

≡ T1(η)∇aη∇bη + T2(η) g̊ab . (3.4)

The first result seems surprising because 〈φ̂2(x)〉ren is generically non-zero in FLRW
space–times. However, dimensional considerations show that it can only be propor-
tional to the space–time scalar curvature which happens to vanish in the radiation-filled
FLRW cosmologies. (In the dust-filled case, for example, it is non-zero but a well-
defined distribution.) The coefficients T1(η) and T2(η) in the expression of the
renormalized stress-energy tensor diverge as 1/η6. Therefore, when the volume ele-
ment is folded in, they become tempered distributions of the type 1/η2. Thus even the
renormalized operator products are well-defined as distributions.
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As we just saw, technical simplifications arise in radiation filled universes, because
the scalar curvature R of the space–time metric gab vanishes identically. In partic-
ular, the natural mode functions (in the expansion of φ̂(x) in terms of creation and
annihilation operators) in the FLRW space–time can be obtained simply by rescaling
the Minkowski mode functions e−ikη+i 	k·	x/

√
2k by 1/a(η) = 1/(a1η). For FLRW

universes with scale factor a(η) = aβηβ with β > 1, the scalar curvature does
not vanish. Nonetheless, a simplification occurs because �φ(x) = 0 if and only if
(�̊ + β(β − 1)/η2)φ◦(x) = 0, where φ◦(x) = a(η)φ(x). Therefore one can focus
on φ◦(x) satisfying the wave equation in presence of a time dependent potential
V (η) = β(β − 1)/η2. Because the potential decays sufficiently rapidly at infinity and
is symmetric around η = 0, one can again find canonical mode functions—or, more
precisely, a complex structure on the space of solutions (see, e.g., [42]), or, a quasi-free
vacuum state (see, e.g., [37]). For β > 1, the explicit form of the corresponding mode
functions is more complicated, but one can still carry out the calculations we reported
above for radiation-filled universes.

Detailed calculations are available in dust-filled universes (β = 2). The only sig-
nificant complication is that one has to introduce an infrared regularization procedure
(also for β > 2). But this issue has nothing to do with the big-bang; it arises already in
the usual portion of Friedmann universes where we have η > 0 [43]. Once an infrared
regulator is introduced, the theory is well-defined for η > 0 and then there is no further
difficulty in extending it to the full manifold M̊ . This is just as one would expect, given
that possible difficulties at the big-bang are related to the ultraviolet regime rather than
the infrared one. φ̂(x) is again a well-defined OVD and 〈φ̂(x) φ̂(x ′)〉 a bi-distribution
on all of M̊ . Both 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren continue to be well-defined distribu-
tions but now 〈φ̂2(x)〉ren is non-zero. While our discussion is restricted to spatially
flat FLRW models, recently these results have been extended to include spatial cur-
vature as well [4]. Interestingly, in dust-filled universes which have been analyzed in
detail, the infrared issue mentioned above disappears because the presence of spatial
curvature introduces a new scale which in effect provides a natural infrared cutoff.

To summarize, then, the big-bang and the big-crunch singularities of general rela-
tivity are harmless when probed with quantum fields. The divergence of the curvature
does have direct consequences. Conceptually 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren should be
regarded as distributions—indeed 〈φ̂(x) φ̂(x ′)〉 is already a bi-distribution—but away
from the singularity these distributions happen to be functions, taking well-defined
values at points of M . On the extended manifold M̊ , they become genuine distributions
of the type η−m—reminiscent of 1/r on R

3. Finally, the space–time region inside the
Schwarzschild horizon is time-dependent and isometric with the Kantowski-Sachs
cosmological solution which is spatially homogeneous but not isotropic. Quantum
fields have also been analyzed in this space–time [3] and results to date again show
that the singularity is harmless when probed with quantum fields.5

5 Sometime ago a similar result was obtained using Schrödinger picture for time evolution [44]. However,
that reasoning relies on formal arguments that do not do full justice to the difficult quantum field theoretic
issues associated with an infinite number of degrees of freedom. These are adequately handled in [3], along
the lines of [2].
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4 Level 3: using quantum riemannian geometry

Up to this point we have treated the gravitational field classically. As mentioned
in Sect. 1, a more complete theory would treat both matter and gravitational fields
quantum mechanically. Thus at a fundamental level, space–time geometry itself would
have a quantum or ‘atomic’ structure and the continuum picture in terms of a metric gab

would arise only on suitable coarse graining of the underlying ‘atoms of geometry’.
The fact that the renormalized stress-energy tensor has to be treated as a genuine
distribution near the singularity suggests that, when probed at the Planck, geometry
would also display a ‘distributional character’.

In loop quantum gravity (LQG) this idea is realized in a concrete fashion. Fun-
damental excitations of geometry are 1-dimensional, rather like polymers that serve
as ‘threads’ with which the quantum geometry is ‘woven’. The basis of states that
diagonalizes the geometric operators is given by spin networks—graphs whose links
and nodes carry certain quantum labels. Quanta of volume reside only at the nodes;
the label carried by a node tells us which quantum that reside there. Each link deposits
a certain quantum of area on any surface it intersects; the label carried by the link
determines the eigenvalue of the area operator deposited. In this precise sense, area
and volume are distributional in character. In particular, given a spin network state of
quantum geometry, an open region that has no nodes has zero volume, and a portion
of a surface that has no intersections with any of the links has zero area. If a region
or a surface is macroscopic and the state is semi-classical with many, many nodes and
links, then this fundamentally discrete quantum geometry can be well-approximated
by a continuum. This is analogous to the fact that while a coherent state peaked at a
large classical electromagnetic field Fab is fundamentally a superposition of photon
states, one can approximate it by the classical Fab extremely well.

Therefore it is interesting to examine classical singularities from the perspective of
the quantum Riemannian geometry. Does the fundamental atomic structure of geome-
try come to rescue and naturally resolve the singularity? There is very extensive work
on this subject in loop quantum cosmology (LQC). (For reviews, see, e.g., [13, 14].) In
this section, we will summarize the main ideas and results on the fate of cosmological
singularities in LQC.

The classical FLRW spacetime is characterized by a scale factor a(t) together
with matter fields, say φ(t). In any quantum cosmology, the classical space–time
is replaced by a quantum state 
(a, φ) that is subject to the quantum versions of
the Friedmann and Raychaudhuri equations. In this transition, reference to the proper
time t disappears—we only have a and φ and quantum dynamics becomes ‘relational’.
One can use, for example, the matter field φ as an internal clock, and describe how
the scale factor evolves with respect to it. Quantum cosmology was first introduced in
the ADM framework and the quantum version of the ADM scalar/Hamiltonian con-
straint goes under the name Wheeler–DeWitt (WDW) equation. Let us make a small
detour to compare and contrast LQG with the WDW theory, also known as Quantum
Geometrodynamics. For full general relativity, the mathematical framework underly-
ing Quantum Geometrodynamics has remained formal; difficult issues of functional
analysis remain unresolved even now. Even within quantum cosmology—where one
only has a finite number of degrees of freedom—issues such as the inner product on
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physical states—the space of solutions to the Wheeler DeWitt (WDW) equation—
or self-adjointness of physical observables, or the measure used in the definition of
path integrals is rarely discussed (outside the LQC community). LQG differs from the
WDW theory in this respect. First, LQG is based on a rigorous mathematical frame-
work in which functional analytic issues related to the presence of an infinite number
of degrees of freedom are handled systematically respecting covariance, i.e., the fact
that there are no background fields, not even a space–time metric. It is this feature that
leads one to a specific quantum Riemannian geometry in which geometric operators
have discrete eigenvalues [45–52]. As mentioned in Sect. 1, the area operator has a
minimum non-zero eigenvalue � ≈ 5.17�2

Pl, called the area-gap, which has no analog
in Quantum Geometrodynamics. The area gap plays an important role in the theory
because the curvature operator is defined by computing the holonomies (or Wilson
loops) of the gravitational connection around closed loops and then shrinking the loop
till area it encloses becomes �. This introduces a Planck scale non-locality in the
theory that then provides a natural ultraviolet cut-off.

The mathematical framework of LQC descends in a precise sense from that of full
LQG [53, 54]. As a result, already at the kinematical level—i.e. even before imposing
the quantum constraint—the Hilbert space of states is not the space of square integrable
functions of, say, (a, φ) with respect to the Lebesgue measure, the arguments of the
wave function. One is led to a novel Hilbert space H, even though the system has
only a finite number of degrees of freedom [11, 12]. The resulting theory is sometimes
referred to as “polymer quantum mechanics” because it descends from full LQG
where, as we mentioned above, the fundamental excitations of geometry are polymer-
like. Furthermore, the Wheeler DeWitt differential operator on 
(a, φ)—the quantum
version of the Hamiltonian constraint in Quantum Geometrodynamics—fails to be
well-defined on the LQC H but gets systematically replaced by a difference operator
that does have a well-defined action on H. The step size of this difference operator
is dictated by the area gap �. As a consequence, quantum dynamics has qualitatively
new features at the Planck scale.

Because there is a well-defined Hilbert space, given a state ψ(a, φ) one can calculate
the expectation values and uncertainties of operators in it. Therefore there is a well-
defined notion of “sharply peaked states”. Fix a classical FLRW cosmology with φ as
source and consider a dynamical trajectory a(t), φ(t). As we go back in time along
the trajectory, the scale factor goes to zero and the energy density of the scalar field
diverges. What happens in LQC? Let us take a quantum state 
(a, φ) that is sharply
peaked on the given classical trajectory at a late time, i.e., where spacetime curvature
and matter density are low compared to the Planck scale. Let us then use the LQC
Hamiltonian constraint operator to evolve this state back in time (w.r.t. the internal
‘matter clock’) towards higher curvature and density. Interestingly, the wave packet
remains peaked and the peak follows the classical trajectory till the density increases
to about ρ ∼ 10−4ρPl. Then the quantum geometry effects induced by the area gap—
i.e., the finite size of steps in the difference operator representing the Hamiltonian
constraint—cease to be negligible. The state 
(a, φ) is still sharply peaked but the
peak ceases to follow the classical trajectory. Rather, it follows a quantum corrected
trajectory that undergoes a bounce when the density reaches a critical, maximum value
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ρmax := 18πG�
2

�3 ≈ 0.41ρPl (4.1)

and then it starts decreasing. The bounce replaces the big-bang. In this backward
evolution, quantum corrections become negligible and GR is again an excellent
approximation once the density falls to ρ ∼ 10−4ρPl (see, e.g., [11–14] fpr details of
these results). Thus, quantum geometry effects create a bridge joining our expanding
FLRW branch to a contracting FLRW branch in the past. This behavior is strikingly
different from that of the WDW wave function 
WDW(a, φ) which evolves into a sin-
gularity; there is no bounce. What would happen if we ignored the quantum geometry
effects? In dynamical equations, this would correspond to steadily decreasing the area
gap � to zero. One arrives at the WDW evolution in a precise sense [55]. The big
bang persists because lim�→0 ρmax = ∞. Thus, the replacement of the big bang by
a big bounce can be directly traced back to quantum geometry effects of LQG. These
qualitative new features are consequences just of the quantum Einstein’s equations
given by LQC. One does not introduce matter violating energy conditions to escape
singularity theorems, nor does one introduce new boundary conditions, such as the
Hartle-Hawking ‘no-boundary proposal’ [56].

Salient features of the LQC dynamics can be understood using certain systemati-
cally derived effective equations that capture the qualitative behavior of sharply peaked
states 
(a, φ) [13, 14, 57]. More precisely, they encode the leading order corrections
to the classical Einstein’s equation in the Planck regime. As we discussed above, these
corrections modify the geometrical part (i.e. left side) of Einstein’s equations due to
quantum geometry effects. But it is both possible and convenient to move them to
the right side by a simple mathematical manipulation. Then, the quantum corrected
Friedmann equation assumes the form

( ȧ

a

)2 = 8πG ρ

3

(
1 − ρ

ρmax

)
. (4.2)

where the second term on the right side represents the quantum correction. Without this
term, i.e., in classical GR, the right side is positive definite, whence ȧ cannot vanish at
any finite time: the universe either expands out from the big bang or contracts into a big
crunch. But, with the quantum correction, the right side vanishes at ρ = ρmax. There-
fore ȧ vanishes there and the universe bounces. Note that this can occur only because
the LQC correction ρ/ρmax naturally comes with a negative sign, which effectively
gives rise to a ‘repulsive force’ of quantum geometry origin in the Planck regime. The
occurrence of this negative sign is non-trivial: in the standard brane-world scenario,
for example, Friedmann equation is also receives a ρ/ρmax correction, but it comes
with a positive sign (unless one makes the brane tension negative by hand; see, e.g.
[58]). Therefore the singularity is not naturally resolved. Finally, there is an excellent
match between analytical results within the quantum theory, numerical simulations
and effective equations. On the conceptual side, this singularity resolution first arose
in a Hamiltonian framework [11, 12, 59]. However, subsequently they were derived
in the sum over histories approach as well [60], and also understood using the ‘con-
sistent histories framework’ of quantum mechanics [61]. Finally, these considerations
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have been generalized to include spatial curvature, non-zero cosmological constant,
and anisotropies (see, e.g., [13, 14] and references therein). The simplest inhomo-
geneities captured by the Gowdy models [62] have also been included in the analysis
and Brans-Dicke theory [63] has been discussed as well. Finally, we note that there is
considerable work on evolving test quantum fields on the FLRW quantum geometries

(a, φ) of LQC, especially in the context of cosmological perturbation theory ([64],
see also e.g., [14, 65] and references therein).

5 Outlook

It is interesting to recall Einstein’s own perspective on the big-bang singularity in
his later years. In the 1945 edition of his Meaning of Relativity, he summarized his
evolved views as follows:

“One may not assume the validity of field equations at very high density of field
and matter and one may not conclude that the beginning of the expansion should
be a singularity in the mathematical sense."

By “field equations" he meant his own equations of general relativity and the suggestion
that these equations would have to be supplanted or transcended at high field density
(i.e. curvature) and high matter density is striking.

Einstein’s remarks are in the context of the big bang singularity. In the last three
sections, we presented an overview of the current understanding of the broader question
of whether space-like singularities of classical general relativity should be viewed as
the ‘final boundaries’ at which space–time ends and physics breaks down. We explored
this issue at three different levels. The premise of the first-level investigation was that
while the evolution of the space–time metric does break down, there may be other
‘more basic’ classical variables which are not singular there. The premise of the
second-level exploration was that while the space–time metric does become singular,
this singularity may be tame when probed with test quantum fields. Once we give a
precise ‘mathematical sense’ to these probes, taking into account their distributional
nature, there is no singularity in their evolution. At the third level, the premise is that
one ‘should not assume the validity of Einstein’s field equations’ in the Planck regime
where there is a very ‘high density of field and matter’. Interestingly, at each level,
the analysis offered hints that the answer to the broader question is likely to be in the
negative, echoing Einstein’s sentiments.

At the outset, the three levels are conceptually very different from each other.
Nonetheless, there are common underlying threads. The variables Ci

j and Pi
j of

Sect. 2, for example, are real and imaginary parts of (Ea
i Aa

j ), where Ai
a is the self-

dual gravitational connection that plays a key role in the Hamiltonian formulation
underlying loop quantum gravity, discussed in Sect. 4. So the fact that evolution of
Ci

j and Pi
j is well defined across the big bang may be a shadow on the classical

theory of the fact that the evolution of the quantum state 
(a, φ) in LQC does not
break down because of the big-bang singularity. Similarly, the tame behavior of test
quantum fields across the big-bang we found in Sect. 3 may be a reflection of the
fact that quantum fields can be meaningfully evolved on the singularity-free quantum
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geometries represented by wave functions 
(a, φ) of LQC. Put differently, it may well
turn out that the tame behavior we found at levels 1 and 2 are systematic consequences
of the regular evolution in a quantum theory of gravity, across the putative classical
singularities. For example, it may be possible to derive them step by step starting from
LQG, perhaps after its full quantum dynamics is better understood. In particular, one
could study in detail the Hamiltonian system offered by the variables Ci

j and Pi
j of

Sect. 2 at the classical level, beyond the simple (but physically interesting) symmetry
reduced versions that have been studied so far. One could also investigate quantization
of that system. Similarly, one could explore the relation between the distributional
fields—especially the renormalized stress-energy tensor—we discussed in Sect. 3 and
the distributional geometries underlying LQG we referred to in Sect. 4. These are
fascinating challenges for future work.

In this regard, a key question for a theory such as LQG can be phrased as follows. In
classical general relativity, one first observed that physically important, explicit solu-
tions to Einstein’s equations such as homogeneous cosmologies and the Schwarzschild
black holes have curvature singularities. But then there was a long debate as to whether
these singularities should be taken seriously. Eddington famously claimed that a grav-
itational collapse of a star will not lead to a singularity; “I think there must be a law
of Nature to prevent the star from behaving in this absurd way”. Later, there was a
systematic program led by Khalatnikov and Lifshitz whose goal was to show that the
singularities found in these known solutions were artifacts of their high symmetry and
would be absent in a ‘general solution’ to Einstein’s equations. Singularity theorems
bypassed the analytical methods that were then being used to find ‘general solutions’ of
Einstein’s equations (using power series expansions), introducing, instead, fresh ideas
from causal structures and behavior of geodesics, assuming that curvature is caused
by matter satisfying suitable energy conditions. This fresh perspective provided novel
tools to show that singularities would be ubiquitous in general relativity if conditions
that are natural in classical physics are met. Considerations of the last three sections
suggest that, from a broader perspective that combines general relativity with quan-
tum physics, singularities are harmless if one probes them with physically appropriate
tools, or even absent altogether if we take into account the quantum nature not only of
matter but also of geometry. But the detailed analysis has been carried out only in sym-
metry reduced systems. Thus, in a sense, progress has been ‘helical’ and we are back
at the question of whether the situation in these examples is generic, albeit at a higher
level that includes quantum physics in addition to general relativity. What happens
physically in generic situations in absence of symmetries? Are the results obtained in
symmetry reduced models providing correct pointers? That is: Are generic space-like
singularities naturally resolved in quantum gravity? Can one establish ‘no-singularity
theorems’ using only appropriate physical conditions that take into account both grav-
ity and the quantum? Do we need a fresh perspective and a novel toolkit to establish
this?

Paddy would have been excited by these profound challenges.
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