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Chiral symmetries in field theory are typically affected by an anomaly in the quantum theory.
This anomaly emerges when one introduces an interaction with a Yang-Mills or gravitational back-
ground. Physical applications of this quantum effect have been traditionally connected to topological
questions of the background field and the study of instantons. We show here how one can alter-
natively find situations of physical interest that only involve ordinary, but dynamical solutions of
the background field equations. More precisely, we show that solutions to the Einstein (Maxwell)
equations are able to trigger the chiral anomaly if and only if they admit a flux of gravitational (elec-
tromagnetic) radiation with net circular polarization. As a consequence, astrophysical systems that
admit such radiation spontaneously generate a flux of particles with net helicity from the quantum
vacuum.

I. INTRODUCTION

It is well-known that strong gravitational fields can affect the vacuum fluctuations of quantum fields and lead to
important physical phenomena. From the pioneer work of Parker on particle creation in expanding universes [1],
to the subsequent discover by Hawking of thermal emission during a gravitational collapse [2], different phenomena
of quantum origin can arise if a quantum field propagates on a dynamical, gravitational background. One of these
quantum effects is related to the emergence of anomalies due to spacetime curvature.

An anomaly is understood as the failure of some Noether symmetry of a classical field theory to persist after the
quantization. More precisely, when the classical conservation law of a Noether current breaks down in the quantum
theory, the associated symmetry is said to be anomalous [3]. Their discovery was initiated in the late 60’s with the
fermion axial or chiral anomaly [4, 5], motivated with the aim of understanding the observed phenomenon of the
pion decay into two photons. Since then, the field has grown enormously, leading to the discovery of many more
anomalous symmetries of diverse nature (conformal, gauge, etc), and to a rich interplay with differential geometry
and topology [6]. From a physical viewpoint, anomalies were found useful to address key conceptual questions in the
standard model of particles (U(1) problem, strong CP violation in QCD [7]) and cosmology (baryogenesis). Our goal
in this paper is to point out and develop an unexplored aspect of chiral anomalies that, remarkably, turns out to have
a simple physical interpretation, and could lead to new physical applications in gravity and electrodynamics.

For definiteness, let 1)(x) be a Dirac field interacting with a classical Yang-Mills background of field strength Fyp
in Minkowski spacetime (R*,74), with coupling constant g. Let v* be the Dirac matrices, and let 7° := iy%y1y243
be the chiral matrix. In the massless limit, the standard action of this theory possesses a (global) Noether symmetry
generated by the transformation (z) — ¢ %(z), 6 € R, that leads to a Noether current: j¢(z) = 1(z)7*7 ¢ (z) .
This is the well-known (abelian) chiral symmetry. This current is conserved for solutions 1(x) of the Dirac equation
of motion, V,j¢(z) ~ 0. In the quantum theory, however, off-shell contributions yield
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thus spoiling the classical conservation law. This is the indication that the classical symmetry is anomalous in the
quantum theory. Denoting by ¢, = 1/2(I 4+ 4°)¥ and ¥r = 1/2(I — 4°)¥ the right-handed and left-handed chiral

sectors of the Dirac field, respectively, the associated Noether charge can be written as Qs(t) = fz d?’x\/ﬁ(w};w}g —
¢2¢L)a which is a measure of the net difference between right-handed (positive-helicity particles plus negative-
helicity antiparticles) and left-handed fermions (hegative-helicity particles plus positive-helicity antiparticles). While
this difference is preserved by the equation of motion for classical fields, Q5(t) ~ 0, the emergence of the anomaly
indicates that quantum fluctuations are able to induce a change in time given by
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if and only if the RHS of this equation is non-vanishing. What does the anomalous time dependence of the chiral
charge imply physically? Using S-matrix theory and Bogoliubov transformations, it can be explicitly shown [8] that
the Yang-Mills field creates and destroys fermions in such a way that (Qs(t2)) — (Qs5(¢1)), which is a measure of
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asymmetric particle creation, is given precisely by the amount predicted by the RHS of the previous equation. Thus,
the anomalous temporal evolution of the chiral charge is physically interpreted as a phenomenon of asymmetric
particle creation by a dynamical background: a non-trivial gauge field is able to excite spontaneously a net number
of right-handed fermions over left-handed ones from the quantum vacuum, or viceversa.

In a similar fashion, it has been recently shown [9-12] that the analogous chiral symmetry in electrodynamics,
most popularly known as electric-magnetic duality symmetry of source-free Maxwell equations, suffers from a similar
anomaly when a non-trivial spacetime background (R*, g,;) is introduced. More precisely, under a chiral rotation
tF(z) — eF? £ F(x) of the self-dual and anti self-dual sectors of the electromagnetic field, £ Fop = §[Fup & i* Fp),
the usual action for the source-free Maxwell theory remains invariant. This leads to a Noether current that, for
solutions of the field equations, reads J¢ ~ Ap*F' ab _ 7z, F°®. Although classically conserved, it was found in [9-12]
that quantum fluctuations of the electromagnetic field produce
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if spacetime curvature Rape? is considered. The associated Noether charge can be expressed as the difference between
right-handed and left-handed photons, and, while Maxwell equations guarantee that Q5 ~ 0 for the classical function
Q5(t), off-shell contributions can spontaneously make this quantity change in time if and only if the RHS of

s(t2)) - (Os(t1)) = —— 0\ =g Raped B, (4)
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is different from zero. Again, the physical picture is analogous to the fermion case: a non-trivial gravitational
background would be responsible to create spontaneosly a difference in the number of right- and left-handed circularly
polarized photons from the quantum vacuum.

In general, the physical interpretation of chiral anomalies is strongly associated to the phenomenon of “level-
crossing”. The Hamiltonian of the quantum field, which determines the energy of field modes, depends on the
background field. Then, a non-trivial temporal evolution of the latter can make a positive-chirality mode with
initial negative energy transform into a positive-chirality mode with final positive energy [8, 13]. In other words, the
dynamical evolution of the Yang-Mills or gravitational field can reverse the helicity of field modes, producing as a
result a net creation of helicity from the quantum vacuum: more particles of one helicity are created than particles of
the opposite helicity.

The question we want to answer here is: what are the physical spacetime backgrounds that can induce this level-
crossing in the helicity of field modes? How is this dynamical evolution supposed to be? In the Yang-Mills case an
important historical role has been played by instantons [14, 15]. Instantons are classical solutions to the Euclidean field
equations of a non-abelian gauge theory which exhibit a non-trivial topology in the manifold of field configurations.
Physically, they are interpreted as amplitudes that quantify quantum-mechanical transitions between topologically-
inequivalent vacua in the Hilbert space of gauge fields [14, 16-18]. Their use played a fundamental role in the 70-80
in addressing several problems of the standard model of particles and QCD, most notably the U(1) problem [19]. But
what about the gravitational case? Analogous solutions of the Euclidean Einstein’s equations are also known for a
long time [20, 21] and were baptised as gravitational instantons. While mathematically these solutions have a rich
structure [22], their physical interpretation could be regarded as exotic, since it relies on quantum-gravity issues [23].
If one is only interested in studying applications of chiral anomalies, it can be more natural to look instead for more
realistic spacetimes, i.e. for ordinary, Lorentzian solutions of Finsteins equations directly.

To our knowledge, this problem has not been proposed in the literature before. Since it is known that the integrand
in (4) is locally a total derivative, a priori one expects that only non-trivial spacetime topologies can produce non-
vanishing contributions, thereby the historical interest in instantons. However, in gravity this is not quite true because,
at least for asymptotically flat spacetimes, the boundary of the spacetime, called null infinity [24], is non-trivial and
can provide a contribution by means of the flux of gravitational waves (GWs) that enters/exits the spacetime. The
goal of this paper is to fill this gap, and to open a new window for applications of chiral anomalies that go beyond
the realm of topology or instanton calculus.

Our main result will be to show that chiral anomalies are intimately related to the circular polarization state of
ordinary gravitational radiation in the spacetime background. More precisely, we shall prove that:
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where hy, hy denote the two GW linear polarization modes that reach future null infinity, emitted by an isolated
gravitational source that is stationary at both past and future timelike infinities, but otherwise arbitrary. What
this formula is indicating is that the more right(left)-handed gravitational radiation is emitted by a system, the more



right(left)-handed particles will be excited from the quantum vacuum through the mechanism that produces the chiral
anomaly. This is a realistic gravitational setting, with a clear and unambiguous physical meaning.

That an asymptotically flat spacetime background must emit gravitational waves in order to induce the quantum
anomaly is an indication that only dynamical solutions of Einstein’s equations are relevant in this question. ! This
should come with no surprise in light of the previous physical interpretation of anomalies in terms of asymmetric
particle creation, since only dynamical gravitational fields are able to spontaneously create particles (and hence helicity)
from the quantum vacuum. On the other hand, because the study dynamical solutions of Einstein’s equations is a
rather involved issue that typically requires numerical techniques, this could explain why only instantonic solutions
(which are known in closed form) have only been considered so far in the study of chiral anomalies.

In a given sense the result that we obtain shares some parallelisms and interpretations with instantons. Namely,
our result can be understood as tunneling between degenerate vacua of the asymptotically flat spacetime (associated
to the degeneracy of gravitational connections at future null infinity [25, 26]), but in this case these transitions are
produced classically simply by a flux of gravitational waves crossing null infinity (i.e. not through the usual quantum-
mechanical tunneling). However, important conceptual differences exist. For instance, our result indicates that any
spacetime that its manifold is homeomorphic to R*, but such that its metric is deformed with respect to Minkowski
so as to allow the presence of circularly polarized gravitational radiation (i.e. to allow for curvature, in a specific
form) will be able to induce the quantum anomaly and hence level-crossing of modes. Thus, our result has nothing
to do with topological or global questions, but rather to the geometry of the spacetime?. Moreover, it seems unlikely
that these results could be simply obtained by a wick rotation of an instanton solution, since the former are purely
dynamical (gravitational waves), and hence it does not look that they could be recovered from “static” euclidean
solutions by any analytical continuation.

In light of the systematic detections of gravitational waves by the interferometers LIGO-Virgo in the last years
[28], and given that gravitational backgrounds emitting these waves are intimately related to chiral anomalies, it is
important to discuss astrophysical settings where these quantum effects could play a role in the underlying physics.
What is the possible phenomenology that one could predict? This will be studied in detail in a separate paper. The
present paper is an extended and a detailed discussion of the theoretical results presented already in [29].

We shall work with 4-dimensional spacetimes and the Levi-Civita connection. We follow Wald’s [30] sign conven-
tions. Namely, the metric signature is (—, +, +, +), the Riemann tensor is defined by [V, Vilv. =: R, dyq for any
covector field vq, the Ricci tensor is Rqp := R€,, and the scalar curvature is R := g“bRab. Unless otherwise stated,
all tensor fields will be considered smooth. In section II we use units in which 7 = ¢ = 1, while in section III we use
units in which G = ¢ = 1.

II. A SIMPLE CASE: THE ELECTROMAGNETIC ANALOGUE

Although we are ultimately interested in understanding the chiral anomaly induced by a gravitational background,
the usual technical complications associated with the non-linearities of the gravitational field and Einstein’s equations
makes necessary working first with a simpler model. Consequently, let us focus in this section on the original Adler-
Bell-Jackiw chiral anomaly [4, 5], which is the electromagnetic analogue. The above complications are avoided due
to the simplicity of Maxwell theory. More importantly, the final result will have such a simple physical interpretation
that will guide us in the gravitational case.

A. Setup and main calculation

The Adler-Bell-Jackiw chiral anomaly is the anomalous non-conservation of the Noether current associated to
the chiral symmetry of a Dirac spinor W(z). This anomaly arises when the spinor interacts with a background
electromagnetic field F,p(z). The explicit expression for this anomaly can be read off from (1) if we identify the gauge
group with U(1) and g? — e2. As emphasized in the introduction, the quantity of major physical interest is the
Noether charge, whose failure to be preserved in time is determined by the integral over all spacetime M:
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I But not all dynamical spacetimes produce a non-vanishing Chern-Pontryagin. One can easily check that Fridmann-Lemaitre-Robertson-
Walker metrics produce a zero result.

2 In the context of the Atiyah-Patodi-Singer index theorem, this geometric contribution is essentially the one that must be subtracted
from the Chern-Pontryagin integral in order to recover a topological quantity for manifolds with boundary, see [27]



Our goal is to determine which class of electromagnetic backgrounds (i.e. solutions F,;, of Maxwell equations) produce
a non-vanishing chiral anomaly. To achieve this we need to analyze this integral and to study under which conditions
it is not zero. We assume that this electromagnetic background Fy; is produced by some electromagnetic sources J¢,
that are smooth and with spatial compact support, but otherwise arbitrary.

First of all, it is not difficult to prove that for stationary solutions of Maxwell equations, dFF = 0, d*F = *J ,
eq. (6) above is identically zero. To see this, let us take a cartesian coordinate system {¢,Z}. A stationary Maxwell
field is a solution of Maxwell’s equations that remains invariant under time translations, i.e. a solution that satisfies
L Fa, = 0, where Ly, denotes the Lie derivative along the generator of infinitesimal time-translations, k = 9/9t. This
condition is equivalent to k%F,, = VA, where A is a function, traditionally called the electrostatic potential. The
integral of interest can be now rewritten as

/ Ao/ =nF F® = —4 / dt / PR Fypk F© = —4 / dt / PEV, Ak F®
M —00 R3 —00 R3

—4/ dt/ BV (AkSF?Y, (7)
— o R3

where in the first equality we used the 34+1 decomposition of the metric, n“b = —kokb + bt and *F,, = %eabchCd to

write h®heeF, *Fq = —2k“Fabkc*FCb; while in the third equality we used Maxwell equation VQ*F“b = 0. Assuming
standard fall-off conditions for the magnetic field and electrostatic potential at spatial infinity, k%* F,,Vor ~ 1/r3,
A ~ 1/r, the final result is zero.

We must look then for non-stationary solutions to Maxwell’s equations. To guarantee convergence for the integral
in time in eq. ((6)), we shall assume that both at early and late times the solution of Maxwell equations approaches
a stationary configuration. 2 During the non stationarity period, the dynamics of the electromagnetic sources
will generate outgoing radiation propagating to infinity (we will assume no incoming electromagnetic radiation for
simplicity). The study of outgoing radiation is most conveniently carried out within the framework of asymptotically
Minwkoski spacetimes [31-33]. A detailed summary of this topic can be found in Appendix B, and we will provide the
key points here. Let (R*, 7i,5) denote our physical, Minkowski spacetime, and let (M, 7,5) be the unphysical spacetime
constructed from the physical one by a standard conformal compactification. The unphysical metric is related to the
physical one by an ordinary conformal transformation: 74, = Q?()fjap. On the other hand, the unphysical manifold
is just the physical one together with additional points attached smoothly to it: M = R*UJ. The set of all these new
points constitute a null hypersurface 7, locally characterized by the condition = 0, and with null normal V.
Physically, they represent the “points of (null) infinity”, i.e. the points that can be asymptotically reached in the
original spacetime by following outgoing, null geodesics.

The importance of this construction is that it allows to apply ordinary techniques in differential geometry to study
the behaviour of fields in a neighourhood of infinity (which now is just a boundary of the spacetime manifold).
To do the calculation of interest, equation (6), one further needs to carry the tensors of the original spacetime
to the unphysical one. This is straightforward due to he invariance of the electromagnetic field under conformal

transformations, F,, = Fup, Aq = A,. Thus,

1 . “a R N 1
——/ dao/ Gy F = [ EAF = / FAF= ——/ A4 F F 8)
2 Jra R4 M 2/
The key point now is to notice that, mathematically, p;(F) = —#F A F is an invariant polynomial [6]. The

Chern-Weil Theorem from the theory of characteristic classes (see Theorem 11.1 in [6], for instance) states that the
difference between two invariant polynomials, p; (F') —p1(F"), associated to two connection 1-forms, A and A’, is exact
and determined by the transgression term Q(A, A") [6, 27):

pi(F) = p1(F) = dQ(A, A'). 9)

Because the spacetime (R*,7),p) is trivial from the topological viewpoint, it admits a global flat connection A’ Due
to conformal invariance and continuity, we have an electromagnetic potential that is pure gauge globally: A’ = da.
Then, the difference § = A — A’ represents the same physical electromagnetic potential®. The transgression term can

3 At early times the electromagnetic field is stationary for all # € R? and using the same arguments as above we get ng d3E V(A kC*FCb) =
0. At late times ¢ the field is stationary only in a spacelike open region U (t) C R3 of radius r(¢) that does not intersect the electromagnetic
waves generated during the intermediate non-stationary period. Because the waves propagate to future infinity, r(¢t) = t 4+ const, then
Uit — o) — R3 and we find fU(t) BEV(AkFFPL) = [dS?r(t)2A(r(t) ke* F(r(t))Vyr ~ t=2 as t — oo, which guarantees
convergence of the integral.

4 Because we shall be working with the unphysical spacetime all the time, we use the hat symbol to denote quantities associated to the
physical spacetime in order to avoid its use later.

5 The advatadge of working with 6 rather than with A directly is that the former is manifestly gauge invariant, while A is not. It is
customary in the literature to set A’ = 0, but this can be misleading during the calculation given that intermediate formulas would not
have a manifestly gauge-invariant form.



be evaluated following its definition (see [6, 27] for details) and reads:
1
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It is straightforward now to check that p;(F’) = p1(0) = 0. Then, by integrating (9) and applying Stokes Theorem
we get
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where the boundary of the unphysical manifold is 9M = [J; i* denotes the pullback of the inclusion map i : J — M;
and du dS? is the canonical integration measure on 7 ~ R x S?. Note that the RHS is manifestly gauge-invariant, as
it must be in view of the LHS.

This result can be further simplified if we work in a Newman-Penrose basis [34]. The electromagnetic field has 6
physical degrees of freedom per spacetime point that can be described with 3 complex scalars (these are analogous
to the Weyl scalars in the gravitational case [35]). These scalars are the components of the tensor F,;, in a null
tetrad {£*,n% m? m?}. Without loss of generality, we can take n® such that it equals 7?*V,Q at Q = 0, i.e. such

that it is normal to the hypersurface 7. Then £% is chosen as a null vector that satisfies {*n, = —1; and m%, m®
are complex conjugate null vector fields, taken such that their real and imaginary parts are tangential to 2-spheres
(hence orthogonal to n® and ¢%), and normalized as m®m, = 1. In this null tetrad, the metric takes the form
Nab = —2N(alpy + 2m(q1y) and the three electromagnetic scalars are defined by:

Oy = Fyynm®, (12)

1
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If we restrict to smooth solutions of Maxwell equations, the Peeling Theorem [36] guarantees that in a neighborhood
of J we can expand ®;(u,,0,¢) = ®(u,0,0,¢) + Q&L (u,0,0,¢) + ..., where (u, 0, ¢) are Bondi-Sachs coordinates
adapted to J [37, 38]. Going back to the physical spacetime, it is not difficult to see that this condition requires
Py ~ %, so ®Y represents the two radiative degrees of freedom of the electromagnetic field (corresponding to real and
imaginary parts of this complex number). If we further assume the same asymptotic behaviour for the electromagnetic
potential [39, 40], A, ~ O(1/r), then the two radiative degrees of freedom are encoded in the component Ay := A,m°.
Indeed, using Fyp = 2V, Ay and the above definitions for the scalars, one can see that A,n® = 0 and 9 = 0, A9 at
J.

We are now in position to evaluate (11). The tangent space of 7 is spanned by {n®, m®, m®}, so €2¢ = i3Inlembm.
Then,

/ D1 (F) = 1_6622 / 9anc(n[ambmc])du d82
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where we used A’ 8 = Oa. Recalling that 4,n% =0 at J, we get
1 - I
/M p1(F) = o /J du dS* Tm(APY — S BY) . (16)

Notice that the value of « is determined by the choice of gauge of AY. In other words, under a gauge transformation
AY transforms as Ay — AY + 03, while o transforms as « — a + f3, so the role of a is to maintain gauge invariance
in the full expression. In a specific gauge, o can be set to zero.

B. Physical interpretation: circularly polarized electromagnetic waves

Since AY (or ®9) is a complex number that encodes the two radiative degrees of freedom of the electromagnetic field,
we see that the chiral anomaly for fermions is intrinsically related to the emission of electromagnetic waves. Which



properties should these waves have in order to produce a non-trivial result? To understand the physical meaning of
this result, let us expand the electromagnetic field in Fourier modes as ©

BY(u, 6, 6) — / 0,6, g — / i
27T 0
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where in the second equality we explicitly splitted the modes in terms of positive and negative definite frequencies:
Ppr(w) == ®(w) for w > 0 while ¢ (—w) := ®(w) for w < 0. The electromagnetic potential satisfies Ay = 9, so we
can write

oo
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where the function (3(f,$) emerges as a constant of integration. Imposing ®» = 0, one concludes that 8 = da.
Plugging these formulas in (16), we get

e? * dw
[ ev=a i) = [ a8 [ S (0nw 0007 ~ 010, 0)R). (19)

Note that this formula is reminiscent of the phenomenon of level-crossing, discussed in the introduction. What is the
physical meaning of these modes, ®r and ®1? The electromagnetic field ®9 is self-dual, which means that it can be
written as ®) = (E + iB), where E, B are the electric and magnetic fields, representing the two possible, linearly
independent polarization directions of the electromagnetic field. Because of this, we can also write

W(0.0,6) = [ 5E(E(w.0.0) + iBlw.0.0)e (20)
from which we identify
Pr(w) = (E(w) +iB(w)), w>0,
¢p(—w) = (E(w) +iBWw)), w<0. (21)
The second equation implies ®1,(w) = (E(—w) — iB(—w)), for w > 0. Because E(u), B(u) are real functions, we must
have then F(—w) = E(w) and B(—w) = B(w), leading to ®1,(w) = (E(w) —iB(w)). Taking into account all this, and
expanding the fields in spin-weight spherical harmonics of modes (¢, m), we finally arrive at

<Q5(scri+)> — <Q5(scri—)> = /000 duo Z [|Eém(w) +iB™(w)|* — |[E™(w) — iBém(w)m )
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The RHS represents the difference in intensity between right- and left-handed circularly polarized electromagnetic
waves reaching future null infinity, i.e. the Stokes V parameter. The LHS represents the amount of net helicity
spontaneously created on the fermion field. We conclude that the emission of circularly polarized electromagnetic
radiation implies the spontaneous creation of massless charged fermions (highly energetic electrons, for instance)
with net helicity. The more right- or left-handed electromagnetic radiation the spacetime contains, the more left or
right-handed massless fermions will be excited from the quantum vacuum.

C. A concrete example: electric-magnetic oscillating dipole

Consider an electric dipole of moment pg pointing in the z-direction, oscillating with frequency w. The electromag-
netic vector potential is [41]

AF — _4p0u21 cos(wu)Vaz. (22)
me3r

On top of this, consider a magnetic dipole of moment myq located in the x —y plane, oscillating with the same frequency
w but in opposite phase. In the radiation-zone approximation, the electromagnetic vector potential yields [41]

/fflw = — TOO; sin(wu) sin? OV . (23)
Te

6 The condition <I>8(u — £00) — 0 is required from the finiteness of energy flux across J, fjo.f du|®(u, 0, $)|? < co. This condition in

turn requires that <I>8 belongs to L?(C), and its Fourier transform exists. Notice that Ag does not necessarily decay at u — £o0, so its
Fourier transform is not defined.



One expects this configuration to provide a non trivial Chern-Pontryagin because the magnetic fields of both the
electric and magnetic oscillating dipoles considered here are entangled, leading to a non-zero magnetic helicity [42].
To calculate (16), let us work in spherical coordinates (u,r,6,¢). A (conformal) Newman-Penrose basis can be
ab
constructed such that m® = %(Vzﬂ +isinf V,¢), where g, = diag{1,sin® 6} is the standard metric on the unit,
homogeneous 2-sphere. The radiative component of the total electromagnetic potential is:

Ay =mA, = %(imo sin(wu) + po cos(wu)) . (24)
Then,
3
/ du dS? Tm(A99, AY) = =220 (), (25)
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where ug — uy is the period of (finite) time during which the system operates [we let w — 0 for u < u; and u > ug].
This result is gauge-invariant, so a« = 0 in (16).

III. THE GRAVITATIONAL CASE

The fact that net fermion helicity can be spontaneously created from the quantum vacuum in a background of
circularly polarized electromagnetic waves is a physically interesting result. In particular, it suggests that a similar
phenomenon may occur for photon helicity in a background of gravitational waves, by simply noticing the parallelism
with the chiral electromagnetic anomaly of (3). In this section we prove this in detail, following a similar strategy as
in the electromagnetic case.

A. Setup and main calculation

Let (M , Jab) denote our physical, curved spacetime. The quantity of interest is

<Q5(scm'+)> — <Q5(scm'—)> = Ki; /M Tr(R A R) = 9;:2 /M d4$\/—_géabcd*éab0d, (26)

where R = %Rabd:v“ Adz? is the curvature 2-form. Our goal is to compute this integral in an astrophysically relevant
setting in order to know under which circumstances a given gravitational system may generate a flux of photons with
net helicity. In particular, we restrict to asymptotically flat spacetimes. As in the previous section, the above integral
is identically zero for stationary spacetimes. The proof is similar to the electromagnetic case but technically more
tedious, so it is relegated to Appendix A. We must then focus on dynamical solutions of Einstein’s equations and, to
guarantee convergence, we consider spacetimes that asymptotically reach stationary regimes both at future and past
timelike infinities. An example of this is a binary merger of two black holes which, ideally, are initially separated an
infinite distance away, and end up merging to form a final stationary Kerr black hole.

As in the electromagnetic case, it is convenient to work instead with a conformally compactified spacetime, (M,
Jab), constructed from the physical one by the standard procedure: M = MUJ, Gab = 22§ap. Our physical spacetime
will be globally hyperbolic, so that M ~ R x & [30], and in particular we shall restrict to ¥ ~ R? (physically one does
not expect more sophisticated spaces). The next step is to carry the relevant tensors of the physical spacetime to the
unphysical one. It is useful to note that, due to the totally antisymmetric tensor €2mn the Ricci part in the physical
Riemann tensor, R, 4 does not contribute in this problem:

\/ERabc dgabmanndc = \/Ecabc déabmncmndc ) (27)

where Cypeq is the physical Weyl tensor. Using now the conformal invariance of the Weyl tensor, C’abc d = Cope d
that v/—g = Q~%,/—g, and that é?¢? = Q4c2%°d then the quantity of interest turns out to be conformal invariant:

\/7R d AabmnR c __ R d abmnR c 28
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and therefore

<Q5(scri+)> - <Q5(scri—)> = KZQ /M Tr(RAR) = KZ’Q /M Tr(RAR). (29)



Mathematically, pi(F) = —S%Tr(R A R) is another invariant polynomial. To calculate this quantity we shall
recall again the Chern-Weil Theorem. This theorem tells us that the difference between two invariant polynomials,
p1(R) — p1(R’), associated to any two given connection 1-forms, w and w’ in M, is exact and is determined by the
transgression term Q(w,w’) [6]:

p1(R) — p1(R') = dQ(w,w"). (30)
If we introduce the difference § = w — w’, then the RHS can be evaluated in the standard way and yields [27]:

1 2
Q(w,w’):—8—2Tr(20AR+§0A9A9—29AMA9—9Ad9). (31)
7T

Because the physical spacetime manifold is M ~ R*, it admits a flat Minkowskian metric 7,5. Its associated conformal
compactification, (R* U JF,n4p), with 14, = Q%74p, will represent our auxiliary spacetime in this calculation. We

L, d
denote all associated quantities with prime indices. Given that C’,,. = 0 in (R%, ;) one has C” . =0 at any
point of R* U J* due to conformal invariance and continuity, and from (27) we deduce p1(R') = p1(C") = p1(0) = 0.
Thus, the value of [, p1(R) is simply determined by the flux Q(w,w’) at future null infinity (i.e. at Q = 0):

1 2
/pl(R): QW) = —— *Tr(29/\R+—9/\9A9—29/\w/\9—9/\d9). (32)
M T+ 87 3
The previous formula can be simplified in a more convenient manner. First note that 6 Adf = 0 A dw — 0 A dw' =

OANR—O0NwAw+0AW AW (recall R = dw' 4+ w’ Aw’ = 0 for Minkowski). Then

Tr(=20 ANwAO—OANdI) =TrON(2wA0+wAw—w AW)—Tr AR
=-TroN (wWAw—2wAw +w Aw')—TrO AR

=-TroN(w—w)A(w—u')—Tré AR, (33)
where in the last step we noticed that Tré Aw Aw’ = Tr6 Aw’ Aw. Eq. (32) can now be written as
1 1
/ p1(R) = i"Qw,w') = ) "Tr(0AR—-ONONG). (34)
M J+ 87T T+ 3

It is convenient to introduce a 3+1 splitting of (M, gqp) by {2 = const} hypersurfaces in order to simplify the inte-

grand. Let ng, = \/ﬁna, with ng := V.8, be the normalized transversal vector to the {2 = const hypersurfaces.

The induced metric on these hypersurfaces is hq, = —Tia7p + gap, and its associated Levi-Civita derivative operator
will be denoted by D,. For any two vectors u®, v® that are tangent to {Q2 = const} we can write the decomposition:
Dot = uhiV ,0¢ = u(g? — 1) Vv = utV a0 + u(Vaie)nlo®, (35)

where in the last equality v®n, = 0 was used. This leads to Dyvp = hiV.vp + Mpv°Kge, where Koc = Dgnic is the
extrinsic curvature of {Q = const} as a hypersurface embedded in M (as usual, it satisfies K,. = Kcq and K0’ = 0,
as can be easily checked). Consider now an orthonormal frame {e$};=o_. 3 in (M ,gab), 1.e. a set of 4 vectors labelled
by I that at each point x of M satisfy gu(z)ed(x )el}( ) = nry. The dual frame is defined via a1 = gav€y, and
latin indices I, .J,... can be lowered and raised With nry. It is convenient to choose this frame as a Newman-Penrose
tetrad (no1 = n10 = —1723 = —n32 = —1, zero otherwise) such that for Q = 0 the tangent space at future null infinity
is spanned by {n* m* m*}. Given this tetrad, a (torsion-free) connection 1-form w, is defined by the equation
Vaei +w, ]eb =0, and the metrlc-compatlblhty condition V,gp. = 0 gives the antisymmetry property w!/ = —w?/7.
Taking v, = € in (35) we find

he(wa)rs = —€YDaepr + Karinel , (36)

where K, is a shorthand for K,.e5. Using the antisymmetry of wi'] between I and J, one can deduce: hg (wd)I 7=
—6§(el}Dae£() — Kogn! + Ky, where (5§ and 7! are shorthands for habe‘”eb and n%!. Let us introduce the
additional notation (*w,)! ; = =L (e Dyeft). Thus

(wa)IJ = (3Wa)IJ - KaJﬁI + KiﬁJ + ﬁaﬁb(wb)l,] . (37)

Repeating this procedure exactly in the auxiliary Minkowskian spacetime (R* U J T, 74) we get (w))!; = (3w!)!; —
K! '+ K, 1 A/; + 7l (w))! ;, where prime indices denote quantities defined with respect to the metric 7,5. Taking
the dlﬁerenee between the two (note that hin, = hin =0),

AI]

hi(Gd)U _ (39a)1J . 2(K([ZJTALI] K/[J ) (38)



As discussed in [31, 32] and summarized in Appendix B, J = {Q = 0} is a three-dimensional null hypersurface
that is endowed with a universal geometric structure, which consists in a collection of pairs (g,;,,n®) satisfying a set
of properties. Each pair consists of a degenerate metric g,;, on {2 = 0} and the corresponding null normal n®. This
geometric structure is common and available for any asymptotically flat spacetime. Consequently, we can fix the
same conformal frame (g,;,,n%) for both (R* U J1, gup) and (R* U J T, 745) spacetimes. Furthermore, without loss of
generality we can choose this conformal frame such that i*(Q2~2g,,nn®) = 1, (i* being the pullback of i : J < M)
which will allow some simplifications in the next calculation. On the other hand, because the specification of the
degenerate metric g, is equivalent to the specification of two complex-conjugate vectors m®, m® whose real and
imaginary parts are tangential to the sphere, fixing this conformal frame (g,;,n?) is equivalent to fixing a common
basis {n®,m® m®} for both spacetimes. Consequently, the two tetrads introduced above, €4 and €', agree for Q = 0.

~b
Taking this into account and the orthogonality properties, (3w, )’ ;alei = (Pw!)! ;n’ ) = Konb ej = K'Jﬁ'be'J =0,

one finds
FTEONONG =i [(P0a)" 5 (300)7 1 (P0) ) — 3C0)" (Kor — K'v1)(Key — K'eg)] €**Vhd®z (39)

and
1 .
T AR = 5i" {(39G)JIRZ,C{J — 2(Kuri? — K'an’ )R, {,} e/ . (40)

The 1-form (36,)!; can be determined at = 0 from the intrinsic geometry of future null infinity. As discussed
in Appendix B, for any covector e at null infinity, the difference D!, — D, between two (equivalence classes of)

connections is completely characterized by a traceless, symmetric tensor oab: (D — Dfl)eg = —ogun® e . Since,
as discussed above, at 1 = 0 the tetrad el is equal to the tetrad el ., and D, is tangential to 2 = 0, we have
(30.)! ; = —6Le% (Do — D))els at Q =0, and hence (30,)! jedel = ddl k(Do — D),)el = —efdfcoaentel at Q= 0.
db
Now: e?(SKngeé( = e?(né—ﬁIﬁK)ngeé( = nd—ﬁgngf),d =nd— %7 and since at 2 = 0 we have n® = gabeQ,
we conclude
i*[(304)" yedel] =0, (41)
and we are led to
1 - .
/ PR) = / i [(Kad—K'ad)neRbcdee“bcx/ﬁd%} . (42)
M ™ Jg+

We obtain now a compact expression for the extrinsic curvature of J+ as a hypersurface of M. First note that

Z'*(Kab — Ktlzb) = Z'*(Da’ﬁb — D;ﬁ/b) = i*[(Daa)nb + ozDanb — (Dilo/)nb — OAID;TLb] = i*(Q_l(Danb — D;nb)) ,(43)

where we denoted o = \/ﬁ for brevity and in the last step we took into account that i*(Qa) = i*(Qa/) =1
b

The term inside parenthesis vanishes as O(£2) at null infinity but the prefactor diverges as Q2~!, so the product is a
well defined, smooth quantity at null infinity. To calculate its value let us use equation (B4) from Appendix B:

QSap +2Vanp — Q 'nnegay, = O(Q%). (44)
The pull-back of i : 7+ — M on this expression provides us with the value of Q~!V,n; at future null infinity,

1

5Zab - (45)

1
gabi*(ﬂiznana) = =gt 2

1 1

i*(Qilva’rLb) = 52 5

Repeating the same with the auxiliary Minkowski space, one gets (recall that we fixed the same conformal frame
(845, 1) for both spacetimes):

1
(Q Vanb) —1 (Q v nb) *(Qil(Danb - D;nb)) = —5_(5,117 — (;b) . (46)
But for Minkowski, S, = pab, where pgp is the “gauge” part of Syp. The combination Sup — pap =: Nap is manifestly
invariant under conformal gauge transformations of the form 2 — w2, and defines what is known as the Bondi News

tensor, N, (see Appendix B). This is the quantity that determines whether an asymptotically flat spacetime contains
non-trivial gravitational radiation. We find

i (Kab — Kgp) = Tgitab- (47)
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On the other hand:
i (ﬁeRbcdeeabc\/E) _ (neﬂ_l(Cbce 4 eSS — 5;%,50]6)6“’”\/5) . (48)

Because f,¢*¢ = 0, the second term does not contribute. On the other hand, the third term can be written
as i* (1S Gen €)= i*(gene®eQ71)i* (n°S7) oc i*(gepe®@Q1)i*(n®) = i*(e2%€)i* (2 nbgy.) = 0, where we used
Sfn® oc n® and n%*(272n,) = 1 in the last step. Thus,

i (ﬁeRbcdeeabc\/ﬁ) —* (negflcbce deabc\/ﬁ)

— (%9710;: edeabc\/ﬁ)

1
_ 51* (deqeneQ_lchpqﬁabc\/ﬁ) 7

where * denotes the Hodge dual. Note that gabe — gabedp . — Q—leabedy  hyg Vh = Q,/q, where qqp is the metric

of the two-dimensional spheres, so that €®*“vh = €¢®“In,,/q. Now, the quantity (edpqene)(eabcmnm)(Q_lcgcpq) is
smooth in all M, and thus it exists in J 1 (see Appendix B). Its pullback to null infinity is denoted as *K ad Taking
into account all this and using *K* = 2e?7°D, N, * [31]:
*(Kag — K'aa)i* (29 Ry e VR) = — 2 Ny K™ /G = — - Npune?™ D, N, " 49
i (Kaa — K'aq)i"™ (0 Ry € = Tyt \/a—_§ mn€ p N "V - (49)
This expression can be simplified further. The basis {n®, m? m®} satisfies 0 = £,m® = n?Dygm®. Using €**¢ =
i3nlembme and Ngynb =0, Dan® = 0, we can get

i (Kag — K'oq)i* (ﬁeRbcdee“bC\/E) = —iNgm™"mntDygN? = —Im(Ny48,Ns3), (50)

where N33 := Ngym®mb and Nyy = Ns3, following the usual Newman-Penrose notation.
Taking into account these results, we can rewrite (29) in the final form

/d4x\/—_g<vajg> = —g/ p1(R) = Kh?/ du dS*Tm (N 440, N33) . (51)
M ™ Jg+

Note the strong analogy with the electromagnetic case, equation (16), and also that this result is manifestly gauge
invariant (Ngp is invariant under conformal gauge transformations of the form 2 — w€). On the other hand, notice
that this result is purely geometrical. In other words, the topological information encoded in the Chern-Pontryagin is
here trivial (zero) because we are just working with R* with the usual differentiable structure. It is the contribution
of the boundary (physically, null infinity) what contributes non-trivially to the final result, but this contribution is
not topological. For manifolds with boundary, the Chern-Pontryagin is not purely topological, and its utility as a
topological invariant is recovered only when a surface correction is added [27]. This correction is precisely equal to
the result that we obtain with a sign reversed.

B. Physical interpretation: circularly polarized gravitational waves

The result (51) tells us that the electromagnetic duality anomaly (4) is fully determined by the radiative content
of the spacetime. To write the result in terms of the 9 Weyl scalar, widely used in the gravitational-wave literature,

we notice that N33 = 26 and ¥ = —&, where o is the shear of the gravitational radiation (see Appendix C). Then,
h “ -
/d‘{m/——g (Vajd) = F/ du dS2/ du'Tm (VS (v, 0, $) T (u, 0, $)) . (52)
T T+

Despite its apparent form, the physical interpretation of this result is remarkably simple. Expand in Fourier modes
as

W(w,0,0) = [ 5Ehw. 0,00 = [T (a0, 0)e 0 + B, 0,0)e ] (53)
oo 2m 0 2m

where in the second equality we splitted the modes explicitly in terms of positive and negative definite modes:

hr(w) := h(w) for w > 0 while hy(—w) := h(w) for w < 0. The News scalar satisfies N33 = =20, so we can write

N33(U79,¢):2/000c21_o; [Me—iwu_i_Me

w56, 9), (54)

1w —w
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where the function (6, ¢) emerges as a constant of integration. This function, however, does not contribute to (51)
because the physical requirement of finite GW energy crossing null infinity implies N33(u — £00) — 0 (this is inferred
from the Bondi mass formula, [31]), and leads to 5(6, ¢) = 0. From (51),

[ eV Tty = gy [ 8 [ St 0.0 = e 0. 0) (55)

What is the physical meaning of these modes, hr and hy? Because ¥ = —5 = —(fL+ — iﬁx), where hy, hy are the
two standard linear polarization modes of the GWs, we also have:
0 > dw 2 —iwu
Uy(u,0,¢) = o (hi(w, 0, ¢) —ihx (w,0,0))e (56)
from which we identify
ha(w) = w2 (hy (@) — ihx (@), @ >0,
hr(~w) = w?(hy (W) —ihx (W), w<0. (57)

The second equation implies hy,(w

u ) = )+ ihy (—w)), for w > 0. Because h(u), hy(u) are real functions,
we must have hy (—w) = hy(w) and hy (—w x

(w), leading to hp(w) = w?(hy(w) + ihx(w)), and

(Qs(scrit)) — (@s(scri—)) = ﬁ/OOO (1R (w) + W5 ()2 = |h{™ (w) — ih5™ (W)I7] |, (58)

where we expanded the field variables in spin-weight spherical harmonics of modes (¢,m). The physical interpretation
of this result is again clear: while the LHS represents the net amount of photon circular polarization created, the RHS
is the difference in intensity between right- and left-handed circularly polarized GWs reaching future null infinity,
i.e. the Stokes V parameter of GWs. Thus, we conclude that the emission of chiral gravitational radiation by
astrophysical systems implies the spontaneous creation of photons with net helicity. The more right- or left-handed
GWs the spacetime contains, the more left or right-handed photons will be excited from the quantum vacuum.

C. An example: precessing binary black hole systems

Let us consider a binary black hole merger. The system emits GWs, which are analyzed in modes of fre-
quency w and angular numbers (¢,m). During the inspiral phase the frequency spectrum is determined by the
angular Velocity Q as wy, ~ mf. The shear of the gravitational waves can be decomposed as o(u,8,¢$) =

Yo (Al oY, (0, ¢)emt + A, oY (0, 6)e™m™).  Self-consistency requires A, = (—1)™AJ . which is de-
duced using Y, = (—1)%* _sYl(fm). Equation (58) gives
(Qs(scri+)) — (Qs(scri—) Zw (|4, |Azr(7m)|2), (59)

The parameters Aétm can be understood as “excitation” factors for the generation of each GW polarization of mode
(¢,m), and they depend on the details of the physical system under consideration (initial data). If the binary
system is invariant under mirror symmetry with respect to some plane, choosing angular coordinates such that
6 = m/2 represents that plane, this invariance is equivalent to say that Cupeq(u,8,¢) = Copea(u, ™ — 6, ¢), which
implies o(u,0,¢) = o(u,m — 0,¢). Using Yim(r — 0,0 +7) = (=1)'_,Y,, (0,4), the previous condition leads to
Af = AZ( m)( 1)*, which makes (59) vanish. In other words, the chiral anomaly emerges in binary mergers that
do not have any mirror symmetry 7 Examples of this are precessing binary systems, in which the individual spins
of the BHs are not aligned with the total angular momentum [43] and break any potential symmetry under mirror
transformations (see [29] for more details and implications in astrophysics).

7 Note that we are neglecting the backreaction of GWs on the evolution of the inspiral. When this is taken into account, the radius of
the orbit shrinks for any binary merger, and to some extent this breaks the symmetry under spatial reversals. However, this process
can be considered adiabatic, and its contribution insignificant.
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IV. CONCLUSIONS

Chiral anomalies are a long-standing prediction of quantum field theory that have provided rich physical conse-
quences along the last decades in several branches of physics. Despite this, their use has been considerably restricted
to non-trivial topological issues, with instantons playing a dominant role. While this has been fruitful in many
aspects, as for instance in unraveling the vacuum structure in Yang-Mills theories and solving problems of major
importance in particle physics, it is not the whole story, at least in gravity (and electrodynamics). In this paper we
characterized which class of solutions to Einstein’s (and Maxwell) equations are able to induce the chiral anomaly on
fermion and electromagnetic fields. On the one hand, we found that stationary solutions cannot trigger this anomaly.
On the other hand we found that, among all dynamical solutions, only those which involve radiation with net circular
polarization are able to induce the quantum anomaly, and we provided specific examples of physical interest where
this occurs. The physical interpretation of this quantum effect is associated to spontaneous creation of particles, but
in sharp contrast to the familiar Hawking radiation of black holes, a net amount of helicity can be originated from
the quantum vacuum. This new aspect of chiral anomalies could be useful in the search for phenomenology, but this
is out of the scope of this paper and will be left for future studies.

Acknowledgments.— The author is grateful to I. Agullo and J. Navarro-Salas for useful comments and many dis-
cussions over the time that this work took place, and to A. Ashtekar for useful discussions on the convergence of
the integrals. The author acknowledges support under NSF grant PHY-1806356 and the Eberly Chair funds of Penn
State; and funds from the grant No. FIS2017-91161-EXP during an early stage of this work.

Appendix A: Stationary spacetimes

In this appendix we prove that in stationary, asymptotically flat spacetimes (M, gqp) with M ~ (t1,t3) x R3 one
has

/ d*2/=gRapea* R = 0. (A1)
M

The argument follows in close analogy to the electromagnetic case (see section ITA).

Given a local orthonormal frame (“vierbein”) {e%}, we can define the curvature 2-form from the Riemann tensor
as Rap! 7= Rabcdeée‘j. For notational simplifity we will frequently omit the internal indices I,J of the curvature
2-form and/or work directly with R = %Rab dz® A dz®. If the spacetime is stationary there exists a timelike killing
vector k% that leaves the metric invariant along its integral curves, Lrges = 0. We construct our tetrad basis {e}}
such that L£ref = 0 as well. The stationarity condition leads to L Rqscq = 0. Together with the previous equation
it gives Ly Rqp = 0, or equivalently dip R + ixdR = 0. For a general matrix-valued, p-form V we can introduce the
covariant derivative DV = dV +w AV — (=1)PV A w [27], under which the familiar Bianchi identity V,*R** = 0
is equivalent to DR = dR +w A R — R Aw = 0. Using these equations we can write itdR = ix(—w AR+ RAw) =
—igw AR+ wAigkR+ i RAw+ RAipw and d(ixR) = D(ixR) — w A ix R — iy R A w. Joining both results:

D(lkR) = ikw R — Rikw . (AQ)

For any matrix A one has D(DA) = —AR + RA, so one can deduce from the above that ixfR = —D(ijw), or
k®Rgp = —Vpirw. .

On the other hand, let us use the normalized vector k% = ék“, with o = v/—k%k,, to make a 3+1 decomposition
of the metric, gq, = —I%al%b + hgp. This decomposition allows the simplification:

/ d*zy/=gRaped* R™" = Tr / d*z/=gRa R = —4Tr / d*a/=gk®Ray* R kS, (A3)
M M M

where in the last equality we used *Ry, = %eabcdRCd to write Tr h**heR,.* Rpg = —2Tr l%“RablAfc*RCb. Doing some
manipulations one gets

Tr((Dyigw)a 'k R?) = VyTr(ipw a” k" R?) — V(o k) Tr(* R igw) . (A4)

It turns out that the second term is identically zero. To see this expand as

N R 1
Vi(a k) = a ' Vik. — —heVhar. (A5)
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Since Vya = —ékdvbkd and V,ky = —Vipk, (k% is a Killing Vector field):

1. . .

R N 1 N
Vila k) = a Y (Vyke — —k kW k) = a(w(bkc) — D.ky), (A6)

a
where in the last equality we used k*V,a = 0 (which can be deduced after expanding k*Lik, = k®gap L1k’ = 0),
koky = —gap + hap, and introduced the spatial covariant derivative D,k = hghgvckd = hiV.ky,. The RHS is a
symmetric tensor, so when contracting with *R® in (A4) the result will be zero.

We end up with the integral of a total derivative, which can be solved using Stokes Theorem. Let us work in
coordinates {t,r,0, ¢}, where ¢ is the time measured by static observers at spatial infinity: &k — % as r — oo. Then

ta
/ d*2/=gRapea* ™" = lim dt / dS? 1? Tx(ipwhke RV 1) . (A7)
M r—00 4
notice that for asymptotically flat spacetimes: o — 1 as r — o0). Using Lre = [k, er]* = 0 one can further deduce
I
that (ikw)](] = e‘}ef’,vakb SO

to
/ d*a/—gRaped* R™* = lim [ dt / dS*r2V oky* RNV gr . (A8)
M t1

T—00

At spatial infinity we have V,k, = V,Vyt = 0 50 Vky ~ O(r~1). Assuming standard fall-off conditions at spatial
infinity for the Weyl tensor [44], Cupea ~ O(r=3), we finally see that

/ d* /=g Rapea” R = 0. (A9)
M

Appendix B: Asymptotic Minkowskian spacetimes

We summarize here the basic points of [31-33] that are needed to follow the calculation in the main text.

A spacetime (M ,Gap) 1s called asymptotically flat at null infinity if there exists a manifold M with boundary I
endowed with a metric tensor g.;, and a diffeomorphism from M onto M — I (with which we identify M and M — I )
that satisfies: K
(a) there exists a smooth function Q on M with g.s = Q%§ap on M; Q = 0 on I; and n, := V,£ is non-vanishing at I.
(b) I is homeomorphic to S? x R.

(¢) Gab satisfies Einstein’s equations Ray — %Rgab = 87GT,p, and Q2T has a smooth limit to 7.

One refers to (M , Jap) as the physical spacetime, and to (M, g4p) as the unphysical one, or the conformal completion
of (M ,Jap)- Using the known conformal transformation rules for the Ricci tensor and scalar curvature, it is easy to
find that these conditions imply n®n, = 0 on I. Thus, I is a 3-dimensional null hypersurface in M.

Notice that within this definition there is freedom to perform conformal rescalings: if € is an allowed conformal
factor for a physical spacetime (M, §ap), so is ' = w(), where w is a smooth function on M and non-vanishing at I.
Under this conformal gauge transformation, it is easy to check that ga, — w?gap, n® = w™'n® + w2QV*w. Using
this freedom, it is always possible to consider a conformal completion so that V,n* = 0 on I. This gauge-fixing will
be preserved under conformal gauge transformations as long as we restrict consideration to functions w that satisfy
n*Vaew = L,w = 0 on I. This gauge-fixing condition, together with property (c) above and the formula for the Ricci
tensor under conformal transformations, implies V,n, = 0 on I, or equivalently V,n, = Viany) = %Engab =0 on
I. Furthermore, suppose we have any two divergence-free conformal frames associated to 2 and 2. Because the
relative conformal factor w obeys L,w = 0 on I, the vector field n® is complete if and only if n’® is complete. An
asymptotically flat space-time is called asymptotically Minkowski if I is complete in any divergence-free conformal
frame.

Denote by Z a diffeomorphic copy of I, and let £ : Z — M the corresponding smooth map. The pull-back, denoted
by &*, is defined on all covariant tensor fields in M in a natural way. It can also be extended to those contravariant
tensor fields such that their contraction of each of their indices with n, gives zero at I. Set n® := £*(n®), g5 := &* (dan)s
and w := £*(w). It follows from the discussion above that Z is endowed with the following universal structure. It is
homeomorphic to S? x R, and equipped with pairs of fields (g,;,,n¢) such that:

(i) g4p is a degenerate metric of signature 0, +, + with g,,n® = 0 and Lng,;, = 0;
(ii) n® is complete; and,
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(iii) any two pairs (g,;,n¢) and (g,,,n’°) in the collection are related by a conformal rescaling Q — w( as g/, = w?g,,,
n'® = w 1n®, with £,w = 0.

This collection exists in any asymptotically Minwkoskian spacetime, and thereby receives the name of universal
structure. A choice of one element (g,;,n°) of the collection {(g,,,n);}icr will be called a choice of conformal frame.
Note that, since 2-spheres carry a unique conformal structure, every g,, in this collection is conformal to a unit
2-sphere metric. Because of this, it is sometimes convenient to restrict the remaining conformal freedom at I (i.e. to
fully fix the gauge function w) by demanding that the metric g4, on these 2-spheres be the metric of the unit radius
2-sphere. This is always possible, and this conformal frame is known as the Bondi frame.

The metric in (M, gqp) allows the raising and lowering of indices, introduces an alternating tensor field e unique
up to a sign, and leads to a preferred derivative operator V, and its associated curvature tensor Rabcd. Suppose we
are given a fixed conformal frame. We study now what the corresponding apparatus is for (Z,g,;,,n*). This is not a
trivial question since g,; is a degenerate metric. In the following we will define what fields, operations, etc one can
construct from this conformal frame, and then study their behaviour under a conformal gauge transformation.

First of all, we can lower indices with g,,, but we cannot raise indices a priori since g,; is degenerate and hence it
does not have an inverse. Define a tensor g by the property: g,,,&™"g,, = Zmn-Lhis is unique up to addition of a
tensor of the form v(®n® , for any vector field v®. We will use this g to raise indices whenever the lack of uniqueness
does not lead to an ambiguous result. Next, we introduce an alternating tensor field €2*¢, up to a sign, by the equation
eam”ebpqgmpgnq = 2n°n® and demanding antisymmetry. Having fixed the sign, we can define uniquely the tensor €.

abed

by €®Ceqp. = 6 and the condition of antisymmetry. The above definition implies that €€ = £*(e***dn ), but note
that €qpe # ea't'e Coa iy Bewr = & (€abean®) = 0. The usual identities for €44, and €2*¢ hold.

As commented above, the universal structure of I is common to every asymptotic Minkowski spacetime. The
S? x R differentiable structure together with the collection of pairs (g,,,n¢) is called the zeroth order structure of I,
and is available in any asymptotic Minkowski spacetime. We shall describe now higher order geometrical structures
that are not universal, that contain specific physical information of the given space-time. The connection D defined
intrinsically on [ in any given conformal completion, induced by the torsion-free connection V compatible with g,
will be regarded as the first order structure. As we shall see, it contains the “radiative information” of the physical
space-time (M, gqp) and consequently it changes from one space-time to another.

We define the derivative operator in Z by Dgup := £*(Vawp), where p is any 1-form in Z, and v, is a 1-form in M
such that p, = £*(v,). This derivative operator is defined intrinsically in Z. Notice that given any pu, in Z, there
exists many v, in M that satisfies pu, = £*(v,). However, it can be shown that the derivative operator is a well-defined
operation: given two v,, v, that leads to g, in Z, one actually has £*(V,1p) = £*(Vav,). Having seen this, we can
now extend the derivative operator to all tensor fields in the usual manner. In particular, given that V,g. = 0, and
Van® = 0on I, we find D,g,. = 0, Don® = 0 (it is also not difficult to prove also that Dyepeq = 0, Dge?® = 0). In
other words, this derivative operator is compatible with the metric g,,. However, it should be remarked that this
connection is not uniquely defined because g, is degenerate. We shall now characterize in physical terms the different
allowed derivative operators.

First of all, we need to know how any derivative operator changes under a conformal gauge transformation Q — w(Q.
For any covector k,, the transformation rule, at points of I, is

Dlky = Doky — 2w k(o Dpyw + w ™! (V"'w) kinZqp - (B1)

Notice that, even when w = 1 so that g, and n® are invariant, D, changes non-trivially as D/ ky = Dokp+f (0" km) 245
where we introduced V®w =: fn®. This shows that the derivative operator at I is not invariant under conformal gauge
transformations (in analogy to the magnetic potential in electrodynamics). Because this residual transformation of
the derivative operator is just pure gauge, one is motivated to define an equivalence class of connections {D,}, in a
given conformal frame (g,;,n°), by the equivalence relation:

Do~ Dy iff (D} — Da)ky = (fnkc)gas » (B2)
where f is an arbitrary function on Z. Now, given two connections D,, D! belonging to different equivalence classes,
their difference when acting on any covector is linear, and thus it must be determined by another tensor C,,
(Dy — D})ky = C,; °kc. The torsion-free derivative V, implies that C,, ¢ = C(ab)c (just take kp = Dypg in the previous
equation for some function g to find C,,¢ = C,,¢). On the other hand, the condition D,n® = D’n® = 0 implies
C,,°n® = 0, and the metric compatibility D,g,. = D,g,. = 0 implies Ca(bdgc)d = 0. Since the only vector that

anihilates the metric is n¢, then
(Dll - D;)kb = Eu,bﬂckc 5 (B3)

8 The result £*(nq) = Da&*(Q) = 0 implies gabgb = 0. On the other hand, because the pull-back conmutes with the Lie derivative, we
automatically inherit Lng,;, = 0 and Lnpw = 0.
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for some tensor Xqp, with ¥gp = X(4p) and Y0’ = 0. Consequently, due to (B2) the difference {D’,} — {D,} between
the equivalence classes of connections is fully characterized by the trace-free tensor: ogp := Xgp — %Ecdnggab. The
space of equivalence classes {D,} is an affine space, we can select any {DY} as an origin, and then any other {D,}
is labeled uniquely by a transverse (oqn® = 0) trace-free symmetric tensor o, on J+. These properties allow to
write o4 = omgmyp + c.c., for some complex function o. In physical terms, the two independent components of ogp
represent the two radiative degrees of freedom of the gravitational field in full general relativity.

We turn now to study the second order structure of an asymptotically Minkowski spacetime. Let Rabcd be the
Riemann tensor of the unphysical spacetime, defined by V[, Vyk. = %Rabcdkd for any covector k.. The Riemann
tensor can be splitted into a totally traceless part (the Weyl tensor Cabcd) plus a trace-full part (the Ricci Rgp, or
alternatively, Schouten tensor Sup) as Rabed = Cabed + Ja[eSdp — 9b[eSdja- It is a fundamental result [31] that the Weyl
tensor vanishes at I, and consequently all the information about the curvature of I will be determined by S;'. On the
other hand, let us introduce the combination LZ = RZ — éR&g and L, = gacLf, where RZ and R denote the Ricci
tensor and scalar curvature of the unphysical spacetime. From the standard formula for he behaviour of the Ricci
tensor under conformal transformations, and using property (c) above, one can find:’

QSap +2Vanp — Q nnegay, = QLo = O(Q3). (B4)

From this equation one deduces that, at points of I, 2V ,n, = 2V (qmp) = Lngay = Q7 'nncgay. But remember that

Lngas = 0 at points of I, so f := Q 'n°n. = 0 at points of I too. Now, contracting the above equation with n® and
rearranging terms, one arrives at

Supn® + Vaf = 0(Q?). (B5)
Since f vanishes at I, it serves to define this hypersurface, and so its gradient must be transverse to it. Since the only
trasnverse covector to I is n,, we necessarily have V, f o« n,. Then, Sgnb X ng, and vanishes at I. This means that
the pull-back is well-defined on the tensor S, so we define S!, := £*(S?) and also S, := g,.S;. Notice the properties

S,n*=0and S, = S(ap)- There is one further property of Sqp that is important to keep in mind. By taking the
pull-back of the Riemann tensor, and recalling the vanishing of Cypeq at I, one gets

Eu,bcd = gc[agg] + §c[aég] : (BG)

If we define R,p.q := Rype E4e, then the contraction of any of its indices with n® is zero. The corresponding Ricci
tensor Rap, := g°R,;0q and scalar curvature R := g® R4 are thus unambiguous. Since R4 lives in the 2 dimensions
orthogonal to n®, it can be reconstructed from its scalar curvature alone, R,p.q = Rgyc84- Combining this with

(B6), one finally gets g?’S,, = R.
The tensor S,; carries information of major importance about gravitational radiation in the given spacetime, but
there is still a small complication. If we change the conformal frame, this tensor transforms in a complicated way:

Sl =Sa — 2w ' DyDyw + 4w ?DywDyw — w2 (™" DypwDyw) gy - (B7)

Consequently, a portion of this curvature is “gauge” in the sense that it contains information that is not truly
physical. The goal is to extract information from this curvature tensor that remains invariant under conformal gauge
transformations. This was succesfully done in [31]: given any conformal frame (g,;,n¢), it can be proven that there
exists a unique tensor field p,p, on I that fulfills:

Plab] = 0, Pabﬂb =0, pabgab =R, D[apb]c =0, (BS)
and, most importantly, transforms exactly as S, does under a conformal gauge reescaling. Therefore, the combination
Ngp = §ab — Pab (BQ)

is conformally gauge invariant. Consequently, the role of p,, is to subtract from S, the pure gauge-dependent
contribution. In a Bondi conformal frame, in particular, one has p., = %gabﬁ. Nyyp is referred to as the Bondi news
tensor and is regarded as the second order structure at 7. It satisfies

N[ab] =0, Nabgb =0, Nabgab =0. (BlO)

This is all the physical information we can extract from S,;. Nevertheless, the full information of the curvature of
{D,} is actually contained in S7, and not in S, (notice that since g, is not invertible it is not possible to reconstruct

9 The definition of asymptotically Minkowski spacetimes requires that 7, = 0(9?), and so Rap = O(9Q?). Then Lgp = gy LS = O(QY).
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Sy from S,_;.). This information is encoded in what we shall call the third (and last) geometric asymptotic structure,
which can be worked out from the Weyl tensor. Since the Weyl tensor vanishes at I, the tensor Q= 'Cypeq is smooth
up to and including I. If we define:

K = eI ( Q7 o) (B11)
*Kab = €amn6bpq§*(ﬂ_1*cmnpq) 7 (B12)

then we immediately see that they are symmetric and that Kg , = *K “bgab = 0. Taking the curl of (B4), using the
definition of Riemann tensor, expressing it in terms of the Weyl tensor, and doing some manipulations, it is possible
to show that Dy,Sp = $€amn ™ K™, which automatically leads to

1
D[aNb]c = Zeamn*Kmng (Bl?))

nce ?

or, equivalently, * K = 2epq“Dqub. Furthermore, a straightforward calculation shows that * K 2 remains invariant

under conformal gauge transformations with w = 1, so it is a physically meaningful quantity. Because *K  involves
derivatives of S?, it is called the third order structure at I.

If *K%® = 0, then N, = 0, and the associated equivalence class {D,} of connections is said to be trivial. In
this case, the physical space-time (M , §ap) does not contain gravitational radiation. In particular, every stationary,
asymptotically flat spacetime produce a trivial connection on I. Conversely, if Ny, = 0 (i.e. no gravitational waves),
it can be shown that the spacetime is stationary [45].

Appendix C: Spin-coefficient formalism and asymptotic behaviour

Let (M, gap) be a spacetime and {£%,n% m? m®} a Newman-Penrose basis, i.e. a null tetrad satisfying n®¢, = 1,
m%mg = —1, and zero otherwise 19 If we introduce the notation e§ = £%, e§ = n%, e§ = m%, e¢ = m?, then this basis
of null vectors satisfies g, = mjegei with 712 = 191 = 1, 134 = n43 = —1. Internal indices (4, 7,...) are raised and
lowered with 7;;, while spacetime indices (a,b,...) are raised and lowered with gq.

Given this tetrad we can introduce the connection 1-form by %b o = —eivaef, which satisfies Yape = —Vpae. In
this basis there are 12 independent (complex) components of the connection 1-form, which are called spin coefficients.

They are designated by

k=311 = —m* VL, p =314 = —m“m’Vyl, €= %(’7211 +7341) = —%(nafbvbga —m*"Vym,),
o =313 = —m m*Vyll, =213 = m*mVyng Y= %(7212 +7342) = —%(nanbvbfa —m*n’Vyma),
A = you4 = M M Vpng T =312 = —m*nPVyl,, o= %(7214 + Y344) = —%(nambvbfa — mm’Vym,)
V=212 = mn"Vyng, T =241 = M Vyna, B = %(7213 +7343) = —%(nambvbfa — mmPVymg) .

Note that v311 = 7411, Y314 = Y413, etc. On the other hand, the Weyl tensor has ten independent components which
are represented in this framework by 5 complex scalars:

Uy := —C1313 = —Cuapeal®m®cm? (C1)
Uy i= —Ch213 = —Copeal®n®°m? (C2)
Uy = —Chza2 = —Capeal®mPmen? (C3)
U3 := —Chogz = —Copealn"mn? (C4)
Uy = —Coyoqy = — abcdn“mbncmd. (05)

The remaining components are determined using the symmetry properties of the Weyl tensor. In particular, it is not
difficult to show that

U = Ci334 = Claai, (C6)

10 Tn this appendix and in the next one we follow the Newman-Penrose [34] notation. In particular, the metric signature will be (+, —, —, —)
in order to use the asymptotic expressions for the spin-coefficients calculated in [46].
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V3 = Cos , (C7)
—1 —1
ReW¥y = 701212 = 703434, (C8)
1
Im¥, = ZC1234 , (C9)
Ci314 = C324 = Ci332 = Craa2 = 0. (C10)

In asymptotically flat spacetimes, a preferred coordinate system and an associated null tetrad can always be
considered. Following Bondi and Sachs, we can always introduce a foliation of the asymptotic region of M by
outgoing null hypersurfaces {u = const}. Denoting the corresponding geodesic null normal by ¢¢, we can introduce an
affine parameter r of £* (i.e. £ = % so that £*V,r = 1) such that each null surface u = const is foliated by a family of
(space-like) 2-spheres {r = const}. The set {u,r,0,¢} is called Bondi-Sachs coordinates. Let us denote the intrinsic
(=, —) metric of these 2-spheres by ¢, and the other null-normal to each of these 2-spheres by n®, normalized so that
gapl®n® = 1. If £® is normal to the {u = const} hypersurfaces, necessarily ¢ = g**Vyu, so that £, := gapl® = Vau
and we can write n = Va% + U% + X4 8)6;/4 with V' =1 (n, is not simply given by V,r since n® is not normal to
{r = const} hypersurfaces in general). Finally, introduce a null complex vector field m® and its complex conjugate
m® such that their real and imaginary parts are tangential to these 2-spheres, and they are normalized such that
gaym®m® = —1. Thus, at each point in the asymptotic region we have a null tetrad {£%,n% m®,m*} for which the
only non-zero contractions are £-n = 1 and m - m = —1. In terms of the null tetrad, the metric takes the form
Jab = 2naly) — 2m(aMyp).

The spin-coefficient formalism is particularly useful for asymptotically flat spacetimes. If the Weyl scalars are
smooth functions on the spacetime manifold, their asymptotic behaviour as r — oo, keeping u, 6, ¢ constant, is
determined by the Peeling theorem [36]:

Wi(u, 7, 0,0) ~ ¥ (u,0,¢)/r", i=0,1,2,3,4. (C11)

Furthermore, the asymptotic behaviour of the spin-coefficients can be systematically obtained by integrating asymp-
totically a set of equations in the Newman-Penrose framework that are equivalent to Einstein’s field equations [46].
The results read

A=2/r+0(r ), N =59, (C12)
p=p/r+0(r?), pd=—1, (C13)
o=a/r2 +0(r %), 0" = free data, (C14)
p=p’[r+p/rP+0O07?), p’=-1, p' = —|o"?, (C15)
k=0, (C16)
T=0, (C17)
v=2»"4+00""), =0, (C18)
r=a+p=(a"+p"/r+0(r?), (@ +p% =0. (C19)
and U9 = —5°.

The relation with the Bondi News N33 = Nypm®m! introduced in Appendix A can be obtained using (B12) and
the result *K = 2epq“Dqub. Using the first equation we get *K*m,m; = 4m“mbncmd§*(ﬂ_10abcd) = —42@2;
on the other hand, the second equation yields * K*mqmy, = 2inpr(Nabm“mb) = 2i0, N33. Combining both we get
N33 = —209 = 25°. Furthermore, from the Bondi mass formula fj du dS?|N33)? < oo one infers N33 — 0 at u — 400

SO N33 = 20"0.

Appendix D: Alternative derivation using the Spin-Coefficient formalism

In this appendix we derive the result (51) using the spin-coefficient formalism and the corresponding asymptotic
behaviour summarized in the previous appendix. Our starting point is equation (42), which in the physical spacetime
(M , Gab) can be rewritten in a similar way (in this appendix we only work with the physical spacetime so we will omit
the hat symbol in all associated geometric quantities for convenience)

5 1
/ pi(R) =~ lim - / (Kag — K’ 0a)n® Ry, 2 e s vVhdP e (D1)
T™=7To

M 70— 00
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where here n, = ﬁvbr is the normal vector to {r = 7o} hypersurfaces and Ky, = D, the extrinsic
ge’VarVyr

curvature. In terms of the Newman-Penrose basis constructed in Appendix C we must have V,r = a1ng + asl,.
Given that ¢*V,r = 1, then V,r = ng, 4+ a2f,; and squaring n, = V,r — axl, we get as = %g” so that V,r =
Ng + %&l. The asymptotic behaviour of ¢"" in Bondi-Sachs coordinates can be found in [37, 38], and is given
by —g'" =1 — 2L 1 O(r~2). Note that Dyiv, = he hY Vyny = h? Vyiy and ey Done = €My V. We
can also take the prefactor of 7, out of the derivative operator thanks to the antisymmetry of the Riemann tensor,
(Vaiie)aRy, 2 = Val(g"") "2V er|a Ry, % = (g"") "2V o [Ver|iaR,, % + 0. Finally, if we take the {r = ro} surface
outside the gravitational sources (we assume they have spatial compact support), then Rapea = Caped- Taking into
account all this:

Ay T 1 vVh de _abch 9" g g
/M pl(R) = T(}lj}lloo W /T_TO Wd xC'bc € (nh + ) lh)(nd + ) ld)Va(ne + 716) . (D2)

We have Va (ne + %le) = _(72ea + %'}/Iea) + %levag”. Then, using Eade =414 l[anbmcmd], we find

-1 6 \/ﬁde grr ' " e grr " . . grr . ' " e grr " e va rr
8? / W |:(C2ebc + TClebc)l(n[ mbm - 71[ mbm ])(’}/2 a + 7’}/1 a) — Cglbcl(n[ mbm ] 71[ mbm ]) 3
We do the calculation term by term:
(A)
Coepen!®mbme = %Czebc [n“m[bmc] + momnd + m“n[bmc]]
1 1 . a
=3 [n?Chesq + M Coeaz + M Coea3] = 3 [n?Chezq + 21Im(m* Cea2)] (D4)

(B): same as (A) but changing n® — [®

1
Chepell*mbine = 5 Cocbe [1mPm + mamlP + malbm]
1
3
(C): same as (A) but changing Cy. . — C1. .

1 o
[[°Che34 + M*Cear + M Coer3] = 3 [14Caes4 + 2iIm(m*Coea1)] (D5)

1
Chepen!®mbme = gclebc [n“m[bmc] + momnd + m“n[bmc]]
1 1 o
=3 [n?Chesa + M Creaz + M Cleas] = 3 [nCleza + 2tIm(m*Crea2)] (D6)

(D): same as (B) but changing Cs. . — C .
Crupll@mbind = %Olebc[lam[bmc] +momlr 4 e bme]
= % [[°Cress + M Crear + M Clers] = % [1¢Chesq + 2:Im(m*Crear)] (D7)
(E): same as (A) but changing Cs... — Coa .
Corpenl®mPm = % [n%Ca134 + 2iIm(m*Co142)] = % [—2inTmWy + 2/ Im(m*¥3)] , (D8)
(F): same as (B) but changing Ca... — Cay..
o

1 _
Cglbcl[“mbmc] = 3 1°Co134 + 2iIm(m“Cgl41)] = g [—Qilalmqu — 2iIm(m“\Ifl)} . (Dg)

We now elaborate in detail each of these terms:

(A)

1 . a e e
5 [0 Cacaa + 2ilm(m* Coen)] (3 + T %) =

rr

V9% C2e34 + 2iTm (Y5 %3 Cocaz) + g

5 N 9Cae34 + g""iIm(7; “3C2e42)

Wl

1. :
=3 [24Im (5%, Ca334) + 20Im(v5 5 Ca342 + 75 %5 Co1a2)
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grr
+ 2

(71 "5C2134 + 2iIm (7, % Cas34)) + g™ iIm(v; '5Ca142 + 71 %5 Casaz + 71 *3Coua42)

1 - T . 5y - rr N T N rTs
=3 [—2iIm(vW¥3) — 2iIm(AWy) + 2iReyImUsg"™ + ig" Im(7¥3) — 2ig" RefIm(V3) + g""ilm(cWy)] | (D10)

(C): similar to (A) changing Cs. . — Cy..

1 - a € " e 1 e . e " € rr, €
g [na01634 =+ QZIm(m Ole42)] (’}/2 a + gT")/l a) = g |:")/2 201634 + 2'LIm(FY2 301642) + 92 Y1 201634 + g ZIm('}’l 301842)
1 . .

=3 [2%2C1234 + 2iIm(7,°,C1334) + 2iIm (75, %5C1242 + 72°5C1342 + V5 *3C1a42)

+g2 2iTm (7, % Ci334) + g™ ilm(y, %5 C1342 + 7, 4301442)]

1

=3 [4iReyImWUs — 2iIm(v¥y) — 4iRefImUs + 2iIm(p¥s) + ig" ' Im(7¥1) — ig" Im(p¥s)] , (D11)

(B)

1 a - a e gTT‘ e 1 e N e gTT‘ e rr . e

3 [1°Caeza + 2ilm(m* Coear)] (72, + 5 W) = 3 |72 102e34 + 2iIm(7,%3C241) + 5 N 102¢34 + g""ilm(7; “3C2¢41)

1 ... .
=3 [2iIm (2% Cassa) + 2iTm (75 % Caza1 + Y2 *3C2441)

rr

+g2 (71 "1C2134 + 2iIm (7, %, Cas34)) + g™ iIm(v; '5C141 + 71 %5 Casar + 71 *3Coa41)
1 _ _ _ _ _
=3 [—2iIm(7W3) + 2iIm(u¥s) + 2ig" Re e ImVUs + ig""im(5¥3) + 2ig" RefIm(¥1) — ig" Im(p¥s)] , (D12)
(D)
1 a N a e g””’“ € 1 e N € g””’“ € rTr, e
3 [[*Clesa + 2(Im(m*Chear)] (726, + =N 0) = 3|72 1C1e34 + 2iIm(7,%C1ea1) + 5 N 1C1e34 + " ilm(y; 3C1ea1)
1 . .
=3 [2%1 C1234 + 2iIm(7,% Ci33a) + 20Im(75%5C1241 + 72°5C 1341 + V5 *3C1a41)
+g2 2iIm(7; % C1334) + ¢""ilm(y, %5 Craan + 7 4301441)]
1 _ o _
=3 [4iRe eImWy — 2iIm(7V1) + 4iRefIm¥y — 2Im(AVg) + ig" " Im(K W) + ig" Tm(oWo)] , (D13)
(E)
1 —2¢ . —2M 2M:i
5 [2in T s + 2iTm(m"V3)] Vog'" = TZ[ 5+ O(r ) n"Varlm¥y = 3TZ[1 +0(r™)]g" Im¥,, (D14)
(F)
—_27; —2M 2M

% [—2in"Im¥;y — 2(0m(m®¥1)] Vg™ = + OV rim¥y =

3 [ r2 3r

We use now the asymptotic properties of the spin-coefficients (see Appendix C) in the limit to future null infinity to
simplify all these quantities. Notice that v/h ~ 2, so all terms that decay faster than 1 /r? vanish at 7. On the other
hand, all the spin-coefficients decay at least as 1/r, and because all terms above are of the form spin — coefficient x
Weyl — scalar, the only non-vanishing contributions are those that involve ¥, = O(%) Among all of them, we have

to take the one whose spin-coefficient only decays as O(%), which is A\. Doing this we get

[1+ 0> H]g" Im¥y . (D15)

/d4x\/—_g<vajg> = —g/ pi(R) = Tf;/ﬁ du dS*Tm (5°5°) . (D16)

M

Recalling that N33 = 26 (see Appendix C), we recover equation (51)
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