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Abstract

Constraint answer set programming or CASP, for short, is a hybrid approach in automated reasoning putting

together the advances of distinct research areas such as answer set programming, constraint processing, and

satisfiability modulo theories. Constraint answer set programming demonstrates promising results, includ-

ing the development of a multitude of solvers: ACSOLVER, CLINGCON, EZCSP, IDP, INCA, DINGO, MINGO,

ASPMT2SMT, CLINGO[L,DL], and EZSMT. It opens new horizons for declarative programming applications

such as solving complex train scheduling problems. Systems designed to find solutions to constraint answer

set programs can be grouped according to their construction into, what we call, integrational or transla-

tional approaches. The focus of this paper is an overview of the key ingredients of the design of constraint

answer set solvers drawing distinctions and parallels between integrational and translational approaches.

The paper also provides a glimpse at the kind of programs its users develop by utilizing a CASP encoding

of Travelling Salesman problem for illustration. In addition, we place the CASP technology on the map

among its automated reasoning peers as well as discuss future possibilities for the development of CASP.

Under consideration in Theory and Practice of Logic Programming (TPLP).

1 Introduction

Knowledge representation and automated reasoning are areas of Artificial Intelligence that pay

especial attention to understanding and automating various aspects of reasoning. Such tradi-

tionally separate fields of AI as answer set programming (ASP) (Niemelä 1999; Marek and

Truszczyński 1999; Brewka et al. 2011), propositional satisfiability (SAT) (Gomes et al. 2008),

constraint (logic) programming (CSP/CLP) (Rossi et al. 2008; Jaffar and Maher 1994) are repre-

sentatives of model search in automated reasoning. These methods have been successfully used in

a myriad of scientific and industrial applications including space shuttle control (Balduccini et al.

2001; Balduccini and Gelfond 2005), scheduling (Ricca et al. 2012), planning (Kautz and Sel-

man 1992; Rintanen 2012), hardware verification (Biere et al. 2003; Prasad et al. 2005), adaptive

Linux package configuration (Gebser et al. 2011), systems biology (Gebser et al. 2010), bioin-

formatics (Palù et al. 2004; Palu et al. 2010), software engineering (Cohen et al. 2008; Garvin

et al. 2011; Brain et al. 2012).

Often the combination of algorithmic techniques stemming from distinct subfields of auto-

mated reasoning is necessary. For instance, problems in software verification require reasoning

combining propositional logic with formalizations that include, among others, theories of strings
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and arrays. These observations led to studies targeting the development of hybrid (multi-logic)

computational methods that put together distinct solving approaches suitable for different log-

ics. This has led to the development of hybrid approaches that combine algorithms and systems

from different AI subfields. Constraint logic programming (Jaffar and Maher 1994), satisfiability

modulo theories (SMT) (Nieuwenhuis et al. 2006; Barrett et al. 2008; Barrett and Tinelli 2014),

HEX-programs (Eiter et al. 2005), VI-programs (Calimeri et al. 2007), constraint answer set pro-

gramming (CASP) (Elkabani et al. 2004; Mellarkod et al. 2008; Lierler 2014) are all examples

of this trend. Constraint answer set programming is the focus of this paper.

Constraint answer set programming allows one to combine the best of two different automated

reasoning worlds: (1) the non-monotonic modeling capabilities and SAT-like solving technology

of ASP; and (2) constraint processing techniques for effective reasoning over non-Boolean con-

structs. CASP demonstrates promising results. For instance, research by Balduccini on the design

of CASP language EZCSP and on the corresponding solver yields an elegant, declarative solution

to a complex industrial scheduling problem (Balduccini 2011). Similarly, system CLINGO[DL]

provides the basis for solving complex train scheduling problems (Abels et al. 2019). It is also

due to note the development of many CASP solvers in the past decade: ACSOLVER (Mellarkod

et al. 2008), CLINGCON (Gebser et al. 2009), EZCSP (Balduccini and Lierler 2017), IDP (Wit-

tocx et al. 2008), INCA (Drescher and Walsh 2010), DINGO (Janhunen et al. 2011), MINGO (Liu

et al. 2012), ASPMT2SMT (Bartholomew and Lee 2014), CLINGO[L,DL] (Janhunen et al. 2017),

and EZSMT (Susman and Lierler 2016; Shen and Lierler 2018b). It is fair to say that CASP

formalism together with the multitude of supporting tools opens new horizons for declarative

programming applications.

There are two main approaches in developing CASP systems/solvers, that is, tools for process-

ing programs in constraint answer set programming and enumerating their solutions. The first one

goes after systems that, while processing CAS programs, rely on combining algorithms/solvers

employed in ASP and constraint processing (Mellarkod et al. 2008; Gebser et al. 2009; Balduc-

cini and Lierler 2017). We call this approach integrational. The second one transforms a CAS

program into an SMT formula, whose models are in prespecified relation with answer sets of the

original program (Janhunen et al. 2011; Lee and Meng 2013; Susman and Lierler 2016; Lier-

ler and Susman 2017; Shen and Lierler 2018b). As a result a problem of finding solutions to

CASP is transformed into a problem of finding models of SMT formula. We call this approach

translational. The translational approach also includes two systems that translate CAS programs

into other formalisms than SMT, namely, mixed integer programming, system MINGO (Liu et al.

2012), and answer set programming, system ASPARTAME (Banbara et al. 2015).

The focus of this paper is an overview of the key ingredients of the integrational and transla-

tional approaches towards construction of CASP systems. The paper starts with the presentation

of constraint answer set programming in use to showcase the paradigm. In particular, we present

a CASP formulation of Traveling Salesman Problem benchmark alongside its ASP formulation.

We then proceed towards defining formal concepts of constraint answer set programming. The

main part of the paper is devoted to describing details behind the integrational and translational

approaches utilizing examples of two representatives of these methods — systems EZCSP and

EZSMT, respectively. The paper also presents some experimental data together with an over-

arching comparison between the existing CASP systems in uniform terminological terms. We

conclude with the discussion on future directions, opportunities, and challenges of the CASP

subfield of automated reasoning. Before proceeding to the main topic of this paper we spend
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CASP = ASP + Constraints

SMT = SAT + Constraints

CLP = LP + Constraints

Fig. 1: Paradigms’ Content

Programming/modeling language Automated reasoning (solver/system/compiler)

ASP/CASP ✓ ✓

SAT/SMT ✓

LP/CLP ✓ ✓

Fig. 2: Ingredients of Paradigms

some time on placing CASP on the map of the automated reasoning subfield of artificial intelli-

gence.

CASP and its Relatives

The question that comes to mind is what are the unique features of CASP in comparison to

related formalisms, in particular, satisfiability modulo theories, constraint logic programming,

and answer set programming. Before drawing parallels between the fields, let us recall principal

ingredients of declarative programming that CASP is a good representative of. In declarative

approach to programming no reference to an algorithm on how exactly to compute a solution

is given. Rather a program provides a description/specification of what constitutes a solution.

Automated reasoning techniques are then used to find a solution to provided specification. Thus,

declarative programming paradigm provides a programmer with two ingredients:

1. Programming/modeling language to express requirements on a solution, and

2. Automated reasoning method to find a solution.

CASP vs SMT. Intuitive visualizations in Figures 1 and 2 are of use1 when we compare CASP

and SMT. Figure 1 makes it clear that the key lies in relation between ASP and SAT. Lierler

provides a detailed comparison of ASP and SAT (2017). Here we reiterate the main thesis of that

work:

Answer set programming provides a declarative constraint programming language, while SAT does not.

The same claim is captured in Figure 2. Both ASP/CASP and SAT/SMT pairs provide a solid

platform for solving difficult combinatorial search problems. Automated reasoning tools behind

these paradigms, called solvers, share a lot in common. Yet, only ASP/CASP pair supplies its

users with programming/modeling language – language of logic programs – meant to express

requirements on a solution using logic programs. The DIMACS and SMT-LIB standard formats

of SAT and SMT solvers, respectively, provide a uniform front end to these systems, but they are

not meant for direct encoding of problems’ specifications.

CASP vs CLP As Figure 1 suggests the key distinction between CASP and CLP lies in the dif-

ference of underlying paradigms of ASP and logic programming (LP). Marek and Truszczyński

draw a parallel between these two declarative programming paradigms (1999). To summarize, in

1 In Figure 1 we understand word Constraints as in constraint satisfaction.
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original logic programming (Kowalski 1988), called Prolog, a single intended model is assigned

to a logic program. The SLD-resolution (Kowalski 1974) is at the heart of control mechanism

behind Prolog implementations. Together with a logic program, a Prolog system expects a query.

This query is then evaluated by means of SLD-resolution and a given program against an in-

tended model. In answer set programming, a family of intended models (possibly an empty one)

is assigned to a logic program. Each member of this family forms a solution to a problem en-

coded by the program. Rules of a logic program formulate restrictions/constraints on solutions.

A program is typically evaluated by means of a grounder-solver pair. A grounder is responsible

for eliminating variables occurring in a logic program in favor of suitable object constants result-

ing in a propositional program. A solver – a system in spirit of SAT solvers (Lierler 2017) – is

responsible for computing answer sets (solutions) of a program. Thus, even though LP and ASP

share the basic language of logic programs, their programming methodologies and underlying

solving/control technologies are different.

CASP vs ASP. The origin of CASP methods lies in attempts to tackle a challenge posed by the

grounding bottleneck of ASP. Sometimes when a considered problem contains variables ranging

over a large integer domain grounding required in pure ASP may result in a propositional pro-

gram of a prohibitive size. CASP provides means to handle these variables within Constraints of

the paradigm (see Figure 1). There is also an additional benefit of the paradigm. For example,

some CASP dialects provide means to express constraints over real numbers whereas traditional

ASP lacks this capacity. Thus, CASP offers novel modeling capabilities in comparison to these

of pure ASP.

2 Constraint Answer Set Programming via Traveling Salesman Problem Formalization

Before we dive into formal definitions, we present the formalization of a variant of the Traveling

Salesman Problem (Lawler et al. 1985; Gutin and Punnen 2007) in both answer set programming

and constraint answer set programming (in the sequel, when we refer to this conjunction we

write (constraint) answer set programming or (C)ASP). (Constraint) answer set programming

provides a general purpose modeling language that supports elaboration tolerant solutions for

search problems. We use the same notion of the search problem as Brewka et al. (2011). Quoting

from their work, a search problem P consists of a set of instances with each instance I assigned a

finite set SP(I) of solutions. In (constraint) answer set programming to solve a search problem P,

we construct a program ΠP that captures problem specifications so that when extended with

facts DI representing an instance I of the problem, the answer sets of ΠP ∪DI are in one to

one correspondence with members in SP(I). In other words, answer sets describe all solutions

of problem P for the instance I. Thus, solving a search problem is reduced to finding a uniform

encoding of its specifications by means of a logic program.

Consider the following combinatorial search problem: given an undirected weighted graph G

(where weights are non-negative integers), find a Hamiltonian cycle in G with the sum of the

weights of its edges at or below a given value. We can interpret this problem as a variant of the

Traveling Salesman Problem (TS):

We are given a graph with nodes as cities and edges as roads. Each road directly connects a pair of

cities, and costs a salesman some time to go through (time is expressed as a positive integer value in this

variant of the problem). The salesman is supposed to pass each city exactly once. Find: a route traversing

all the cities under certain maximum cost of total time.
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An instance with max cost 4 Solution 1 Solution 2

a b

d c

1

1

1

1
2

2

a b

d c

a b

d c

Encoded in ASP with facts: Only instances of route/2 in

answer set 1: answer set 2:

city(a). ... city(d).
initial(a). route(a,b) route(a,d)
road(a,b). ... road(b,d). route(b,c) route(d,c)
cost(a,b,1). ... cost(b,d,2). route(c,d) route(c,b)
maxCost(4). route(d,a) route(b,a)

Fig. 3: Sample TS Instance and Solutions

In the classical formulation of the TS problem, a route with the minimum cost is of interest. Here

we consider a decision problem in place of a related optimization problem. Also, in the classical

formulation there are no restriction on weights over routes being integer.

Figure 3 shows an instance of the TS problem (a weighted graph) as well as its representation

as a set of facts (logic rules without bodies). On the right hand side of the figure, we find two

solutions to this problem.

Figure 4 presents an answer set programming formalization of the traveling salesman problem

using the syntax of the standard ASP-Core-2 Language (Calimeri et al. 2019). Given a program

composed of the rules in Figure 4 and the facts encoding the sample instance in Figure 3, an

answer set solver such as CLINGO, for example, will produce the following output

Answer: 1

route(a,d) route(c,b) route(d,c) route(b,a)

Answer: 2

route(a,b) route(b,c) route(c,d) route(d,a)

These answers correspond to the solutions of our sample instance.

Figure 5 presents a typical architecture of an answer set programming system. For example,

aforementioned tool CLINGO has this architecture. A grounder is a system that replaces non-

ground rules (rules with variables) by their ground counterparts (rules without variables/propo-

sitional rules) (Gebser et al. 2007; Calimeri et al. 2008). A solver is then invoked to find answer

sets of a ground program. Procedures behind modern answer set solvers are close relatives of

those behind SAT solvers (Lierler 2017). The process of grounding in ASP is well understood

and highly optimized. For example, consider rule

:-W<#sum{C,X,Y:route(X,Y),cost(X,Y,C)}, maxCost(W). (1)

from the ASP formalization of the TS problem and the discussed instance. A grounder of system

CLINGO replaces rule (1) with the following rule:

:-4<#sum{1,a,b:route(a,b);1,b,c:route(b,c);1,c,d:route(c,d);

1,d,a:route(d,a);2,b,d:route(b,d);2,a,c:route(a,c);

1,b,a:route(b,a);1,c,b:route(c,b);1,d,c:route(d,c);
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Encoding Meaning

road(Y,X):-road(X,Y). A road from X to Y is also a rode from Y to X.

cost(Y,X,C):-cost(X,Y,C). A cost C for a road from X to Y is also a cost

for the same road from Y to X.

1{route(X,Y): road(X,Y)}1:-city(X). For each city, pick one route leaving from the city.

1{route(X,Y): road(X,Y)}1:-city(Y). For each city, pick one route going to the city.

reached(X):-initial(X). The initial city is reached.

reached(Y):-reached(X), route(X,Y). If city X is reached and the route from X to Y is

picked, then city Y is also reached.

:-city(X), not reached(X). A city that is not reached leads to a contradiction.

:-W<#sum{C,X,Y:route(X,Y),cost(X,Y,C)}, The total time cost of a selected route greater than

maxCost(W). maximal cost leads to a contradiction.

#show route/2. A directive to only print route predicate as output.

Fig. 4: TS: ASP encoding in the standard ASP-Core-2 Language

answer

setsASP Solver
program

logic

program

grounded
Grounder

Fig. 5: Answer Set Programming System Architecture

CASP Encoding Meaning

cspvar(c(X,Y),0,C):-cost(X,Y,C). Declaration of constraint variables.

required(c(X,Y)==0):-cost(X,Y,C), not route(X,Y). Time spent on a road is 0 if

road is not in route.

required(c(X,Y)==C):-cost(X,Y,C), route(X,Y). Time spent on a road is its cost if

road is in route.

required(sum([c/2],<=,W)):- maxCost(W). Total time cost must be less or equal

to max cost.

Fig. 6: TS: Part of the CASP encoding in the EZ language of EZCSP

1,a,d:route(a,d);2,d,b:route(d,b);2,c,a:route(c,a)}.

In some cases, the time taken by grounding dominates the time taken by solving. Addressing this

difficulty is one of the challenges of ASP.

We now present the formulation of the TS problem using constraint answer set programming.

In particular, we obtain a CASP encoding in the language of EZCSP by taking an ASP program

given in Figure 4 and replacing its rule (1) with lines presented in Figure 6. In this encoding, we

introduce constraint variables c(·, ·) associated with each road so that when a road becomes a

part of a route selected by a salesman its value is assigned to the cost of the road, while otherwise
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it is 0. We then pose a constraint on these variables, which ensures that the total cost of a selected

route is less than the maximal cost.

The TS problem showcases some key features that constraint answer set programming brings

to the table in comparison to its parent – answer set programming:

• Consider a simple change in the statement of the TS problem, namely, time is expressed

as a real value. In fact, as mentioned earlier, the classical formulation of the TS problem

considers weights that are real numbers. The traditional ASP framework may no longer

be used to solve this problem. There is no support for real number arithmetic within

grounders. Yet, CASP tools, such as, for example, EZCSP or EZSMT, can be used to find

solutions to this new problem using the same program as presented here.

• ASP solvers process rules with so called sum-aggregates such as (1) by implementing

specialized procedures (Niemelä and Simons 2000; Gebser et al. 2009; Lierler 2010). By

replacing (1) with its CASP counterpart we allow utilization of search techniques stem-

ming from either

— CSP community if we use such CASP tool as, for example, EZCSP, or

— SMT community if we use such CASP tool as, for example, EZSMT.

These techniques will at times provide complementary performance. In other words, CASP

allows us to utilize modeling language of ASP together with solving capabilities of SMT

and CSP.

In addition,

• The grounding process of ASP may result in production of propositional programs that

are of prohibitive size. This is especially the case when complex constraints over large

numeric values are in place. CASP often allows us to bypass the grounding bottleneck via

the reformulation of these numeric constraints using constraint atoms. Lierler et al. (2012)

presents a case study on Weighted-Sequence problem (a domain inspired by a query opti-

mization problem in relational databases), where the CASP solution is superior to its ASP

counterpart as it alleviates grounding issues exhibited by an ASP solution.

Just as a typical answer set solver, a common CASP system starts its computation by perform-

ing grounding on a given program. For example, such CASP systems as EZCSP and CLINGCON

utilize grounder GRINGO to produce a program composed of ground, so called, regular and ir-

regular atoms. For instance, consider a rule

required(c(X,Y)==C):- cost(X,Y,C), route(X,Y). (2)

from the CASP TS encoding. We can view symbols X , Y , and C as schematic variables that are

placeholders for instances of passing constants. In the context of the CAS program composed of

the sample TS instance in Figure 3 and the CASP TS encoding, rule (2) will be grounded by the

EZSMT system into the rules of the kind:

required(c(a,b)==1):- cost(a,b,1), route(a,b).

required(c(b,a)==1):- cost(b,a,1), route(b,a).

· · ·

required(c(b,d)==2):- cost(b,d,2), route(b,d).

required(c(d,b)==2):- cost(d,b,2), route(d,b).

As a result, a program that a solver component of a typical CASP system processes consists of
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i. “regular” ground atoms such as cost(a,b,1) and route(a,b), and

ii. “irregular” or constraint ground atoms such as c(a,b) == 1 and c(b,d) == 2, and

iii. ground constraint variables such as c(a,b) and c(b,d).

Grounding process of CASP systems mirrors that of ASP systems. Thus, we direct a reader to

papers by Gebser et. al (2007) and Calimeri et al. (2008) for the details on grounding procedures.

Here we focus on the unique features of CASP systems that pertain to their solving techniques.

For this reason formal definitions that we present are in terms of ground/propositional CAS

programs. We refer a reader, interested in the definition of syntax and semantics for non-ground

CAS programs, to a paper by Bartholomew and Lee (2013).

3 Preliminaries

We now proceed towards formal preliminaries required to state the key definitions of the CASP

paradigm.

Logic Programs. A vocabulary is a set of propositional symbols also called atoms. As customary,

a literal is an atom a or its negation, denoted ¬a. A (propositional) logic program, denoted by Π,

over vocabulary σ is a set of rules of the form

a← b1, . . . ,bℓ, not bℓ+1, . . . , not bm, not not bm+1, . . . , not not bn, (3)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom in σ . We sometimes use the

abbreviated form for rule (3)

a← B, (4)

where B stands for b1, . . . ,bℓ, not bℓ+1, . . . , not bm, not not bm+1, . . . , not not bn and is also

called a body. Syntactically, we identify rule (3) with the propositional formula

b1∧ . . .∧bℓ∧¬bℓ+1∧ . . .∧¬bm∧¬¬bm+1∧ . . .∧¬¬bn→ a (5)

and B with the propositional formula

b1∧ . . .∧bℓ∧¬bℓ+1∧ . . .∧¬bm∧¬¬bm+1∧ . . .∧¬¬bn. (6)

Note (i) the order of terms in (6) is immaterial, (ii) not is replaced with classical negation (¬),

and (iii) comma is replaced with conjunction (∧). Expression

b1∧ . . .∧bℓ

in formula (6) is referred to as the positive part of the body and the remainder of (6) as the nega-

tive part of the body. Sometimes, we interpret semantically rule (3) and its body as propositional

formulas, in these cases it is obvious that double negation ¬¬ in (5) and (6) can be dropped.

The expression a is the head of the rule. When a is⊥, we often omit it and say that the head is

empty. We call such rules denials. We write hd(Π) for the set of nonempty heads of rules in Π.

We call a rule whose body is empty a fact. In such cases, we drop the arrow. We sometimes may

identify a set X of atoms with the set of facts {a. | a∈ X}. For a logic program Π (a propositional

formula F), by At(Π) (by At(F)) we denote the set of atoms occurring in Π (in F).

It is customary for a given vocabulary σ , to identify a set X of atoms over σ with (i) a complete

and consistent set of literals over σ constructed as X ∪{¬a | a ∈ σ \X}, and respectively with

(ii) an assignment function or interpretation that assigns truth value true to every atom in X

and false to every atom in σ \X . We say a set X of atoms satisfies rule (3), if X satisfies the
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propositional formula (5). We say X satisfies a program Π, if X satisfies every rule in Π. In this

case, we also say that X is a model of Π. We may denote satisfaction relation with symbol |=.

The reduct Π
X of a program Π relative to a set X of atoms is obtained by first removing all

rules (3) such that X does not satisfy negative part of the body

¬bℓ+1∧ . . .∧¬bm∧¬¬bm+1∧ . . .∧¬¬bn,

and replacing all remaining rules with a← b1, . . . ,bℓ (note that a can be ⊥).

Definition 1 (Answer set)

A set X of atoms is an answer set, if it is the minimal set that satisfies all rules of Π
X (Lifschitz

et al. 1999).

Ferraris and Lifschitz (2005) showed that a choice rule {a}← B can be seen as an abbreviation

for a rule a← not not a,B (choice rules were introduced by Niemelä and Simons (2000) and are

commonly used in answer set programming languages). We adopt this abbreviation in the rest of

the paper.

We now state the definition of an input answer set (Lierler and Truszczyński 2011) as it is

instrumental in defining semantics for constraint answer set programs.

Definition 2 (Input answer set)

For a logic program Π over vocabulary σ and (input/extensional) vocabulary ι ⊆ σ such that

none of ι’s elements occur in the heads of rules in Π, a set X of atoms over σ is an input answer

set of Π relative to ι , when X is an answer set of the program Π∪ (X ∩ ι).

Example 1

Consider a logic program inspired by a running example by Balduccini and Lierler (2017):

lightOn← switch, not am.

← not lightOn.
(7)

Take set {switch,am} to form an input vocabulary. Intuitively, a program is evaluated relative to

truth values of these input atoms that are provided at the time of the evaluation. Each rule in the

program can be understood as follows:

• The light is on (lightOn) during the night (not am) when the action switch has occurred.

• The light must be on.

Consider set {switch, lightOn} of atoms. This set associates values true and false with input

atoms switch and am, respectively. This set is an input answer set of program (7). Indeed, let Π

be program (7) extended with the fact switch. Reduct Π
{switch, lightOn} follows:

switch.

lightOn← switch.

Set {switch, lightOn} is an answer set of this reduct. This set is the only input answer set of

sample program (7). This input answer set suggests that the only situation that satisfies the spec-

ifications of the problem is such that (i) it is currently night, (ii) the light has been switched on,

and (iii) the light is on.
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Input Completion. Clark (1978) introduced the notion of program’s completion. The process of

completion turns a logic program into a classical logic formula. When a logic program satisfies

certain syntactic conditions, models of a completion formula coincide with answer sets of a logic

program. In all cases, models of a completion formula include all answer sets of a logic program.

Program’s completion is a fundamental concept that plays an important role in the design of

answer set solvers — see, for instance, the paper by Lierler and Truszczynski (2011). It is also a

major building block of the translational approach to CASP solvers. We now review this concept

together with the related notion of an input completion (Lierler and Susman 2017).

Let Π be a program over vocabulary σ . By Bodies(Π,a) we denote the set of the bodies of all

rules of Π with head a. The completion of program Π, denoted by Comp(Π), is the set of

• classical formulas that consist of the rules (3) in Π (recall that we identify rule (3) with

implication (5); when a rule (3) is a fact a, then we identify this rule with the clause

consisting of a single atom a) and

• the implications

a→
∨

a←B∈Π

B (8)

for all atoms a in σ . When the set Bodies(Π,a) is empty, the implication (8) has the form

a→⊥.

We now define an input completion that is relative to an (input) vocabulary.

Definition 3 (Input completion)

For a program Π over vocabulary σ , the input-completion of Π relative to vocabulary ι ⊆ σ so

that hd(Π)∩ ι = /0, denoted by IComp(Π, ι), is defined as the set of formulas in propositional

logic that consists of the rules (5) in Π and the implications (8) for all atoms a occurring in σ \ ι .

Level Ranking. Niemelä (2008) characterized answer sets of “normal” logic programs in terms

of program’s completion and “level ranking”. Normal programs consist of rules of the form (3),

where n=m and a is an atom. Lierler and Susman (2017) generalized a concept of a level ranking

to programs introduced here. These results are fundamental in realizations of many translational

approaches to (constraint) answer set programming. For instance, Niemelä developed a mapping

from normal programs to the satisfiability modulo difference logic formalism (to be introduced in

detail shortly). That translation paved the way towards the implementation of answer set solvers

LP2DIFF (Janhunen et al. 2009) and CMODELS-DIFF (Shen and Lierler 2018a). Similarly, trans-

lational constraint answer set solvers MINGO (Liu et al. 2012), DINGO (Janhunen et al. 2011),

ASPARTAME (Banbara et al. 2015), EZSMT (Shen and Lierler 2018b) rely on the concepts of

completion and level ranking (and its variants, i.e, strong level ranking and strongly connected

component level ranking proposed by Niemelä) in devising their translations.

We start by introducing some notation to formally define the concept of level ranking that

accommodates the notion of an input vocabulary. By N we denote the set of natural numbers.

For a rule (4), by B+ we denote its positive part and sometimes identify it with the set of atoms

that occur in it, i.e., {b1, . . . ,bl} (recall that B in (4) stands for the right hand side of the arrow in

rule (3)).

Definition 4 (Level ranking)

A function lr : X \ ι → N is a level ranking of X for Π relative to vocabulary ι ⊆ σ so that

hd(Π)∩ ι = /0, when for every atom a in X \ ι the following condition holds: there is B in

Bodies(Π,a) such that X satisfies B and for every b ∈ B+ \ ι it holds that lr(a)−1≥ lr(b).
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We now restate Theorem 8 from Lierler and Susman (2017) that captures the relation between

input answer sets of a program and models of input completion by means of level ranking.

Theorem 5

For a program Π over vocabulary σ , vocabulary ι ⊆ σ so that hd(Π)∩ ι = /0, and a set X of

atoms over σ that is a model of input completion IComp(Π, ι), X is an input answer set of Π

relative to ι if and only if there is a level ranking of X for Π relative to ι .

This result is related to the characterization of answer sets of a logic program as models of its

completion (Fages 1994).

Constraints. Lierler and Susman (2017) illustrated that the notion of a “constraint” (as under-

stood in classical literature on constraint processing within the artificial intelligence realm) co-

incides with the notion of a ground literal of satisfiability modulo theories. Furthermore, a con-

straint satisfaction problem (CSP), which is usually defined by a set of constraints, can be identi-

fied with the conjunction of ground literals. This conjunction is evaluated by means of first-order

logic interpretations/structures representative of a particular “uniform” SMT-theory – a term in-

troduced by Lierler and Susman (2017). An SMT-theory (Barrett and Tinelli 2014) is a set of

interpretations/structures. A uniform SMT-theory (Lierler and Susman 2017) is a set of interpre-

tations whose domain, interpretation of predicates and “interpreted” function symbols are fixed.

In practice, special forms of constraints are commonly used. Integer linear constraints are

examples of these special cases. For instance,

2x+3y > 0 (9)

is a common abbreviation for an integer linear constraint. In line with Lierler and Susman, we

identify linear integer inequality (9) with a ground atom

> (+(×(2,x),×(3,y)),0),

where we assume an SMT-theory called Integer Linear Arithmetic or Linear Integer Arithmetic

(ILA) (see, for instance, the paper by Bromberger et al. (2015)). This theory is defined by the set

of all possible interpretations, whose domain is the set of integers, the predicate > is interpreted

as an arithmetic greater relation/predicate symbol; function symbols + and × are interpreted

as usual in arithmetic; 0-arity function symbols 2, 3, and 0 are interpreted by mapping these

into respective domain elements (identified with the same symbol). The constraint (9) contains

uninterpreted 0-arity function symbols x and y that are frequently referred to as object constants

(in logic literature) or variables (in constraint processing literature).

We call an interpretation satisfying a CSP, which we understand as the conjunction of ground

literals, its solutions. We identify this interpretation with a function called valuation that pro-

vides a mapping for uninterpreted function symbols to domain elements. For example, one of the

solutions to the CSP composed of a single constraint (9) within ILA-theory is a valuation that

maps x to 0 and y to 1. Formulas composed of integer linear constraints and interpreted using

SMT-theory ILA are said to be within ILA-logic (Barrett and Tinelli 2014).

Other commonly used SMT-theories are called difference logic (DL) (Nieuwenhuis and Oliv-

eras 2005) and linear arithmetic (LA) (Barrett and Tinelli 2014). In difference logic the set of

interpretation defining this theory is that of ILA. Yet, difference logic restricts the syntactic form

of constraints to the following x− y ≤ k, where x and y are variables and k is 0-arity function
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symbol interpreted by a mapping to domain elements (integers). Linear arithmetic logic differs

from ILA-logic in its SMT-theory: domain of linear arithmetic logic is a set of real numbers.

4 Constraint Answer Set Programs and SMT Formulas, Formally

Let σr, σe, and σi be three disjoint vocabularies. We refer to their elements as regular, strict-

irregular atoms, and non-strict-irregular atoms, respectively. The terms strict and non-strict are

due to Gebser et al. (2016), where the authors introduce the CASP language that permits captur-

ing two commonly used semantics in CASP dialects.

Definition 6 (Constraint answer set program and its answer sets)

Let σ = σr ∪ σe ∪ σi be a vocabulary so that regular atoms σr, strict-irregular atoms σe, and

non-strict-irregular atoms σi are disjoint; B be a set of constraints; γ be an injective function

from the set of irregular literals over σe ∪σi to B; and Π be a logic program over σ such that

hd(Π)∩ (σe ∪σi) = /0. We call a triple P = 〈Π,B,γ〉 a constraint answer set program (CAS

program) over vocabulary σ .

A set X ⊆ At(Π) of atoms is an answer set of P if

(a) X is an input answer set of Π relative to σe∪σi, and

(b) the following CSP has a solution:

{γ(a) | a ∈ X ∩ (σe∪σi)}∪{γ(¬a) | a ∈ σe \X}.

A pair 〈X ,ν〉 is an extended answer set of P if X is an answer set of P and valuation ν is a

solution to the CSP constructed in (b).

It is now time to remark on the differences between regular, strict-irregular, and non-strict-

irregular atoms. If vocabulary σ only consists of regular atoms σr (sets σe and σi of irregular

atoms are empty) then CAS program turns into a logic program under answer set semantics. Per

condition (a) all irregular atoms are part of the input/extensional vocabulary. Intuitively, irregular

atoms carry additional information that goes beyond their truth value assignment. This fact cul-

minates in the statement of the (b) condition in the definition of an answer set. The (b) condition

also points at the difference between strict-irregular and non-strict-irregular atoms. While the

presence of irregular atoms in set X of atoms requires a constraint of this atom to be satisfied,

only the absence of a strict-irregular atom requires a constraint of its complement to be satisfied.

The non-strict irregular atoms do not pose the latter restriction.

In the sequel, we utilize vertical bars to mark irregular atoms that have intuitive mappings

into respective constraints. For instance, given an integer variable x, the expression |x < 0| cor-

responds to an irregular atom that is mapped into constraint/inequality x < 0; similarly irregular

literal ¬|x < 0| is mapped into constraint/inequality x≥ 0.

Example 2

Let us consider CAS program P1 = 〈Π1,B1,γ1〉 from Example 3 by Lierler and Susman (2017).
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Logic program Π1 — the first element of the tuple defining P1 — follows

{switch}.

lightOn← switch, not am.

← not lightOn.

{am}.

← not am, |x < 12|.

← am, |x≥ 12|.

← |x < 0|.

← |x > 23|.

(10)

The set σr of regular atoms of P1 is

{switch,am, lightOn}.

The set σe of strict-irregular atoms of P1 is

{|x < 0|, |x < 12|, |x≥ 12|, |x > 23|}, (11)

where x is an integer variable (representing hours of the day). The set σi of non-strict-irregular

atoms of P1 is empty.

The first line of the program is understood as follows: The action switch is exogenous. The

second two lines are identical to these of logic program (7). The fourth line we can intuitively

read as: It is night (not am) or morning (am). The last four lines of the program state:

• It must be am when x < 12.

• It is impossible for it to be am when x≥ 12.

• Variable x must be nonnegative.

• Variable x must be less than or equal to 23.

Set B1 consists of integer linear constraints including constraints

{x < 0, x≥ 0, x < 12, x≥ 12, x > 23, x≤ 23},

Mapping γ1 is defined as follows

γ1(a) =











































constraint x < 0 if a = |x < 0|

constraint x≥ 0 if a = ¬|x < 0|

constraint x < 12 if a = |x < 12| or a = ¬|x≥ 12|

constraint x≥ 12 if a = |x≥ 12| or a = ¬|x < 12|

constraint x > 23 if a = |x > 23|

constraint x≤ 23 if a = ¬|x > 23|.

Consider set

{switch, lightOn, |x≥ 12|} (12)

over the vocabulary of P1. This set is the only input answer set of Π1 relative to irregular atoms

of P1. Also, the integer linear constraint satisfaction problem formed by the constraints in

{γ1(¬|x < 0|), γ1(¬|x < 12|), γ1(|x≥ 12|), γ1(¬|x > 23|)}

=

{x≥ 0, x≥ 12, x≤ 23}
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has a solution. There are 12 valuations v1 . . .v12 for integer variable x, which satisfy this CSP,

namely, xv1 = 12, . . . ,xv12 = 23. It follows that set (12) is an answer set of P1. Pair

〈{switch, lightOn, |x≥ 12|},ν1〉

is one of the twelve extended answer sets of P1.

To illustrate the difference between strict and non-strict irregular atoms consider the CAS pro-

gram P′1 that differs from P1 only in sets σe and σi. In particular, the set σe of strict-irregular atoms

of P′1 is empty. The set σi of non-strict-irregular atoms of P′1 is (11). Set (12) is the only input

answer set of Π1 relative to irregular atoms of P′1. Also, the integer linear constraint satisfaction

problem formed by the constraint in

{γ1(|x≥ 12|)}

=

{x≥ 12}

has a solution. There are indeed infinite number of valuations v1 . . .v12, v13, . . . for integer vari-

able x, which satisfy this CSP, namely, xv1 = 12, . . . ,xv12 = 23, xv13 = 24, . . . .

We direct a reader to the paper by Gebser et al. (2016), where the authors discuss in detail the

rationale behind the two distinct kinds of irregular atoms.

We note that if we consider a CAS program whose set σi of non-strict-irregular atoms is empty

then it falls into a class of programs accepted by such CASP system as CLINGCON (Gebser

et al. 2009), given that constraints are in the realm of ILA. Similarly, if we consider a CAS

program whose set σe of strict-irregular atoms is empty and whose atoms from σi only occur in

denials, then it falls into a class of programs that such CASP system as EZCSP accepts (given

that constraints are in the realm of ILA or LA).

Janhunen et al. (2017) lift the restriction on irregular atoms not to occur in the heads of pro-

gram’s rules. Rather, they divide all atoms into “defined” and “external” (input/extensional, if to

follow the terminology of this paper), where defined atoms may occur in heads. In other words,

defined irregular atoms do not longer need to be part of the input vocabulary. This is an important

and an interesting extension within CASP that is utilized in the implementation of such CASP

systems as CLINGO[DL] and CLINGO[LP]. To the best of our knowledge these are the only two

currently available CASP systems that allow “defined” irregular atoms.

SMT Formulas. Here we state the definition of an SMT formula (Barrett and Tinelli 2014). This

concept is fundamental for most translational approaches to CASP.

Definition 7 (SMT formulas and its models)

Let σ = σr ∪σe ∪σi be a vocabulary (so that σr, σe, and σi are disjoint); B be a set of con-

straints; γ be an injective function from the set of irregular literals over σe ∪σi to B; F be a

propositional formula over σ . We call a triple F = 〈F,B,γ〉 an SMT formula over vocabulary σ .

A set X ⊆ At(F) is a model of SMT formula F if

(a.1) X is a model of F , and

(b.1) the CSP constructed in (b) of Definition 6 has a solution.

A pair 〈X ,ν〉 is an extended model of F if X a model of F and ν is a solution to the CSP in (b.1).

We are now ready to provide the translation from logic programs to SMT formulas (this trans-

lation is inspired by level ranking results). We then present a translation by Lierler and Sus-

man (2017) that maps CAS programs into SMT formulas.
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As before, we utilize vertical bars to mark irregular atoms (introduced within the translation)

that have intuitive mappings into respective constraints. For instance, the expression |lrb− 1 ≥

lra| corresponds to an irregular atom that is mapped into constraint/inequality lrb−1≥ lra,

where lra and lrb are variables over integers. To refer to the constraints corresponding to ir-

regular literals we use superscript ↓. For example,

|lrb−1≥ lra|
↓ = lrb−1≥ lra

¬|lrb−1≥ lra|
↓ = lrb−1 < lra.

Definition 8 (Translation from a logic program to an SMT formula)

Let Π be a logic program over vocabulary σΠ and vocabulary ι ⊆ σΠ such that none of ι’s

elements occur in the heads of rules in Π. For every atom a in σ \ ι that occurs in Π we introduce

an integer variable lra. The SMT formula F Π = 〈FΠ,BΠ,γΠ〉 is constructed as follows

• formula FΠ is a conjunction of the following

1. rules (3) in Π;

2. for each atom a∈σΠ\ι the implication a→
∨

a←B∈Π

(

B∧
∧

b∈B+\ι

|lra−1≥ lrb|
)

• set σr of F Π is formed by the atoms in σΠ; set σe of F Π is formed by the irregular atoms

of the form |lra−1≥ lrb| introduced in 2; and set σi of F Π is empty;

• constraints in BΠ are composed of inequalities |lra− 1 ≥ lrb|
↓ and ¬|lra− 1 ≥ lrb|

↓ for

all irregular atoms of the form |lra−1≥ lrb| introduced in 2;

• function γΠ maps irregular literals formed from atoms of the form |lra−1≥ lrb| introduced

in 2 to constraints in BΠ in a natural way captured by ↓ function.

An SMT formula F Π has two properties: (i) it has models if and only if respective answer set

program Π has answer sets and (ii) any model I of this formula is such that I∩σ forms an answer

set of Π. This is a consequence of Theorem 9 by Lierler and Susman (2017), which follows from

Theorem 5 restated here.

Definition 9 (Translation from a CAS program to an SMT formula)

Let P = 〈Π,B,γ〉 be a CAS program over σP = σP
r ∪σP

i ∪σP
e . For every atom a in σP

r that

occurs in Π we introduce an integer variable lra. The SMT formula F P = 〈FP,BP,γP〉 over

σ = σr ∪σi∪σe is constructed as follows

• the formula FP is a conjunction consisting of formulas in 1 and 2 of Definition 8, where

we understand σΠ as σP and ι as σP
i ∪σP

e ;

• set σr of F P is formed by the atoms in σP
r ; set σe of F P is formed as the union of σP

e and

the irregular atoms of the form |lra− 1 ≥ lrb| described in Definition 8; set σi of F P is

formed by the atoms in σP
i ;

• constraints BP are composed of the elements in B and the elements in BΠ described in

Definition 8;

• mappings of γP are composed of the elements in γ and the elements in γΠ described in

Definition 8.

An SMT formula F P has two properties: (i) it has models if and only if respective CAS program

has answer sets and (ii) any model I of this formula is such that I∩σP forms an answer set of P.

This is a consequence of Theorem 10 by Lierler and Susman (2017) that follows from Theorem 5

restated here.
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5 Integrational Approach via System EZCSP

As stated in the introduction, this paper presents the details behind two CASP systems, namely,

EZCSP2 and EZSMT3. The former is a representative of the integrational approach. The latter is a

representative of a translational SMT-based approach.

Both systems, EZCSP and EZSMT, accept programs written in the language that is best docu-

mented by Balduccini and Lierler (2017). We call this language EZ. The TS problem formula-

tion of this paper is in that language. This paragraph uses system EZCSP in its claims. The same

claims are applicable for the system EZSMT. As discussed earlier, CASP systems typically start

their computation by grounding a given program. System EZCSP uses grounder GRINGO (Gebser

et al. 2011) for this purpose. Following our example from the end of the introduction, ground

rule

required(c(a,b)==1):- cost(a,b,1), route(a,b). (13)

exemplifies the kinds of ground rules produced by the EZCSP system at the time of grounding.

Atoms of the form required(β ) instruct the EZCSP system that β introduces a non-strict-irregular

atom. Even though “required atoms” occur in the head of rules, semantically these rules are de-

nials with the irregular atom “complementary” to β occurring in the body.4 For instance, rule (13)

stands for the following denial, written in style used in Section 4:

← cost(a,b,1), route(a,b), |c(a,b) 6= 1|.

Atoms such as |c(a,b) 6= 1| belong to non-strict-irregular atoms of the CAS program produced by

grounding of EZCSP. These CAS programs (i) contain no strict-irregular atoms and (ii) contain

irregular atoms only in denials.

Figure 7 depicts the architecture of the EZCSP system. The graphic is reproduced from the

paper by Balduccini and Lierler (2017). We follow the presentation by Balduccini and Lierler

to state the most essential details behind the EZCSP system. The first step of the execution of

EZCSP (corresponding to the Pre-processor component in the figure) consists in running a pre-

processor, which translates an input EZ program into a syntactically legal ASP program. This is

accomplished by replacing the occurrences of arithmetic functions and operators in expressions

of the form required(β ) by auxiliary function symbols. For example, an expression v > 2 in

required(v > 2) is replaced by gt(v,2). The Grounder component of the architecture transforms

the resulting program into its propositional equivalent, a regular program, using an off-the-shelf

grounder such as GRINGO (Gebser et al. 2007; Gebser et al. 2011). This regular program is then

passed to the EZCSP Solver component.

The EZCSP Solver component iterates between ASP and constraint programming computa-

tions by invoking the corresponding components of the architecture. Specifically, the ASP Solver

component computes an answer set of a given regular program using an off-the-shelf ASP solver,

such as CMODELS or CLASP. If an answer set is found, the EZCSP solver runs the CLP Trans-

lator component, which maps the CSP problem corresponding to the computed answer set to a

2 Solver EZCSP is available at http://mbal.tk/ezcsp/ .
3 Solver EZSMT is available at
https://www.unomaha.edu/college-of-information-science-and-technology/
natural-language-processing-and-knowledge-representation-lab/software/ezsmt.php .

4 It is due to note that β may be a more complex expression than an irregular atom. For example, it may contain a
disjunction of irregular atoms. Semantically, a rule with such β expression in its head corresponds to the denial that
extends the body of this rule with the conjunction of the complementary atoms formed from β .
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propagators to replace the GECODE system. It is also a close relative to the newest representatives

of the integrational approach systems CLINGO[DL] and CLINGO[LP] (Janhunen et al. 2017). Lat-

est version of CLINGCON and these two systems are a product of a systematic effort by University

of Potsdam to create an extensible infrastructure to support answer set programming based solu-

tions. Framework CLINGO 5 (Gebser et al. 2016) provides comprehensive interfaces to assist the

development of

• extensions for the language accepted by grounder GRINGO (the functionality of makes the

Pre-processor component required in the architecture of EZCSP obsolete) to accommodate,

for example, the irregular atoms as discussed here;

• extensions for implementing specialized propagators to accommodate, for example, the

processing of irregular atoms as discussed here natively and efficiently utilizing the fact

that these propagators are defined within CLINGO itself.

It is interesting to note that one can view/name constraint answer set programming as ASP

modulo constraints/theories (following the tradition of SMT). An interesting related paradigm

to CASP is called ASP modulo acyclicity (Bomanson et al. 2016). In this paradigm, specialized

propagator is used to capture constraints specific to graph/tree problems. Bomanson et al. (2016)

describe an integrational solver for ASP modulo acyclicity based on answer set solver CLASP

and use Hamiltonian cycle problem as one of the benchmarks to showcase the system.

Briefing: Input Languages of CASP systems. In this paper we speak in some detail about the

EZ language that is used for problem encodings to interface CASP systems EZCSP and EZSMT.

The other CASP tools such as CLINGCON, CLINGO[DL], or CLINGO[LP] introduce their own

ASP-like dialects to state CAS programs with schematic variables. At the moment, the task of

transferring an encoding designed for one CASP system into an encoding meant for another

CASP system requires a programmer experienced with dialects of these systems. An effort in

spirit of the design of the standard ASP-Core-2 Language (Calimeri et al. 2019) (to interface

ASP solvers) is now due for the case of CASP languages.

6 Translational Approach via System EZSMT

The concluding part of Section 4 describes how given a constraint answer set program one can

construct an SMT formula whose models capture its answer sets. This construction relies on

the concepts of completion and level ranking. It is worth noting that Janhunen (2006) intro-

duced refined “strong” and “strongly connected component (SCC)” level rankings for normal

logic programs (under a name of level numberings). These refined versions of level ranking can

be used to reduce the size of translation from a program to an SMT formula. Shen and Lier-

ler (2018a) generalized these results to logic programs whose rules are of the form (3). These

ideas are also applicable within CAS programs and are utilized in the implementation of the

CASP solver EZSMT (Shen and Lierler 2018b). We now review the key features of the EZSMT

system and its building blocks to showcase a translational approach.

In a nutshell system EZSMT translates a given CAS program into an SMT formula and then uti-

lizes an SMT solver as its search back-end to find models of the formula. Then, each model found

in this way is mapped to an answer set of the given program. In addition to difference logic, ILA,

and LA logics, system EZSMT can use such SMT-logics as AUFLIRA and AUFNIRA (Tinelli
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by Susman and Lierler (2016) and Shen and Lierler (2018b). Finally, one of the SMT solvers

CVC4 (Barrett et al. 2011), Z3 (Wintersteiger et al. 2016), or YICES (Dutertre 2017) is called to

compute models (Step 4.). In fact, any other SMT solver supporting SMT-LIB can be utilized

easily, too. The EZSMT system allows one to compute multiple (extended) answer sets. It utilizes

ideas exploited in the implementation of CMODELS(DIFF) (Shen and Lierler 2018a, Section 5).

In summary, after computing an (extended) answer set X of a program EZSMT invokes an SMT

solver again by adding formulas encoding the fact that a newly computed model should be differ-

ent from X . This process is repeated until the pre-specified number of solutions is enumerated or

it has been established that no more solutions exist. The described process of enumerating mul-

tiple solutions is naive and begs for an improvement. Gebser et al. (2007) describe sophisticated

methods for enumerating answer sets implemented within answer set solver CLASP.

Briefing: Translational Systems. We mentioned such translational constraint answer set solvers

as MINGO (Liu et al. 2012), DINGO (Janhunen et al. 2011), and ASPARTAME (Banbara et al.

2015). To process CAS programs with LA and ILA logics, the MINGO system computes pro-

gram’s input completion extended with level ranking formulas and then translates these formulas

into mixed integer programming expressions. After that it uses the CPLEX solver (IBM 2009)

to solve these formulas. To process CAS programs with difference logic, system DINGO trans-

lates these programs into SMT(DL) formulas using translations in spirit of those in EZSMT and

applies the SMT solver Z3 (De Moura and Bjørner 2008) to find their models. The last transla-

tional system that we mention is ASPMT2SMT (Bartholomew and Lee 2014). The ASPMT2SMT

system is a close relative of EZSMT in the sense that it utilizes SMT solver Z3 for search. Solver

ASPMT2SMT is nevertheless restricted to tight programs. It computes the completion of a given

program and then invokes Z3 solver to enumerate the solutions. System ASPARTAME differs from

all of the above as it translates the CAS programs with IL arithmetic into answer set programs.

7 Big Picture and Experimental Data

We start this section by summarizing the modern landscape of CASP technology. We then pro-

ceed towards presenting some experimental data to showcase the current computational capabil-

ities of the field.

Figure 9 reproduces part of the table stemming from Janhunen et al. (2017) that provides a

great overview of the key features and capabilities of the constraint answer set programming

systems (the only difference between the original table and the one present is that system EZSMT

is now marked as the one capable of processing non-tight programs; that was not the case prior).

In the first row of the table, integrational is taken to be the complement of translational. The

row real numbers refers to the ability of a solver to support constraints over real numbers.

Every solver supports constraints over integers. The row optimization refers to the ability of

a solver to support optimization statements that are valuable in designing solutions to real world

problems (Andres et al. 2012). The row non-tight points to systems that do not require input

programs to satisfy a syntactic condition of tightness. The table introduces two more systems

INCA (Drescher and Walsh 2010; Drescher and Walsh 2011) and DLVHEX[CP] (Rosis et al.

2015), which have not surfaced in our discussion. System INCA implements a lazy propagation-

translation approach that, along processing time, translates integer constraints of the program into

logic program rules. System DLVHEX[CP] is a CLINGO-based system that utilizes CSP solver

GECODE.
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CLINGO CLINGO CLING ASPAR INCA EZ EZ MINGO DINGO ASPMT DLVHEX

[DL] [LP] CON TAME CSP SMT 2SMT [CP]

translational ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

real numbers ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

optimization ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

non-tight ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Fig. 9: Solvers and their features

The experimental data presented here is reproduced from the paper by Shen and Lierler (2018b).

It focuses on the performance of three systems EZSMT, EZCSP and CLINGCON (Banbara et al.

2017; Ostrowski 2018). The benchmarks are posted at the EZSMT website (see Footnote 3). In

conclusion of this section we remark on how these systems compare to other CASP solvers.

We now point to the origins of the considered benchmarks. Three benchmarks, namely, Re-

verse Folding (RF), Incremental Scheduling (IS), and Weighted Sequence (WS), come from the

Third Answer Set Programming Competition (Calimeri et al. 2011). We obtain CLINGCON and

EZSMT encodings of IS from Banbara et al. (2017). We include a benchmark problem called

Blending (BL) (Biavaschi 2017) and extend it to BL*, which contains variables over both inte-

gers and reals. Also, we use the Bouncing Ball (BB) domain (Bartholomew 2016). It is impor-

tant to remark that the encoding for BB domain results in a tight program. This domain uses

nonlinear constraints over real numbers. Three more benchmarks, namely, RoutingMin (RMin),

RoutingMax (RMax), and Travelling Salesperson (TS) are obtained from Liu et al. (2012). The

obtained TS benchmark is an optimization problem that we turn into a TS variant considered in

the introduction. The Labyrinth (LB) benchmark is extended from the domain presented in the

Fifth Answer Set Programming Competition (Calimeri et al. 2016). This extension allows us to

add integer linear constraints into the problem encoding. The next benchmark, Robotics (RB),

comes from Young et al. (2017). Also, we present results on two benchmarks from Balduccini et

al. (2017), namely, Car and Generator (GN).

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core i5-4250U

processor. The resource allocated for each benchmark is limited to one CPU core and 4GB RAM.

We set a timeout of 1800 seconds. No problems are solved simultaneously. The systems that

we use to compare the performance of variants of EZSMT (invoking SMT solver Z3 v. 4.5.1;

YICES v. 2.5.4) are CLINGCON v. 3.3.0 and the variants of EZCSP v. 2.0.0 (invoking ASP solvers

CLASP v. 3.2.0; and constraint solver SWIprolog v. 7.4.1 or MINIZINC v. 2.0.2). The GRINGO

system v. 4.5.3 is used as grounder for EZSMT and EZCSP with one exception: GRINGO v. 3.0.5

is utilized for EZCSP for the Reverse Folding benchmark (due to some incompatibility issues).

Figure 10 summarizes the main results. In this figure, we use EZSMT(Z3) and EZSMT(YICES)

to denote two variants of EZSMT. Acronym EZCSP-CLASP-SWI (EZCSP-CLASP-MZN) stands for

a variant of EZCSP, where CLASP is utilized as the answer set solver and SWIprolog (MINIZINC,

respectively) is utilized as a constraint solver.

In Figure 10, we present cumulative time in seconds of all instances for each benchmark with

numbers of unsolved instances due to timeout or insufficient memory inside parentheses. The “/”

sign indicates that this solver or its variant does not support the kinds of constraints occurring in

the encoding. For example, CLINGCON does not support constraints over real numbers or non-

linear constraints. The total number of used instances is shown in parentheses after a benchmark

name. All the steps involved, including grounding and transformation, are reported as parts of

the solving time. The benchmarks are divided into categories by double separations. Figure 11
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Category Benchmark CLINGCON EZSMT(Z3) EZSMT(YICES) EZCSP EZCSP

SCC SCCStrong SCC SCCStrong CLASP-SWI CLASP-MZN

NT-IL RMin (100) 4.68 8.76 11.8 5.81 7.57 126007(70) 126002(70)

——– RMax (100) 3144 459 22.4 5190 5945 180000(100) 180000(100)

——– TS (30) 455 7347(4) 43620(24) 1881(1) 75.2 14.3 54000(30)

——– LB (22) 3002(1) 9510(1) 10089(2) 4399(2) 5512(2) 12558(6) 12638(6)

T-IL RF (50) 326 6058(2) 27840(14) 101 7218(4)

——– IS (30) 9080(5) 9200(5) 9098 (5) 41446(21) 39458(21)

——– WS (30) 52.5 29.2 5.23 54000(30) 54000(30)

T-INL Car (8) / 0.32 0.25 10.1 2.34

T-RL BL (30) / 88.4 47.4 18322(9) /

——– GN (8) / 0.58 0.48 5641(3) /

——– RB (8) / 0.4 0.39 2.04 /

T-RNL BB (5) / 3663(2) 0.98 9000(5) /

T-ML BL* (30) / 5573(2) / / /

Fig. 10: Experimental Data

T NT I R M L NL

tight non-tight integer real mixed linear non linear

Fig. 11: Meaning of the Category Column Letters

presents the readings of the letters in the category column, where the first two letters refer to the

syntactic condition on a logic program; the middle three letters refer to the domains of constraint

variables of the program; and the last two letters refer to the kinds of constraints.

Systems CLINGCON, EZCSP-CLASP-SWI, and EZCSP-CLASP-MZN are run in their default set-

tings. For non-tight programs, system EZSMT with strongly connected components level rankings

(flags -SCClevelRanking and -SCClevelRankingStrong) show best performance.

In summary, we observe that CLINGCON achieves first positions in three benchmarks. EZCSP-

CLASP-SWI and EZSMT(Z3) win in two benchmarks, respectively. EZSMT(YICES) ranks first in

six benchmarks. The EZSMT(YICES) system displays the best overall results. Utilizing different

SMT solvers may improve the performance of EZSMT in the future.
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On anticipated performance of related systems. CASP solver CLINGO[LP] (Janhunen et al.

2017) handles linear constraints over integers or reals. The experimental analysis presented by

Janhunen et al. (2017) only considers programs with constraints over integers. On these bench-

marks, CLINGCON outperforms CLINGO[LP]. Susman and Lierler (2016) compare the perfor-

mance of MINGO (Liu et al. 2012) and EZSMT on tight programs. The latter consistently has

better performance. The ASPMT2SMT (Bartholomew and Lee 2014) system is a close relative of

EZSMT in the sense that it utilizes SMT solver Z3 for search. We expect that EZSMT(Z3) times

mimic these of ASPMT2SMT on tight programs.

8 Discussion and Future Directions

This article was meant to construct a compelling tale of constraint answer set programming

developments of the past decade supplying the interested reader with birds-eye view of the area

and enough literature links to acquire details when needs be. This concluding section lists open

questions and possible directions of the field.

Gebser et al. (2016) point out how an ASP-based problem solving frequently requires capabil-

ities going beyond classical ASP language and systems. They observe that ASP system CLINGO

and/or its grounder GRINGO and/or its solver CLASP often serve as important building blocks

of more complex systems (including such systems as constraint answer set solvers). The funda-

mental contribution by Gebser et al. (2016) was to conceive CLINGO 5 framework that provides

a general purpose interface which helps to make extensions of GRINGO/CLASP systems a routine

and systematic process. This interface also targets facilitation of streamlining communication

between theory/constraint propagation and answer set solving propagation as well as other ad-

vanced techniques such as conflict driven learning implemented in CLASP. As such CLINGO 5

can be seen as one of the key contributions to the CASP community. It provides a general purpose

platform for bootstrapping unique constraint answer set programming solutions.

Automated reasoning spans areas such as satisfiability solving, answer set programming, satis-

fiability modulo theories solving, integer (mixed) programming, constraint answer set program-

ming, and constraint processing. The relation between answer set solvers and satisfiability solvers

is well understood, see, for example, the paper by Lierler (2017). Also, the relation between dif-

ferent instances of answer set solvers has been studied: see the paper by Lierler and Truszczyn-

ski (2011). Several representatives of the integration approach to constraint answer programming

have been contrasted and compared, see, for instance, the paper by Lierler (2014). Yet, a deeper

understanding of how various solving techniques in theory solving of SMT compare to these of

constraint processing CSP/CLP is missing. Similarly, the following is an open question: how do

techniques in mixed (integer) programming compare to these in SMT, CSP, and/or integer linear

programming. At the moment the best we can do is to use constraint answer set programming

and its various implementations that include translational approaches to conduct experimental

analysis that spans a variety of automated reasoning communities (Lierler and Susman 2017;

Janhunen et al. 2017). Dovier et al. (2009) provide us with insights on how CLP solutions to

combinatorial search problems compare to these with ASP solutions. Deeper understanding of

differences and similarities between algorithms used in these traditionally different areas of AI

is due.

Papers by Erdoğan and Lifschitz (2004), Lifschitz (2017), Fandinno et al. (2020), Cabalar

et al. (2020), Bomanson et al. (2020), to name a few, provide the techniques for analysing and

arguing program correctness in traditional answer set programming. To the best of our knowledge
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there were no attempts to lift these methods to the scope of constraint answer set programming.

As hybrid answer set programming approaches are making their pronounced way into practice

the methodologies for arguing the correctness of such solutions are due. Alternative definitions

of CAS programs and their semantics as studied by Lin and Wang (2008), Balduccini (2013),

and Bartholomew and Lee (2013) may suit the purpose of the formal arguments of correctness

better than the definition presented here.

One way to view translational methods in constraint answer set programming is as an attempt

to utilize existing technology from distinct automated reasoning subfields for solving CASP for-

mulations of solutions to problems. Another way to view these is as an attempt to provide a

programming front end of logic programming under answer set semantics to the variety of tools

that otherwise possess only limited modeling capabilities. For example, despite the existence of

the common standard SMT-LIB language for formulating SMT problems one may not call that a

full-fledged programming language. Just as the DIMACS format – standard for communicating

with the satisfiability solvers – does not constitute a suitable language for modeling solutions

to problems in it directly. As mentioned earlier, CLINGO 5 framework provides infrastructure

for bootstrapping novel hybrid answer set programming solutions. It remains to be seen if this

framework is sufficient for establishing a full-fledged front end for the translational approach tar-

geting the utilization of SMT solvers that goes beyond traditional (integer) linear arithmetic. For

example, particular SMT fragments provide vector and array arithmetics. It is still to be estab-

lished whether expressions of these logics may prove to be convenient modeling tools (backed

up by specialized efficient search techniques of SMT).

MiniZinc6 is a free and open-source constraint modeling language. In the past decade it be-

came a standard front end for accessing a conglomerate of CSP tools. The translational ap-

proaches of constraint answer set solvers looked into utilizing SMT solvers via SMT-LIB so

far. In a similar manner, the language of MiniZinc can be utilized for accessing CSP tools that

support the MiniZinc language. MiniZinc-based translational approach to constraint answer set

solving is still to see the light.

At the closing of Section 5, we mention that no efforts by the research community have been

taken to produce a standard input language for CASP solvers. The maturity of the field sug-

gests it is time for such an effort. Possibly, an even more ambitious effort is due. This paper

makes it clear that many automated reasoning paradigms — SMT, ASP, CASP, CSP, CLP – are

geared towards solving difficult combinatorial search problems. We named several case studies,

where researchers attempt to experimentally compare these methods by designing solutions to

problems in distinct paradigms and then studying behaviors of respective solvers on these solu-

tions. Providing a standard language to interface tools from distinct communities will allow us

to benefit from portfolio approaches (Nudelman et al. 2004) originated in SAT by tapping into

a broad spectrum of solving techniques. We trust that the standard language for CASP together

with translational techniques that are able to transform CAS programs into the specifications in

languages of related paradigms is a promising directions of research. To this end the question of

a mature programming methodology for utilizing CASP is in need. At the moment, typical users

of ASP are the ones that practice CASP. They borrow so called generate define and test method-

ology of ASP (Lifschitz 2002; Denecker et al. 2019) that accounts for logic programming aspect

of CASP. Yet, the methodology that naturally accounts for constraints is still to come.

6 https://www.minizinc.org/
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Optimization statements are important in (constraint) answer set programming. As one can see

in Figure 9 no translational approach supports these statements. Utilizing MiniZinc/CSP solvers

would allow to elevate this restriction as CSP solvers typically provide support for optimization

problems. Also, MaxSMT (Robinson et al. 2010) concerns SMT solving that provides means to

formulate optimization statements. It is yet another direction of work on connecting MaxSMT

together with optimization statements of constraint answer set programming.
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WITTOCX, J., MARIËN, M., AND DENECKER, M. 2008. The IDP system: a model expansion system

for an extension of classical logic. In Proceedings of Workshop on Logic and Search, Computation of

Structures from Declarative Descriptions (LaSh). electronic, 153–165. available at https://lirias.

kuleuven.be/bitstream/123456789/229814/1/lash08.pdf.

YOUNG, R., BALDUCCINI, M., AND ISRANEY, A. 2017. CASP for robot control in hybrid domains. In

Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP17).

ZHOU, N. 2012. The language features and architecture of B-Prolog. Theory and Practice of Logic Pro-

gramming 12, 1-2 (Jan.), 189–218.


