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Abstract

Answer set programming is a prominent declarative programming paradigm used in formulating combinato-
rial search problems and implementing different knowledge representation formalisms. Frequently, several
related and yet substantially different answer set programs exist for a given problem. Sometimes these en-
codings may display significantly different performance. Uncovering precise formal links between these
programs is often important and yet far from trivial. This paper presents formal results carefully relating a
number of interesting program rewritings. It also provides the proof of correctness of system PROJECTOR
concerned with automatic program rewritings for the sake of efficiency. Under consideration in Theory and
Practice of Logic Programming (TPLP)

1 Introduction

Answer set programming (ASP) is a prominent knowledge representation paradigm with roots
in logic programming (Brewka et al. 2011). It is frequently used for addressing combinato-
rial search problems. It has also been used to provide implementations and/or translational se-
mantics to other knowledge representation formalisms such as action languages including lan-
guages & (Gelfond and Lifschitz 1998, Section 5), € (Lifschitz and Turner 1999), % (Lee
et al. 2013), ¥+ (Giunchiglia et al. 2004; Babb and Lee 2013), and &7 ¥ (Gelfond and Kahl
2014, Section 8).

In answer set programming, a given computational problem is represented by a declarative
program, also called a problem encoding, that describes the properties of a solution to the prob-
lem. Then, an answer set solver is used to generate answer sets for the program. These answer
sets correspond to solutions to the original problem. As answer set programming evolves, new
language features come to life providing means to reformulations of original problem encod-
ings. Such new formulations often prove to be more intuitive and/or more concise and/or more
efficient. Similarly, when a software engineer tackles a problem domain by means of answer
set programming it is a common practice to first develop a/some solution to a problem and
then rewrite this solution iteratively using such techniques, for example, as projection to gain
a better performing encoding (Buddenhagen and Lierler 2015). These common processes bring
a scientific question to light: what are the formal means to argue the correctness of renewed
formulations of the original encodings to problems? In other words, under the assumption that
the original encoding to a problem is correct, how can we argue that a related and yet different
encoding is also correct? In addition, automated ASP program rewriting systems come to life.
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Systems LPOPT (Bichler et al. 2016) and PROJECTOR (Hippen and Lierler 2019) exemplify such
a trend. These tools rewrite an original program into a new one with the goal of improving an
ASP solver’s performance. Once again, formal means are necessary to claim the correctness of
such systems. We note that the last section of this work is devoted to the claim of correctness of
system PROJECTOR.

It has been long recognized that studying various notions of equivalence between programs un-
der the answer set semantics is of crucial importance. Researchers proposed and studied strong
equivalence (Lifschitz et al. 2001; Lifschitz et al. 2007), uniform equivalence (Eiter and Fink
2003), relativized strong and uniform equivalences (Woltran 2004). Another related approach
is the study of forgetting (Leite 2017). Also, equivalences relative to specified signatures were
considered (Erdogan and Lifschitz 2004; Eiter et al. 2005; Woltran 2008; Harrison and Lierler
2016). In most of the cases the programs considered for studying the distinct forms of equiva-
lence are propositional. Works by Eiter et al. (2006), Eiter et al. (2006), Lifschitz et al. (2007),
Oetsch and Tompits (2008), Pearce and Valverde (2012), and Harrison and Lierler (2016) are
exceptions. These authors consider programs with variables (or, first-order programs). It is first-
order programs that ASP knowledge engineers develop. Thus, theories on equivalence between
programs with variables are especially important as they can lead to more direct arguments about
properties of programs used in practice.

In this paper we show how concepts of strong equivalence and so called conservative extension
are of use in illustrating that two programs over different signatures and with significantly dif-
ferent structure are “essentially the same” or “essentially equivalent” in a sense that they capture
solutions to the same problem. Let us make the concept of an essential equivalence between prob-
lem’s encodings precise. We use the same notion of the search problem as Brewka et al. (2011).
Quoting from their work, a search problem P consists of a set of instances with each instance 1
assigned a finite set Sp(I) of solutions. We say that logic program Ilp(-) is an encoding of P
when for any instance I of this problem, the solutions to I — the elements of set Sp(I) — can be
reconstructed from the answer sets of program ITp(I). We say that encodings ITp(-) and ITp(-)
are essentially equivalent, when given any instance / of problem P the answer sets of programs
I1p(1) and ITj(I) are in one-to-one correspondence. The paper has two parts. In the first part we
consider propositional programs. In the second part, we move to the programs with variables.
These parts can be studied separately. The first one is appropriate for researchers who are not
yet deeply familiar with answer set programming theory and are interested in learning formal de-
tails. The second part' is geared towards answer set programming practitioners providing them
with theoretical grounds and tools to assist them in program analysis and formal claims about
the developed encodings and their relations. In both of these parts we utilize running examples
stemming from the literature. For instance, for the case of propositional programs we study two
distinct ASP formalizations of action language % . In the case of first-order programs, we study
two distinct formalizations of planning modules for action language <7 % given in (Gelfond and
Kahl 2014, Section 9). Namely,

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,

2. a Plan-disj formalization that utilizes disjunctive rules.

In both cases we identify interesting results.

! This part of the paper is a substantially extended version of the paper presented at PADL 2019 (Lierler 2019).



Paper Outline. The paper is structured as follows. Section 2.1 presents the concepts of (i) a
propositional logic program, (ii) strong equivalence between propositional logic programs, and
(iii) a propositional logic program being a conservative extension of another one. Section 2.2 in-
troduces a rewriting technique frequently used by ASP developers when a new auxiliary proposi-
tion is introduced in order to denote a conjunction of other propositions. Then these conjunctions
are safely renamed by the auxiliary atom. We refer to this process as explicit definition rewriting
and illustrate its correctness. We continue by reviewing action language % in Section 2.3, which
serves a role of a running example in the first part of the paper. In Section 2.4.1, we present
an original, or gold standard, translation of language % to a logic program. Section 2.4.2 states
a modern formalization stemming from the translation of a syntactically restricted fragment of
@+. At last, in Section 2.4.3 we showcase how we can argue on the correctness of a modern
formalization by stating the formal relation between the original and modern translations of lan-
guage €. An interested reader may proceed to the Appendix to find the details of the proof of the
claim. There, we utilize reasoning by “weak” natural deduction and a formal result on explicit
definition rewriting. (A weak natural deduction system is reviewed in the Appendix.) We also
note that there is an interesting by product of our analysis: we establish that '+ can be viewed
as a true generalization of the language % to the case of multi-valued fluents.

We start the second part of the paper by presenting the Plan-choice and Plan-disj programs
at the onset of Section 3. We then introduce the logic program language called RASPL-1 in
Section 3.2. The semantics of this language is given in terms of the SM operator reviewed in
Section 3.2.2. In Section 3.2.3, we review the concept of strong equivalence for first order pro-
grams. Section 3.3 is devoted to a sequence of formal results on program rewritings. One of
the findings of this work is lifting the results by Ben-Eliyahu and Dechter (1994) to the first
order case. Earlier work claimed that propositional head-cycle-free disjunctive programs can be
rewritten to nondisjunctive programs by means of simple syntactic transformation. Here we not
only generalize this result to the case of first-order programs, but also illustrate that at times we
can remove disjunction from parts of a program even though the program is not head-cycle-free.
Another important contribution of the work is lifting the Completion Lemma and the Lemma
on Explicit Definitions stated in (Ferraris 2005; Ferraris and Lifschitz 2005) from the case of
propositional theories and propositional logic programs to first-order programs. In conclusion, in
Section 3.4 we review a frequently used rewriting technique called projection that often produces
better performing encodings. We illustrate the utility of the presented theoretical results as they
can be used to argue the correctness of distinct versions of projection that also include rules with
aggregates. In particular, the last formal result stated in the paper provides a proof of correctness
of system PROJECTOR. The Lemma on Explicit Definitions presented here is essential in this
argument.

The Appendix provides the proofs for the formal results presented in the paper.

2 Propositional Programs
2.1 Traditional Logic Programs and their Equivalences

A (traditional logic) program is a finite set of rules of the form

ap<—ai,...,a;,not ayyy,...,Nnot dy,Not nNot Ay 1,...,N0t NOt dy, (D)
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(0 <1< m < n), where each a is an atom or L and each a; (1 <i < n)is anatom, T, or L .
The expression containing atoms a; through a, is called the body of the rule. Atom q is called
a head.

We define the answer sets of a traditional program IT following (Lifschitz et al. 1999). We say
that a program is basic, when it does not contain connective not. In other words a basic program
consists of rules

ag < ai,...,q, )

where each ag is an atom or L and each q; (1 <i <) is an atom, T, or L. We say that a set X of
atoms satisfies rule (2) if it satisfies the implication

aypN\---Na; — ay.

We say that a set X of atoms is an answer set of a basic program IT if X is a minimal set among
sets satisfying all rules of IT.

A reduct of a program IT with respect to a set X of atoms, denoted by ITX, is constructed as
follows. For each rule (1) in IT

1. when not not a; (m+ 1 <i < n) is such that a; € X, replace this expression with T, other-
wise replace it with L,

2. when not a; (I+1 <i<m) is such that a; € X, replace this expression with L, otherwise
replace it with T.

It is easy to see that a reduct of a program forms a basic program. We say that a set X of atoms is
an answer set of a traditional program if it is an answer set for the reduct ITX.

In the later part of the paper we present the definition of an answer set for programs with
variables by means of operator SM (Ferraris et al. 2011). Ferraris et al. (2011) show in which
sense SM operator captures the semantics of answer sets presented here.

According to (Ferraris and Lifschitz 2005) and (Ferraris 2005), rules of the form (1) are suffi-
cient to capture the meaning of the choice rule construct commonly used in answer set program-
ming. For instance, the choice rule {p} <+ ¢ is understood as the rule

p < g, not not p.

We intuitively read this rule as given g atom p may be true. We use choice rule notation in the
sequel.

Strong Equivalence Traditional programs II; and Il, are strongly equivalent (Lifschitz et al.
2001) when for every program I1, programs IT; UIT and IT, UIT have the same answer sets. In
addition to introducing strong equivalence, Lifschitz et al. (2001) also illustrated that traditional
programs can be associated with the propositional formulas and a question whether the programs
are strongly equivalent can be turned into a question whether the respective propositional formu-
las are equivalent in the logic of here-and-there (HT-logic) (Lukasiewicz 1941), an intermediate
logic between classical and intuitionistic logics.

We follow the steps of (Lifschitz et al. 2001) and identify a rule (1) with the propositional
formula

aiAN---NagAN=ap g N ANy A ——appp A - N\ —mag — ag. 3)

Conservative Extensions Harrison and Lierler (2016) defined the notion of a conservative exten-
sion for the case of logic programs. Similarly to strong equivalence, it attempts to capture the



conditions under which we can rewrite parts of the program and yet guarantee that the resulting
program is not different in an essential way from the original one. Conservative extensions allow
us to reason about rewritings even when the rules in question have different signatures.

For a program I1, by aroms(IT) we denote the set of atoms occurring in IT. Let IT and IT be
programs such that aroms(I1) C aroms(I1"). We say that program IT' is a conservative extension
of ITif X — X Natoms(I1) is a 1-1 correspondence between the answer sets of [T’ and the answer
sets of I1. For instance, program

-q—=p
“)
P—q
is a conservative extension of the program containing the single choice rule

{pr}.

Furthermore, given program IT such that (i) it contains rule { p} and (ii) ¢ & atoms(I1), a program
constructed from IT by replacing {p} with (4) is a conservative extension of I1.

2.2 On Explicit Definition Rewriting

We now turn our attention to a common rewriting technique based on explicit definitions and
illustrate its correctness. This technique introduces an auxiliary proposition in order to denote a
conjunction of other propositions. Then these conjunctions are safely renamed by the auxiliary
atom in the remainder of the program.

We call a formula basic conjunction when it is of the form

ap AN NagAN=apy N AN=ay A=Ay A A ay, 5)

where each a; (1 <i <n)is an atom, T, or _L. For example, the body of any rule in a traditional
program is a basic conjunction.

Let IT be a program, Q be a set of atoms that do not occur in IT. For an atom ¢ € Q, let def(q)
denote a basic conjunction (5), where ¢; (1 <i < n) in atoms(IT). We say that def(q) is an
explicit definition of g in terms of I1. By def(Q) we denote a set of formulas def(q) for each
atom g € Q. We assume that all these formulas are distinct. Program I1[Q, def(Q)] is constructed
from IT as follows:

e all occurrences of all formulas def(g) from def(Q) in some body of IT are replaced by re-
spective ¢,
o for every atom g € Q a rule of the form

def(q) —q

is added to the program.
For instance,let I be a program

-q—p

and def (r) be a formula —g, then IT[{r}, {def(r)}] follows
r— P
g —r

The proposition below supports the fact that the latter program is a conservative extension of
the former. It is an important claim as although this kind of rewriting is very frequently used in
practice to the best of our knowledge this is the first time it has been formally claimed.
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Proposition 1

Let IT be a program, Q be a set of atoms that do not occur in I1, and def(Q) be a set composed of
explicit definitions for each element in Q in terms of I1. Program IT[Q,def(Q)] is a conservative
extension of IT.

2.3 Review of Action Language C

This review of action language % follows (Lifschitz and Turner 1999).

We consider a set ¢ of propositional symbols partitioned into the fluent names ¢// and the
elementary action names 6. An action is an interpretation of 6%“. Here we only consider what
Lifschitz and Turner (1999) call definite action descriptions so that we only define this special
class of % action descriptions.

Syntactically, a € action description is a set of static and dynamic laws. Static laws are of the
form

caused [p if [ A--- Ny, (6)

and dynamic laws are of the form
caused [y if [; A--- N1, after [, . A+ A, @)

where
Iy is either a literal over 6/ or the symbol L,
I; (1 <i<m)isaliteral in 6/,
i (im+1<i<n)isaliteral in ¢ , and
conjunctions [y A--- Aly, and [, 1 A--- A, are possibly empty and understood as T in this
case.
In both laws, the literal [y is called the head.

Semantically, an action description defines a graph or a transition system. We call nodes of this
graph states and directed edges transitions. We now define these concepts precisely. Consider an
action description D. A state is an interpretation of /! that satisfies implication

LA Ay — I

for every static law (6) in D. A transition is any triple (s,a,s’), where s, s’ are states and a is an
action; s is the initial state of the transition, and s’ is its resulting state. A literal [ is caused in a
transition (s,a,s') if it is

o the head of a static law (6) from D such that s satisfies {; A--- Al,, or

e the head of a dynamic law (7) from D such that s’ satisfies

S ARERVAY /™

and s U a satisfies
Lnp i N Ny,
A transition (s, a,s’) is causally explained by D if its resulting state s’ is the set of literals caused
in this transition.

The transition system described by an action description D is the directed graph, which has
the states of D as nodes, and which includes an edge from state s to state s’ labeled a for every
transition (s, a,s’) that is causally explained by D.

We now present an example by Lifschitz and Turner (1999) that formalizes the effects of
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putting an object in water. We use this domain as a running example. It uses the fluent names
inWater and wet and the elementary action name putInnWater. We follow the convention by Lif-
schitz and Turner (1999) and present states (interpretations) as lists of literals. In the notation
introduced by Gelfond and Lifschitz (1998, Section 6), the action description for water domain
follows?

caused wet if inWater

putInWater causes inWater

inertial inWater,—~inWater, wet, —wet
Written in full this action description contains six laws:

caused wet if inWater

caused inWater if T after putInWater
caused inWater if inWater after inWater
caused —inWater if ~inWater after —inWater
caused wet if wer after wet

caused —wer if —wet after —wet

The corresponding transition system has 3 states:

—-inWater —wet, ~inWater wet, inWater wet
and 6 causally explained transitions

(minWater —wet, ~putInWater,—inWater —wet), (—inWater —wet, putInWater,inWater wet),
(—inWater wet, —putInWater,—inWater wet), (minWater wet, putInWater,inWater wet), (8)
(inWater wet,—putInWater,inWater wet), (inWater wet, putInWater,inWater wet).

We depict this transition system in Figure 1.

—putinWater —putlnWater

putInWater putInWater

—putinWater, putinWater

Figure 1: Transition diagram for Water domain.

2 We remark on the keyword inertial. It intuitively suggests that a fluent declared to be inertial is such that its value can

be changed by actions only. If no actions, which directly or indirectly affect such a fluent, occur then the value of the
inertial fluent remains unchanged.
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2.4 On Relation between the Original and Modern Formalizations of €

We start this section by reviewing the original formalization of action language % in the language
of logic programs under answer set semantics (Lifschitz and Turner 1999). Specifically, Lifschitz
and Turner (1999) proposed a translation from an action description D in € to a logic program
Ipr(D) so that the answer sets of this program capture all the histories” of length T in the
transition system specified by D.

Since that original work, languages of answer set programming have incorporated new features
such as, for instance, choice rules. At present, these are commonly used by the practitioners of
ASP. It is easy to imagine that in a modern formalization of action language %', given a system
description D a resulting program will be different from the original /p7 (D). In fact, Babb and
Lee (2013) present a translation of an action language ¢+ (according to Giunchiglia et al. (2004,
Section 7.3) ¥ is the immediate predecessor of €+) that utilizes modern language features such
as choice rules. In Section 2.4.2, we present this translation for the case of %. In particular, we
restrict the language of ¥+ to Boolean, or two-valued, fluents (in general, €+ permits multi-
valued fluents). We call this translation simpr (D). Although, Ip7 (D) and simpy (D) share a lot
in common they are substantially different. To begin with, the signatures of these programs are
not identical. Also, simpr (D) utilizes choice rules. The programs /pr (D) and simpr (D) are dif-
ferent enough that it is not immediately obvious that their answer sets capture the same entities.
There are two ways to argue that the program simpr (D) is “essentially the same” as program
Ipr(D): to illustrate that the answer sets of simpy (D) capture all the “histories” of length T in
the transition system specified by D by relying

1. on the definitions of action language %;
2. on the properties of programs [pr (D) and simpy (D) that establish a one-to-one correspon-
dence between their answer sets.

Here we take the second way into consideration. We illustrate how the concepts of strong
equivalence and conservative extension together with formal results previously discovered about
these prove to be of essence in this argument. The details of this argument are given in the Ap-
pendix. Thus, we showcase a proof technique for arguing on the correctness of a logic program.
This proof technique assumes the existence of a ”gold standard” logic program formalizing a
problem at hand, in a sense that this gold standard is trusted to produce correct results. It is a
common practice in development of answer set programming solutions to obtain a final formal-
ization of a problem by first producing such a gold standard program and then applying a number
of rewriting procedures to that program to enhance its performance. The benefits of the proposed
method are twofold. First, this methodology can be used by software engineers during a formal
analysis of their solutions. Second, we trust that this methodology paves a way for a general
framework for arguing correctness of common program rewritings so that they can be automated
for the gain of performance. This is a question for investigation in the future.

2.4.1 Review of Basic Translation

Let D be an action description. Lifschitz and Turner (1999) defined a translation from action
description D to a logic program Ipy (D) parametrized with a positive integer T that intuitively
represents a time horizon. The remarkable property of logic program [py (D) that its answer sets
correspond to histories” — path/trajectories of length 7 in the transition system described by D.
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Recall that by 6// we denote fluent names of D and by ¢ we denote elementary action
names of D. Let us construct “complementary” vocabularies to 6// and 6% as follows
o/l ={-alacc’}
and
_Gact — {'Cl | a E o.act}'

For a literal [, we define

2\7 a if [ is an atom a
B -a if [ is a literal of the form —a

and

- {-a if [ is an atom a

a if [ is a literal of the form —a

The language of [py (D) has atoms of four kinds:

fluent atoms—the fluent names of /! followed by (¢) wheret =0,...,T,

T —1,
complement fluent atoms—the elements of -/! followed by (t) wheret =0,...,T,
complement action atoms—the elements of -0 followed by (¢) where =0,...,T — 1.

action atoms—the action names of 6*“ followed by (¢) wheret =0, ...

sl

Program [p7 (D) consists of the following rules:

1. for every atom a that is a fluent or action atom of the language of Ipr (D)

1 +a,-a )]
and
1L« not a, not -a (10)
2. for every static law (6) in D, the rules
lo(t) < not I(¢), ..., not (1) (11)

forallt =0,...,T (we understand le(t) as Liflpis L),
3. for every dynamic law (7) in D, the rules

~ — o~

lo(t+1) < not Iy (t+1),..., not Ly(t +1), L 1(2),..., L(t), (12)

forallt =0,...,T —1,
4. the rules
-a(0) < not a(0) (13)
a(0) < not -a(0),
for all fluent names a in /! and
5. for every atom a that is an action atom of the language of /pr (D) the rules

-a < nota
a<— not -a.
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Proposition 2 (Proposition 1 in (Lifschitz and Turner 1999))
For a set X of atoms, X is an answer set for [p7 (D) if and only if it has the form

~

T-1
[U{T(;)UES,UM U {I(T)|1esr}
=0

for some path (so,aq,s1,...,57—1,ar—1,s7) in the transition system described by D.

We note that Lifschitz and Turner (1999) presented /pr translation and Proposition 1 using both
default negation not and classical negation — in the program. Yet, classical negation can always
be eliminated from a program by means of auxiliary atoms and additional constraints as it is
done here. In particular, auxiliary atoms have the form -a(i) (where -a(i) intuitively stands for
literal —a(i)), while the additional constraints have the form (9).

To exemplify this translation, consider 4" action description (8). Its translation consists of all
rules of the form

1. L« inWater(t),-inWater(t) 2. wet(t) < not -inWater(t)
1 + not inWater(t), not -inWater(t)
1+ wet(r),-wet(t)
L + not wet(t), not -wet(t)
L + putinWater(t), not -putInWater(t)
L + not putlnWater(t), not -putInWater(t)

3. inWater(t+1) < putInWater(r) 4. -inWater(0) < not inWater(0)
inWater(t+ 1) < not -inWater(t + 1), inWater(t) inWater(0) <— not -inWater(0)
-inWater(t 4+ 1) < not inWater(t + 1),-inWater(t) -wet (0) <— not wet(0)
wet(t+ 1) < not -wet (t + 1), wet(t) wet (0) <— not -wet(0)

-wet(t + 1) <— not wet (t + 1), -wet (t)

5. -putinWater(t) + not putlnWater(t)
putlnWater(t) + not -putInWater(t)

2.4.2 Simplified Modern Translation

As in the previous section, let D be an action description and T a positive integer. In this sec-
tion we define a translation from action description D to a logic program simpr (D) inspired by
Ipr(D) and the advances in answer set programming languages. The main property of logic pro-
gram simpy (D) is as in case of [pr (D) that its answer sets correspond to histories captured by
the transition system described by D. This translation is a special case of a translation by Babb
and Lee (2013) for an action language 4+ that is limited to two-valued fluents.

The language of simpr (D) has atoms of three kinds that coincide with the three first groups (1-
3) of atoms identified in the language of Ipr (D).

For a literal [, we define

act

~ {not a if [ is a literal of the form —a, where a € o

1 otherwise

Program simpr (D) consists of the following rules:
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1. for every fluent atom a the rules of the form (9) and (10),
2. for every static law (6) in D, simpr (D) contains the rules of the form

~

lo(t) < not not 1,(t), ..., not not by () (14)

forallt =0,...,73,
3. for every dynamic law (7) in D, the rules

l/(\)(t—i-l)(— not not I/I(t—i-l),..., not not l/,\,l(t—i-l),
b1 (£), -, o(0),

forallt =0,...,T — 1,
4. the rules

a(0)} s

for all fluent names a in o// and

5. for every atom a that is an action atom of the language of Ipr (D), the choice rules {a}.
Here we note that the language % assumes every action to be exogenous, whereas this is
not the case in '+, where it has to be explicitly stated whether an action has this property.
Thus, in (Babb and Lee 2013) rules of this group only appear for the case of actions that
have been stated exogenous.

The simpr translation of € action description (8) consists of all rules of the form

1. L <« inWater(t),-inWater(t) 2. wet(t) < not not inWater(t)
1 < not inWater(t), not -inWater(t)
L« wet(t),-wet(t)

1 <+ not wet(t), not -wet(t)

3. inWater(t+1) + putInWater(t) 4. {-inWater(0)}
{inWater(t+1)} + inWater(t) {inWater(0)}
{-inWater(t + 1)} « -inWarer(t) {-wer(0)}
{wet(t+1)} < wet(t) {wet(0)}

{-wet(t+1)} < -wet(r)

5. {putinWater(t)} |

2.4.3 On the Relation Between Programs lpr and simprt

Proposition 3 stated in this section is the key result of this part of the paper. Its proof outlines
the essential steps that we take in arguing that two logic programs /pr and simpr formalizing
the action language % are essentially the same. The key claim of the proof is that logic program
Ipr(D) is a conservative extension of simpr (D). Here we only outline the proof whereas the
Appendix of the paper provides a complete proof.

3 Babb and Lee (2013) allow rules with arbitrary formulas in their bodies so that in place of (14) they consider rule

le(t) < not not (lAl (F)N--A l;,(t)). Yet, it is well known that such a rule is strongly equivalent to (14). Furthermore,
more answer set solvers allow rules of the form (14) than more general rules considered in (Babb and Lee 2013).
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The argument of this claim requires some close attention to groups of rules in the [pr (D)
program. In particular, we establish by means of weak natural deduction that
e the rules in group 1 and 2 of Ipr(D) are strongly equivalent to the rules in group 1 and 2 of
simpr (D) and
o the rules in group 1 and 4 of Ipr(D) are strongly equivalent to the rules in group 1 and 4 of
simpr (D).
Similarly, we show that
e therules in group 1 and 3 of /pr (D) are strongly equivalent to the rules in group 1 of simpy (D)
and the rules structurally similar to rules in group 3 of simpr (D) and yet not the same.
These arguments allow us to construct a program [p’ (D), whose answer sets are the same as
those of Ipr (D). Program [p/.(D) is a conservative extension of simpr (D) due to explicit defini-
tion rewriting. Proposition 1 helps us to uncover this fact.
Recall that the language of simpr (D) includes the action atoms — the action names of %
followed by (r) where r =0,...7T — 1. We denote the action atoms by 6.

Proposition 3

For a set X of atoms, X is an answer set for simpr (D) if and only if the set X U{-a | a € 6§ \ X'}
has the form

~

T—1
[U{?(;)UES,UM U {I(T)|1€sr}
=0

for some path (so,aq,s1,...,57—1,ar—1,s7) in the transition system described by D.

2.4.4 Additional Concluding Remarks: An Interesting Byproduct

Our work, which illustrates that logic programs Ip7 (D) and simpy (D) are essentially the same,
also uncovers a precise formal link between the action description languages % and €+. The
authors of €'+ claimed that € is an immediate predecessor of €’+. Yet, to the best of our knowl-
edge the exact formal link between the two languages has not been stated. Thus, earlier one could
view €+ as a generalization of & only informally alluding to the fact that '+ allows the same
intuitive interpretation of syntactic expressions of %, while generalizing these to allow multival-
ued fluents in place of Boolean ones. These languages share the same syntactic constructs such
as, for example, a dynamic law of the form

caused fy if fi A--- A f, after ay A\ --- Aa,.

that we intuitively read as after the concurrent execution of actions a; ...a, the fluent expres-
sion fy holds in case if fluents expressions fi ... f;, were the case at the time when aforemen-
tioned actions took place. Both languages provide interpretations for such expressions that meet
our intuitions of this informal reading. Yet, if one studies the semantics of these languages it is
not trivial to establish a specific formal link between them. For example, the semantics of €+
relies on the concepts of causal theories (Giunchiglia et al. 2004). The semantics of 4 makes
no reference to these theories. Here we recall the translations of € and ¢+ to logic programs,
whose answer sets correspond to their key semantic objects. We then state the precise relation
between the two by means of relating the relevant translations. In conclusion, €+ can be viewed
as a true generalization of the language % to the case of multi-valued fluents.
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3 Programs with Variables

We now proceed towards the second part of the paper devoted to programs with variables. We
start by presenting its detailed outline, a new running example and then stating the preliminaries.
We conclude with the formal statements on a number of rewriting techniques.

On the one hand, this part of the paper can be seen as a continuation of work by Eiter et al.
(2006), where we consider common program rewritings using a more complex dialect of logic
programs. On the other hand, this part of the paper grounds the concept of program synonymity
studied by Pearce and Valverde (2012) in a number of practical examples. Namely, we illustrate
how formal results on strong equivalence developed earlier and in this work help us to construct
precise claims about programs in practice.

In this part of the paper, we systematically study some common rewritings on first-order pro-
grams utilized by ASP practitioners. We use a running example to ground general theoretical
presentation of this work into specific context. In particular, we consider two formalizations of a
planning module given in (Gelfond and Kahl 2014, Section 9):

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,

2. a Plan-disj formalization that utilizes disjunctive rules.

Such a planning module is meant to be augmented with an ASP representation of a dynamic
system description expressed in action language .«7.%*. Gelfond and Kahl (2014) formally state
in Proposition 9.1.1 that the answer sets of program Plan-disj augmented with a given system
description encode all the “histories/plans” of a specified length in the transition system captured
by the system description. We note that no formal claim is provided for the Plan-choice program.
Although both Plan-choice and Plan-disj programs intuitively encode the same knowledge the
exact connection between them is not immediate. In fact, these programs

e do not share the same signature, and

e use distinct syntactic constructs such as choice, disjunction, aggregates in the specification of

a problem.

Here, we establish a one-to-one correspondence between the answer sets of these programs using
their properties. Thus, the aforementioned formal claim about Plan-disj translates into the same
claim for Plan-choice.

Here we use a dialect of the ASP language called RASPL-1 (Lee et al. 2008). Notably, this
language combines choice, aggregate, and disjunction constructs. Its semantics is given in terms
of the SM operator, which exemplifies the approach to the semantics of first-order programs that
bypasses grounding. Relying on SM-based semantics allows us to refer to earlier work that study
the formal properties of first-order programs (Ferraris et al. 2011; Ferraris et al. 2009) using this
operator. We state a sequence of formal results on programs rewritings and/or programs prop-
erties. Some of these results are geared by our running example and may not appear of great
general interest. Yet, we view the proofs of these results as an interesting contribution as they
showcase how arguments of correctness of rewritings can be constructed by the practitioners.
Also, some discussed rewritings are well known and frequently used in practice. Often, their cor-
rectness is an immediate consequence of well known properties about logic programs (e.g., re-
lation between intuitionistically provable first-order formulas and strongly equivalent programs
viewed as such formulas). Other discussed rewritings are far less straightforward and require

41t is due to remark that although Gelfond and Kahl (2014) use the word “module” when encoding a planning domain,
they utilize this term only informally to refer to a collection of rules responsible for formalizing “planning”.
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elaborations on previous theoretical findings about the operator SM. It is well known that propo-
sitional head-cycle-free disjunctive programs (Ben-Eliyahu and Dechter 1994) can be rewritten
to nondisjunctive programs by means of a simple syntactic transformation. Here we not only
generalize this result to the case of first-order programs, but also illustrate that at times we can
remove disjunction from parts of a program even though the program is not head-cycle-free. This
result is relevant to local shifting and component-wise shifting discussed in (Eiter et al. 2006)
and (Janhunen et al. 2007), respectively. We also generalize so called Completion Lemma and
Lemma on Explicit Definitions stated in (Ferraris 2005; Ferraris and Lifschitz 2005) for the case
of propositional theories and propositional logic programs. These generalizations are applicable
to first-order programs. We conclude by applying the Lemma on Explicit Definitions proved here
to argue the correctness of program rewriting system PROJECTOR (Hippen and Lierler 2019).

3.1 Running Example and Claims

This section presents two ASP formalizations of a domain independent planning module given
in (Gelfond and Kahl 2014, Section 9). Such planning module is meant to be augmented with a
logic program encoding a system description expressed in action language <7 % that represents
a domain of interest (in Section 8 of their book (Gelfond and Kahl 2014), Gelfond and Kahl
present a sample Blocks World domain representation). Two formalizations of a planning module
are stated here almost verbatim. Predicate names o and sthHpd intuitively stand for occurs and
something_happend, respectively. We eliminate classical negation symbol by
o utilizing auxiliary predicates non_o in place of —o; and
e introducing rule < o(A,I),non_o(A,I).
This is a standard practice and ASP systems perform the same rewriting when processing clas-
sical negation symbol — occurring in programs (in other words, symbol — is treated as syntactic
sugar).

Let

SG(I) abbreviate  step(I), not goal(I), I # n,

where 7 is some integer specifying a limit on a length of an allowed plan. The first formalization
called Plan-choice follows:

success < goal(I), step(I).

<— not success.

+—o(A,I),non_0(A,I) (16)
non_o(A,I) < action(A), step(I), not o(A,I) (17)
{0(A,I)} < action(A), SG(I) (18)
— 2 <ttcount{A:0(A,I)}, SG(I). (19)
+ not 1 <#count{A:o0(A,I)}, SG(I) (20)

One more remark is in order. In (Gelfond and Kahl 2014), Gelfond and Kahl list only a single
rule

1{o(A,I) : action(A)}1 + SG(I)
in place of rules (18-20). Note that this single rule is an abbreviation for rules (18-20) (Gebser

et al. 2015).
The second formalization that we call a Plan-disj encoding is obtained from Plan-choice by
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replacing rules (18-20) with the following:

o(A,I) | non-o(A,I) < action(A), SG(I) 21)
—o(AI), o(A',1), action(A), action(A’), A # A’ (22)
sthHpd(I) < o(A,I) (23)
< not sthHpd(I), SG(I). (24)

It is important to note several facts about the considered planning module encodings. These

planning modules are meant to be used with logic programs that capture
(1) a domain of interest originally stated as a system description in the action language .o/ .%;

(i1) a specification of an initial configuration;

(iii) a specification of a goal configuration.
The process of encoding (i-iii) as a logic program, which we call a Plan-instance encoding,
follows a strict procedure. As a consequence, some important properties hold about any Plan-
instance. To state these it is convenient to recall the notion of a simple rule and define a “terminal”
predicate.

A signature is a set of function and predicate symbols/constants. A function symbol of arity 0
is an object constant. A term is an object constant, an object variable, or an expression of the
form f(t1,...,tn), where f is a function symbol of arity m and each #; is a term. An afom is an
expression of the form p(t,...,,) ort; = t, where p is an n-ary predicate symbol and each #; is
aterm. A simple body has the form

aiy...,0am, NOt Ay 1,..., NOL Ay,

where g; is an atom and n > 0. Expression ay, .. .,a,, forms the positive part of a body. A simple
rule has the form

hy | |/’lk(—BOdy
or
{h1} < Body

where A; is an atom and Body is a simple body. We now state a recursive definition of a terminal

predicate with respect to a program. Let i be a nonnegative integer. A predicate that occurs only

in rules whose body is empty is called 0-terminal. We call a predicate i + 1-terminal when it

occurs only in the heads of simple rules (left hand side of an arrow), furthermore

e in these rules all predicates occurring in their positive parts of the bodies must be at most
i-terminal and

e at least one of these rules is such that some predicate occurring in its positive part of the body
is i-terminal .

We call any x-terminal predicate terminal. For example, in program

block(b0). block(bl).
loc(X) + block(X).  loc(table).

block is a O-terminal predicate, loc is a 1-terminal predicate; and both predicates are terminal.
We are now ready to state important Facts about any possible Plan-instance and, consequently,
about the considered planning modules
1. Predicate o never occurs in the heads of rules in Plan-instance.
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2. Predicates action and step are terminal in Plan-instance as well as in Plan-instance aug-
mented by either Plan-choice or Plan-disj.
3. By Facts 1 and 2, predicate o is terminal in Plan-instance augmented by either Plan-choice
or Plan-disj.
4. Predicate sthHpd never occurs in the heads of the rules in Plan-instance.
In the remainder of the paper we use considered theoretical results to illustrate the following
Claims:
1. In the presence of rule (17) it is safe to add a rule

non_o(A,I) < not o(A,I), action(A), SG(I) (25)

into an arbitrary program. By “safe to add/replace” we understand that the resulting pro-
gram has the same answer sets as the original one.
2. It is safe to replace rule (19) with rule

—o(A,D), o(AI), SG(I), A#A’ (26)

within an arbitrary program.
3. In the presence of rules (16) and (17), it is safe to replace rule (18) with rule

o(A,I) + not non_o(A,I), action(A), SG(I) (27)

within an arbitrary program.

4. Given the syntactic features of the Plan-choice encoding and any Plan-instance encoding,
it is safe to replace rule (18) with rule (21). The argument utilizes Claims 1 and 3. Fact 4
forms an essential syntactic feature.

5. Given the syntactic features of the Plan-choice encoding and any Plan-instance encoding,
it is safe to replace rule (19) with rule (22). The argument utilizes Claim 2, i.e., it is safe
to replace rule (19) with rule (26). An essential syntactic feature relies on Fact 1, and the
facts that (i) rule (18) is the only one in Plan-choice, where predicate o occurs in the head;
and (ii) rule (22) differs from (26) only in atoms that are part of the body of (18).

6. By Fact 4 and the fact that sthHpd does not occur in any other rule but (24) in Plan-disj,
the answer sets of the program obtained by replacing rule (20) with rules (23) and (24) are
in one-to-one correspondence with the answer sets of the program Plan-disj extended with
Plan-instance.

Essential Equivalence Between Two Planning Modules: These Claims are sufficient to state
that the answer sets of the Plan-choice and Plan-disj programs (extended with any Plan-instance)
are in one-to-one correspondence. We can capture the simple relation between the answer sets of
these programs by observing that dropping the atoms whose predicate symbol is sthHpd from an
answer set of the Plan-disj program results in an answer set of the Plan-choice program.

3.2 Preliminaries: RASPL-1 Logic Programs, Operator SM, Strong Equivalence

We now review a logic programming language RASPL-1 (Lee et al. 2008). This language is
sufficient to capture choice, aggregate, and disjunction constructs (as used in Plan-choice and
Plan-disj). There are distinct and not entirely compatible semantics for aggregate expressions in
the literature. We refer the interested reader to the discussion by Lee et al. (2008) on the roots of
semantics of aggregates considered in RASPL-1.
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An aggregate expression is an expression of the form
b < #count{x:Ly,...,L} (28)

(k> 1), where b is a positive integer (bound), X is a list of variables (possibly empty), and each L;
is an atom possibly preceded by not. We call variables in X aggregate variables. This expression
states that there are at least b values of X such that conditions L,...,L; hold.

A body is an expression of the form

€l,...,em,N0t eyi1,...,N0t €, (29)

(n > m > 0) where each e; is an aggregate expression or an atom. A rule is an expression of either
of the forms

ay |-+ | a; < Body (30)
{a1} < Body (€2))

(I > 0) where each a; is an atom, and Body is the body in the form (29). When [ = 0, we identify
the head of (30) with symbol L and call such a rule a denial. When [/ = 1, we call rule (30) a
defining rule. We call rule (31) a choice rule. A (logic) program is a set of rules. An atom of the
form not t; = 1, is abbreviated by t; # 1.

3.2.1 Operator SM

Typically, the semantics of logic programs with variables is given by stating that these rules are an
abbreviation for a possibly infinite set of propositional rules. Then the semantics of propositional
programs is considered. The SM operator introduced by Ferraris et al. (2011) gives a definition
for the semantics of first-order programs bypassing grounding. It is an operator that takes a first-
order sentence F and a tuple p of predicate symbols and produces the second order sentence that
we denote by SMp[F].

We now review the operator SM. The symbols 1 ,A,V,—, V, and 3 are viewed as primitives.
The formulas —=F and T are abbreviations for F — | and L — _L, respectively. If p and g are
predicate symbols of arity n then p < ¢ is an abbreviation for the formula Vx(p(x) — ¢(x)),
where X is a tuple of variables of length n. If p and q are tuples py,...,p, and qy,...,q, of
predicate symbols then p < q is an abbreviation for the conjunction (p; < g1) A--- A (pn < gn),
and p < q is an abbreviation for (p < q) A —(q < p). We apply the same notation to tuples of
predicate variables in second-order logic formulas. If p is a tuple of predicate symbols py,..., p,
(not including equality), and F is a first-order sentence then SMy[F] denotes the second-order
sentence

FA=Ju(u<p)AF*(u),
where u is a tuple of distinct predicate variables uy, ..., u,, and F*(u) is defined recursively:
pi(t)* is u;(t) for any tuple t of terms;
F* is F for any atomic formula F that does not contain members of p;5
(FAG)*is F* NG*;
(FVG)*is F*VG*;
(F=G)is (F* = G)N(F = G);
(VxF)* is VxF*,

5 This includes equality statements and the formula L.
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o (IxF)*is IxF*.
Note that if p is the empty tuple then SMp[F] is equivalent to F. For intuitions regarding the
definition of the SM operator we direct the reader to (Ferraris et al. 2011, Sections 2.3, 2.4).

By o(F) we denote the set of all function and predicate constants occurring in first-order
formula F (not including equality). We will call this the signature of F. An interpretation / over
O (F) is a p-stable model of F if it satisfies SMp[F], where p is a tuple of predicates from o (F).
We note that a p-stable model of F is also a model of F.

By n(F) we denote the set of all predicate constants (excluding equality) occurring in a for-
mula F. Let F be a first-order sentence that contains at least one object constant. We call an
Herbrand interpretation of o(F) that is a 7(F)-stable model of F an answer set.® Theorem 1
from (Ferraris et al. 2011) illustrates in which sense this definition can be seen as a general-
ization of a classical definition of an answer set (via grounding and reduct) for typical logic
programs whose syntax is more restricted than syntax of programs considered here.

3.2.2 Semantics of Logic Programs

From this point on, we view logic program rules as alternative notation for particular types
of first-order sentences. We now define a procedure that turns every aggregate, every rule, and
every program into a formula of first-order logic, called its FOL representation. First, we identify
the logical connectives A, V, and — with their counterparts used in logic programs, namely, the
comma, the disjunction symbol |, and connective not. This allows us to treat Ly ,...,L; in (28) as
a conjunction of literals.

For an aggregate expressions of the form

b < #count{x: F(X)},
its FOL representation follows

Wb N\ FEA N =) 32)

1<i<bh 1<i<j<b

where x1 - - x? are lists of new variables of the same length as X.
The FOL representations of logic rules of the form (30) and (31) are formulas

V(Body — a;V---Va;) and V(=—a; ABody — ay),

where each aggregate expression in Body is replaced by its FOL representation. Symbol V de-
notes universal closure.

For example, expression SG(I) stands for formula step(I) A —goal(I) A —I = n and rules (18)
and (20) in the Plan-choice encoding have the FOL representation:

V(=—0(A,I) ANSG(I) Aaction(A) — o(A,1)) (33)
VI(=3A[o(A,1)] ASG(I) — 1) (34)
The FOL representation of rule (19) is the universal closure of the following implication

(3AA' (0(A,T) Ao(A',T) A—A = A') ASG(I)) — L.

6 An Herbrand interpretation of a signature ¢ (containing at least one object constant) is such that its universe is the set
of all ground terms of o, and every ground term represents itself. An Herbrand interpretation can be identified with
the set of ground atoms (not containing equality) to which it assigns the value true.
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We define a concept of an answer set for logic programs that contain at least one object con-
stant. This is inessential restriction as typical logic programs without object constants are in a
sense trivial. In such programs, whose semantics is given via grounding, rules with variables are
eliminated during grounding. Let IT be a logic program with at least one object constant. (In the
sequel we often omit expression “with at least one object constant”.) By I we denote its FOL
representation. (Similarly, for a head H, a body Body, or a rule R, by i, B/OFy, or R we denote
their FOL representations.) An answer set of I1 is an answer set of its FOL representation M. In
other words, an answer set of I is an Herbrand interpretation of I thatis a 7 (ﬁ)-stable model
of ﬁ, i.e., a model of

SM_ ). (35)

Sometimes, it is convenient to identify a logic program IT with its semantic counterpart (35) so
that formal results stated in terms of SM operator immediately translate into the results for logic
programs.

3.2.3 Review: Strong Equivalence

We restate the definition of strong equivalence for first-order formulas given in (Ferraris et al.
2011) and recall some of its properties. First-order formulas F' and G are strongly equivalent if
for any formula H, any occurrence of F' in H, and any tuple p of distinct predicate constants,
SMpH] is equivalent to SMp[H'], where H' is obtained from H by replacing F by G. Trivially,
any strongly equivalent formulas are such that their stable models coincide (relative to any tuple
of predicate constants). Lifschitz et al. (2007) show that first-order formulas F and G are strongly
equivalent if they are equivalent in SQHT ™ logic — an intermediate logic between classical and
intuitionistic logics. Every formula provable using natural deduction, where the axiom of the law
of the excluded middle (F VV —F) is replaced by the weak law of the excluded middle (—F V ——F),
is a theorem of SQHT™—.

The definition of strong equivalence between first-order formulas paves the way to a definition
of strong equivalence for logic programs. A logic program I1; is strongly equivalent to logic
program IT, when for any program IT,

[H UII,] is equivalent to SM HUTL [mz]

M —
aITUII) UIly)

It immediately follows that logic programs I1; and I, are strongly equivalent if first-order for-
mulas IT; and IT; are equivalent in logic of SQHT~.
We now review an important result about properties of denials.

Theorem I (Theorem 3 (Ferraris et al. 2011))
For any first-order formulas F and G and arbitrary tuple p of predicate constants, SMy[F A —G]
is equivalent to SMp[F| A —G.

As a consequence, p-stable models of F' A =G can be characterized as the p-stable models of
that satisfy first-order logic formula =G. Consider any denial <— Body. Its FOL representation has
the form V(Body — ) that is intuitionistically equivalent to formula —EIBody Thus, Theorem 1
tells us that given any denial of a program it is safe to compute answer sets of a program without
this denial and a posteriori verify that the FOL representation of a denial is satisfied.

Corollary 1
Two denials are strongly equivalent if their FOL representations are classically equivalent.
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This corollary is also an immediate consequence of the Replacement Theorem for intuitionistic
logic for first-order formulas (Mints 2000) stated below.

Proposition 4 (Replacement Theorem 11 (Mints 2000), Section 13.1)
If F is a first-order formula containing a subformula G and F " is the result of replacing that
subformula by G’ then V(G <> G') intuitionistically implies F <> F’.

3.3 Rewritings

3.3.1 Rewritings via Pure Strong Equivalence

Strong equivalence can be used to argue the correctness of some program rewritings practiced
by ASP software engineers. Here we state several theorems about strong equivalence between
programs. Claims 1, 2, and 3 are consequences of these results.

We say that body Body subsumes body Body when Body' has the form Body,Body’ (note
that an order of expressions in a body is immaterial) . We say that a rule R subsumes rule R’
when heads of R and R’ coincide while body of R subsumes body of R'. For example, rule (17)
subsumes rule (25).

Subsumption Rewriting: Let R’ denote a set of rules subsumed by rule R. It is easy to see
that formulas R and R AR’ are intuitionistically equivalent. Thus, program composed of rule R
and program {R} UR’ are strongly equivalent. It immediately follows that Claim 1 holds. Indeed,
rule (17) is strongly equivalent to the set of rules composed of itself and (25). Indeed, rule (17)
subsumes rule (25).

Removing Aggregates: The following theorem is an immediate consequence of the Replace-
ment Theorem II.

Theorem 2
Program
H + b <#count{X: F(X)}, G (36)
is strongly equivalent to program
He o, F(x) o, x#x.G (37)
1<i<b 1<i< j<b

where G and H have no occurrences of variables in x (1 <i<b).

Theorem 2 shows us that Claim 2 is a special case of a more general fact. Indeed, take rules (19)
and (26) to be the instances of rules (36) and (37) respectively.

We note that the Replacement Theorem II also allows us to immediately conclude the follow-
ing.

Corollary 2
Program H < G is strongly equivalent to program H < G’ when V(@ N ).

Corollary 2 equips us with a general semantic condition that can be utilized in proving the syn-
tactic properties of programs in spirit of Theorem 2.

Replacing Choice Rule by Defining Rule: Theorem 3 shows us that Claim 3 is an instance
of a more general fact.
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Theorem 3

Program
< p(¥), q(%) (38)
q(X) < not p(%),F (39)
{p(X)} « F1, B (40)

is strongly equivalent to program composed of rules (38), (39) and rule
p(X) < not q(X), Fy, P, (41)
where F] and F; are the expressions of the form (29).

To illustrate the correctness of Claim 3 by Theorem 3: (i) take rules (16), (17), (18) be the
instances of rules (38), (39), (40) respectively, and (ii) rule (27) be the instance of rule (41).

3.3.2 Useful Rewritings using Structure

In this subsection, we study rewritings on a program that rely on its structure. We review the
concept of a dependency graph used in posing structural conditions on rewritings.

Review: Predicate Dependency Graph We present the concept of the predicate dependency
graph of a formula following the lines of (Ferraris et al. 2009). An occurrence of a predicate
constant, or any other subexpression, in a formula is called positive if the number of implications
containing that occurrence in the antecedent is even, and strictly positive if that number is 0. We
say that an occurrence of a predicate constant is negated if it belongs to a subformula of the form
—F (an abbreviation for F — 1), and nonnegated otherwise.

For instance, in formula (33), predicate constant o has a strictly positive occurrence in the
consequence of the implication; whereas the same symbol o has a negated positive occurrence in
the antecedent

—=0(A,I) Astep(I) A—goal(I) A—I = n Aaction(A) (42)
of (33). Predicate symbol action has a strictly positive non-negated occurrence in (42). The oc-
currence of predicate symbol goal is negated and not positive in (42). The occurrence of predicate
symbol goal is negated and positive in (33).

An FOL rule of a first-order formula F is a strictly positive occurrence of an implication in F.
For instance, in a conjunction of two formulas (33) and (34) the FOL rules are as follows

—=0(A,I) ASG(I) Aaction(A) — o(A,I) (43)
~3A[0(A, )] ASG(I) — L. (44)

For any first-order formula F, the (predicate) dependency graph of F relative to the tuple p
of predicate symbols (excluding =) is the directed graph that (i) has all predicates in p as its
vertices, and (ii) has an edge from p to ¢q if for some FOL rule G — H of F
e p has a strictly positive occurrence in H, and
e ¢ has a positive nonnegated occurrence in G.

We denote such a graph by DGp[F]. For instance, Figure 2 presents the dependence graph of
a conjunction of formulas (33) and (34) relative to all its predicate symbols. It contains four
vertices, namely, o, action, step, and goal, and two edges: one from vertex o to vertex action and
the other one from o to step. Indeed, consider the only two FOL rules (43) and (44) stemming
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Figure 2: The predicate dependency graph of a conjunction of formulas (33) and (34).

from this conjunction. Predicate constant o has a strictly positive occurrence in the consequent
o(A,I) of the implication (43), whereas action and step are the only predicate constants in the
antecedent =—o(A,I) ASG(I) A action(A) of (43) that have positive and nonnegated occurrence
in this antecedent. It is easy to see that a FOL rule of the form G — L, e.g., FOL rule (44), does
not contribute edges to any dependency graph.

For any logic program I1, the dependency graph of I1, denoted DGIII], is a directed graph
of I relative to the predicates occurring in I1. For example, let IT be composed of two rules (18)
and (20). The conjunction of formulas (33) and (34) forms its FOL representation. Thus, Figure 2
captures its dependency graph DG[IT].

Shifting We call a logic program disjunctive if all its rules have the form (30), where Body only
contains atoms possibly preceded by not. We say that a disjunctive program is normal when it
does not contain disjunction connective |. Gelfond et al. (1991) defined a mapping from a propo-
sitional disjunctive program IT to a propositional normal program by replacing each rule (30)
with / > 1 in IT by / new rules

a; < BOdy, not ay,...not a;_1,not ajy1,...Not ay.

They showed that every answer set of the constructed program is also an answer set of I1. Al-
though the converse does not hold in general, Ben-Eliyahu and Dechter (1994) showed that the
converse holds if IT is “head-cycle-free”. Linke et al. (2004) illustrated how this property holds
about programs with nested expressions that capture choice rules, for instance. Here we general-
ize these findings further. First, we show that shifting is applicable to first-order programs (which
also may contain choice rules and aggregates in addition to disjunction). Second, we illustrate
that under certain syntactic/structural conditions on a program we may apply shifting “locally”
to some rules with disjunction and not others.

For an atom a, by a® we denote its predicate constant. For example o(A,7)? = 0. Let R be a
rule of the form (30) with / > 1. By shift, (R) (where p is a tuple of distinct predicates) we denote
the rule

a; < Body, s not a;. 45)
1<i<laep 1<j<lLal¢p

Let 2R be a partition of the set composed of the distinct predicate symbols occurring in the
head of rule R. By shift ,r(R) we denote the set of rules composed of rule shift, (R) for every
member p of the partition 2R (order of the elements in p is immaterial).

For instance, if R denotes a rule

alb|c|d]e(l)«+ (46)
then 2% = {{a,b},{c,d,e}} and 2" = {{a,b},{c},{d,e}} form sample partitions of the
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described kind. Set shift , (R1) consists of rules
“1

al| b+ notc, notd, not e(1)
c|d|e(l)+ not a, not b,

whereas set shift r, (R1) consists of rules
2

alb<notc, not d, not e(1)
¢+ not a, not b, not d, not e(1)
d | e(1) < not a, not b, not c.

Theorem 4

Let IT be a logic program, R be a set of rules in IT of the form (30) with / > 1, and C be the set of
strongly connected components in the dependency graph of I1. A program constructed from IT by
replacing each rule R € R with shift ;& (R) has the same answer sets as IT if any partition PR s
such that there are no two distinct members p; and p, in 2% so that for some strongly connected
component ¢ in C, cNpy # ® and cNpy # 0.7

Consider a sample program I, composed of rule (46), which we denote as Ry, and rules

a<b

ba. “7)

The strongly connected components of program I, are {{a,b},{c},{d},{e(1)}}. Theorem 4
tells us, for instance, that the answer sets of program I, coincide with the answer sets of two
distinct programs:

1. a program composed of rules shift r, (Ry) and rules (47);
<1

2. aprogram composed of rules Shl:ftykl (Ry) and rules (47).
2

We now use Theorem 4 to argue the correctness of Claim 4. Let Plan-choicé denote a program
constructed from the Plan-choice encoding by replacing (18) with (21). Let Plan-choice” denote
a program constructed from the Plan-choice, by (i) replacing (18) with (27) and (ii) adding
rule (25). Theorem 4 tells us that programs Plan-choice’ and Plan-choice” have the same answer
sets. Indeed,

1. take R to consist of rule (21) and
2. recall Facts 1, 2, and 3. Given any Plan-instance intended to use with Plan-choice a pro-
gram obtained from the union of Plan-instance and Plan-choicé is such that o is terminal.
It is easy to see that any terminal predicate in a program occurs only in the singleton
strongly connected components of a program dependency graph.
Due to Claims 1 and 3, the Plan-choice encoding has the same answer sets as Plan-choice”
and consequently the same answer sets as Plan-choice’. This argument accounts for the proof of
Claim 4.

7 The statement of this theorem was suggested by Pedro Cabalar and Jorge Fandinno in personal communication on
January 17, 2019.
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Completion We now proceed at stating formal results about first-order formulas and their stable
models. The fact that we identify logic programs with their FOL representations translates these
results to the case of the RASPL-1 programs.

About a first-order formula F we say that it is in Clark normal form (Ferraris et al. 2011)
relative to the tuple/set p of predicate symbols if it is a conjunction of formulas of the form

V(G — p(X)) (48)

one for each predicate p € p, where X is a tuple of distinct object variables. We refer the reader to
Section 6.1 in (Ferraris et al. 2011) for the description of the intuitionistically equivalent trans-
formations that can convert a first-order formula, which is a FOL representation for a RASPL-1
program (without disjunction and denials), into Clark normal form.

The completion of a formula F in Clark normal form relative to predicate symbols p, denoted
by Compy[F], is obtained from F by replacing each conjunctive term of the form (48) with

VX(G < p(X)).
We now review an important result about properties of completion.

Theorem 5 (Theorem 10 (Ferraris et al. 2011))
For any formula F in Clark normal form and arbitrary tuple p of predicate constants, formula

SM,[F] — Compp[F]
is logically valid.

The following Corollary is an immediate consequence of this theorem, Theorem 1, and the
fact that formula of the form V(Body — ) is intuitionistically equivalent to formula =3Body.

Corollary 3
For any formula G A H such that (i) formula G is in Clark normal form relative to p and H is a
conjunction of formulas of the form V(K — L), the implication

SM, (G AH]| — Compp|G] NH
is logically valid.

To illustrate the utility of this result we now construct an argument for the correctness of
Claim 5. This argument finds one more formal result of use:

Theorem 6

For a program I, a first-order formula F' such that every answer set of I1 satisfies F, and any two
denials R and R’ such that F — (R <> R’), the answer sets of programs ITU {R} and TTU {R'}
coincide.

Theorem 1 provides grounds for a straightforward argument for this statement.

Consider the Plan-choice encoding without denial (19) extended with any Plan-instance. We
can partition it into two parts: one that contains the denials, denoted by Iy, and the remainder,
denoted by Ils. Recall Fact 1. Following the steps described by Ferraris et al. (2011, Section
6.1), formula ﬁ\g turned into Clark normal form relative to the predicate symbols occurring in
I1y UIIg contains implication (33). The completion of this formula contains equivalence

V(——0(A,1) ASG(I) Aaction(A) ¢ o(A,I)). (49)
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By Corollary 3 it follows that any answer set of I1g UIl; satisfies formula (49). It is easy to
see that an interpretation satisfies (49) and the FOL representation of (26) if and only if it sat-
isfies (49) and the FOL representation of denial (22). Thus, by Theorem 6 program ITy UIlg
extended with (26) and program I1y UIl; extended with (22) have the same answer sets. Recall
Claim 2 claiming that it is safe to replace denial (19) with denial (26) within an arbitrary pro-
gram. It follows that program Iy UTl; extended with (22) have the same answer sets [Ty UTIg
extended with (19). This concludes the argument for the claim of Claim 5.

We now state the main formal results of the second part of the paper. The Completion Lemma
for first-order programs stated next is essential in proving the Lemma on Explicit Definitions for
first-order programs. Claim 6 follows immediately from the latter lemma.

Theorem 7 (Completion Lemma)

Let F be a first-order formula and q be a set of predicate constants that do not have positive,
nonnegated occurrences in any FOL rule of F. Let p be a set of predicates in F disjoint from q.
Let D be a formula in Clark normal form relative to q so that in every conjunctive term (48) of D
no occurrence of an element in q occurs in G as positive and nonnegated. Formula

SMyq[F A D] (50)
is equivalent to formulas
SMpq[F AD] AComp|D], (51)
SM,, [F] AComp[D], and (52)
SMpg[F A N\ VR(=—g(®) = q(X))] AComplD]. (53)

q€{q}

This result tells us that pg-stable models of F A D are such that they satisfy the classical first-
order formula Comp|D]. These models also can be characterized as (i) the p-stable models of F
that satisfy Comp|[D], and (ii) the pq-stable models of F extended with the counterpart of choice
rules for member of q that satisfy Comp|D)].

For an interpretation / over signature X, by /;; we denote the interpretation over 6 C X con-
structed from I so that every function or predicate symbol in ¢ is assigned the same value in
both 7 and /). We call formula G in (48) a definition of p(X).

Theorem 8 (Lemma on Explicit Definitions)

Let F be a first-order formula, q be a set of predicate constants that do not occur in ', and p be

an arbitrary set of predicate constants in F. Let D be a formula in Clark normal form relative to q

so that in every conjunctive term (48) of D there is no occurrence of an element in q in G. Then

i M — Mg(r) is a 1-1 correspondence between the models of SMpq[F A D] and the models
SMp[F], and

ii SMpq[F AD] and SMpq[F9 A D] are equivalent, where we understand 9 as a formula obtained
from F by replacing occurrences of the definitions of ¢(¥) in D with g(X).

iii SMpq[F A D] and SMpq[Fd A D] are equivalent, where we understand F'9 as a formula ob-
tained from F by replacing occurrences of any subformula of the definitions of ¢(X) in D
with ¢(%).

It is easy to see that the program composed of the single rule

p(¥) + 1 <#count{x: F(X,y)}
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and the program p(¥) + F(X,y) are strongly equivalent. Thus, we can identify rule (23) in the
Plan-disj encoding with the rule

sthHpd(I) < 1 < #count{A: 0(A,I)}. (54)

Using this fact and Theorem 8 allows us to support Claim 6. Take F' to be the FOL representa-
tion of Plan-choice encoding extended with any Plan-instance and D be the FOL representation
of (54), q be composed of a single predicate sthHpd and p be composed of all the predicates in
Plan-choice and Plan-instance.

3.4 Projection

Harrison and Lierler (2016) considered a rewriting technique called projection. We start by re-
viewing their results. We then illustrate how the theory developed here is applicable in their
settings. Furthermore, it allows us to generalize their results to more complex programs. In addi-
tion, our results give us a proof of correctness for system PROJECTOR (Hippen and Lierler 2019)
that implements so called o and f-projections.

Harrison and Lierler (2016) considered programs to be first-order sentence formed as a con-
junction of formulas of the form

V(agst A A A =iy A A=l A==t A= A=y — ag V-V ag).
It is easy to see that the FOL-representation of RASPL-1 rule without aggregate expressions
comply with this form. We will now generalize the main result by Harrison and Lierler (2016) to
the case of RASPL-1 programs.

Recall how in Section 3.2.2 we identify the logical connective — with its counterpart used in
logic programs, namely, not. This allows us to call an expression not a, where a is an atom, a
literal. To simplify the presentation of rewriting in this section we will treat Ly,...,L; in (28) as
a set of literals. We will also identify body (29) with the set {ey,...,emu,n0t ey 1,n0t ey} of its
elements.

Let R be a RASPL-1 rule in a program I1, and let x be a non-empty tuple of variables occurring
only in body of R outside of any aggregate expression. By a(x,y) we denote a set of literals in
the body of R so that it includes all literals in the body of R that contain at least one variable
from x. Tuple y denotes all the variables occurring in the literals of ¢ (x,y) different from x. By
o/ we denote any subset of a(x,y) whose literals do not contain any variables occurring in x. By
Body and H we denote the body and the head of R respectively. Let u be a predicate symbol that
does not occur in I1. Then a result of projecting variables x out of R using predicate symbol u
consists of the following two rules

H « (Body\ a(x,y)) Uo' U{u(y)}
uy) < a(x,y).
For example, one possible result of projecting ¥ out of
$(X,2) + p(2),q(X,Y),r(X,Y),1(X) (55)
using predicate symbol u is
s(X,Z) + u(X),p(Z2),1(X) (56)
u(X)+q(X,Y),r(X,Y). 57



27

Another possible result of projecting Y out of rule (55) using predicate symbol u consists of
rule (56) and rule

u(X) + q(X,Y),r(X,Y),1(X). (58)

Yet, another possible result of projecting Y out of rule (55) using predicate symbol u consists of
rule

$(X,Z) + u(X),p(Z) (59)

and rule (58).
We are now ready to state a formal result about projecting that is a generalization of Theorem 6
in (Harrison and Lierler 2016).

Theorem 9

Let R be a RASPL-1 rule in a program I1, and let x be a non-empty tuple of variables occurring
only in body of R outside of any aggregate expression and not in the head. If IT' is constructed
from IT by replacing R in IT with a result of projecting variables x out of R using a predicate

symbol u that is not in the signature of I1, then M — M‘ (ﬁ) is a 1-1 correspondence between
(e}

the models of SMp,u[ﬁ\’] and the models of SM, ).

This result on correctness of projection is immediate consequences of Lemma on Explicit
Definitions presented here. We note that the proof of a more restricted statement by Harrison and
Lierler (2016) is rather complex relying directly on the definition of SM operator. This illustrates
the utility of presented theory, e.g., Lemma on Explicit Definitions, as it equips ASP practitioners
with a formal result that eases a construction of proofs of correctness of their rewritings.

Hippen and Lierler (2019) considered rewritings that they call @ and 3-projections. They also
implement these rewritings in system PROJECTOR. Both o and -projections are instances of
the projection defined here. As a result, Theorem 9 provides a proof of correctness for the o and
B-projections.

Here we reproduce the definition of a-projection by Hippen and Lierler (2019, Section 2) for
the case of positive rules of the form

ap < ag,...,ap,

where ag is an atom or L and ay,...,a,, are atoms (we use the notation of this paper to reproduce
the definition). Expression (55) exemplifies a positive rule. For a positive rule p and a set x of
variables, by alpha(p,x) we denote the set of all atoms in the body of p such that they contain
some variable in x. For instance, let p; be rule (55). Then,

alpha(pl, {Y}) = {‘I(XvY)vr(XvY)}
alpha(pl,{X,Y}) = {q(X,Y),V(X,Y),t(X)}

For a set x of variables and a positive rule p of the form H < Body, where no variable in x
occurs in H, the process of a-projecting x out of this rule will result in replacing it by two rules:
1. arule

u(y) < alpha(p,x).
so that

e u is a fresh predicate symbol with respect to original program, and
e y is composed of the variables that occur in alpha(p,x), but not in x;
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2. arule
H « (Body\ alpha(p,x)) U{u(y)}.

For instance, replacing rule (55) with rules (56) and (57) exemplifies a-projection of Y. It is easy
to see that a-projection on positive programs is an instance of projection rewriting studied here.
The definitions of o and -projections for general programs require substantially more notation.
Thus, we refer an interested reader to the paper by Hippen and Lierler (2019, Section 2) for the
details. Yet, it is still easy to see that these rewritings are instances of projection as defined here.
For example, replacing rule (55) with rules (59) and (58) exemplifies -projection.

4 Conclusions

We illustrated how the concepts of strong equivalence and conservative extensions can be used
jointly to argue the correctness of a newly designed program or correctness of program rewrit-
ings. This work outlines a methodology for such arguments. Also, this paper lifts several im-
portant theoretical results for propositional programs to the case of first-order logic programs.
These new formal findings allow us to argue a number of first-order program rewritings to be
safe. We illustrate the usefulness of these findings by utilizing them in constructing an argument
which shows that the sample programs Plan-choice and Plan-disj are essentially the same. We
believe that these results provide a strong building block for a portfolio of safe rewritings that can
be used in creating an automatic tool for carrying these rewritings during program performance
optimization phase. For example, system PROJECTOR discussed in the last section implements
projection rewritings for the sake of performance. In this work we utilized the presented formal
results to argue the correctness of this system.
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Appendix A ”Weak” Natural Deduction System

Recall that in addition to introducing the strong equivalence, Lifschitz et al. (2001) also illus-
trated that traditional programs can be associated with the propositional formulas and a question
whether the programs are strongly equivalent can be turned into a question whether the respec-
tive propositional formulas are equivalent in the HT logic. The authors also state that every
formula provable in the natural deduction system, where the axiom of the law of the excluded
middle (F V —F) is replaced by the weak law of the excluded middle (—F V ——F), is a theorem
of logic HT. We call this system weak natural deduction system. Since we use this observation
in providing formal arguments stated in Section 2, we review the weak natural deduction system
here. We denote this system by N. Its review follows the lines of (Lifschitz 2016) to a large ex-
tent. For another reference to natural deductions system we refer the reader to (Lifschitz et al.
2008). We note that Mints (2010) introduced an alternative sequent calculus for logic of HT that
was further generalized to first-order case.
A sequent is an expression of the form

4 =F (AL)
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(“F under assumptions ¢”’), where F is a propositional formula that allows connectives
J-? T? ﬁ7 /\7 \/7 _>

and ¢ is a finite set of formulas. If ¢ is written as {Gy, ..., G, }, we drop the braces and write (A1)
as Gi,...,G, = F. Intuitively, this sequent is understood as the formula (G| A--- AG,) — F if
n>0,andas F ifn=0.

The axioms of N are sequents of the forms

F=F =T, and = -FV-—F.

In the list of inference rules presented in Figure A1, 4, A, ¥ are finite sets of formulas,
and F, G, H are formulas. The inference rules of N except for the two rules at the last row are clas-
sified into introduction rules (-) and elimination rules (-E); the exceptions are the contradiction
rule (C) and the weakening rule (W).

Y=F A=G Y=FNG ¥Y=FANG
(N) g A= FAG (\E) =z T=G
(V1) Y =>F Y =G (VE)%:>FVG ANF=H Y G=H
Y9=FVG Y=FVG 9 ANY=H
9 F=G Y=F A=F—G
Gk e (—E) TA=G
Y F=1 Y=F A=-F
D G=-F CE) " =g as1
Y= 1 =l
©) g=F W)z asm
Figure A 1: Inference rules of system N.
A proof/derivation is a list of sequents Sy,...,S, such that each S; is either an axiom or can
be derived from some of the sequents in Si,...,S;_; by one of the inference rules. To prove a

sequent S means to find a proof with the last sequent S. To prove a formula F means to prove the
sequent = F.
The De Morgan’s law

—(FVG)+ —-FA-G

is provable intuitionistically (where we understand formula H <+ H' as an abbreviation for (H —
H')A(H' — H)). Thus, formulas —=(F V G) and —=F A -G are intuitionistically equivalent. The
other De Morgan’s law

~(F AG) < =FV =G

is such that its one half is provable intuitionistically, while the other one is provable in HT (thus,
formulas —=(F A G) and —=F V =G are equivalent in HT-logic). We illustrate the latter fact in
Figure A2 using system N. In other words, we prove sequent = —(F A G) — —F V =G in N.
It is convenient to introduce abbreviations for the assumptions used in the proofs so that A;
abbreviates assumption =(F A G) in Figure A 2.

It is easy to show that the propositional formulas F — L and —F are equivalent using N, so
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1. =-FV-F axiom 8. ——F = --F axiom
A;. ~(FAG) 9. A,G,——F= 1 (-E) 78
2. Aj=-(FAG) axiom 10. Ay,—m—F = -G (=9
3. G=G axiom 11. A, F=-FV-G (vI) 10
4. F=F axiom 12. —-F = -F axiom
5. F,G=FAG (A)34 | 13. —F=-FV-G (vI) 12
6. A,F.G= 1 (mE)25|14. A= -FV-G (VE) 1,11,13
7. A,G=—F (=) 6 15. ==(FAG)— (-FV-G) (=114

Figure A 2: Proof of sequent = —(F A G) — —F V =G in system N.

that in the sequel we often identify rules of the form
ar N ANagN—a g N N—am AN——apyi A AN——a, — L
with the propositional formula

—|(a1/\---/\a1/\al+1/\~~~/\ﬂam/\—|ﬂam+1/\---/\—ﬁan).

Appendix B Proofs
B.1 Proofs for Section 2
To prove Proposition 1 several earlier results from the literature are of use.

Proposition 5 (Replacement Theorem I in (Mints 2000), Section 2.8)
If F is a formula containing a subformula G and F’ is the result of replacing that subformula
by G’ then G <+ G’ intuitionistically implies F <> F’.

To rely on formal results stated earlier in the literature, we now consider the case of programs
that are more general than traditional logic programs. We call such programs definitional. In
other words, traditional programs are their special case. A definitional program consists of rules
of the form (3) (recall that we identify rule (1) with the propositional formula (3)) and rules of
the form a — F, where a is an atom and F is a basic conjunction. If a program contains two rules
F — a and a — F we abbreviate that by a single expression F <+ a. A definitional program is a
special case of propositional theories presented in (Ferraris 2005). We understand answer sets for
definitional programs as presented there. Ferraris (2005, Section 2) illustrates that in application
to any traditional program the definition from (Lifschitz et al. 1999), presented here, and their
definition are equivalent.

We now restate the results that immediately follow from Lemma on Explicit Definitions and
Completion Lemma presented in (Ferraris 2005) for the case of definitional programs.

Proposition 6 (Proposition 4 (Ferraris 2005))

Let IT be a definitional program and Q be a set of atoms that do not occur in I1. For each g € Q,
let Def(g) be a basic conjunction that does not contain any atom in Q. Then, X — X \ Qisa 1-1
correspondence between the answer sets if IIU{Def(q) — g | g € O} and the answer sets of IT.

Proposition 7 (Proposition 5 (Ferraris 2005))

Let IT be a definitional program and Q be a set of atoms that do not occur in I1. For each g € Q,
let Def(g) be a basic conjunction that does not contain any atom in Q. Then, ITU{Def(q) — q |
g € 0} andITU{Def(q) <> g | g € O} have the same answer sets.
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Proof of Proposition 1

By IT' we denote a program constructed from IT by adding a rule def(q) — g for every atom
g € Q. By Proposition 6, IT' is a conservative extension of I1. By Proposition 7, traditional pro-
gram IT' has the same answer sets as the definitional program IT” constructed from IT by replac-
ing arule def(q) — g with arule def(q) <> g . Similarly, traditional program IT1[Q,def(Q)] has
the same answer sets as the definitional program I1[Q, def(Q)]’ constructed from it by replacing
arule def(q) — g with a rule def(q) <> q. By Replacement Theorem I, I1” and I1[Q,def(Q)]
are strongly equivalent. [

We now state auxiliary lemmas that are useful in the argument of Proposition 3. It is con-
structed by uncovering the formal link between logic programs simpy (D) and Ip7 (D), where
Ipr(D) serves the role of a gold standard by the virtue of Proposition 2.

Lemma 1

If F is a formula containing a subformula G and F’ is the result of replacing that subformula
by G’ then the sequent

= (G+G)— (FeF)

is provable in N, where I' is arbitrary set of assumptions.

Proof
Trivially follows from the Replacement Theorem I stated as Proposition 5 here. []

Lemma 2
The sequent

—(F AG),~(~F A=G) = —F <+ =~G A -G ¢ =—F

is provable in N.

Proof
We illustrate the proof in N for the sequent

-(FAG) = ——F = —G.

We allow ourselves a freedom to use De Morgan’s Laws as if they were given to us as additional
inference rules in N.

A;. —(FAG)
1. Aj=-(FAG) axiom
2. Ai=-FV-G De Morgan’s Law 1
3. -F=-F axiom
4. -G= -G axiom
5. —-=F = —-=F axiom
6. ——F-F=1 (—E)3,5
7. ——F,-F = -G (OXY)
8. Aj,—F=-G (VE)2,4,7
9. Aj=—~F—-G (—=D8
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—~Z

(==l (t A1) A A==l (E+1) Alsy (E) A= +
Sequent2 = TA(=l(t+1)A A=ly(t+ 1) ALy () A Aly(t) = lp(t +1)) <
CA(=LE+1)A - A==yt 1) Al (8) A+ A (2) = Dp(£+1)).

Figure B 1: Sequents in the proof of Proposition 3

Similar proofs in structure are available for the sequents

—(F AG) = =G — —F,
—~(=F A=G) = —F — -G, and
—(=F A=G) = =G — ——F.

Several applications of (Al) will allow us to conclude the proof in N for the sequent in the
statement of this lemma. [

Proof of Proposition 3
It is easy to see that the signatures of simpr (D) and Ipr (D) differ by complement action atoms
present in [py (D). What we show next is the fact that /py (D) is a conservative extension of
simpr (D). Then the claim of this proposition follows from Proposition 2.

Claim I: The set of rules from groups 1 and 3 of Ipy (D) are strongly equivalent to the set of
rules from group 1 of /py (D) and the rules

lo(t+1) < not not 1;(t+1),....,not not Ly(t+1),
lm+1(t)a R ln(t)v

forallt =0,...,T — 1, for every dynamic law (7) in D.

(B

It is easy to see that these sets of rules only differ in structure of rules (12) and (B1) so that
the atoms of the form [;(t + 1) (1 < i < m) in (12) are replaced by the expressions of the form
not 1;(t + 1) in (B1).

Let I denote the set of rules from group 1 of Ipy (D). Using Lemmas 1 and 2 it is easy to see
that the sequent 1 presented in Figure B 1 is provable in N. It is easy to construct a proof in N
from this sequent 1 to the sequent 2 in the same figure. This immediately concludes the proof of
Claim 1.

Claim 2: The set of rules from groups 1 and 2 of Ip7 (D) are strongly equivalent to the set of
rules from group 1 and 2 of simpr (D).

The proof for this claim follows the lines of a proof for Claim 1.

Claim 3: The set of rules from groups 1 and 4 of Ip7 (D) are strongly equivalent to the set of
rules from group 1 and 4 of simpy (D).

The proof for this claim is similar to that of a proof of Claim 1.

Due to Claims 1, 2, and 3, it follows that [py (D) has the same answer sets as the program
Ip (D) constructed from /p7 (D) by replacing (i) the rules from group 3 with rules (B1) for all
t=0,...,T — 1, for every dynamic law (7) in D, and (ii) the rules from groups 2 and 4 in [p7 (D)
by the rules from groups 2 and 4 in simpr (D).
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Let def(-a) denote formula —a for every elementary action a in 6. It is easy to see that
Ip(D) coincides with the program

simpr(D)[ {-a|a € 6§}, {def(-a) |a € 0§} ].

By Proposition 1, program Ip.(D) is a conservative extension of simpr (D). Consequently,
Ipr (D) is a conservative extension of simpr(D). [

B.2 Proofs for Section 3
Proof of Theorem 2

Consider the case when H is a disjunction of atoms then FOL representation of rule (36) is the
universal closure of formula

(3;1...;17( A FEYA A ﬁ(xi:xj))AG)—>H. (B2)

1<i<b 1<i<j<b

The FOL representation of rule (37) is the universal closure of formula

/\Fx’/\ /\ —(x' = x7) /\G)—>H
1<i<b 1<i<j<b
Given that formula VZ(H — H') where H' has no free occurrences of variables in 7 is intuition-
istically equivalent to 37(H) — H’, the FOL representation of rule (37) can be written as the
universal closure of formula

( /\ Fx’ A /\ —-(x' =x) /\G))—>H.
1<i<b 1<i<j<b
It is easy to see that the left hand sides of the implications in this formula and formula (B2) are
classically equivalent. And thus by Replacement Theorem II these formulas are intuitionistically
equivalent. Similarly we can argue for the case when H is of the form {a}. O

Outline of the Proof of Theorem 3

We can derive the former program given in the theorem statement (its FOL representation) from
the latter intuitionistically; and we can derive the later from the former in logic SQHT™. For the
second direction, De Morgan’s law —(F A G) — —F V =G (provable in logic SQHT=, but not
valid intuitionistically) is essential. []

To prove Theorem 4 we recall the Splitting Lemma from (Ferraris et al. 2009) (this Splitting
Lemma is the generalization of the Splitting Set Theorem (Lifschitz and Turner 1994)).

Splitting Lemma. Let F be a first-order sentence.

Version 1: Let p, q be disjoint tuples of distinct predicate constants. If each strongly con-
nected component of DGpq[F] is a subset of p or a subset of q, then SMpq[F] is equivalent to
SMy[F] A SMg[F).

Version 2: Let p be a tuple of distinct predicate constants. If ¢',... ¢ are all the strongly
connected components of DGp|F), then SMy|F| is equivalent to SMa[F| A\ --- ASMen[F].

Proof of Theorem 4

We start by partitioning C into two sets Q and r so that

e any element in Q is such that at least one of its predicate symbols occurs in a head of some
rule in R,
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e any element in r is such that none of its predicate symbols occurs in a head of some rule in R.
We identify set r with a tuple (order is immaterial) composed of the predicate symbols occurring
in its elements. For set Q we identify every strongly connected component q € Q, with a tuple of
predicate symbols in this component.

By IT"" we denote a program constructed from IT by replacing each rule R € R with shift ;o (R).

By definition, an answer set of I1 is an Herbrand model of formula (35). Similarly, an answer
set of IT* is an Herbrand model of

o sh
SMn(HS") [[Tsh). (B3)

We now show that formulas (35) and (B3) are equivalent.

By the Splitting Lemma, formula (35) is equivalent to

SM[TT] A A SM,[M] (B4)
qeQ

Theorem 5 from (Ferraris et al. 2011) shows that given formulas SMp[F] and SM[G] so that
7 (F) = m(G) if the equivalence between F and G can be derived intuitionistically from the law
of excluded middle formulas for all predicates in (F) \ p, then they have the same stable models.
Following claims are the consequences of that theorem
e SM,[]] is equivalent to SM; [Hs\h],
e forevery qin Q, SMgq [T1] is equivalent to SMq [ﬁE]
Consequently, formula (B4) is equivalent to formula

SM, [T A A\ SMg[TT] (B5)
4c0

~

It is easy to see that £ (IT) = n(ﬁE) By the Splitting Lemma, formula (B5) is equivalent to (B3).
O

In order to state a proof for Completion Lemma, we recall several important theorems from (Fer-
raris et al. 2009; Ferraris et al. 2011).

Theorem 10 (Splitting Theorem (Ferraris et al. 2009))

Let F and D be first-order sentences, and let p, q be disjoint tuples of distinct predicate constants.
If

e each strongly connected component of DGy q[F A D] is a subset of p or q,

e members of p have no strictly positive occurrences in D, and

e members of q have no strictly positive occurrences in F

then

SMyq[F A D] is equivalent to SMp[F] A SMg¢[D].

Theorem 11 (Theorem 2 (Ferraris et al. 2011))
Let F be first-order sentences, and let p, q be disjoint tuples of distinct predicate constants. Then

SMpg[F A A\ VR(=—g(X) — q(¥))] is equivalent to SMp[F].
q€{q}

We say that formula SMp[F] is tight if the graph DGp[F] is acyclic.
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Theorem 12 (Theorem 11 (Ferraris et al. 2009))
For any tight formula SMy, [F] where F is in Clark normal form relative to p, SMp [F] is equivalent
to the completion of F'.

Proof of Theorem 7
Recall that D and Comp|D] denote

Agin qVX(G —q(%)) and A, in qVX(G +q(%)),

respectively. From the conditions posed on the occurrence of elements in q in F' and D it is easy
to see that every element in q forms a singleton strongly connected component in DGp 4[F A D]
and in DG4[D]. Consequently, each strongly connected component of DGp q[F A D] is a subset
of p or q and D is tight. Furthermore, by the assumptions of the theorem, members of p have
no strictly positive occurrences in D, and members of q have no strictly positive occurrences
in F. By Theorem 10, formula (50) is equivalent to SMp[F] A SMg4[D]. By Theorem 12, SM[D]
is equivalent to Comp[D]. Consequently, formula (50) is equivalent to (51) and (52). By Theo-
rem 11, formula (52) is equivalent to formula (53). [

Proof of Theorem 8

By Theorem 8, SMpq [F A D] is equivalent to SMy [F] AComp[D]. Formula Comp|[D] corresponds
to so called explicit definitions of predicates in q. There is an obvious 1-1 correspondence be-
tween the models of SMp[F] and the models of the same formula extended with explicit defini-
tions (for predicates that do not occur in F'). In particular, if M is a model of SMy[F| A Comp|[D]
then M5 () is a model of SMy [F]. This concludes the proof of statement (i). By the Replace-
ment Theorem for intuitionistic logic, we conclude that SMy[F] A Comp[D] is equivalent to
SM,, [F4] A Comp[D] and hence to SMpq[F9 A D] by Theorem 8. This concludes the proof of
statement (ii). Statement (iii) is proved similarly.

O
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