Arguing Correctness of ASP Programs with
Aggregates

1[0000—0002—3917—8717] 1[0000—0002—8447—4048]

, Zachary Hansen ,
1[0000—0002—6146—623X] *

Jorge Fandinno
and Yuliya Lierler

University of Nebraska Omaha, Omaha NE 68182, USA

{jfandinno,zachhansen,ylierler }@unomaha.edu

Abstract. This paper studies the problem of arguing program correct-
ness for logic programs with aggregates in the context of Answer Set Pro-
gramming. Cabalar, Fandinno, and Lierler (2020) championed a modular
methodology for arguing program correctness. We show how a recently
proposed many-sorted semantics for logic programs with aggregates al-
lows us to apply their methodology to this type of program. This is
illustrated using well-known encodings for the Graph Coloring and Trav-
eling Salesman problems. In particular, we showcase how this modular
approach allows us to reuse the proof of correctness of a Hamiltonian
Cycle encoding studied in a previous publication when considering the
Traveling Salesman program.

Keywords: ASP - Program Verification - Aggregates

1 Introduction

Answer Set Programming (ASP) [12,13] is a well-established Knowledge Repre-
sentation paradigm for solving (knowledge-intensive) search/optimization prob-
lems. Based on logic programming under the answer set semantics [11], the
ASP methodology relies on devising a logic program so that its answer sets are
in one-to-one correspondence to the solutions of the target problem. The fact
that this approach is fully declarative positions it as a firm candidate for pro-
ducing trustworthy Artificial Intelligence (AI) systems, which require, among
other qualities, the assessment that those systems produce correct judgments.
Given the declarative nature of ASP, it also seems natural to consider an ASP
program as a formal specification on its expected solutions [2,6]. This formal
specification is usually the first program that an ASP practitioner writes and
later refines to achieve higher solving efficiency [1,10]. The equivalence between
the formal specification and the refined program can be manually and, in many
cases, even automatically checked using existing tools [2,6,14]. Unfortunately, all
these approaches deal exclusively with programs without aggregates, which are
expressive constructs commonly used in practice.

* These authors contributed equally.

2 J. Fandinno et al.

In this paper, we extend the verification methodology for logic programs (or,
VLP methodology) developed in [2] to programs that contain non-recursive ag-
gregates. This methodology is reviewed in Section 3. Consider the Graph Col-
oring (GC) problem encoded in Listing 1.1 using a choice rule with cardinality
bounds. Here aggregates provide a succinct and convenient way to model the
problem. Arguing correctness of this encoding was out of the scope of [2] as
a choice rule with cardinality bounds (exemplified by the rule in line 1 of List-
ing 1.1) is an abbreviation for a pair of rules that includes an integrity constraint
with a count aggregate [3]. We show how a recent extension of the SM operator
to programs with aggregates ([4]) allows us to apply this methodology to pro-
grams of this kind. In addition to the GC problem, we also illustrate this VLP

Listing 1.1. Encoding of the graph coloring problem using the ASP language.

{ assign(V,C) : color(C) } =1 :- vertex(V).
:— edge(V1,V2), assign(V1,C), assign(V2,C).

methodology on the Traveling Salesman (TS) problem. These two problems are
widely-studied and well understood in the ASP community, and they allow us to
highlight two different use cases of aggregates. Additionally, the application of
the VLP methodology to the TS problem illustrates the benefits of the “modular
approach” it advocates. In particular, we are able to reuse a proof of correctness
devised for another program — an encoding of the Hamiltonian Cycle problem
studied in [2] that forms a subprogram of the TS encoding — as part of the
argument of correctness for the TS encoding.

2 Review: Logic Programs via the Many-sorted Approach

We start by reviewing elements of the syntax and semantics of a logic program
with aggregates using the SM operator recently developed in [4]. In this ap-
proach, a logic program is considered to be an abbreviation for a many-sorted
first-order sentence. The semantics of this sentence are characterized by the
“agg” models of the second-order sentence obtained from the application of the
SM operator to this first-order sentence. We assume familiarity with basic termi-
nology of logic programs and the SM operator. For the sake of brevity, we focus
only on the concepts necessary to understand the contributions of this paper.
We refer the reader to [4] for details.

2.1 Syntax of Logic Programs with Aggregates

We consider (non-disjunctive) rules of the form Head < By, ..., B, where Head
is an atom or the symbol L, and each B is a literal. We typically omit the L
symbol and instead write a constraint as a rule with an empty head. A literal
is either a symbolic literal or an aggregate literal. A symbolic literal is either
an atom or a comparison possibly preceded by one or two occurrences of not.
Similarly, an aggregate literal is an aggregate atom possibly preceded by one or
two occurrences of not. We assume familiarly with the definitions of program

0 O UL Wi

Arguing Correctness of ASP Programs with Aggregates 3

Listing 1.2. Encoding of a Hamiltonian Cycle problem.
vertex(X) :- edge(X,Y).
vertex(X) :- edge(Y,X).
{ in(X,Y) } :- edge(X,Y).
ra(Y) :- in(a,Y).
ra(Y) :- in(X,Y), ra(X).
:- not ra(X), vertex(X).
- in(X,Y), in(X,Z2), Y != Z.
:- in(X,Y), in(Z,Y), X != Z.

terms, atoms and comparisons and we focus here on describing the syntax of
aggregate atoms.

An aggregate element is an expression of the form ¢1,...,tx : l1,...,ln, where
each t; (1 < i < k) is a program term and each l; (1 <4 < m) is a symbolic
literal. An aggregate atom has the form #op{F} < u, where op is an operation
name, F is an aggregate element, < is a comparison symbol, and « is a pro-
gram term, called the guard. We consider operation names count and sum. For
example, the following two expressions are two aggregate atoms

#count{ V,C : assign(V,C), color(C) } =1 (1)
#sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J (2)

that will be used in our examples throughout the paper.
A choice rule is an expression of the form

{AOZAl,...,Ak}'<u2-Bl,...,Bn. (3)

where each A; is an atom, each B; is a literal, < is a comparison symbol and u
is a numeral; it is understood as an abbreviation for the following pair of rules

AO - Al;-~-Ak7Bly-~-aBna not not Ao. (4)

- By, ..., By, not #count{t : Ag, A1,..., Ar} < u. (5)

where t is a list of program terms such that Ay is of the form p(t) for some

symbolic constant p. As usual, we allow that “< u” or “: Aj,...Ag,” (or both

of them) are omitted from choice rules. If “< «” is omitted, then (5) is omitted;
and if “: Aq,...Ag” is omitted, then Ay,... Ay is omitted from (4-5).

For instance, rule 3 in Listing 1.2 — capturing the Hamiltonian Cycle encod-

ing used later in the paper as part of the TS encoding — is a choice rule where
both elements are omitted and, thus, it is an abbreviation for the rule

in(X,Y) :- edge(X,Y), not not in(X,Y). (6)

As another example, rule 1 in Listing 1.1 is a choice rule where both of these
elements are present, and it is understood as an abbreviation for rules

assign(V,C) :- vertex(V), color(C), not not assign(V,C). (7)
:= vertex(V), not #count{ V,C : assign(V,C), color(C) } = 1. (8)

A program is a finite set of rules.

4 J. Fandinno et al.

2.2 From Rules to Many-sorted First-order Formulas

A logic program is understood as many-sorted first-order sentences over a signa-
ture o7 of two sorts, one for program terms and one for sets of tuples of program
terms. We name these sorts program and set, respectively. To define the class
of function symbols of the sort set we introduce the concepts of global variables
and set symbols. A variable is said to be global in a rule if (i) it occurs in any
non-aggregate literal, or (ii) it occurs in a guard of any aggregate literal. A vari-
able that is not global is called local. For instance, in rule (8), variable V is global
and variable C is local. In primitive rules, all variables are trivially global. A set
symbol is a pair E/X, where E is an aggregate element and X is a list of vari-
ables occurring in E. We say that E/X occurs in rule R if this rule contains an
aggregate literal with the aggregate element E and X is the list of all variables
in E that are global in R. For instance,

V,C : assign(V,C), color(C)/V ()

is the only set symbol occurring in rule (8). We say that E/X occurs in a
program if E/X occurs in some rule of the program. For the sake of readability
we associate each set symbol F/X with a different name |E/X]|.

As stated earlier, for a program II, we consider a signature oj over two
sorts that contains: (i) all ground terms as object constants of the program
sort; (ii) all predicate symbols occurring in IT as predicate constants with all
arguments of sort program; (iii) the comparison symbols other than equality
and inequality as binary predicate constants whose arguments are of the program
sort; (iv) unary function constants count and sum of sort program whose unique
argument is of sort set; and (v) for each set symbol E/X occurring in II, a
function constant set| g x| of the sort set. This function symbol takes as many
arguments of the program sort as there are variables in X. If X is an empty list,
then set|p x| is an object constant.

We refer to [4] for the precise definition of the translation 7* that converts a
program into a finite set of first-order sentences. For the purposes of this paper
it is only necessary to know the result of applying such a translation to the logic
programs encoding the GC problem and the TS problem. For instance, consider
rule (8). Translation 7* applied to this rule produces the first-order sentence:

YV (vertex(V) A —count(set 54(V)) =1 — L), (10)

where asg is the name for set symbol (9). The translation of the program in
Listing 1.1 is completed by the following two sentences:

YV C (vertez(V) A color(C) A ==assign(V, C) — assign(V,C)) (11)

YV1 V2 C(edge(V1,V2) A assign(V1,C) A assign(V2,C) — L) (12)
Sentence (11) corresponds to rule (7). Sentences (10) and (11) together are the
translation of rule 1 in Listing 1.1. Formula (12) is the the result of applying
translation 7* to rule 2 in Listing 1.1. We describe the translation of the TS

encoding in Section 3.2. From now on, we assume that, unless otherwise made
explicit, formulas with free variables stand for their universal closures.

Arguing Correctness of ASP Programs with Aggregates 5

2.3 Semantics via the SM Operator

The SM operator transforms first-order sentences into second-order sentences
with equality. Ferraris, Lee and Lifschitz show that programs without aggregates
can be considered as abbreviations for first-order sentences to which this operator
is applied [7, Section 2.1]. When a set of such sentences IT is transformed by
the SM operator into a second-order theory SMp[IT], the satisfying Herbrand
interpretations of SMp[II] where p is the list of all predicates occurring in the
program are exactly the stable models of IT as defined by Gelfond and Lifschitz
(1988). Fandinno, Hansen, and Lierler (2022) extend this approach to programs
with aggregates by relying on a many-sorted generalization of the SM operator.
We refer to [4] for the precise definition of the SM operator. For this paper it is
enough to understand two properties of this operator, namely, the Splitting and
Completion Theorems.

Splitting and modules. The Splitting Theorem in [8] forms one of the foun-
dations of the VLP methodology championed here. This theorem was recently
generalised to the two-sorted case [6]; and a look to the proof shows that its
generalization to the many-sorted case is straightforward. Let us recall some
necessary notation for this result. An occurrence of a predicate symbol in a for-
mula is called negated if it belongs to a subformula of the form F — L (often
abbreviated as =F') and nonnegated otherwise. An occurrence of an expression
in a formula is called positive if the number of implications containing that oc-
currence in the antecedent is even. It is called strictly positive if that number
is 0. A rule of a first-order formula F is a strictly positive occurrence of an im-
plication in F. The dependency graph of a formula is a directed graph that: (i)
has all intensional predicate symbols as vertices; and (ii) has an edge from p to ¢
if, for some rule G — H of F', formula G has a positive nonnegated occurrence
of ¢ and H has a strictly positive occurrence of p.

Theorem 1. (Splitting Theorem) Let F and G be many-sorted first-order
sentences and let p and q be two disjoint tuples of distinct predicate symbols such
that (i) each strongly connected component of the dependency graph of F N\ G is
a subset either of p or q; (ii) F does not have strictly positive occurrences of

symbols from q; and (iii) G does not have strictly positive occurrences of symbols
from p. Then, SMpq[F A G] is equivalent to SMp[F] A SM4[G].

In the sequel, we often refer to expression SMp[F] as a module, whereas list p
of predicate symbols is called intensional. The Splitting Theorem tells us how
we can, at times, view a module in terms of other modules. When the list of
predicate symbols p is empty, SMp[F] is identical to F'. Thus, we may refer to
any first-order sentence F' as a module.

Completion. The theorem on completion presented here forms an important
result that allows us, at times, to replace second-order formula (capturing a
module) by an equivalent first-order formula. This is important when we con-
struct formal arguments about models of these formulas as the later is easier to
understand. Let p be a list of intensional predicate constants. A rule G — H is

6 J. Fandinno et al.

called non-disjunctive if H is an atomic formula or does not contain intensional
symbols (i.e., elements of p). We say that G — H is a constraint with respect
to p if H does not contain members of p. About a nondisjunctive rule G — H
we say that it defines an intensional symbol p if H is an atomic formula that
begins with p. In the following we assume that F' is a conjunction of the uni-
versal closures of nondisjunctive rules and constraints with respect to p. If the
argument sorts of an intensional symbol p are s1, ..., s,, and the rules defining p
in F' are

then the completed definition of p in F' is the sentence

i=1

k
vV <p(V) & \/3U; (G AV = ti)> , (13)

where V is an n-tuple of fresh variables of sorts s1,...,s,, and U; is the list of
all variables that are free in G; — p(t;). The expression V = t; here stands for
the conjunction of n equalities between the corresponding members of the tuples
V and t;. The completion COMP,[F] of F is the conjunction of all completed
definitions of all members of p in F and all constraints of F. The following result
immediately follows from the Main Lemma in [5]:

Theorem 2. If the dependency graph of F' is acyclic, then SMp[F| and COMP,[F]
are equivalent.

Agg-interpretations. The semantics of aggregates are defined with respect to
a particular class of interpretations that we call agg-interpretations. Consider
the following additional notation. For a tuple X of distinct variables, a tuple x
of ground terms of the same length as X, and an expression « that contains
variables from X, aX denotes the expression obtained from « by substituting x
for X. An agg-interpretation I is a many-sorted interpretation that satisfies the
following conditions:

1. the domain of the program sort, denoted |I|*», is the set containing all
ground terms of the program sort (or ground program terms, for short);

2. I interprets each ground program term as itself;

3. I interprets predicate symbols >, >, <, < according to the total order chosen
in [4] (this is the natural interpretation when applied to numerals, but it also
apply to symbolic constants);

4. the domain of the set sort, denoted |I|®st, is the set of all sets of non-empty
tuples that can be formed with elements from |I|%#s;

5. if E/X is a set symbol, where E' is an aggregate element, Y is the list of all
variables occurring in F that are not in X, and x and y are lists of ground
program terms of the same length as X and Y respectively, then set|g /x| (x)!
is the set of all tuples of the form ((t1)XY,..., (tx)xy) such that I satis-

Xy
fies (11)35" A= A ()35

Arguing Correctness of ASP Programs with Aggregates 7

6. for d € |I|*<, count(d)! is is the numeral corresponding to the cardinality
of d, if d is finite; and sup otherwise.

7. ford € |I|*, sum(d)’ is the numeral corresponding to the sum of the weights
of all tuples in d, if d contains finitely many tuples with non-zero weights;
and 0 otherwise.(The sum of a set of integers is not always defined. We could
choose a special symbol to denote this case, we chose to use 0 following the
description of abstract GRINGO [9].) If d is empty, then sum(d)! = 0.

An agg-interpretation satisfies the standard name assumption for object con-
stants of the program sort, but not for function constants of the set sort.

We say that an agg-interpretation I is a p-stable model of program IT if
it satisfies SMp[7*II], where p is a list of predicate symbols occurring in I7
(note that this excludes predicate constants for comparisons >, >, <, <). An
agg-interpretation I is a stable model of program I if it is a p-stable model,
where p is the list of all predicate symbols occurring in I1. The stable models
of a program defined in this way correspond to the answer sets of the abstract
GRINGO language [9] when the aggregates have no positive recursion [4] and with
the answer sets of ASP-Core-2 [3].

3 Proving the Correctness of Logic Programs

Cabalar, Fandinno and Lierler (2020) developed a methodology for arguing the
correctness of answer set programs, partially reproduced below:

Step I: Decompose the informal description of the problem into independent
(natural language) statements!.
Step II: Fix the public predicates used to represent the problem and its so-
lutions.
Step III: Formalize the specification of the statements as a non-ground mod-
ular program, possibly introducing auxiliary predicates.
Step IV: Construct an argument (a “metaproof”’ in natural language) for the
correspondence between the constructed program and the informal
description of the problem.

An optional fifth step is to construct a formal proof from the constructed program
(treated as a specification) to an alternative encoding. Here we consider proving
the adherence of the constructed program to the natural language specification.
We now put this methodology in practice for the case of the encodings of two
problems: Graph Coloring and Traveling Salesman. The considered encodings
contain aggregates. The extension of the SM operator applicable to programs
with aggregates makes the use of this methodology possible in our context.

! In fact, this is also the first step that students are taught in the introduction to
modeling in the ASP course taught at the University of Potsdam: https://teaching.
potassco.org/

8 J. Fandinno et al.

3.1 The Graph Coloring Problem
Step I applied to the GC problem consists in identifying statements

C1 find an assignment from nodes to colors such that
C2 connected nodes do not have the same color.

Formally, an instance of the GC problem is a triple (V| E, C), where

— (V, E) is a graph with vertices V and edges E C V x V, and
— (' is a set of labels named colors.

A solution to the GC problem is

CF1 a function asg : V. — C such that
CF2 every edge (a,b) € F satisfies condition asg(a) # asg(b).

Step II consists of choosing the public predicates to represent the problem,
in this example: vertez/1, edge/2, color/1, and assign/2. Step III consists in
formalizing the statements from Step I as a non-ground modular program I7.
The GC problem is a great illustratory example due to the simplicity of its ASP
encoding and the fact that each natural language statement is encoded as exactly
one rule. In other words, in this example, each rule constitutes its own module.
Rule 1 in Listing 1.1 corresponds to the module

SM ssign[(10) A (11)] (14)

while rule 2 corresponds to the first-order sentence/module (12). Module (14)
formalizes statement CF1, that is, it ensures that predicate assign/2 encodes
a function from vertices to colors. Module (12) formalizes statement CF2: it
ensures that the function encoded by predicate assign/2 satisfies the condition
of the statement. By the Splitting Theorem, the conjunction of two modules —
(12) and (14) — has the same assign-stable models as the assign-stable models
of the conjunction (10) A (11) A (12); recall that this conjunction corresponds
to 7 applied to the GC encoding in Listing 1.1.

We now turn our attention to Step IV. To formalise claim CF1 about
module (14), we prove a general result about modules of a similar form. We say
that relation r encodes function f : A — B when r = {(a, f(a)) | a € A}.
Given sets A and B, we can construct a program whose stable models encode
all functions from A to B as follows. (By d* we denote the name of domain
element d, that is, an object constant whose interpretation is d.) Let G(X)
and H(Y) be two first-order formulas such that G(d*) is satisfiable iff d belongs
to A and H(d*) is satisfiable iff d belongs to B. Then, Fun 4 p is the conjunction
of formulas

VX (G(X) A —count(setre(X)) =1— 1) (15)
VXY (G(X)ANH(Y)A——=f(X,Y) = f(X,Y)) (16)

where fe is the name of the set symbol X,Y : f(X,Y),H(Y)/X.

Arguing Correctness of ASP Programs with Aggregates 9

Proposition 1. For an agg-interpretation I and first-order formulas G(X) and
H(Y) containing no positive nonnegated occurrences of f/2, take

A={d|de|I|* and I = G(d*)} and B ={d|d € |I|*" and I = H(d")}.

Then, condition I = SM[Funa g holds iff (f/2)! encodes a function from A
to B.

Proof. If A is empty, then (f/2)! encodes the empty function. Hence, in the
rest of the proof, we assume that A is non-empty. By the Splitting Theo-
rem SM¢[(15) A (16)] is equivalent to SM¢[(16)] A (15). By the Completion The-
orem, sentence SM[(16)] is equivalent to the first-order sentence

VXY (f(X, Y) G(X)AH(Y) A -—f(X, Y))). (17)
In turn, this sentence is equivalent in first-order logic to
VXY(f(X,Y)%G(X)/\H(Y)). (18)

Let F denote the conjunction of (15) and (18), which is equivalent to SM¢[Fun 4 g].
Left-to-right. Assume that I = F. Pick any a € A. Then, I = G(a*) and,
since I |= (15), it follows that I = (count(sets.(a*)) = 1). Hence, setf.(a*)! =
{(a,by)} for some b, € |I|*7# such that I |= f(a*,b%) A H(b*). Let f be the
function such that f(a) = by; f is a function from A to B encoded by (f/2).
Right-to-left. Let f be a function from A to B such that (f/2)! = {(a, f(a)) |
a € A}; in other words (f/2)7 encodes f. Let us show that I |= F. First, for
any term a € |I]°»7 such that I = G(a*), it follows that a € A and, thus,
sets(a*)! = {{a, f(a))}. This implies that I = (15). Second, for any a € |I|*»
and b € |I|*v such that I | f(a*,b*) it follows by construction that a € A
and b = f(a) and b € B. Hence, I = G(a*) A H(b*) and, thus, I = (18).

Claim CF2 about module (12) is argued within the proof of the following theo-
rem that can also be seen as a proof of correctness for the GC encoding presented
in Listing 1.1.

Theorem 3. Let I be an agg-interpretation such that {(verter!, edgel, color1>
forms an instance of the Graph Coloring problem. Then, I = (12) A (14) iff
(assign/2)! encodes a function that forms a solution to the considered instance.

Proof. From Proposition 1, we get that I = (14) iff (assign/2)! encodes a func-
tion asg : vertex! — color! such that (assign/2)" = {(a, asg(a)) | a € vertez'}.
Sentence (12) is equivalent to

YV1 V2 C1 C2(edge(V1,V2) A assign(V1,C1) A assign(V2,C2) — C1 # C2).

This sentence is satisfied by I iff every edge (a, b) € edge’ satisfies asg(a) # asg(b).

10 J. Fandinno et al.

The use of the SM operator allows us to argue the correctness of an encod-
ing in isolation from the way its instances are obtained. In Theorem 3, we only
implicitly refer to a specific instance of the GC problem by considering an inter-
pretation I such that (vertex!, edgel, color1> forms this instance. In practice, to
compute a solution for a considered GC instance one has to extend the program
corresponding to the GC problem with an encoding of the instance. Such an
instance can be represented by a set of facts utilizing predicates chosen for the
representation. For example, facts

vertex(a). vertex(b). edge(a,b). color(g). color(b). color(r).

encode an instance ({a,b},{(a,b)},{g,b,r}) of the GC problem. Answer sets of
the program in Listing 1.1 extended with these facts will encode the solutions
to the specified instance. However, the general approach followed in Theorem 3
actually allows those facts to be generated by a, perhaps very complex, logic
program, as long as it does not use the predicate symbols used in the GC en-
coding other than the ones used to describe the problem instance. We take the
same approach of implicit reference to an instance when arguing the correctness
of the TS problem.

3.2 The Traveling Salesman Problem
Let us look into the following variant of the Traveling Salesman problem:

We are given a directed graph with nodes as cities and edges as roads. We
assume the presence of a city named “a”. Each road directly connects
a pair of cities, and costs a salesman some time to traverse (time is
expressed as an integer value). The salesman may pass each city exactly
once. Find: a route traversing all the cities under a certain mazimum
cost of total time starting and finishing at city a.

Formally, an instance of the TS problem is a quadruple (V, E, cst,m), where

— (V, E) is a graph assuming one vertex in V' named a,
— cst is a function from edges E to integers, and
— m is some integer.

A solution to this instance is a subset of edges P C E such that

T1 P forms a Hamiltonian cycle of graph (V, E) and
T2 the following inequality holds

Z cst(e) < m. (19)

ecP

This constitutes the application of Step I to the TS problem. Step II consists
in choosing the public predicates to represent the problem: vertex/1, edge/2,
cost/3, mazCost/1, and in/2. We say that an agg-interpretation I encodes in-
stance (V, E, cst,m) if it satisfies the following conditions:

Arguing Correctness of ASP Programs with Aggregates 11

— (vertex/1)! =V and (edge/2)! = E;
— (cost/3)1 = {(c,v1,v2) | (v1,v2) € E and cst((v1,v2)) = c};
— (maxCost/1)! = {m};

Predicate symbol in/2 is meant to capture a solution to the TS problem, i.e.,
an agg-interpretation I encoding an instance of the T'S problem also encodes a
solution P whenever (in/2)! = P. Using the mentioned predicate symbols, we
can capture the T'S problem by adding the following rule to the encoding of the
Hamiltonian Cycle problem in Listing 1.2:

.- #sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J, maxCost(J). (20)

Translation 7* applied to the rules in Listing 1.2 and rule (20) results in the
sentences (recall that we identify formulas below with their universal closures):

edge(X,Y) — vertex(X) (21)
edge(Y, X)) — vertex(X) (22)
——in(X,Y) A edge(X,Y) — in(X,Y) (23)
in(a,Y) — ra(Y) (24)
in(X,Y)Ara(X) — ra(Y) (25)
—ra(X) A vertex(X) — L (26)
in(X,Y)Nin(X,Z)NY £ Z — L (27)
n(X,VANin(ZY)NX#Z — L (28)
mazCost(J) N\ sum(setyy,) > J — L, (29)

where tp is the name of the set symbol
K, X,V :in(X,Y), cost(K, X,Y).

Note that this set symbol has no global variables in rule (20). By HC we denote
the conjunction of sentences (21-28). By hc we denote the tuple containing all
predicate symbols in HC' except edge/2 and wvertexr/1. By the Splitting Theo-
rem, SMp[HC A (29)] is equivalent to SMpc[HC] A (29) so that SMp[HC] and
(29) form modules. The former module, corresponding to a program in List-
ing 1.2, formalizes statement T1; the latter module formalizes statement T2.
Thus, we have completed Step III.

We turn our attention to Step IV. Propositions 5 and 8 in [2] prove that
module SMy[HC] correctly encodes the Hamiltonian Cycle problem. The proof
of that claim used the one-sorted version of the SM operator. It is easy to see
that for formulas that include only predicates of one sort, such as HC, there
is an immediate correspondence between the one-sorted and the many-sorted
models of the formula. Hence, the following is an immediate consequence of
Propositions 5 and 8 mentioned above.

Proposition 2. Let I be an agg-interpretation s.t. G = (vertex!, edgeI> 15 a
graph with a € vertex!. Then, I |= SMuc[HC] iff (in/2)! forms a Hamiltonian
cycle of G.

12 J. Fandinno et al.

All that remains is to prove the following result about sentence (29).

Lemma 1. Let I be an agg-interpretation that encodes an instance (V, E, cst, m)
of the Traveling Salesman problem such that in' C edge’. Then, I |= (29) iff
inequality (19) holds, where P = (in/2)".

Proof. Since I is an agg-interpretation that encodes (V, E, cst,m) and satis-
fies in! C edge’, it follows that

set{p = {{c,a,b) | {a,b) € in' and (c,a,b) € cost’}
= {{c,a,b) | {a,b) € in’ and (a,b) € edge’ and cst((a,b)) = c}
= {{c,a,b) | {a,b) € in' and cst({a,b)) = c}

Therefore, sum(settp)l = Z cst(e). Finally, since I encodes (V, E, cst,m), it
ecP
follows that mazCost! = {m} and, thus, I = (29) iff (19) holds.

The following auxiliary lemma follows from the Splitting and Completion Theo-
rems and is due to the presence of sentence (23) in HC. It allows us to complete
the argument for the T'S problem.

Lemma 2. SMy.[HC] E VXY (in(X,Y) — edge(X,Y)).

Theorem 4. Let I be an agg-interpretation encoding an instance (V| E, cst,m)
of the Traveling Salesman problem. Then, I = SMuc[HC A (29)] iff I encodes a
solution to the considered instance of the problem.

Proof. By the Splitting Theorem, I = SMpc[HC A (29)]iff I = SMp[HC] A (29).
Then, from Proposition 2, it follows that the latter holds iff (in/2)! forms a
Hamiltonian cycle of G = (vertexz!, edge’) and I = (29). Finally, by Lemma 2,
we get that I = SMpc[HC] implies I = VXY (in(X,Y) — edge(X,Y)) and,
thus, that in! C edgeI . Therefore, the result follows from Lemma 1.

Theorem 4 can be seen as a proof of correctness for the T'S encoding consisting
of rules in Listing 1.2 and rule (20).

4 Conclusions and future work

We have shown how the semantics for programs with aggregates based on a
many-sorted extension of the SM operator [4] can be used for arguing correct-
ness of logic programs of this kind. For this we followed a modular methodol-
ogy [2] and showed how it allows us to reuse the proof of correctness of other
programs when they form sub-modules in the encoding of a new problem. One
of the limitations of our approach is that it is only applicable to programs where
aggregates do not have positive recursion. This limitation is inherited from the
semantics for programs with aggregates in which it is based. Although aggregates
with positive recursion are rare in practical applications, future work should be
directed towards removing this limitation. It will be also interesting to consider
programs with weak constraints.

The work by Yuliya Lierler was partially supported by NSF grant 1707371.

Arguing Correctness of ASP Programs with Aggregates 13

References

10.

11.

12.

13.

14.

. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming.

In: LPNMR. Lecture Notes in Computer Science, vol. 9345, pp. 186—198. Springer
(2015)

Cabalar, P., Fandinno, J., Lierler, Y.: Modular answer set programming as a formal
specification language. Theory and Practice of Logic Programming 20(5), 767-782
(2020)

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2: Input language format (2012), https:
//www.mat.unical.it /aspcomp2013/ASPStandardization

Fandinno, J., Hansen, Z., Lierler, Y.: Axiomatization of aggregates in answer set
programming. In: Proceedings of the Thirty-six National Conference on Artificial
Intelligence (AAAT22). AAAT Press (2022)

Fandinno, J., Lifschitz, V.: Verification of locally tight programs (2022), http://
www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127938

Fandinno, J., Lifschitz, V., Lithne, P., Schaub, T.: Verifying tight logic programs
with anthem and vampire. Theory and Practice of Logic Programming 20(5), 735—
750 (2020)

Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175(1), 236-263 (2011)

Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general
theory of stable models. In: Boutilier, C. (ed.) Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI’09). pp. 797-803.
AAAI/MIT Press (2009)

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract
Gringo. Theory and Practice of Logic Programming 15(4-5), 449-463 (2015).
https://doi.org/10.1017/S1471068415000150

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set
solving. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Repre-
sentation, and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on
the Occasion of his 65th Birthday, Lecture Notes in Computer Science, vol. 6565,
pp. 74-90. Springer-Verlag (2011)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Confer-
ence and Symposium of Logic Programming (ICLP’88). pp. 1070-1080. MIT Press
(1988). https://doi.org/10.1201/b10397-6

Marek, V., Truszczyniski, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K., Marek, V., Truszczynski, M., Warren, D. (eds.) The
Logic Programming Paradigm: a 25-Year Perspective, pp. 375-398. Springer-Verlag
(1999)

Niemela, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241-273
(1999)

Oetsch, J., Seidl, M., Tompits, H., Woltran, S.: Beyond uniform equivalence be-
tween answer-set programs. ACM Trans. Comput. Log. 22(1), 2:1-2:46 (2021)

