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Abstract. Conditional literals are an expressive Answer Set Program-
ming language construct supported by the solver CLINGO. Their seman-
tics are currently defined by a translation to infinitary propositional logic,
however, we develop an alternative characterization with the SM oper-
ator which does not rely on grounding. This allows us to reason about
the behavior of a broad class of CLINGO programs/encodings containing
conditional literals, without referring to a particular input/instance of an
encoding. We formalize the intuition that conditional literals behave as
nested implications, and prove the equivalence of our semantics to those
implemented by CLINGO.
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1 Introduction

Answer Set Programming (ASP) [13,14] is a widely utilized branch of logic pro-
gramming that combines an expressive modeling language with efficient grounders
and solvers. It has found a number of prominent applications since its inception,
such as diagnostic AT and space shuttle decision support systems [1]. For various
classes of logic programs, there are multiple equivalent ways to characterize their
semantics [12]. Most of the semantics for non-propositional programs (used in
the practice of ASP) are defined via grounding — a process of instantiating vari-
ables for passing constants. This often makes it difficult to reason about parts
of logic programs in isolation. The SM operator [7] is one of the few approaches
to interpreting logic programs without reference to grounding. In this approach,
a logic program is viewed as an abbreviation for a first-order sentence. The se-
mantics of a program are defined by means of an application of the SM operator
to the program, which results in a second-order formula. The Herbrand models
of this formula coincide with the answer sets of the considered logic program. In
this work, we extend the class of programs to which the SM operator is appli-
cable by providing a translation to first-order formulas for constructs known as
“conditional” literals. We then illustrate that the newly defined semantics via
the SM operator for programs with conditional literals coincides with that by

* These authors contributed equally.
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Harrison, Lifschitz, and Yang (2014). In that work, the authors captured the
meaning of programs with conditional literals via grounding/transformation of
a logic program into infinitary propositional formulas. Importantly, the answer
set system CLINGO [9] obeys their semantics.

Rules with conditional literals are common in so-called meta-programming [11],
where reification of constructs is utilized to build ASP-based reasoning engines
that may go beyond the ASP paradigm itself. The meta-programming technique
is well illustrated in [11] by means of multiple examples, where conditional lit-
erals are widespread. For instance, Kaminski et al. (2021) use this technique in
the implementation of optimization statements, reasoning about actions, rea-
soning about preferences, and guess-and-check programming. Here, we showcase
the utility of conditional literals on the well-studied graph (k) coloring problem.
This problem has a simple specification: For an undirected graph, the k-coloring
problem assigns one of k colors to each vertex such that no two vertices con-
nected by an edge share a color. It is an NP-complete problem to decide if a
given graph admits a k-coloring for any k& > 3. This problem can be elegantly
encoded in a few lines of ASP code. First consider the encoding in Listing 1.1,
where color(I;J) and vtx(V; W) abbreviate expressions color(I); color(J) and
vtx(V'); vtz (W), respectively. This is an instructional encoding by Lierler (2017,
Section 5) modulo the changes in predicate names.

Listing 1.1. 3-coloring problem encoding.

{asg(V,I)} :- vtx(V); color(I).
:- not asg(V,r); not asg(V,g); not asg(V,b); vtx(V).
:- asg(V,I); asg(V,J); I !'= J; vtx(V); color(I;J).

:- asg(V,I); asg(W,I); vtx(V;W); color(I); edge(V,W).

Given an instance of a graph, the program in Listing 1.1 assigns colors from
the set {r,g,b} to its vertices. Yet, however concise and self-explanatory this
solution is, it lacks elaboration tolerance. It is restricted to the color names hard-
coded into the program, and it only solves the 3-coloring problem as opposed to
the k-coloring problem. Conditional literals provide us with a convenient means
to address this shortcoming. Consider the encoding in Listing 1.1 with line 2
replaced by

:- not asg(V,I) : color(I); vtx(V). (1)

where expression not asg(V,I) : color(I) constitutes a conditional literal. The
original rule in line 2 forbade solutions that did not assign any of the three
colors to a vertex. In rule (1), the conditional literal is satisfied when no colors
are assigned to a given vertex. In the sequel, we refer to the program consisting of
the rules in lines 1, 3, and 4 of Listing 1.1 and rule (1) as the k-coloring encoding.
Note how the k-coloring encoding is agnostic to the naming and number of colors,
providing us with a truly elaboration tolerant solution for the k-coloring problem.

The remainder of this paper is organized as follows. Section 2 starts by pre-
senting the syntax of logic programs considered in this paper. These programs
contain conditional literals and we call them conditional programs. Section 3
continues by defining a translation from conditional programs to first-order for-
mulas, and uses the SM operator to provide their semantics. Section 4 describes
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the semantics of conditional programs using infinitary propositional logic. In
Section 5 we connect these two characterizations of conditional programs, for-
mally illustrating that they coincide. Thus, the SM-based semantics introduced
here for conditional programs captures the behavior of CLINGO. In Section 6, we
illustrate the utility of the SM-based semantics by arguing the correctness of the
k-coloring program.

2 Syntax of Conditional Programs

In this section, we introduce a fragment of the input language of cLINGO with
conditional literals. A term is a variable, or an object constant, or an expression
of the form f(t), where f is a function constant of arity k& and t is a k-tuple
of terms. When a term does not contain variables we call it ground. An atomic
formula is either (i) an expression of the form ¢ = ¢’ where ¢ and ' are terms
or (ii) an atom p(ty,...,t,), where p is a predicate symbol of arity n and ¢;
(1 <4 < n)isa term; if n = 0, we omit the parentheses and write p (p is a
propositional atom). A basic literal is an atomic formula optionally preceded by
not; we identify a basic literal of the form not ¢t = t' with the expression t # t'.
A conditional literal is an expression of the form H : li,...,l,, where H is a
basic literal or the symbol L (denoting falsity) and Iy, ..., [, is a nonempty list
of basic literals. We often abbreviate such an expression as H : L.

A (conditional logic) program is a finite set of rules of the form

H1|'-'|H.,,L<—B1;...;Bn. (2)

(m,n > 0), where each H;, B; is a basic or conditional literal; if m = 0 then
we identify the head of the rule (left hand side of rule operator <) with L. The
right hand side of the rule operator < is called the body. We call a rule, where
m =1 and n =0 a fact. We consider rules of the form {p(t)} « Bi;...; B, to
be shorthand for p(t) | not p(t) < Bi;...; By, where p is a predicate constant
of arity k£ and t is a k-tuple of terms.

Let 0 = (O, F,P) be a signature of a first-order language, where O is the
set of object constants, F is the set of function constants of non-zero arity,
and P is the set of predicate constants; by G, we denote the set of all ground
terms that one may construct from the sets O and F of o. For example, take
O = {a} and F = {f/1} in some o: then, G, = {a, f(a), f(f(a)),...}. Tt is
customary in logic programming that a program defines its signature implicitly,
yet here it is convenient to make it explicit. For a program II, we refer to its
signature as a triple (O, Fir, Pir), where O, Frr, and Py contain all the object
constants, function symbols of non-zero arity, and predicate constants occurring
in I1, respectively. To simplify the notation, we use G; to denote Go, 7, py)-

3 Semantics via the SM Operator

We now propose a syntactic transformation ¢ from logic programs to first-order
sentences. The majority of this translation is implicitly described in [7, Section
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2.1], where rules are viewed as an alternative notation for particular types of first-
order sentences. We extend these ideas to programs with conditional literals.
First, we define some required concepts. A variable is global in a conditional
literal H : L if it occurs in H but not in L. Given a rule, all variables occurring
in basic literals outside of conditional literals are considered global. A variable is
global in a rule if it is global in one or more of the rule’s literals. For example,
in rule (1), variable V is global whereas variable I is not. Let R be a rule of the
form (2) such that at least one H; or B; in the rule is a conditional literal £. Let
v be the list of variables occurring in £. Let z be the list of the global variables
in R. Then we call x = v\ z the local variables of £ within R.
To transform a rule R of the form (2) into a first order sentence, we define a
translation ¢,, where z is the list of global variables occurring in R:
1. ¢a(L)is L;
¢(A) is A for an atomic formula A;
¢z(not A) is ~¢, A for an atomic formula A;
D2(L) is ¢g(l1) A -+ A da(ly,) for a list L of basic literals;
for a conditional literal H : L occurring in the body of R with local vari-
ables x, ¢,(H : L) is Vx (¢o(L) — ¢2(H));
6. for a conditional literal H : L occurring in the head of R with local vari-
ables x, ¢,(H : L) is 3x((¢2(L) = ¢5(H)) A ~=¢,(L)).
Recall rule (1) containing the conditional literal not asg(V,I) : color(I). Vari-
able V is the only global variable of that rule, whereas variable I is local within
this conditional literal. Hence, ¢y turns this conditional literal into formula
Vi (color(i) — —asg(v,4)) , where in accordance with the convention of first-order
logic we turn variables into lower case.
We now define the translation ¢ on rules and programs as follows:
1. for every rule R of the form (2), its translation ¢(R) is the formula

VZ(¢Z(Bl) ARERA ¢Z(B7l) — ¢Z(Hl) VeV (bz(Hm)))

where z is the list of the global variables of R;
2. for every program I, its translation ¢(IT) is the first-order sentence formed
by the conjunction of ¢(R) for every rule R in II.
As a result, the rules of the k-coloring conditional program discussed in the
Introduction are identified with the following sentences by translation ¢:

Gt o

Vi ((vtx(v) A color(i)) — asg(v,i) V —asg(v,i)) (3)

Vo ( (Vi(color(i) — —asg(v, 1)) A vtz(v)) — L) (4)

Yvij((asg(v,i) Aasg(v,j) Ai# j Avtx(v) A color(i) A color(j)) — L) (5)

Voiw((asg(v,i) A asg(w, i) A vta(v;w) A color(i) A edge(v, w)) — L) (6)
where vtz (v; w) abbreviates vtz (v) Avtx(w). The first-order sentence correspond-
ing to the k-coloring program consists of the conjunction of formulas (3-6). We
refer to this first-order sentence as KC'

We now review the operator SM following Ferraris, Lee, and Lifschitz (2011).
The symbols 1L, A,V,—,V, and 3 are viewed as primitives. The formulas —F
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and T are abbreviations for F — | and L — L, respectively. If p and ¢ are
predicate symbols of arity n then p < ¢ is an abbreviation for the formula
Vx(p(x) — q(x)), where x is a tuple of variables of length n. If p and q are tuples
P1,...,Pn and q1, ..., g, of predicate symbols then p < q is an abbreviation for
the conjunction (p1 < g1) A+ A (pn < qn), and p < q is an abbreviation for
(p < q) A—(q < p). We apply the same notation to tuples of predicate variables
in second-order logic formulas. If p is a tuple of predicate symbols p1, ..., p, (not
including equality), and F' is a first-order sentence then SMy[F] (called the stable
model operator with intensional predicates p) denotes the second-order sentence
F A —=3u(u < p) A F*(u), where u is a tuple of distinct predicate variables
UL, ..., Upn, and F*(u) is defined recursively:

— pi(t)* is u;(t) for any tuple t of terms;

— F* is F for any atomic formula F' that does not contain members of p;

- (FAG)*is F* NG

- (FVG)*is F* Vv G%;

- (F=G)"is (F* > G") AN (F = G);

— (VaF)* is Vo F*;

— (3xF)* is JzF™.
We define the semantics of conditional logic programs using the SM operator.
We note that if p is the empty tuple then SMp[F] is equivalent to F. We call
an interpretation a p-stable model of F' when it is a model of SMp[F]. For a
conditional logic program IT and a Herbrand interpretation I over the signature
(O, Fr1,Prr), I is an answer set of IT when I is a Pp-stable model of ¢(IT).

As is customary, the concept of an answer set is defined for Herbrand in-

terpretations. It is common to identify Herbrand interpretations with the set of
ground atoms that are evaluated to true by this interpretation. When convenient,
we follow this convention. It is worth noting that dropping the word Herbrand
from the definition of an answer set allows us to extend the notion of an answer
set/stable model to non-Herbrand interpretations following, for example, the
tradition of [7,15]. Also, the provided definitions allow us to consider p-stable
models of conditional programs, where p is a tuple of predicate symbols in IT
to characterize interesting properties of conditional programs. We articulate the
utility of p-stable models in Section 6. In that section we extend the k-coloring
program with a sample set of facts encoding an instance of the k-coloring prob-
lem and argue how the answer sets of the resulting program correspond to the
solutions of this instance.

4 Semantics via Infinitary Propositional Logic

Programs with conditional literals were first formalized by (i) their reduction to
infinitary (propositional logic) formulas [10] and (ii) utilizing the definition of
a stable model for such formulas introduced by Truszczynski (2012). We refer
the reader to Definition 1 in [15] for the details on what constitutes a stable
model for an infinitary formula as its details are not required in understanding
the content of this paper. We now review the syntax of an infinitary formula and
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the details of the translation of conditional programs to infinitary formulas by
Harrison, Lifschitz, and Yang (2014).
Let A be a set of ground atoms. We define sets Fg, F1,... by induction:
= Fo=A;
— Fiy1 adds to F; all expressions H”, 1" for all subsets H of F;, and F' — G
for all F,G € F;.
The set of infinitary formulas over A is defined as U2\ F;. {F, G}" can be written
as F'A G, and {F,G}" can be written as F' V G. The symbols L and T will
be understood as abbreviations for §V and 0", respectively. Expression —F is
understood as F' — L.

Harrison, Lifschitz, and Yang (2014) define the semantics of programs with
conditional literals using a translation 7 that transforms rules of a given pro-
gram into infinitary propositional formulas. It is worth noting that they allow a
broader syntactic class of rules than we consider here. For instance, rules with
aggregates are allowed; these rules are outside the scope of this paper, but we
refer interested readers to [4] for a review of how the SM operator can define
semantics for programs with aggregates. Here, we restrict our review of 7 to con-
ditional programs. The translation 7 is summarized below using the following
notation: if ¢ is a term, x is a tuple of variables, and r is a tuple of terms of
the same length as x, then [t]¥ (equivalently, ¢¥) is the term obtained from ¢ by
substituting x by r. We use similar notation for other expressions such as literals
or their lists, e.g., we may write [l1, ..., L, |¥ which stands for [[1]¥,. .., [I,,])¥ and
[H : L)¥ which stands for HX : L*. A conditional literal or a rule is closed if it
contains no global variables. |x| denotes the number of elements in a list x.

To transform a closed rule R into an infinitary propositional formula w.r.t.
a set G of ground terms, translation 7 is defined as follows:

1. 7(L) is L;

2. 7(A) is A for a ground atom A;

3. 7(t1 = tg) is T if 1 is identical to t2, and L otherwise, for ground terms
t1,1o;

4. 7 (not A) is —TA;

. 7(L)is 7(l1) A+ - AT(Ly,) for alist L of basic literals;

6. for a closed conditional literal H : L occurring in the body of rule R, 7(H : L)
is the conjunction of the formulas 7(L¥) — 7(HX) where x is the list of
variables occurring in the conditional literal, over all tuples of ground terms
r € Gl (recall that G" denotes the Cartesian product G x - - - x G of length n);

7. for a closed conditional literal H : L occurring in the head of rule R,

7(H : L) is the disjunction of formulas (7(L¥) — 7(HX)) A =—=7(L¥) where

x is the list of variables occurring in the conditional literal, over all tuples

of ground terms r € GI¥!;

8. for a closed rule r of form (2), 7(r) is TBy A+ ATBy, = THL V-V TH,,.
Now, we formalize the rule instantiation process from [10]. Let z denote the

global variables of rule R. By instg(R) we denote the instantiations of rule R
w.r.t. a set G of ground terms, i.e., instg(R) = {R% | u € Gl#1}". Clearly, every
rule r € instg(R) is closed, as is each (conditional) literal occurring in 7.

ot
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Let IT be a conditional program. For a rule R in II, its translation is defined as
7(R) = {7(r) | r € instg, (R)}". Similarly, 7(IT) = {T(R) w.r.t. G;y | R € I}
A set of ground atoms constructed over the signature of IT forms a CLINGO
answer set of a program IT when it is a stable model of 7(II) in the sense of
Definition 1 by Truszczyriski (2012).

5 Connecting Two Semantics of Conditional Programs

In this section our goal is to connect our proposed semantics for conditional
(logic) programs via the SM operator (Section 3) to the semantics defined for
such programs in [10] (Section 4). For that purpose we review some of the details
of [15] that help us to construct an argument for the formal relationship between
the considered semantics for conditional programs.

Truszezynski (2012) provides a definition of stable models for first-order sen-
tences. These models may be Herbrand and non-Herbrand interpretations. He
defines the grounding of a sentence F w.r.t. interpretation I, denoted by gry(F),
as a transformation of F' into infinitary propositional formulas over a given sig-
nature [15, Section 3]. If we restrict our attention to Herbrand interpretations,
we may note that: For arbitrary Herbrand interpretations Iy and Iy of a first-
order sentence F, grr, (F) is identical to gry,(F). Thus, we drop the subscript
I from the definition of gr;(F') when we review this concept.

Let o be a signature and let I be a Herbrand interpretation over o. For a
ground term c in G, we use ¢ to denote both this ground term and its respective
domain element in I, i.e., ¢ = ¢!. Let F be a first-order sentence over o. The
grounding of F (w.r.t. o), denoted by gr(F), is defined recursively, mapping F
into an infinitary propositional formula:

1. gr(l) =1,
2. gr(A) = A for a ground atom A;
3. gr(ty = ta) is T if ¢; is identical to t9, and L otherwise, for ground terms
t1,1o;
.M F=GV...VH, then gr(F)=gr(G)V---Vgr(H);
.M F=GA...ANH, then gr(F) =gr(G) A--- Agr(H);
If F =G — H, then gr(F) = gr(G) — gr(H);
. If F = 3xG(x), then gr(F) = {gr(G(u)) |u e g),"'}v;
. If F =VxG(x), then gr(F) = {gr(G(u)) |u e gJ,"'}A.
We now observe a key property relating gr, ¢, and 7 transformations that
is essential in connecting the SM-based semantics proposed for conditional pro-
grams and the infinitary logic-based semantics reviewed in the previous section.

Theorem 1 (Syntactic Identity). For any conditional logic program II con-
taining at least one object constant, gr (gb(ﬂ)) is identical to T(IT).

By Theorem 5 from [15], it follows that for a first-order sentence F', Herbrand
interpretations of F' are answer sets of F' if and only if they are stable models
of gr(F) in the sense of Definition 1 by Truszczyriski (2012). The following



8 7. Hansen and Y. Lierler

theorem is an immediate consequence of this formal result and the Theorem on
Syntactic Identity.

Theorem 2 (Main Theorem). For any conditional logic program II con-
taining at least one object constant and any Herbrand interpretation I over
(Om, Fi1,Prr), the following conditions are equivalent:

— I is an answer set of II as defined in Section 3;

— I is a CLINGO answer set of II as defined in Section /.

The remainder of this section presents auxiliary results required in constructing
the proof of the Theorem on Syntactic Identity, followed by the theorem’s proof.
The following lemma captures basic equivalences between ¢, function composi-
tion gr o ¢, and 7 transformations.

Lemma 1. Let z be a list of variables. Then, the following equivalences hold:
1. ¢,(L) =7(L);

2. gr(¢zL) =7(L);

Let A be an atom, x be a list that includes all variables in A, and r be a list of
ground terms of the same length as x. Then, the following equivalences hold:

3. 9a(AY) = T(AF);

4. ¢z(not A¥) = 7(not AX).
9. gr(¢z(AY)) = T(AT);
6. gr(¢z(not A¥)) = t(not A¥).
Let A be an atomic formula of the form t, = to, x be a list that includes all
variables in A, and r be a list of ground terms of the same length as x. Then,
the following equivalences hold:

7. gr(d)z(Af)) = T(A:'c)7

8. gr(g(not AX)) = t(not A¥).
Let L be a list of basic literals, x be a list that includes all variables in L, and r
be a list of ground terms of the same length as x. The equivalence below holds:

9. gr(¢a(LY)) = 7(LY).

Proof. Equivalences 1-5, 7 follow immediately from the definitions of ¢, gr, and T
transformations (and preceding equivalences, e.g., proof of equivalence 2 takes
into account equivalence 1). The claim of equivalences 6 and 8 relies on equiva-
lences 5 and 7, respectively, and is supported by the following chain

gr(¢a(not AY)) = gr(—¢z(A7)) = gr(da(A¥) — L) =
gr(9a(AX)) — gr(L) = 7(AF) — L = =7(AX) = 7(not AX).

Equivalence 9 follows immediately from the definitions of ¢, gr, and 7 transfor-
mations and equivalences 5-8. The remaining lemmas of this section capture less
trivial equivalences between gr o ¢ and 7 transformations.

Lemma 2. Let II be a conditional logic program containing at least one object
constant. Let B be a literal in the body of a rule R in II, where z is the list of
global variables occurring in R and u is a list of ground terms of the same length

as z. Then, gr(gbz([B]Z)) is identical to T([B])3) w.r.t. Grr.

u u
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Proof. For the case when B is a basic literal, the claim immediately follows from
Lemma 1. What remains to be shown is that it is also the case when B is a
conditional literal of the form H : L. Take x to denote the set of local variables
in B. Per condition 5 of the definition of ¢, ¢,(H : L) = Vx (¢2(L) = ¢(H)) .

gr(@a([H  L12)) = gr (vx(6,(L4(x)) = 6,(HZ())))
= {gr(6a(L2%) — 6, (HZ)) | v € Gi}"
= {gr(¢a(LZ%)) = gr(¢a(HZ)) | v € G}
= {r(LZ%) = T(HZ) | v € G}
= ([H : LJ2)

u

Condition 8 of the definition of the gr transformation allows us to move from the
first line to the second in the chain above. Condition 6 of that definition allows
us to move from the second line to the third. Lemma 1 provides us with grounds
to move from the third to the fourth line. The final step is due to condition 6 of
the 7 transformation definition.

Lemma 3. Let II be a conditional logic program containing at least one object
constant. Let H be a literal in the head of a rule R in II, where z is the list of
global variables occurring in R and u is a list of ground terms of the same length

as z. Then, gr(¢z([H]fl)) is identical to T([H%) w.r.t. Gry.
The proof of Lemma 3 is similar in structure to the proof of Lemma 2.

Lemma 4. Let II be a conditional logic program containing at least one object
constant. For any rule R in II, gr(¢(R)) is identical to T(R) w.r.t. G.

Proof. Let z be the list of the global variables of R.

gr(6(R)) = gT(VZ(czﬁz(Bl) Ao A bu(Bn) = dp(H)V -V ¢Z(Hm)))
— {97 (6a([B1J2) A+ A 6a([Baz) = Ga([HLJE) V- v ¢z<[Hm}Z>)
[uegiy
= {gr(6a([B1J2) A+ N gr(0a(1Bal2))
—>gr(¢z([H1}i)) v-~-vgr(¢z<[ﬂm1 ) luegiy

= {7([B)2) A+ AT([Bal2) = T([HIZ) V-V 7([H]2) | w e Gy}
= {7(R%) |u e G} = {r(r) | r € instg, (R)}
= 7(R)

Lemmas 2 and 3 provide grounds for the fourth equality in the chain. The re-
mainder follows from the definitions of gr, ¢ and 7 transformations. The case
when the head of the rule is L follows the same lines.
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The following equality follows immediately from Lemma 4 and constitutes a
proof of the Theorem on Syntactic Identity:

gr(¢(D)) = {gr(¢(R)) | R € II}" = {r(R) | R € II}" = 7(II).

6 Arguing Correctness of the k-coloring problem

In this section, we apply the verification methodology for logic programs proposed
in [2] to the k-coloring encoding containing conditional literals. This methodology
consists of four steps:
1. Decompose the informal description of the problem into independent (natu-
ral language) statements.
2. Fix the vocabulary/predicate constants used to represent the problem and
its solutions.
. Formalize the specification of the statements as a logic (modular) program.
4. Construct a “metaproof” in natural language for the correspondence between
the constructed program and the informal description of the problem.

An instance of the k-coloring problem is a triple (V, E, C), where

— (V,E) is a graph with vertices V' and edges F C V x V, and

— C'is a set of labels named colors, whose cardinality is k.
A solution to the k-coloring problem is

K1 a function asg : V. — C such that

K2 every edge (a,b) € E satisfies condition asg(a) # asg(b).
We view statements K1 and K2 as the formalization of Step 1. In fact, this
formalization of Step 1 follows the lines by Fandinno, Hansen, and Lierler (2022),
who considered another encoding of k-coloring problem (containing aggregates)
and argued its correctness.

We fix predicate constants vtx/1, edge/2, color/1, asg/2 to represent the
k-coloring problem and its solutions. In particular, predicate constants vtxz/1,
edge/2, and color/1 are used to encode a specific instance of the problem;
whereas predicate constant asg/2 is used to encode the function asg. Formally,
we call a binary relation r functional when for all pairs (aj,b;1), (ag,bs) in r,
if a1 = ag, then by = by. Clearly, functional relations can be used to encode
functions in an intuitive manner, where each pair (a,b) in functional relation
r suggests a mapping from element a to element b. In other words, asg/2 will
encode a functional relation meant to capture mapping asg that forms a solution
to the considered instance of the k-coloring problem. This constitutes Step 2.

Splitting Theorem [8] is a fundamental result that allows us to uncover the
internal structure of a logic program. For example, consider the context of the
k-coloring program. Using the ¢-transformation, we identify this program with
sentence KC' that is the conjunction of formulas (3-6). By K; we denote the
conjunction of formulas (3-5) and by Ks we denote formula (6). The Splitting
Theorem tells us that

w

SMasg[KC] = SMasg[Kl] N KQ. (7)
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Within this verification methodology, Step 3 can be implemented by considering
SM,s¢[K1] and K, as two modules of a logic (modular) program that formalize
statements K1 and K2, respectively. We now make this claim precise by stat-
ing formal results that culminate in capturing Step 4. Intuitively, the following
Lemmas 5 and 6 state that modules SMasg[K 1] and K5 formalize statements K1
and K2, respectively.

Lemma 5. Let I be an Herbrand interpretation such that (vtz!,edge!, color!)
forms an instance of the k-coloring problem. Then, I |= SMgsq[K1] if and only
if relation asg’ encodes a function from vtz! to color!.

Lemma 6. Let I be an Herbrand interpretation such that (vtz!,edge!, color!)
forms an instance of the k-coloring problem and asg’ encodes a function asg
from vtx! to colort. Then, I |= Ky if and only if every edge (a,b) € edge’
satisfies condition asg(a) # asg(b).

By equivalence (7) and the two preceding lemmas the following theorem im-
mediately follows. This theorem can be seen as a proof of correctness for the
k-coloring encoding.

Theorem 3. Let I be an Herbrand interpretation such that (vtz!, edge!, color!)
forms an instance of the k-coloring problem. Then, I |= SMysq[KC] if and only
if (asg/2)! encodes a function that forms a solution to the considered instance.

Due to space constraints, we omit the proofs of the formal results of this sec-
tion. We refer the reader to similar arguments, namely, the proofs by Cabalar,
Fandinno, and Lierler (2020) when they argue correctness of logic program mod-
ules for the Hamiltonian Cycle problem, and the proofs by Fandinno, Hansen,
and Lierler (2022) when they do the same for the Traveling Salesman problem
and an alternative encoding of the k-coloring problem.

We note that in practical settings answer set systems accept instances of
problems, typically encoded as sets of facts. For instance, the set Ilg of facts

vtx(a). vtx(b). edge(a,b). color(g). color(b). color(r). (8)
corresponds to the following instance of the 3-coloring problem:

{a,0},{(a,0)},{g,b,7}). (9)

Consider module SMytz edge,color [@(I1)]. It captures the considered set of facts.
For a Herbrand model I of this module, the extension (vtz!,edge!,color!)
forms (9). This claim trivially follows from Theorem on Completion [8]. Note that
the program composed of the facts in Il and the k-coloring rules has answer sets
that are the Herbrand models of formula SMyz edge,color,asg|@(IIa) A KC]. By
the Splitting Theorem, it is equivalent to SMyiz edge.cotor [P(IG)] A SMasq[KC].
By Theorem 3 we may immediately conclude that any answer set of a program
composed of the facts in Il and rules in the k-coloring program is such that
the extension of predicate constant asg/2 encodes a solution to instance (9) of
the 3-coloring problem.
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The previous paragraph illustrates an important idea stemming from [3].
Given a problem P and a signature op to encode it, in place of discussing the
specifics of encoding of a particular instance of problem P, we may associate
Herbrand interpretations over op satisfying some conditions with this instance.
This way we may speak of an encoding for problem P in separation from details
on how an instance for this problem is encoded. The statement of the final theo-
rem illustrates this idea. For example, the following rules vtx (X) : —edge (X,Y) .
vtx(Y) :-edge(X,Y) . can be used to replace the first two facts in (8) to encode
the same instance of the k-coloring problem. As long as we may associate this
new encoding of an instance with an Herbrand interpretation capturing that
instance from the perspective of the claim of Theorem 3, we can claim the cor-
rectness of the resulting ASP program composed of a newly encoded instance and
the k-coloring encoding. This is true whenever the Splitting Theorem supports
modularization of a program as illustrated.

Conclusions, Future Work, Acknowledgements

In this paper we present semantics for conditional programs that do not refer
to grounding. These semantics demonstrate that conditional literals represent
nested implications within rules. The benefits of this contribution are three-
fold. First, it has pedagogical value. The nested implication approach provides a
simple characterization of conditional literals, supplying students with an intu-
itive perspective on their behavior. Our work provides rigorous support for this
previously informal intuition. Second, conditional literals are a step towards de-
veloping ASP rules with complex, nested bodies that are closer to classical logic
languages. This makes the language more expressive. Finally, we have broad-
ened the class of ASP programs that can be formally verified without referring
to grounding. For instance, the final section of this paper illustrates the use of
the proposed semantics by arguing the correctness of the k-coloring encoding. In
the Introduction we mentioned how conditional literals are omnipresent in meta-
programming. The users of meta-programming may now apply similar ideas in
constructing proofs of correctness for their formalizations.

We also note that for so called tight conditional programs [8], our character-
ization provides a way to associate such programs with classical first-order logic
formulas by means of the Theorem on Completion [5, Section A.3]. This fact
forms a theoretical foundation for a possible extension of the software verifica-
tion tool ANTHEM [6] to programs with conditional literals. This tool allows its
users to formally and automatically verify the correctness of tight logic programs
(without conditional literals). The k-coloring program presented in this paper is
tight and the suggested extension of ANTHEM would therefore be applicable to
it. Implementing the corresponding extension in ANTHEM is a direction of future
work.
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