A Machine Learning System to Improve the
Performance of ASP Solving Based on Encoding
Selection

Liu Liu', Miroslaw Truszczynski', and Yuliya Lierler?

! University of Kentucky, Lexington KY 40506, USA,
{liu.liu,mirek}Quky.edu,
2 University of Nebraska at Omaha, Omaha NE 68182, USA,
ylierler@unomaha.edu

Abstract. Answer set programming (ASP) has long been used for mod-
eling and solving hard search problems. Experience shows that the per-
formance of ASP tools on different ASP encodings of the same problem
may vary greatly from instance to instance and it is rarely the case that
one encoding outperforms all others. We describe a system and its imple-
mentation that given a set of encodings and a training set of instances,
builds performance models for the encodings, predicts the execution time
of these encodings on new instances, and uses these predictions to select
an encoding for solving.

Keywords: answer set programming, encoding selection, machine learn-
ing

1 Introduction

Answer set programming (ASP) is a declarative programming paradigm de-
signed primarily for solving decision problems in NP (in particular, problems
that are NP-complete), and their search and optimization variants [2,4]. In ASP,
an answer-set program (AS program) encoding a problem at hand is separate
from the data. The latter is represented as a set of facts and forms a special AS
program referred to as an instance. To solve the problem for a particular data
instance, one combines the problem encoding with the instance into a single
AS program. That program is then processed by answer set programming tools,
typically a grounder and a solver such as, for instance, grounder gringo [6] and
solver clasp [7].

As in other programming systems, a problem specification can be encoded in
several ways in ASP. Often, this gives rise to numerous equivalent AS programs
encoding the same problem. Extensive experience with ASP accumulated in the
past two decades suggests that different AS programs for a given problem may
differ significantly in their performance. Namely, it is rarely the case that the
same encoding performs best (under a selected grounder-solver tool) across all
data instances to the problem. This suggests that the availability of multiple
encodings can be turned into an asset that might improve the efficiency of ASP.

2 Liu Liu et al.

Efforts were made to understand how the performance of ASP tools de-
pends on ways AS programs encode the constraints of the problem. Automated
encoding rewriting tools [1] were proposed based on tree decomposition tech-
niques on the level of a grounder, some with Machine Learning models [18] to
guide the rewriting directions that grounders may follow to produce smaller
grounding. Researchers also explored the possibility of exploiting multiple solv-
ing algorithms, both outside of ASP and in ASP. Portfolio solving and algorithm
selection [19,10,5,15] emerged from these efforts. The idea that we propose and
explore here is to extend the scope of these approaches by taking advantage of
multiple equivalent encodings for a problem, not necessarily arranged to min-
imize the size of the ground program. Specifically, we present a system that
supports what we name encoding portfolio or encoding selection (in the last
section, we also briefly discuss encoding scheduling). We call this encoding se-
lection platform an ESP. The ESP system exploits collections of equivalent ASP
encodings for a problem supplied by the user and can also generate additional
encodings by applying simple rewritings to the encodings supplied. Thus, we
provide programmers with a tool that automates systematic navigation through
available encodings for the problem targeting performance improvements.

The remainder of the paper is organized as follows. Section 2 describes the
architecture of the ESP, Section 3 presents a case study to illustrate how it
works, and Section 4 concludes with a discussion of future work. Throughout
the paper, we list insights and conclusions we arrived at while developing and
using ESP. They offer practical tips on utilizing the ESP by ASP practitioners. In
our discussion, we use the hamiltonian cycle (HC) problem to illustrate functions
of the components of the ESP and their operation.

2 The encoding selection platform ESP

Figure 1 shows the architecture and processes involved in the ESP encoding
selection platform. The word Input in the flowchart indicates input data and pa-
rameters to be supplied by the user. In particular, the user provides encodings for
a problem to be solved, instances of this problem, and problem specific features,
if available. Components shown inside boxes denote processes implemented with
the ESp. These include encoding rewriting, performance data collection, encod-
ing candidate generation, feature extraction, machine learning modeling, per-
instance encoding selection, and solving. Other annotations point at outcomes
of different processes or tools utilized by the system. The ESP uses such tools
as encoding rewriting system AAgg [3] and feature generator claspre [5](claspre
is a sub-component of portfolio answer set solver claspfolio; it is available as a
stand alone tool at https://potassco.org/labs/claspre/).

The ESP, a description of the system requirements, and instructions on how
to use it are available at http://www.cs.uky.edu/ASPEncodingOptimization/
esp/. Although the platform consists of several components, each part can be
executed separately. Thus, users can upload encodings and instances and run all
the processes, or only run some selected ones.

Tt W N =

Encoding Selection Platform 3

Encoding

Encodings (Input) ——»| Rewriting

Extended Encoding Set

Performance
Data
Collection

Initial Cutoff Time (Input)

Instances (Input)

Exit! Increase Cutoff

Performance Data,

Exit! Adjust Instances
Encoding

Candidate

Generation

Selected Encoding Set

Selected
Performance Claspre —>
Data

Feature Domain Features (Input; Optional)

Extraction

Instance Features

ML
Modeling

Prediction Models

Per-instance Selected Encoding L
New Instance ———> Encoding Solving Result
Selection .

Fig. 1: A flowchart to the encoding selection platform

The ESP exploits the availability of multiple encodings of a problem to assist
the user in obtaining performance improvements of ASP-based solutions to the
problem. Improved performance means an increased number of instances solved
for an application and decreased time spent on these instances. The platform
is general purpose and can be applied to arbitrary problems solved by ASP.
However, any specific use of the ESP tool assumes a concrete problem at hand.
In what follows we often use the letter P to refer to that problem.

2.1 Encoding Rewriting

Encodings The ESP expects a user to supply at least one AS program for a given
problem P. However, in most cases, the user will provide several encodings for
the problem. The supplied encodings are rewritten by the encoding rewriting tool
available in ESP. The extended set of encodings is the basis for further processing
that aims to select a subset of “promising” encodings to be used when solving
new instances of problem P. We comment on how performance data guides the
selection process implemented in ESP later in the paper.

To show examples of possible input encodings that the user might supply to
the ESP, we consider a well-known Hamiltonian cycle problem. The first encoding
for the HC problem follows

{ hpath(X,Y) : 1link(X,Y) } =1:-node(X).
{ hpath(X,Y) : 1link(X,Y) } =1:-node(Y).
reach(X) :- hpath(1,X).

reach(Y) :- reach(X),hpath(X,Y).

:- not reach(X),node(X).

4 Liu Liu et al.

Rules 1 and 2 model the requirement that the number of selected edges leaving
and entering each node is exactly one. Rules 3 and 4 define the concept of
reachability from node 1. Constraint 5 guarantees that every node is reachable
from node 1 by means of selected edges only. Another (but equivalent) encoding
can be obtained by replacing rule 3 in the encoding above with rule reach(1) .

Encoding rewriting tools The current version of the ESP employs a non-
ground program rewriting tool AAgg. It is used to generate additional encodings
from those provided by the user. The original version of this system, developed by
Dingess and Truszczynski [3], produced rewritings by reformulating applicable
rules by means of cardinality aggregates. The version integrated into the platform
also supports rewritings that eliminate cardinality constraints. In the future, we
will incorporate in the ESP other rewriting tools, such as Projector [12] and
Lpopt [1], and provide an interface for users to incorporate their own tools.

2.2 Performance Data Collection

Instances Benchmark instances must be provided by the user. They are used to
extract data on the performance of a solver on each of the selected encodings, to
support feature extraction, and to form the training set used by machine learning
tools to build encoding performance models. When a solver finds a solution to
an instance in a short amount of time no matter what encoding is used, or when
the solver times out no matter what encoding is used, the instance offers no
insights that could inform encoding selection. Only instances that are not too
easy and not too hard are meaningful. We call such instances reasonably hard.

More specifically, reasonably hard instances are determined by the time T,
specifying when the execution time is long enough not to view an instance as
easy, and the time T,,,, specifying the cutoff time. At present, the user inputs
only the cutoff time T},q.; the system then sets T, = Tyq./7. How to select the
initial value of T}, depends on the available computing resources, as well as
the time budget for solving incoming instances of the problem at hand.

Once a user provides the ESP with the initial set of instances, and the pa-
rameter T,,.:, and the extended set of encodings is produced by rewriting,
the ESP computes the performance data while automatically adjusting cutoff
time Tynq, two times, each time doubling it, if too many time-outs occur. The
ESP continues with the next step when the collected performance data sug-
gests that the current instance set contains a sufficient proportion of reason-
ably hard instances. More specifically, the platform selects randomly a subset of
min(max(20, min(size/10,100)), size) instances to test the hardness (here size
denotes the size of the entire input set of instances, which is expected to be
greater than 500). All encodings are then run with each selected instance. An
instance is easy when all encodings solve it within time 7. An instance is too
hard when it is not solved by any encoding within the cutoff time T),,,. All
other instances are reasonably hard. If at least 30% of instances in the selected
subset are reasonably hard, the entire input data set is wvalid. If not and also
no more than 30% of instances time out on each encoding, the ESP exits and

Encoding Selection Platform 5

Instance_id haml ham2 ham3 ham4 hamb5 ham6

insttri200_.33-1 114.96 0.61 200.00 12.52 2.89 2.14
insttri20041_2 15.22 49.10 200.00 200.00 0.65 0.49
insttri200-49_1 13.22 0.16 200.00 0.23 200.00 0.62
insttri200_57_1 47.86 200.00 0.45 7.85 200.00 200.00
insttri200_57_2 41.98 200.00 59.55 53.86 0.24 1.08
insttri200_65_2 15.61 1.02 200.00 26.42 45.46 25.65
insttri200-71_10 1.22 200.00 139.17 14.84 200.00 200.00
insttri200-81.8 200.00 38.08 200.00 32.40 200.00 200.00
insttri200.91_.5 200.00 74.90 116.11 1.45 40.20 200.00
insttri200_.131.10 8.31 132.25 2.85 22.46 42.22 58.86

Table 1: Runtime of valid structured dataset for the HC problem

declares the original input instance set “too easy.” Otherwise, the selected sub-
set is “too hard” and the system increases T}, by doubling it (and adjusting
T. accordingly). After doubling, the ESP again runs all encodings with all in-
stances. If, with the new values for 7T},,,, and 7., the number of reasonably hard
instances becomes 30% or more, the ESP stops and declares the original input
instance set as valid. Otherwise, the EsSpP doubles T},,,; one more time and re-
peats. The possible outcomes are then: “too easy, “too hard,” and valid. In the
first two cases, the user is informed and asked to adjust T},4, and the hardness
of the input instances accordingly. In the last case, the ESP checks if there are at
least 500 reasonably hard instances in the entire input set. If not, the ESP exits
and returns to the user the numbers of instances in the set that are easy, hard
and reasonably hard, and requests that the user updates the input instance set.
(The first phase of the process aims to save time, if the input instance set is too
hard, with a high probability the ESP will return this decision without having to
process the entire data set.)

We now provide insights into the instance generation/selection process by
focusing on the HC domain. Table 1 shows performance data collected by running
the gringo/clasp tools with six encodings of the HC problem on several instances
of that problem, that is, directed graphs. All graphs are generated randomly from
a certain space or model of graphs. Graphs in the model used in this example are
built by removing directed edges from triangle grid graphs. Nodes of those graphs
are arranged in layers, the first layer has one node, the next two nodes, and so
on. The external nodes form a triangle; each internal node is connected by two-
directional edges with two neighboring nodes in its own layer, two neighboring
nodes in the layer above and two more in the layer below. Such graphs have
Hamiltonian cycles. Graphs in our example are subgraphs of a 19-layer triangle
grid with 190 nodes. When the number of removed edges is small, the graphs
have Hamiltonian cycles with a probability close to 1. As the number of removed
edges grows, we reach the point (known as the phase transition [20]), when this
probability drops quickly and becomes close to 0. The phase transition region

6 Liu Liu et al.

contains graphs with and without a Hamiltonian cycle with, roughly, the same
probability. Moreover, the solving time becomes significant.

Table 1 shows a selection of instances that are reasonably hard (we took
Timaz = 200 seconds as the cutoff, and set T, = T4./7 = 28.57 seconds).
Building a set of reasonably hard instances (with respect to T, and T},) may
still yield a data set that is relatively easy (when execution times, while greater
than T, do not come close to the cutoff time). An additional requirement one
might want to impose on a “good” set of instances is that each encoding must
time out on at least some instances in the set. This is the case for the set of
instances in Table 1 In addition to a consideration of hardness, a valid instance
set must evince complementary performance from the selected encodings. That
is, no encoding must be uniformly better than others, in fact, each encoding must
have its area of strength where it performs better than others. This is the case of
the set of instances in Table 1. For example, on the instances insttri200_33_1 and
insttri200_57_1 the ham 2 and ham & exhibit “opposite” performance: ham 2
is the winner on the first instance while ham & is the winner on the second
one. We can observe that each instance has its own best encoding and the order
of per-instance best encodings in the table are 2, 6, 2, 3, 5, 2, 1, 4, 4, 3. In
particular, each encoding is the winner on at least one instance. If a dominant
encoding exists (performs best on all instances), encoding selection in such case
is meaningless. The ESP will inform the user about it.

Building meaningful sets of reasonably hard instances is difficult. They can
be derived from the instances submitted to the past ASP competitions [8,9] in
the NP category, or can be obtained by building random models of instances (as
in our running example above) and finding the right settings for the model’s pa-
rameters. Incorporating some structure in the model (as in the running example)
offers a better chance for meaningful instances as purely random instances with-
out any structure are often quite easy. Finally we note that to support encoding
selection a large data set with at least 500 instances is needed.

The concept of an oracle helps evaluate the potential for performance im-
provements by encoding selection. An oracle is a non-deterministic algorithm
that always selects the best encoding to run with a given instance. Typically,
oracle’s performance is much better than the performance of any individual en-
coding. This is the case for the data set in Table 1. Thus, the task of selecting
correct encodings on a per-instance basis becomes meaningful.

Cutoff time penalization Performance data represents the effectiveness of
different encodings under a chosen ASP solving tool. It is obtained by process-
ing all encodings with all instances, using a selected solver (such as the gringo
grounder and the clasp solver in some selected configuration). Each individual
run should be limited to the selected cutoff time, since some encodings com-
bined with some instances may take a large amount of time before terminating.
To assess the quality of an encoding, one must account for timeouts. When an
instance reaches timeout, the ESP considers the number of encodings reaching
timeout for the instance, and a penalized runtime is given. The ESP uses an
approach we call PARX, which takes for the runtime of a timeout instance the

Encoding Selection Platform 7

cutoff time multiplied by X, where X is the number of encodings that time out
on this instance. For example, when this method is used, for the instances in
Table 1, the penalized runtime for insttri200-33_1 is 200.00 for ham3, and for
insttri200-41_2 is 400.00 for both ham8 and hamj.

2.3 Encoding Candidate Selection and Feature Extraction

In this stage of the process, the ESP analyzes the performance data obtained
for the extended set of encodings. The system selects a subset of the extended
encoding set that consists of encodings that are most effective and that together
demonstrate run-time diversity. At least two and no more than six encodings
are selected.

To estimate the effectiveness of the encoding, we assign it a score. The score
is affected by the percentage of the solved instances, the number of instances for
which the encoding provided the fastest solution, and the average running time
on all solved instances.

The selected encodings are organized into groups. Specifically, we consider as
a group the entire set of selected encodings, if only two or three encodings were
selected. Otherwise, the set of selected encodings has ¢ encodings, where i = 4,5
or 6, and we consider the group of three top-scoring encodings (the scoring is
discussed in an earlier section), four top-scoring encodings etc., for the total of
i — 3 groups (two groups if i = 4, three groups if i = 5 and four groups if i = 6).

To support machine learning of performance prediction models for the se-
lected encodings, we identify instances of problem P with their feature vectors.
In other words, each instance-encoding pair is mapped into an abstraction cap-
tured by a number of properties/features that hold for this pair. Our system
relies on two sets of features. First, it exploits features that can be defined based
on the generic structure of the propositional program obtained by grounding
a given instance-encoding pair. To this end, we take advantage of the system
claspre [5]. Second, the platform uses domain specific features related to prob-
lem P supplied by the user.

Claspre features Claspre is a system designed to extract features of ground
ASP programs. The extracted features fall into two groups: static and dynamic.
Static ones contain features about atoms, rules, and constraints. For instance,
they include such program properties as the number of rules, unary rules, choice
rules, normal rules, weight rules, negative body rules, binary rules, ternary rules,
etc. In total, claspre computes 38 static features. To extract dynamic features
for a ground program, claspre runs clasp on it for some short amount of time.
Clasp returns the information about the solving process. This information is
then turned into (dynamic) features of the program. The ESP uses these features
for the instance-encoding pair that defined the program processed by claspre.
These features are based on information collected after each restart performed
by clasp, with the number of restarts being a parameter of the process. Allowing
for more restarts result in features that are usually more accurate to represent
a problem, but the process requires extra runtime. Overall, claspre computes 25

8 Liu Liu et al.

dynamic features per each restart and the platform uses features for two restarts.
However, extremely easy instances have no claspre features since they are solved
during the feature extraction process, and no much information can be collected
for them.

Domain features Claspre features are oblivious to the nature of given prob-
lem P represented by the specific instance-encoding pair. Domain features rel-
evant to the nature of P, expressed by properties of an instance to P often
provide additional useful characteristics of the instance (note that these fea-
tures are independent of properties of a particular encoding). For example, if
instances for problem P are graphs, possible features may include the number of
nodes in a graph, the number of edges, the minimum and maximum degrees, as
well as measures reflecting connectivity and reachability properties. Availability
of domain features often improves the performance of the platform. The ESP
framework provides an interface for the user to supply domain features for their
problems at hand. Obviously, the ultimate selection of such features as input
to the platform depends on the problem being solved. Indeed, different features
may be relevant to, say, problems of graph colorability and Hamiltonian Cycle.
In the HC problem, the existence of long paths plays a role, and several features
related to this property may be derived from running the depth-first search on
the instance. Sample domain specific features for the HC problem [17] follow

— numOfNodes: the number of nodes in a graph;

— avgOutDegree: the average of outdegree of nodes;

— depthDfslstBackJump: run depth-first search from node 1, return the depth
of the first backjump, where the algorithm discovers no new nodes;

— depthBacktoRoot: run depth-first search from node 1, return the depth of a
node that has a back edge to node 1;

— minDepthBfs: run breadth-first search from node 1, return the depth of the
first node that has no outward edges to new nodes.

We used these features in our running example of the case study of the use of
the ESP for tuning performance within the HC domain.

The output of this phase is a table whose rows correspond to instance-
encoding pairs and contain the values of all its features.

2.4 Machine Learning Modeling and Solving

The goal of machine learning techniques within this project is to build encod-
ing performance predictors based on performance data and features explained
above. Once these predictors are constructed for a problem P at hand, they can
be used to select the most promising encoding for processing an input instance
of P. To build machine learning models, one can use regression or classifica-
tion approaches. The former predicts each encoding’s performance expressed as
the running time, and then selects the most promising one by comparing the
predicted performance. The latter method builds a multi-class machine learning
model and directly selects the most promising encoding from a collection of can-
didate encodings. Our earlier experimental analysis (outside of the scope of this

Encoding Selection Platform 9

paper) indicates that regression approaches work better than classification. As
a result, at present the ESP supports the construction of regression models only.

The set of selected encodings (at least two and at most six arranged into
one to four groups, as discussed in Section 2.3) is the basis for machine learning
algorithms currently used by the ESP. The ESP performs learning for each of the
group based on instance features and instance performance data restricted to en-
codings in the group. Supervised ML techniques that we use here are trained on
(instance features, instance performance) pairs for each encoding in the group.
Once a model is trained it yields a mapping from instance features to the esti-
mated performance of a targeted encoding. The ESP builds runtime prediction
models for each encoding and selects the encoding with the minimum predicted
runtime. We now explain the detailed design below.

Features selection Claspre features are collected for instance-encoding pairs.
The features representing an instance consist of the features of that instance
when paired with all encodings in the group being considered (88 features for
each instance-encoding pair possible within the group) and the domain specific
features of the instance. This is a large number of features that may cause the
poor computational performance of machine learning algorithms. To address
this issue, the ESP reduces the number of features by further processing. For
claspre features, the ESP first performs feature selection inside features related
to one encoding. All subsets (from 40% to 70%) of features are selected for each
encoding based on standard deviation reduction [11]. These subsets of selected
features are trained and validated on different data splits from the whole dataset,
and validation results are compared. The subset with the lowest average mean
squared error is selected as the selected features for the instance-encoding pair.
When the validation results for all encodings within the group are compared, the
best subset is selected as the claspre features of the group. A subset of domain
specific features is selected separately and then combined with selected claspre
features to form the final set of features.

Hyper-parameters tuning At present, the ESP supports three well-known
machine learning algorithms: k-Nearest Neighbors (kNN), Decision Tree (for the
review of these two methods see, for instance [21]), and Random Forest [13].
In each case, the performance of the algorithm depends on the choice of hyper-
parameters (for instance, the number k of nearest neighbors to consider for
the kNN method). Hyper-parameters tuning is an important step within train-
ing process of machine learning. We implemented the grid-search method for
hyper-parameter searching in the ESP and combined it with the 10-fold cross-
validation (for the description of k-fold cross validation method see, for in-
stance, [16]) to improve the generalization of the obtained model.

Assessment of learned models The result of the learning (for each group)
is the collection of performance models obtained by applying each of the ma-
chine learning methods implemented in the ESP. These models are compared by
evaluating their performance on the 5-fold cross validation approach. For each
round, the platform trains models on the training set, predicts the runtime of
the corresponding encoding for instances on the validation set, and selects the

10 Liu Liu et al.

most promising encoding on a per-instance basis. Average solving percentage
(primary criteria) and average solved time (secondary criteria, for the case of a
tie) for multiply runs are compared for all learned models of all groups, and the
best model among them is selected as the solution of the ESP.

Per-instance Encoding Selection and Solving Once the platform computes
and selects the model based on the performance of cross-validation results, it will
use this model to solve problems provided as new instances. That is, given a new
instance, it will apply the encoding selected by the model computed and selected
in the machine learning phase. Specifically, the platform extracts features of the
instance that are relevant to (are used by) the model, applies the model to select
the encoding (the one with the lowest estimated run time is selected), and applies
the solver to the instance combined with the selected encoding.

3 Experimental analysis

We tested the performance of the ESP using the Hamiltonian Cycle problem. We
now describe the experimental setup and results.

Experimental setup All our experiments were performed on a computer with
Intel(R) Core(TM) i7-7700 CPU and 16 GB Memory, running on Linux 5.4.0-
91-generic x86_64. The input to the platform consists of siz HC encodings and
one thousand structured graph instances. The instance set consists of graphs
from four different structures used in our previous work on the HC problem [17].
The cutoff time is initially set to 200 CPU seconds. The system decided that the
original cutoff time was appropriate and the cutoff time was not increased.

Each encoding was run on all instances and runtime was recorded. All in-
stances were grounded with gringo version 5.2.2 and solved by clasp version
3.3.3 with default configurations. Only solving time was counted as runtime,
while grounding time was not counted. It took ten days to collect the perfor-
mance data for all six encodings. Six encodings are ranked according to their
performance. They give rise to four encoding groups (top three, top four, top
five and top six). For all the instances, claspre features are extracted and graph
specific features are provided. Out of 1000 originally provided graph instances,
the ESP platform determined 775 to be reasonably hard.

The data set is split into the training and the validation set (80% of instances)
and the test set (20% of instances). The former is used by the ESP to build models
and select the best one. The test set is used in the experiments to evaluate the
performance of the platform.

Experimental results The test results are shown in Table 2. Instances from
the test set (in other words, instances that ESP has never seen before) are used
to compile this table. The assessment of the kind is part of the platform.

The first part of the left table shows the performance of individual encod-
ings: solving percentage (solving%) and average solved runtime (avg_solved_t)
are reported. The solving percentage records the percentage of instances each
encoding can solve, and the average solved time counts the average runtime
for solving these instances. The average solved runtime does not accounts for

Encoding Selection Platform 11

solving% avg_solved_t

solving% avg_solved_t

Oth luti
Individual performance et sorutions

ham1 61.93 34.09 DTgroup4 85.16 39.14
RFgroup4 87.09 40.80

ham?2 74.83 54.31
kNNgroup4 80.00 40.88

ham3 74.19 55.37
DTgroup3 87.09 36.84

ham4 58.06 35.63
KNNgroup3 80.00 41.68

ham5 78.70 71.35
hamé 68.38 45.80 DTgroup2 73.54 57.74
am : : RFgroup2 78.06 60.81
Oracle performance KNNgroup2 77.41 52.54
Oracle 95.48 21.64 DTgroupl 78.06 61.74
system solution RFgroupl 79.35 56.72
KNNgroupl 76.77 57.11

RFgroup3 88.38 40.81

Table 2: Performance of individual encoding, oracle, system solution, and other solu-
tions

unsolved instances, because different penalty methods may result in different
average overall runtime. The second part reports the oracle performance, which
selects the best encoding for each instance, representing the upper bound on what
is possible with the encoding selection method. The third part shows the result
for the method selected by the ESp. The right part shows the performance of
other solutions (intermediate performance models), which are obtained by the
system, but not selected as the best solution by ESpP. The individual performance
shows that the best individual encoding hamé can solve 78.70% of all instances.
Thus, we can use the performance of this encoding as the baseline performance.
Even though hams solves the most instances, it does not have the lowest av-
erage solved running time. In fact, it has the largest average solved runtime.
The encoding ham1 is the fastest in terms of average solved runtime, but it only
solves 61.93% of instances. The oracle results point at the fact that there is a
huge performance gain by selecting the best encoding for each instance. It solves
95.48% of instances, with an average solving time of 21.64. Compared with hamd,
the success percentage of the always-select-best oracle is 16.78 percentage points
higher. Overall, the table shows the encodings in the test set have complemen-
tary strengths. Each of them can solve a certain fraction of instances, but when
combined, they can solve much more.

The system solution with the best cross validation result is RFgroup3, the
random forest model based encoding selection from encoding group 3, which
consists of top five encoding candidates. When tested on the test set, it solves
88.38% of instances, 9.68 percentage points more than the best individual en-
coding hamd, and is also the best solution among all models. This confirms that
the platform is able to generate solutions that improve the performance of ASP.
The results also show all other solutions generated using the platform almost
overperform the individual best. For example, these machine learning based so-

12 Liu Liu et al.

lutions built for group 4 and group 3, which consists of six and five encoding
candidates respectively, all contribute better results than hamd. Solutions built
for group 2 and group 1 are worse since they are based only on top four and
top three encoding candidates. We also observe the group 3, which consists of
five encoding candidates, provides better results for corresponding models than
other groups.

4 Conclusion and future work

In this article, we described the system ESP that can automatically improve
the performance of ASP through encoding rewriting and selection. Many of the
processes involved can run separately. This means that one can skip over some
parts of the overall process if the necessary inputs for later steps were already
computed before. We view the platform as a valuable tool for the ASP practi-
tioners geared to assist them with performance analysis and encoding selection
tasks in a systematic and principled manner. This paper is meant to assist them
in understanding its inner components. Our experiments show that for the HC
problem the ESP selects encodings and builds performance prediction models
that lead to improvements in ASP solving. Despite this success, the ESP requires
more insights into fine-tune machine learning methods for selecting encodings
and building accurate performance predicting models. Indeed, our experiments
with other problems are mixed. In some cases (for instance, the graceful graph
labeling?), the ESP performs comparably with the best individual encodings (but
not better yet), in some other cases (graph coloring) it performs worse.

Our future work will aim to address the present shortcomings. First, we will
expand the encoding rewriting module, where we plan to incorporate additional
encoding rewriting tools, to increase the runtime diversity of the encodings the
system generates. Further, we plan to develop techniques combining encoding
selection with an earlier work on solver selection. In particular, we will study
learning models to estimate for a given instance the performance of a pair (clasp
configuration, problem encoding). Second, we will incorporate into the ESP tech-
niques constructing schedule [14] based solutions. In this approach, several en-
codings are selected to be processed by ASP tools in a certain order and for the
total time equal to the cutoff limit, with each encoding receiving a certain share
of the time budget.

Acknowledgments

The authors acknowledge the support of the NSF grant IIS 1707371.

References

1. Bichler, M., Morak, M., Woltran, S.: Ipopt: A rule optimization tool for answer set
programming. Fundamenta Informaticae 177(3-4), 275-296 (2020)

®https://en.wikipedia.org/wiki/Graceful _labeling

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Encoding Selection Platform 13

. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.

Commun. ACM 54(12), 92-103 (2011). DOI 10.1145/2043174.2043195

Dingess, M., Truszczynski, M.: Automated aggregator - rewriting with the counting
aggregate. EPTCS 325, 96-109 (2020). DOI 10.4204/EPTCS.325.17

Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. Al
Magazine 37(3), 53-68 (2016). DOI 10.1609/aimag.v37i3.2678

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., Ziller, S.: A
portfolio solver for answer set programming: Preliminary report. In: Proceedings of
the Eleventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pp. 352-357. Springer-Verlag (2011)

Gebser, M., Kaminski, R., Konig, A., Schaub, T.: Advances in gringo series 3.
In: Proceedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pp. 345-351. Springer (2011). DOI 10.1007/
978-3-642-20895-9_39. URL http://dx.doi.org/10.1007/978-3-642-20895-9_39
Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52-89 (2012)

Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. Journal of Artificial Intelligence Research 60, 41-95 (2017)

Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming com-
petition: Design and results. Theory and Practice of Logic Programming 20(2),
176-204 (2020). DOI 10.1017/S1471068419000061

Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43-62
(2001). DOI 10.1016/S0004-3702(00)00081-3

Guyon, L., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3(null), 1157-1182 (2003)

Hippen, N., Lierler, Y.: Automatic program rewriting in non-ground answer set
programs. In: International Symposium on Practical Aspects of Declarative Lan-
guages, pp. 19-36. Springer (2019)

Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference
on document analysis and recognition, vol. 1, pp. 278-282. IEEE (1995)

Hoos, H., Kaminski, R., Schaub, T., Schneider, M.: aspeed: Asp-based solver
scheduling. In: Technical Communications of the 28th International Conference
on Logic Programming (ICLP’12). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2012)

Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. Theory and Practice of Logic Programming 14(4-5),
569-585 (2014)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection 14 (2001)

Liu, L., Truszczynski, M.: Encoding selection for solving hamiltonian cycle prob-
lems with asp. EPTCS 306, 302-308 (2019). DOI 10.4204/EPTCS.306.35
Mastria, E., Zangari, J., Perri, S., Calimeri, F.: A machine learning guided rewriting
approach for asp logic programs. Electronic Proceedings in Theoretical Computer
Science 325, 261-267 (2020). DOI 10.4204/EPTCS.325.31

Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65-118
(1976). DOI 10.1016/S0065-2458(08)60520-3

Selman, B., Levesque, D.G.M.H.J.: Generating hard satisfiability problems. Arti-
ficial intelligence 81(1-2), 17-29 (1996)

Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLach-
lan, G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining.
Knowledge and information systems 14(1), 1-37 (2008)

