

Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts

Suhaas Anbazhakan

Stanford University

Pamela Rios Coronado

Stanford University

Ana Natalia Sy-Quia

Stanford University

Lek Wei Seow

Stanford University

Aubrey Hands

Stanford University

Mingming Zhao

Stanford University

Melody Dong

Stanford University

Martin Pfaller

Stanford University

Brian Raftrey

Stanford University

Christopher Cook

Stanford University

Daniel Bernstein

Stanford University

Koen Nieman

Stanford University

Anca Pasca

Stanford University

Alison Marsden

Stanford University

Kristy Red-Horse (✉ kredhors@stanford.edu)

Stanford University <https://orcid.org/0000-0003-1541-601X>

Article

Keywords: Collateral arteries, blood flow, coronary artery disease, heart regeneration, computational fluid dynamics

Posted Date: November 18th, 2021

DOI: <https://doi.org/10.21203/rs.3.rs-1083222/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Version of Record: A version of this preprint was published at Nature Cardiovascular Research on August 12th, 2022. See the published version at <https://doi.org/10.1038/s44161-022-00114-9>.

1 **Blood flow modeling reveals improved collateral artery performance**
2 **during the regenerative period in mammalian hearts**
3

4 Suhaas Anbazhakan^{1,7}, Pamela E. Rios Coronado^{2,7}, Ana Natalia L. Sy-Quia², Anson
5 Seow², Aubrey M. Hands², Mingming Zhao^{3,4}, Melody L. Dong¹, Martin Pfaller^{1,3}, Brian
6 C. Raffrey², Christopher K. Cook², Daniel Bernstein^{3,4}, Koen Nieman⁵, Anca M. Pașca³,
7 Alison L. Marsden^{1,3,8,*}, Kristy Red-Horse^{2,6,8,*}

8 ¹Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

9 ²Department of Biology, Stanford University, Stanford, CA 94305, USA.

10 ³Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305

11 ⁴Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
12 94305, USA

13 ⁵Departments of Cardiovascular Medicine and Radiology, School of Medicine, Stanford
14 University, Stanford, CA, 94305, USA

15 ⁶Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School
16 of Medicine, Stanford, CA 94305, USA.

17 ⁷These authors contributed equally.

18 ⁸These authors contributed equally.

19 *Corresponding author

20 Email: kredhors@stanford.edu (KR-H) and amarsden@stanford.edu (ALM)

23 **Abstract**

24 Collateral arteries are a vessel subtype that bridges two artery branches, forming
25 a natural bypass that can deliver blood flow downstream of an occlusion. These bridges
26 in the human heart are associated with better outcomes during coronary artery disease.
27 We recently found that their rapid development in neonates supports heart
28 regeneration, while the non-regenerative adult heart displays slow and minimal
29 collateralization. Thus, inducing robust collateral artery networks could serve as viable
30 treatment for cardiac ischemia, but reaching this goal requires more knowledge on their
31 developmental mechanisms and functional capabilities. Here, we use whole-organ
32 imaging and 3D computational fluid dynamics (CFD) modeling to identify the spatial
33 architecture of and predict blood flow through collaterals in neonate and adult hearts.
34 We found that neonate collaterals are more numerous, larger in diameter, and, even
35 when similar in size/number, are predicted to more effectively re-perfuse an occluded
36 coronary network when compared to adults. CFD analysis revealed that collaterals
37 perform better in neonates because of decreased differential pressures along their
38 coronary artery tree. Furthermore, testing of various collateral configurations indicated
39 that larger, more proximal collaterals are more beneficial than many smaller ones,
40 identifying a target architecture for therapeutic interventions. Morphometric analysis
41 revealed how the coronary artery network expands during postnatal growth. Vessel
42 diameters do not scale with cardiac muscle growth. Instead, the coronary tree expands
43 solely by adding additional branches of a set length, a burst of which occurs during
44 murine puberty. Finally, we compared mouse structural and functional data to human
45 hearts. Surprisingly, fetal human hearts possessed a very large number of small, but
46 mature, smooth muscle cell covered collaterals while angiogram data indicated adult
47 patients with chronic coronary occlusions contained at least two. Comparing size ratios
48 with modeled mouse data suggested low re-perfusion capabilities of the embryonic
49 collaterals but higher functional benefits of those in diseased adults. Our unique
50 interdisciplinary approach allowed us to quantify the functional significance of collateral
51 arteries during heart regeneration and repair—a critical step towards realizing their
52 therapeutic potential.

54 **Introduction**

55 Cardiovascular disease, including coronary artery disease (CAD), is the leading
56 cause of death worldwide¹. Atherosclerosis causes coronary arteries to become partially
57 or completely occluded, decreasing blood flow to the myocardium and jeopardizing
58 cardiac muscle function and viability. Current treatments include percutaneous
59 interventions and coronary artery bypass graft surgery, but these are highly invasive
60 and a significant number are unsuccessful, especially in diffuse multi-vessel CAD, which
61 calls for new treatments². Humans and some other mammals can develop specialized
62 blood vessels called collateral arteries that function as natural coronary bypasses.

63 Collateral arteries are defined as an artery segment directly bridging two artery
64 branches without intervening capillaries, such that they directly provide blood flow distal
65 to a coronary blockage. Although only a minority of adult humans have functionally
66 significant collateral arteries, clinical observations indicate that they can successfully
67 shunt blood around a stenosis to protect against myocardial ischemia and reduce the
68 risk of cardiac death^{3–6}. Thus, inducing collateral development could be a promising
69 therapeutic approach for treating CAD⁷. However, a major roadblock to this goal is the
70 severe lack of knowledge about collateral developmental mechanisms and their ability
71 to restore blood flow.

72 While studies have characterized the presence or absence of native collateral
73 arteries across different mammals⁸, mice are the most common model for investigating
74 their function during cardiac injury, usually through surgically-induced myocardial
75 infarctions (MI)^{9–13}. Mice do not generally have pre-existing collateral arteries, but they
76 can be observed in adults by 7 days post-MI when using vascular filling approaches, i.e.
77 Microfil injection into the vasculature. This method detects 6–10 collaterals per adult
78 heart at approximately 18 μm in diameter¹⁰. Genetic deletions in chemokine receptors
79 that inhibit macrophages reduces collateral numbers¹⁰. Furthermore, mouse strains with
80 decreased collateral development have genetic variants that lower *Rabep2* expression,
81 which encodes a protein involved in VEGFR2 endosomal trafficking and signaling¹⁴.
82 Thus, mice have been a useful model for understanding various aspects of collateral
83 biology.

84 We recently used a different technique to identify collaterals—whole-mount
85 immunofluorescence—coupled with lineage tracing and mouse genetics to identify the
86 cellular and molecular mechanisms driving collateral development post-MI⁹. We found
87 that, in the regenerating neonate heart, collaterals form post-MI when arterial
88 endothelial cells migrate into the infarct zone in response to hypoxia-induced CXCL12
89 and coalesce into collateral arteries. This process was termed artery reassembly and
90 did not occur in the non-regenerative adult heart, suggesting that the collaterals
91 observed during vascular filling (described above) utilized a different mechanism.
92 Exogenous CXCL12 application induced artery reassembly in adults to create
93 collaterals up to 40 μ m in diameter. Although these collaterals were positively correlated
94 with heart regeneration and repair, and vascular filling methods established direct
95 connections, a detailed description of how blood flows through these relatively small
96 vascular connections is required to fully understand the functional capabilities and
97 therapeutic potential of collateral arteries.

98 How structural parameters affect collateral hemodynamics in these injury models
99 remains an unanswered question due to technical barriers of directly imaging blood
100 flow. Clinical measurements of collateral flow rely on qualitative assessments from
101 angiograms or indirect pressure measurements^{15–17}. More accurate measurements of
102 collateral flow in humans are not only invasive, but somewhat unreliable since
103 conclusive relationships cannot be made without knowing the number and size of all
104 collaterals, many of which cannot currently be imaged in the human heart via
105 angiogram. Visualizing blood flow is even more difficult in experimental animals due to
106 their small size. Conclusions regarding collateral flow are usually reached from ex-vivo
107 data, but not without significant limitations. Methods include: 1. Filling coronary vessels
108 through the aorta (Microfil casting, μ CT and fluorescent conjugates)^{18–23}, which creates
109 a non-cell specific volumetric map of coronary vessels, and 2. Whole mount
110 immunostaining fixed hearts from postnatal transgenic mice⁹. None of these
111 approaches provide a precise picture of how flowing blood will distribute through
112 collaterals.

113 Because the physical laws governing fluid motion are known, computational fluid
114 dynamics (CFD) modeling tools can directly and precisely estimate blood flow. CFD has

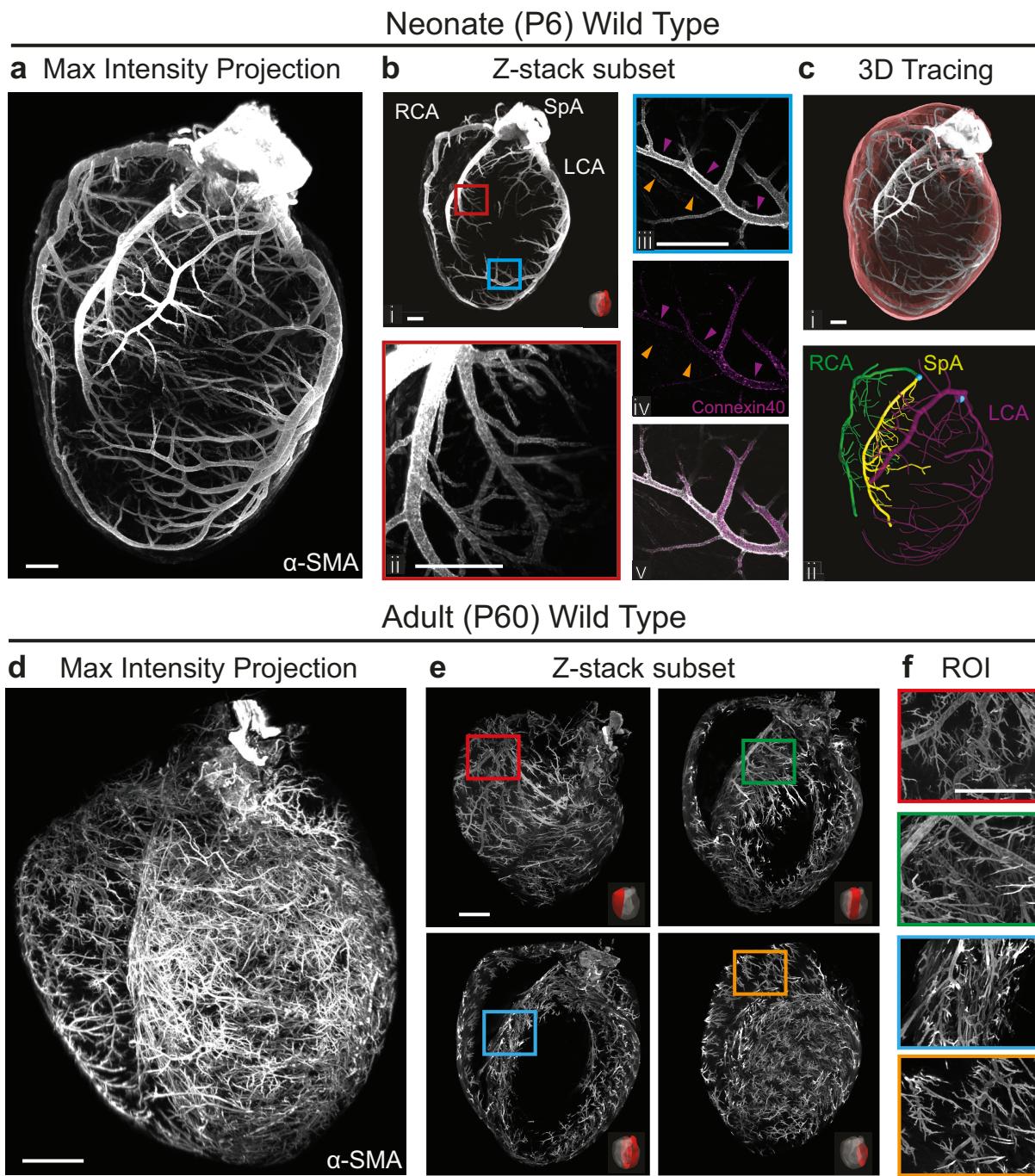
115 contributed to patient-specific surgical and treatment planning in numerous human
116 cardiovascular diseases^{24–28}. CFD modeling has also been applied to the cardiovascular
117 systems of various animals to estimate hemodynamic forces that would otherwise be
118 difficult to directly measure^{29–32}. In mice, computational studies have modeled blood
119 flow in the retinal vasculature, thoracic aorta, and even feto-placental vessels for the
120 purpose of defining how hemodynamic forces influence arterial remodeling events at the
121 cellular and molecular levels^{33–35}. An additional major advantage of CFD modeling is the
122 ability to systematically alter certain parameters while keeping others constant, leading
123 to rapid conclusions on the reparative capabilities of different vascular architectures³⁶.

124 To obtain correct estimates from CFD modeling, it is critical to have high-
125 resolution images of a vascular network with intact volumetric dimensions. To date, the
126 vascular labeling methods utilized have not had the resolution required to generate
127 detailed anatomic models suitable for CFD modeling. However, recent innovations in
128 tissue clearing and whole-organ microscopy now provide the possibility of generating
129 sufficiently high resolution images suitable for CFD model building^{37–40}. Thus, CFD is
130 perfectly poised to push forward our understanding of collateral function.

131 In this study, we sought to interrogate how different collateral configurations
132 affect blood flow post-injury. We optimized whole-organ immunostaining and clearing to
133 label and image the entire intact artery tree, allowing quantification of hemodynamic
134 forces via CFD using high-fidelity 3D models constructed in the neonate and adult. We
135 computationally generated virtual occlusions and various collateral configurations,
136 keeping other model parameters fixed, to measure levels of flow restoration. The results
137 showed that naturally forming collaterals in adult mouse hearts perform poorly and
138 restore little flow. The virtual equivalent of CXCL12-induced collaterals performs better
139 but remain sub-optimal. In contrast, naturally forming collaterals in neonate hearts are
140 highly restorative because the structural parameters of the early coronary tree and
141 cardiac output at this stage results in lower overall pressure loss along the coronary
142 tree. We additionally investigated collateral arteries in human hearts by generating
143 whole-organ images of fetal hearts and analyzing angiograms from patients with chronic
144 coronary occlusions. Surprisingly, we found both fetal hearts contained greater than 40
145 mature, smooth muscle covered collateral arteries, while only an average of two

146 collaterals with measurable flow in patient angiograms. Comparing diameters to CFD
147 mouse models where flow restoration was quantified suggested that human fetal
148 collaterals may be too small to be functionally significant and that those in patients may
149 lie between the capabilities of neonate and adult mouse collaterals. In total, the
150 combination of whole-organ artery labeling with 3D CFD modeling provides a powerful
151 tool to accurately analyze hemodynamic forces in collateral arteries to broaden our
152 understanding of their functional significance and therapeutic potential.

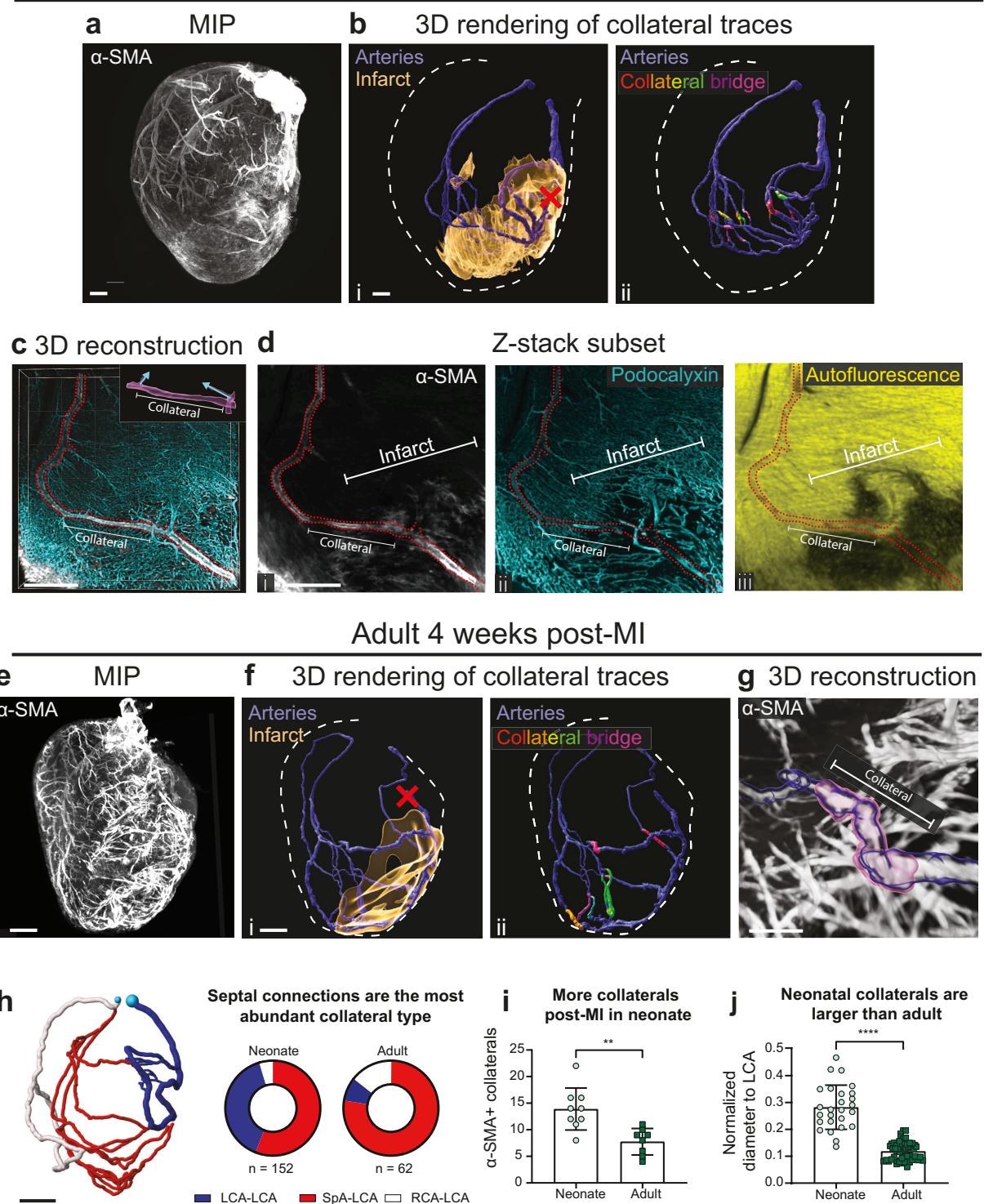
153


154 **Results**

155 **Imaging the entire coronary artery tree in neonate and adult mouse hearts**

156 To utilize 3D CFD for modeling coronary blood flow at high resolution and with
157 controlled parameter perturbations, we required a method to image the entire intact
158 artery tree in three dimensions. A whole-organ immunostaining and clearing method
159 based on iDISCO was optimized for cardiac tissue using postnatal day 6 (P6) mice^{37,39},
160 which allowed us to image smooth muscle actin (α -SMA)-positive arterial smooth
161 muscle cells throughout the heart using Light sheet microscopy (Fig. 1a). The signal-to-
162 noise ratio of α -SMA staining was high, allowing sharp contrast of arteries throughout
163 the entire myocardium (Fig. 1b). Rendering the arterial immunolabeling in 3D using
164 Imaris software revealed vast improvements over our previous method⁹. Specifically,
165 the 3D architecture was retained (Fig. 1c), and we could fully observe the septal artery
166 (SpA) in addition to the left (LCA) and right (RCA) coronary arteries (Fig 1c_{ii}). Another
167 improvement was the ability to fully immunolabel and image intact adult hearts (Fig. 1d).
168 Immunostaining of α -SMA labeled arterial vessels throughout the entire adult heart (Fig.
169 1e), even deep within the septum (Fig. 1f). Co-staining with arterial endothelial marker,
170 Connexin40, confirmed extensive overlap in both neonate and adults (Fig. 1b_{iii-v} and
171 data not shown). Qualitatively, the density of arteries is much greater in neonates
172 compared to adult (Compare Fig.1a and 1d), and more branches were detected when
173 compared to μ CT methods, both in neonatal and adult stages⁴¹. These data
174 demonstrate that iDISCO and Light sheet microscopy together, are capable of
175 effectively labeling and imaging smooth muscle covered arteries throughout neonatal

176 and adult hearts.


184 colocalization of α -SMA+ branches with artery marker Connexin40 (purple
185 arrowheads)(**b_{iii-v}**). An α -SMA^{low}Connexin40- vein (orange arrowheads) is also present
186 in **b_{iii-v}**. (**c**) 3D rendering of myocardial volume (red)(**c_i**) and main coronary artery
187 branches: Right (RCA), Septal (SpA) and Left (LCA)(**c_{ii}**). (**d**) Maximum intensity
188 projection of entire adult heart. (**e** and **f**) Z-Stack subsets of indicated heart regions (**e**)
189 and region-of-interest (ROI) images (**f**) reveal the high resolution and specificity of
190 immunolabeling with this technique. Scale bars: **a-c**, 300 μ m; **d-f**, 500 μ m.
191

192 To characterize collateral arteries using this novel method, we imaged neonatal
193 and adult mice subjected to myocardial infarction (MI)(uninjured mouse hearts do not
194 generally contain collaterals)^{9,10}. Collateral arteries form faster in neonates than in
195 adults⁹. Thus, injured neonatal hearts were harvested 4-days post MI while adult hearts
196 were collected 28-days post-MI, followed by arterial immunolabeling and clearing. A
197 collateral tracing pipeline was developed first using images of neonatal hearts (Fig. 2a).
198 ImageJ's Simple Neurite Tracer plugin^{42,43} was used to trace, in a semi-automated way,
199 every α -SMA+ vessel that originated downstream of the LCA occlusion (suture) and
200 connected to either the RCA, SpA, or the LCA upstream of the occlusion. Traced paths
201 were isolated and masked so that 3D rendering in Imaris created a map of every
202 collateral artery found post-MI (Fig. 2b). The resolution of our method allowed us to
203 annotate the precise collateral segments that bridged two artery branches (Fig. 2b_{ii}). A
204 collateral bridge was defined as the segment of continuous smooth muscle covered
205 vessel that existed between two branch tips with opposing branch angles (Fig. 2c).
206 Tracing did not detect collateral connections in non-injured neonate hearts (Fig. S1).
207 Thus, this method reliably identifies collateral arteries in whole heart images.

208 To ascertain where collateral bridges were localized with respect to injured
209 myocardium, we labeled all coronary vessels in the neonate with Podocalyxin and used
210 the autofluorescence signal to observe surviving cardiac muscle. Areas lacking
211 autofluorescence, which were not present in uninjured hearts, delineated injured
212 myocardium, which was confirmed by accompanying disrupted vasculature (Fig. 2d).
213 Injured regions were outlined and overlaid onto collateral models (Fig. 2b_i). Collateral
214 bridges were usually located at the edge of the infarcted area, connecting regions of
215 muscle and vascular death to unaffected sites in the heart (Fig. 2d). These same
216 methods were then used to identify collaterals and injured myocardium in adult hearts.
217 Similar patterns were observed (Fig. 2e-g).

218 We next quantified collateral connection type, numbers, and relative sizes in our
219 images. Collateral connections were categorized based on which artery they connected
220 (Fig. 2h). The majority of connections in both neonate and adult hearts were SpA-LCA.
221 Neonate hearts formed more LCA-LCA and fewer RCA-LCA connections than adults
222 (Fig. 2h). Neonate hearts also formed approximately 40% more collaterals than adults
223 (Fig. 2i), and their diameters were larger, both absolutely and relative to the proximal
224 LCA (Fig. 2j and data not shown). (Normalization to proximal LCA was performed to
225 account for small differences in individual mouse body size.) These data highlight the
226 importance of advanced imaging methods for observing accurate vascular remodeling
227 patterns, i.e., those involving the septal artery, and underscore the significant
228 differences between young and old hearts.

Neonate 4 days post-MI

Anbazhakan* and Rios Coronado* et al., Figure 2

229

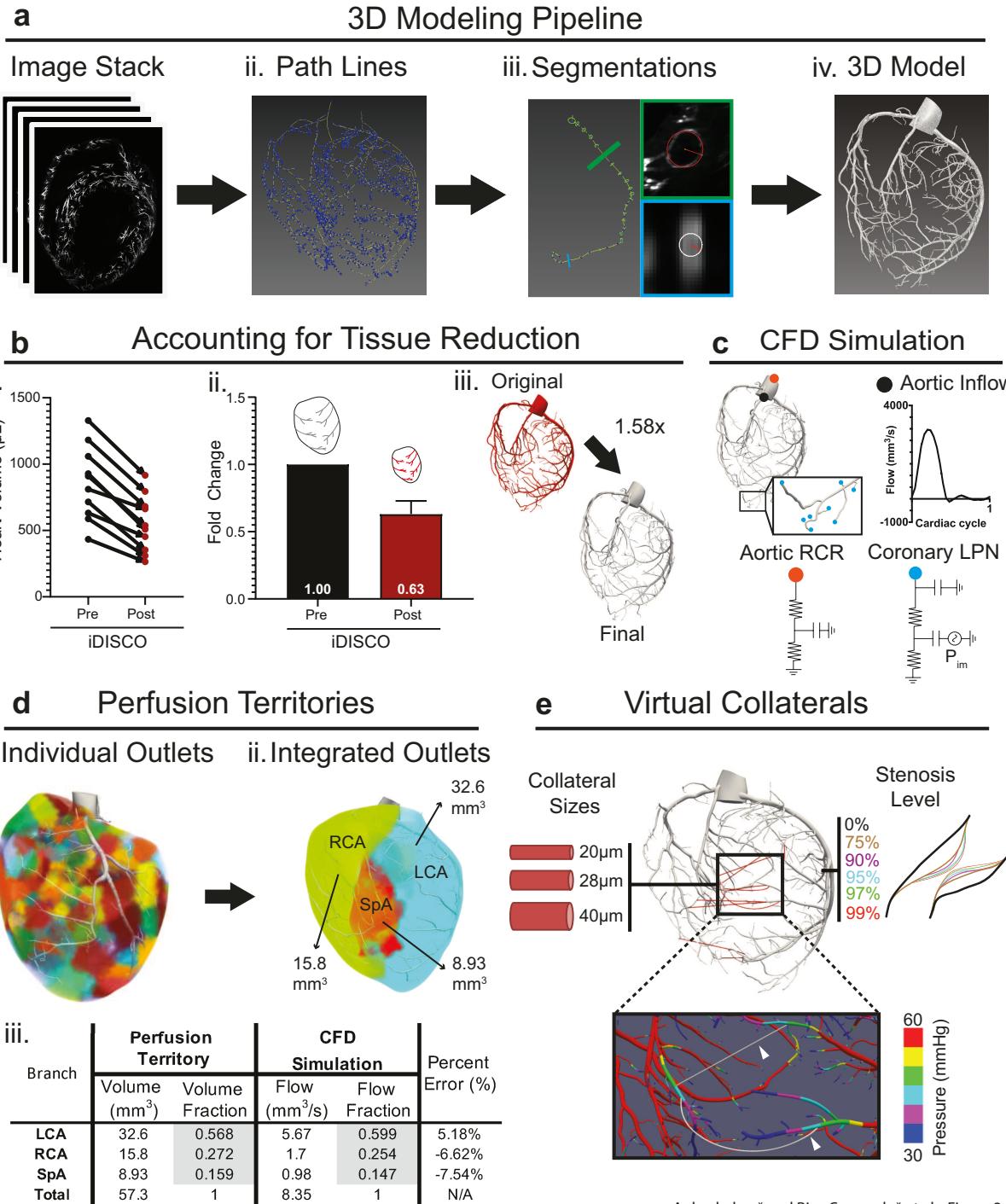
230 **Figure 2: Increased collateral arteries in neonate versus adult hearts post injury.**

231 (a-d) Whole organ imaging of P6 neonatal heart labeled with α -SMA post myocardial

infarction (MI). (a) Maximum intensity projection (MIP) of entire heart. (b) Collateral connections traced from downstream of suture (red X) were 3D rendered and overlaid with infarct volume (b_i) and collateral bridges (b_{ii}). (c) 3D reconstruction of 100 μ m Z-stack containing a representative collateral bridge within a traced vessel (red dotted line). (d) MIP of a 35 μ m Z-stack within c highlighting an α -SMA+ collateral (d_i) and its relation to Podocalyxin labeling all vessels (d_{ii}) and Autofluorescence labeling surviving myocardium (d_{iii}). (e-g) Adult (16-week-old) injured hearts labeled with α -SMA. (e) MIP of entire heart. (f) 3D rendering of collateral connections overlaid with infarct volume (f_i) or collateral bridges (f_{ii}). (g) 3D reconstruction of representative collateral bridge (pink). (h) Classification and distribution of collateral connections. (i) Collateral numbers in neonate (n=9 hearts) and adult (n=8 hearts) post-MI. (j) Collateral diameters in neonate (n=26 hearts) and adult (n=55 hearts) post-MI normalized to the proximal LCA. Scale bars: a-b and e-f, 300 μ m; c-d and g-h, 150 μ m. Right (RCA), left (LCA), and septal (SpA) coronary arteries. Error bars are st dev: **, p≤.01; ****, p≤.0001.

246 Modeling coronary blood flow

247 We next sought to understand how these collaterals might restore blood flow in
248 the presence of a vascular occlusion. An *in silico* approach was employed that would
249 allow us to computationally estimate blood flow while at the same time manipulating
250 different parameters in isolation, such as collateral number, size, and location. First, an
251 anatomically representative model of the native adult coronary tree was created using
252 the open-source software, SimVascular (www.simvascular.org)⁴⁴, from a Light sheet
253 image of a non-injured adult heart labeled with α -SMA (Fig. 3a). The Light sheet images
254 (Fig. 3a_i) were used as a guide for drawing path lines through every artery in the heart
255 up to tertiary branches (Fig. 3a_{ii}, Methods). Arteries were then segmented by drawing a
256 circle that encompassed the entire width at even intervals along the vessel (Fig. 3a_{iii}).
257 SimVascular was used to convert the segmentations into a 3D model (Fig. 3a_{iv}). We
258 next measured the amount of tissue shrinkage that occurs during iDISCO by calculating
259 heart volumes pre- and post-clearing (Fig. 3b_i). Shrinkage was on average 37% (Fig.
260 3b_{ii}), and, thus, the model was computationally uniformly scaled up by 1.58-fold (Fig.
261 3b_{iii}). The result was a model reflecting the realistic anatomic 3D architecture of an adult
262 mouse coronary artery tree.


263 This model was then used to computationally estimate physiologically realistic
264 blood flow parameters throughout the arterial network. The simulations first required
265 setting boundary conditions. At the aortic inlet, a flow waveform was set based on
266 experimentally measured blood velocities from the literature for the neonate⁴⁵ and

adult⁴⁶. Two outlet boundary conditions were set: 1. An RCR Windkessel model representing the systemic circulation at the aortic outlet⁴⁷, and 2. A lumped parameter network (LPN) representing the coronary vessels downstream of the 3D model^{48,49} (Fig. 3c). The lumped parameters included values accounting for vessel resistance at downstream arteries, capillaries, and veins and intramyocardial pressure due to contraction of the ventricle (Fig. 3c). Simulations were run on initial estimated parameters (see Methods) and were subsequently tuned to match expected flow splits between coronary branches to ensure our CFD simulation was distributing the flow proportionally. Flow splits were calculated based on perfusion territories for each of the 3 main branches of the coronary arteries. Each region of the myocardium was connected to its closest arterial end branch, and all the subregions were identified as belonging to branches of either the LCA, RCA, or SpA (Fig. 3d_{i-ii}). The method estimated the LCA, RCA, and SpA to perfuse 60%, 25%, and 15% of the myocardium, respectively (Fig. 3d_{ii}). Using this information to tune outlet boundary conditions (Fig. S2, Methods) resulted in close agreement between estimated perfusion territory and simulated flow splits (Fig. 3d_{iii}). Outlet boundary conditions were held constant as stenosis severity was increased. While this doesn't account for remodeling events due to the stenosis, we are specifically modeling the immediate flow of collaterals arteries that exist before a stenosis would develop. In total, the adjustments to the model and boundary conditions provided a model with close concordance to native physiology.

Our next goal was to investigate collateral blood flow, and one benefit of a computational approach is that parameters, such as collateral number/size and stenosis severity, can be virtually modified and systematically tested (Fig. 3e). We placed virtual collaterals within the native coronary tree model described above, using post-injury imaging data to guide general placement (see Fig. 2). Computationally derived pressure values were then used to precisely adjust placement at each branch so that collaterals joined two regions of equal pressure. This minimized flow across collaterals without stenosis, which is important to establish a consistent baseline so that different configurations could be properly compared (Fig. 3e, Fig. S3). These guidelines were used to produce 5 different collateral configurations in the adult heart (Fig. S3). We compared pressure difference, flow, and shear stress in all collaterals from each

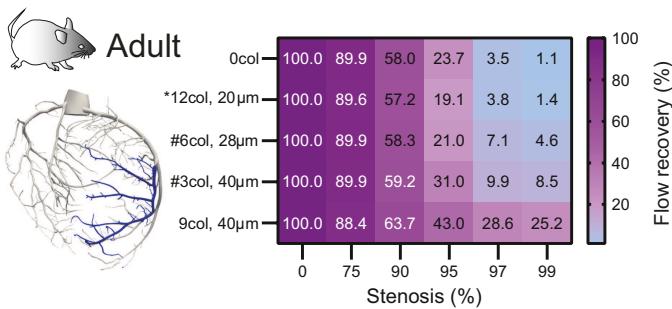
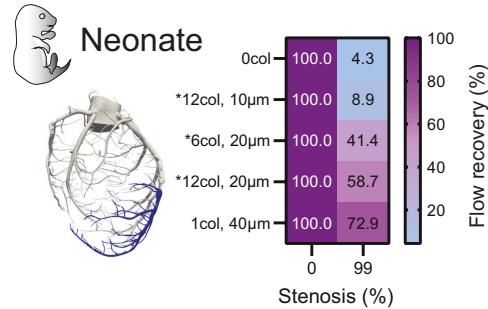
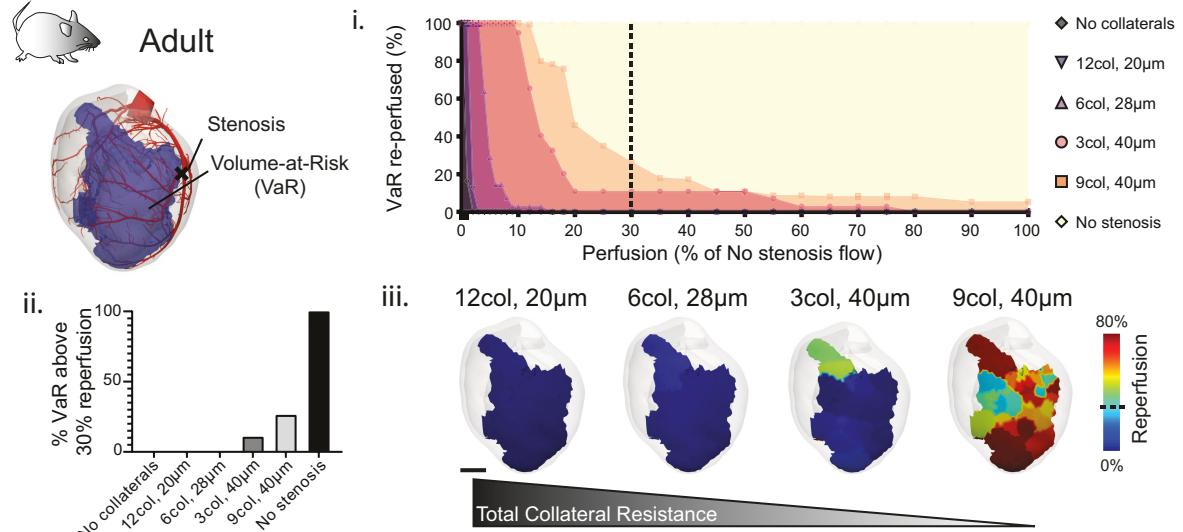
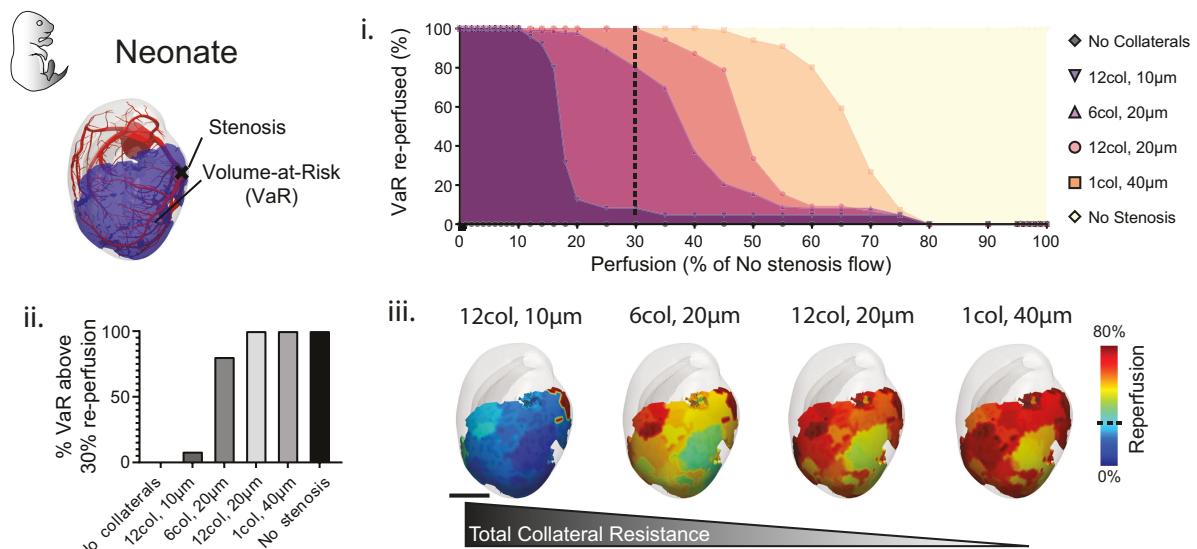
298 configuration to Poiseuille's law, which analytically describes flow through a circular
299 cylinder, to ensure the results of our simulations were reasonable (Fig. S4, Methods).
300 These data verified virtually-placed collaterals for use in computational flow modeling.

301 Because we wanted to make comparisons between adult and neonate hearts, we
302 performed the same workflow with an uninjured P6 heart. Perfusion territories were
303 similar, but a lower aortic inflow was prescribed for neonates to match lower mean
304 pressures following published values^{45,50}. Four collateral configurations were produced
305 for neonates (Fig. S3). Then, adult and neonate models were used to investigate re-
306 perfusion upon virtual stenosis.

307

308 **Figure 3: Building a physiologically representative 3D model of mouse coronary**
 309 **arteries. (a)** Pipeline for generating 3D models from Light sheet images. **(b)** Scaling
 310 model to account for tissue volume reduction during iDISCO procedure. Measuring
 311 heart volumes pre- and post-processing **(b_i)** yielded an average reduction value **(b_{ii})**
 312 used to generate a scaling factor for models **(b_{iii})**. **(c)** Schematic of coronary simulation
 313 with a prescribed flow waveform at the inlet, RCR boundary condition at the aortic
 314 outlet, and coronary LPN at each coronary outlet. **(d)** Determining perfusion territories

315 required first utilizing the Voronoi algorithm to outline perfusion subvolumes for each
316 individual outlet (d_i). Then, subvolumes were grouped by right (RCA), left (LCA), and
317 septal (SpA) coronary branches (d_{ii}). Outlet boundary conditions were tuned by
318 matching simulated flow splits to perfusion territories (d_{iii}). (e) Schematic depicting
319 variations on collateral and stenosis parameters used in this study. Collaterals were
320 placed to connect approximately equal pressure zones (white arrows). RCR, 3-element
321 Windkessel model; LPN, lumped parameter network; P_{im} , intramyocardial pressure.

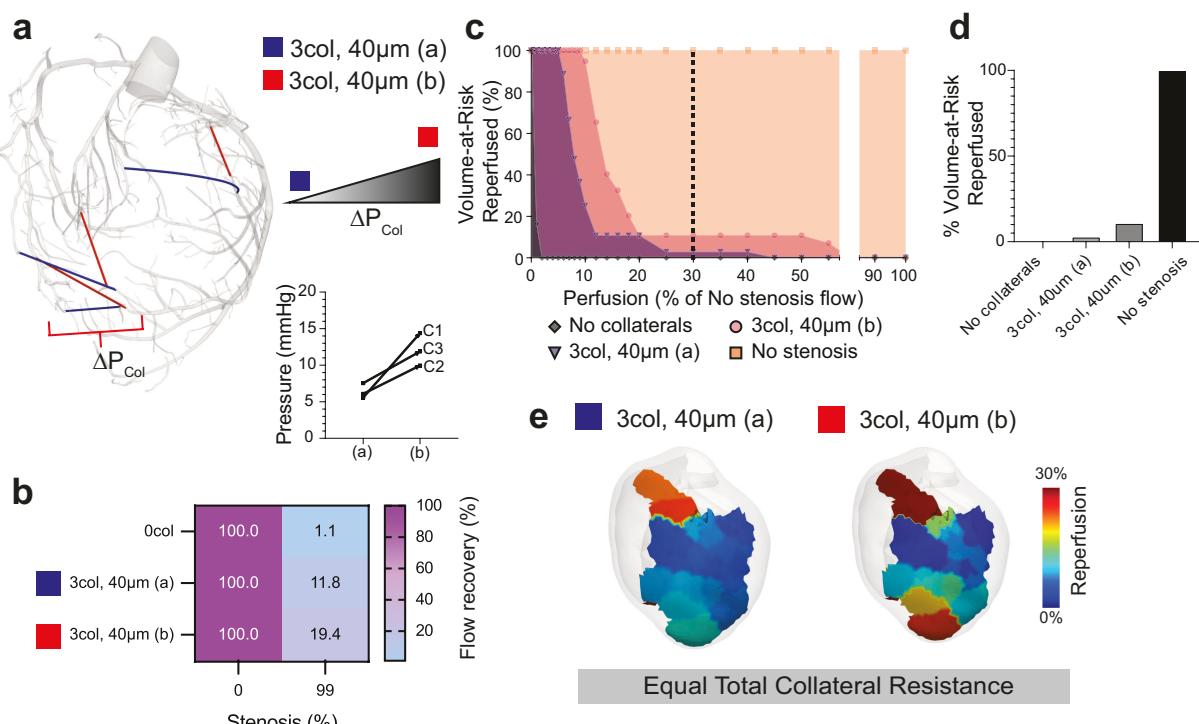




322 **Investigating flow recovery by collateral arteries**

323 We next sought to understand the level of flow recovery by virtual collaterals in
324 the presence of coronary occlusions. One way to quantify re-perfusion is to sum the
325 flows from all outlets downstream of the virtual stenosis and compare this to a
326 normalized baseline flow with no stenosis (set at 100%). As expected, with no
327 collaterals in adults total flow downstream of stenosis decreases when percent
328 occlusion increases, especially above 90% (Fig. 4a, top row in chart). When comparing
329 all the configurations tested at all stenosis levels, the configuration with 9 collaterals at
330 40 μ m (9col, 40 μ m) provides the most flow recovery benefit, especially at 99% stenosis
331 where it restores almost 25% of the non-stenotic flow compared to just 1% without
332 collaterals (Fig. 4a, right-most column in chart). However, this extent of collateralization
333 does not occur naturally with coronary artery ligation in adult mice (see Fig. 2i and refs
334 9,10). We noted that configurations similar to those observed experimentally, i.e. 6-
335 12col, 20 μ m, recovered very little flow as measured by this method (Fig. 4a). These
336 data demonstrate that collateral arteries as they naturally form after adult coronary
337 occlusion are not expected to appreciably recover blood flow, but that increasing
338 diameters, which is a major factor in reducing overall resistance, could enhance their
339 function.

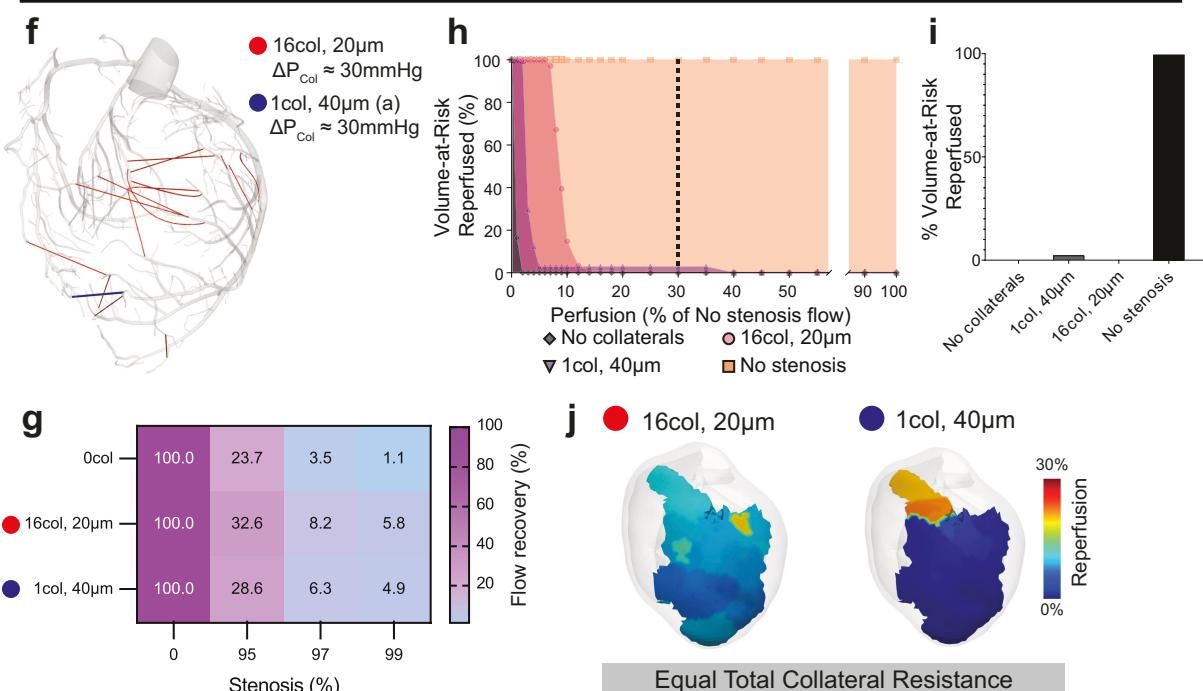
340 In contrast to the poor function of adult collaterals, those of the same size and
341 number in neonates performed well. The configuration that naturally forms in neonates
342 (i.e. 12col, 20 μ m, see Fig. 2i and ref 9) is estimated to recover up to 60% of total flow
343 downstream of a 99% stenosis (Fig. 4b). Remarkably, the largest diameter tested (40
344 μ m) only required one vessel to provide massive recovery in neonates (Fig. 4b, last row
345 in chart). As mentioned above, to compare adult and neonate flow recoveries, it is
346 important to confirm that collaterals generally connect equal pressure zones (+/- 10

347 mmHg) so that all configurations start with a similar collateral flow. This was further
348 evident by the observation that adding collaterals did not change total downstream flow
349 without stenosis and primarily increased flow only with increasing stenosis severity (Fig.
350 S3). We concluded that collaterals in neonate hearts perform better than in adults.

351 The above analysis calculated overall recovery of pre-stenosis levels, but clinical
352 data indicate that myocardial tissue could be supported at approximately 30% of
353 baseline flow^{51,52}. Thus, we next sought to gain a more nuanced understanding of
354 recovery by considering individual outlet perfusion territories downstream of the
355 stenosis, so that we could observe if certain regions were receiving sustainable re-
356 perfusion (i.e. >30% re-perfusion). First, we grouped all perfusion territories downstream
357 of the stenosis to obtain the full volume-at-risk (Fig. 4c) and then plotted the percentage
358 of that volume that is re-perfused above a certain threshold (Fig. 4c_i). This revealed that
359 while there were still no sustainably re-perfused regions in the 12col, 20 μ m and 6col,
360 28 μ m configurations, the 3col, 40 μ m and 9col, 40 μ m configurations were able to sustain
361 10 and 25% of the volume-at-risk, respectively (Fig. 4c_{i-iii}). However, in the neonate, the
362 6col, 20 μ m re-perfused 80% of the volume-at-risk over the 30% threshold while the
363 12col, 20 μ m and 1col, 40 μ m configurations re-perfused the entire volume-at-risk (Fig.
364 4d_{i-iii}). These data emphasized that collateral configurations of the same size, and thus
365 same resistance, function better in the neonatal heart.


a Adult Flow Recovery**b Neonate Flow Recovery****c Adult Volume-at-Risk Re-perfused****d Neonate Volume-at-Risk Re-perfused**

368 **Figure 4: Collateral arteries are predicted to perform better in neonate hearts. (a**
369 and **b**) Measuring re-perfusion capacity by calculating percent of total non-stenotic flow
370 in vessels downstream of the virtual occlusion (blue vessels). Asterisks denote
371 configurations observed experimentally; hashtags denote sizes observed following
372 CXCL12 injection⁹. Functionally significant re-perfusion is only seen in neonates under
373 physiological conditions. (**c** and **d**) Percent re-perfusion of myocardial volume-at-risk
374 (VaR)(blue region) in adult (**c**) and neonatal (**d**) models. Cumulative histogram (**c_i, d_i**),
375 bar graph of percent VaRs above 30% (**c_{ii}, d_{ii}**), and visual maps of re-perfusion within
376 the VaR (**c_{iii}, d_{iii}**). Dotted line marks the ischemia threshold of 30% non-stenotic flow.
377 Scale bar: 1000 μ m.
378


379 We next explored whether a more favorable placement of collaterals could
380 improve the poor performance seen in adults. We started with a 3col, 40 μ m
381 configuration (Fig. 5a, blue) and moved each collateral to a more proximal location in
382 the coronary tree (Fig. 5a, red). This manipulation almost doubled total flow recovery
383 (Fig. 5b) and approximately tripled the volume of myocardium re-perfused above the
384 30% threshold (Fig. 5c-e). Thus, variation in location can improve collateral function,
385 likely because the pressure difference with more proximal attachments is much greater,
386 resulting in increased flows.

387 The above data suggested that fewer, larger collaterals are better than many,
388 smaller ones (see Fig. 4). However, in those experiments, the total collateral resistance
389 varied between the configurations. We tested this hypothesis by varying the number
390 and size of the collaterals while keeping the total resistance equal. Simulations were
391 performed on 2 configurations—16col, 20 μ m and 1col, 40 μ m (Fig. 5f). While total flow
392 recovery was approximately equivalent (Fig. 5g), the 1col, 40 μ m configuration was
393 uniquely able to re-perfuse 5% of the volume-at-risk above 30% (Fig. 5h-j). This
394 analysis shows that fewer, larger collaterals could be more beneficial because they at
395 least protect a portion of the myocardium while many, smaller collaterals distribute the
396 re-perfusion so that none reach protective levels.

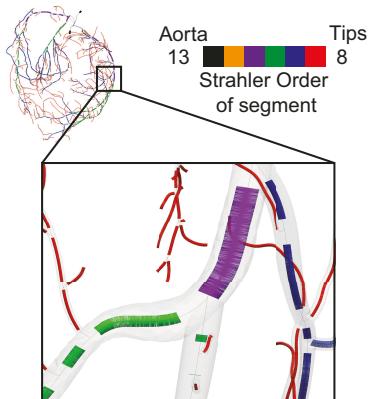
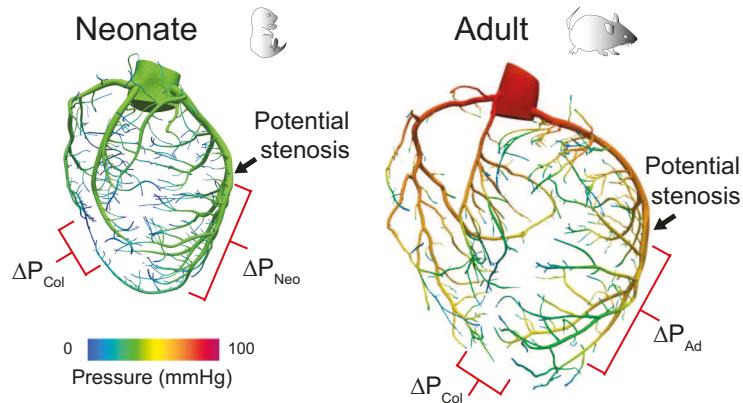
Placement of collateral affects flow

Tradeoff between many and few collaterals

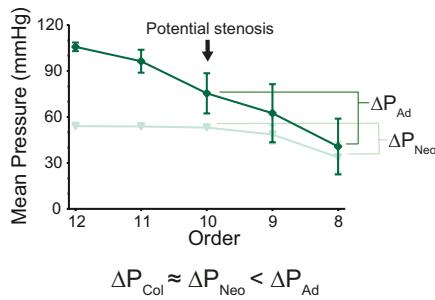
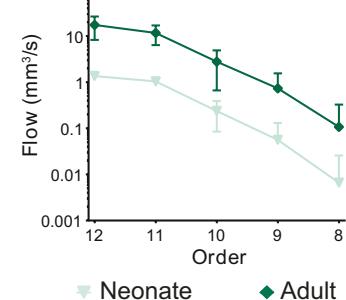
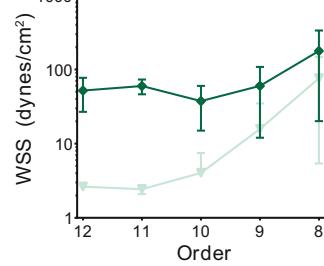
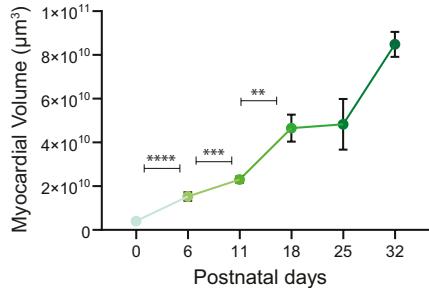
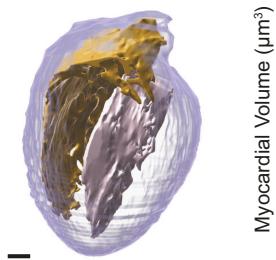
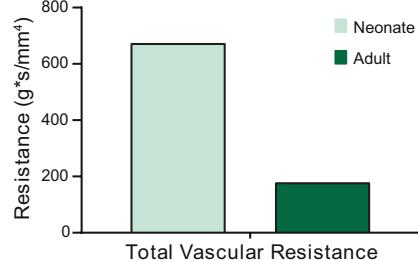
397

398 **Figure 5: Evaluating collateral placement and the tradeoff between collateral**
399 **number and size. (a-e) Investigating how collateral placement affects re-perfusion**

Anbazhakan* and Rios Coronado* et al., Figure 5



400 using two collateral configurations. (a) 3 collaterals with either high (red square) or low
401 ΔP_{Col} (blue square). (a) Graph showing the ΔP_{Col} changes caused by altering placement
402 for each collateral. (f-j) Investigating re-perfusion tradeoff between many, small and few,
403 large collaterals using two configurations: 16 collaterals at 20 μ m (red circle) and 1
404 collateral at 40 μ m (blue circle). (b, g) The total non-stenotic flow in vessels downstream
405 of the virtual occlusion. Cumulative histogram (c, h), bar graph of percent volume-at-risk
406 (VaR) above 30% (d, i), and visual maps of re-perfusion within the VaR (e, j). Dotted
407 line marks the ischemia threshold of 30% non-stenotic flow. ΔP_{Col} , pressure difference
408 across collaterals.

409 **Adult vs. neonate coronary artery morphology**







410 Given that collaterals of the same size and total resistance were predicted to
411 proportionally recover more flow in the neonate, we sought to understand why and first
412 investigated arterial pressures at collateral formation sites at both ages. To facilitate
413 comparisons between the two time points, Strahler ordering was used to classify branch
414 segments into orders based on hierachal position in the coronary tree and vessel
415 diameter^{53,54}. Order 13 represented the aorta, order 12 represented the most proximal
416 coronary artery segments, and subsequent orders represented downstream vessels
417 until 8, which were the most distal branches modeled (Fig. 6a). This was used to
418 compare hemodynamic and anatomical quantities at similar points in the coronary tree
419 in both the adult and neonate. While absolute aortic and proximal coronary (order 12)
420 pressures were vastly increased in the adult, the pressures at the most distal coronary
421 tips (order 8) were approximately equal (Fig. 6b and c). Quantification revealed that the
422 pressure drop along the coronary tree was ~20 and ~50 mmHg in neonate and adults,
423 respectively (Fig. 6c). This is also true when considering just the segments downstream
424 of the stenosis, making $\Delta P_{Ad} > \Delta P_{Neo}$ (Fig. 6b and c). Thus, the collateral pressure
425 difference (ΔP_{Col}) required to restore pre-stenotic flow downstream of the occlusion is
426 higher in the adult. Specifically, the ΔP_{Col} needs to be about ~2-fold more in the adult to
427 restore the same flow. Given that we see similar distal pressures at both stages, this
428 explains why, even though collaterals in both recover the same absolute flow, it is much
429 lower than the baseline, non-stenotic flow in the adult.

430 Our next experiments were aimed at understanding why ΔP_{Ad} was greater than
431 ΔP_{Neo} . Two factors critical for determining ΔP are flow rate and total resistance of the
432 coronary tree. First, we compare the flow rate at each Strahler order between the

433 neonate and the adult coronary models. Literature values indicated that aortic flow in
434 adults is approximately ten times more than neonate, which was used as the inflow
435 boundary condition for the computational model (see Fig. 3c)⁴⁵. Simulations revealed
436 that flow was also 10-fold greater for every vessel order modeled in the coronary tree
437 (Fig. 6d). Shear stress was lower in neonates compared to adults, particularly in higher
438 order vessels (Fig. 6e). We confirmed this trend held true when increasing the mesh
439 size from 1.8 to 10 million elements; there was less than 10% difference in average
440 shear stress with increased mesh resolution. Flow values were in line with increases in
441 myocardial volume over time, i.e. volumes at P32 were more than 10-fold of P0 (Fig. 6f).
442 The ability to rapidly determine volumes allowed us to analyze additional timepoints,
443 which revealed a linear increase in myocardial volume during the first two weeks of life,
444 a plateau between P18-25, and a burst of growth from P25-32. Second, we used the
445 simulated flows and pressures to calculate the total resistance of the 3D coronary
446 model. Neonate total vascular resistance was 3-fold that of adults (Fig. 6g). Since flow
447 was increased by 10-fold, the 3-fold decrease in total resistance is not enough to offset
448 flow increases. Thus, while the resistance of the coronary vasculature decreases in the
449 adult, it's not able to lower the resistance enough to balance the much greater flow,
450 which manifests in a greater ΔP in adults.

a Strahler ordering**b Pressure distribution**

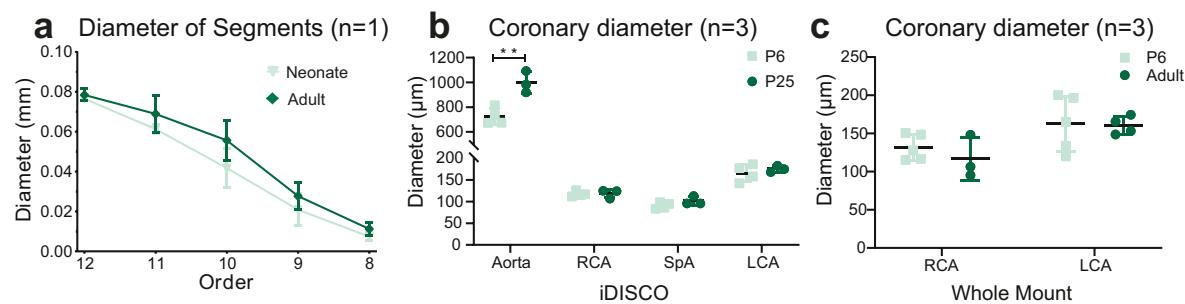
Greater pressure loss due to increased flow

c Mean Pressure**d Flow****e Wall Shear Stress****f Heart volume increases proportional to flow****g Resistance moderately decreases in adult**

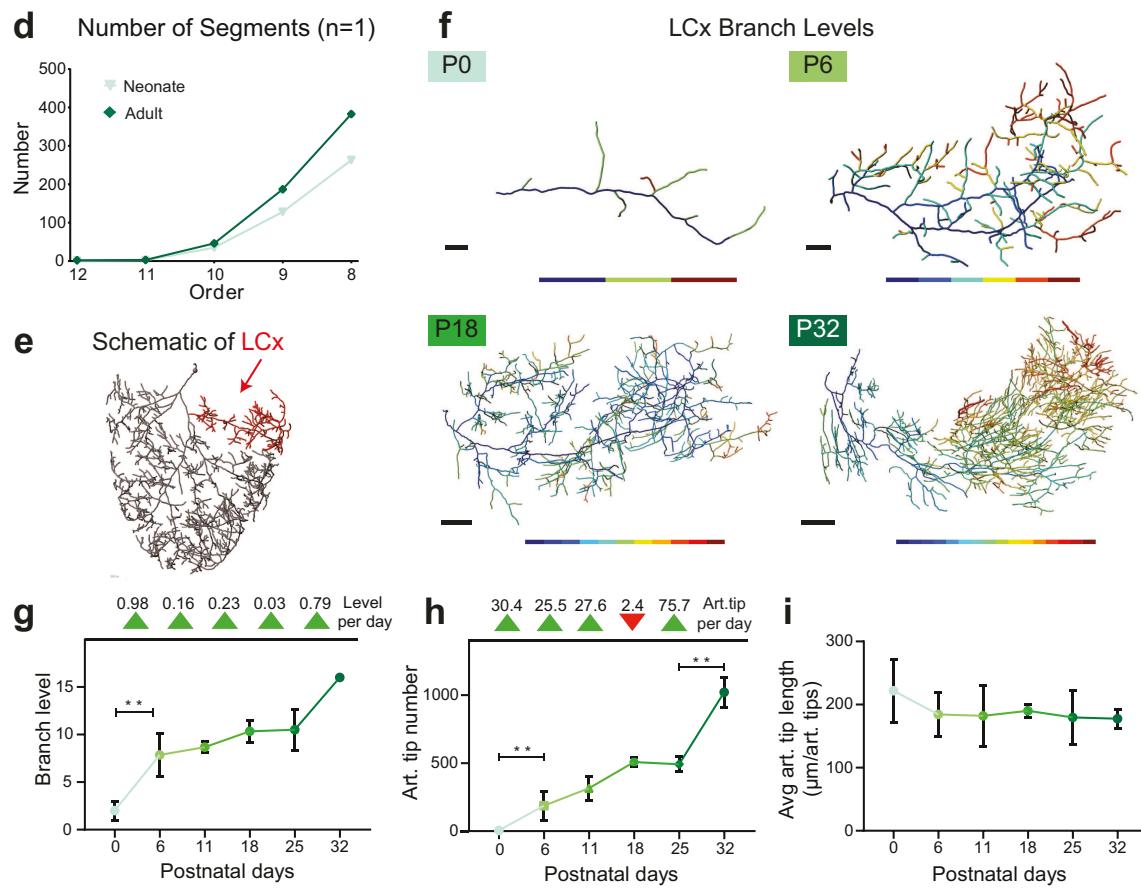
Anbazhakan* and Rios Coronado* et al., Figure 6

451

452 **Figure 6: Investigating hemodynamic differences between neonate and adult. (a)**
453 Strahler ordering categorizes segments of the arterial tree from order 13 (aorta) to order
454 8 (distal tips). **(b)** Pressure distribution in the neonate and adult coronary models. **(c-e)**
455 Quantification of pressure **(c)**, flow **(d)**, and wall shear stress **(e)** vs. Strahler order ($n=1$
456 P6, $n=1$ P60 heart model). **(f)** Heart volume segmentation (left) and quantification ($n=3$
457 P0, $n=7$ P6, $n=3$ P11, $n=2$ P18, $n=2$ P25, $n=2$ P32 hearts). **(g)** Total 3D resistance of
458 the coronary tree in neonate and the adult models revealed a 3-fold decrease in adults.
459 ΔP_{Col} , pressure difference across collaterals; pressure difference downstream of a


460 potential stenosis in the neonate, ΔP_{Neo} , and the adult, ΔP_{Ad} . Error bars are st dev: **,
461 $p \leq .01$; ***, $p \leq .001$; ****, $p \leq .0001$.

462


463 We next investigated what features contribute to the nonproportional decrease in
464 resistance with respect to the flow increase from neonate to adult. Two factors critical
465 for determining resistance are vessel diameter and number of branches. Increases in
466 these parameters both work to lower total resistance, diameter being the most
467 impactful. Surprisingly, we found that the diameters were the same across all Strahler
468 orders in each model (Fig. 7a). We validated this by comparing diameters of the most
469 proximal segments of the RCA, SpA, LCA and aorta in multiple replicates of neonatal
470 and adult hearts (Fig. 7b). The coronary stem diameter remains virtually the same while
471 aortic diameter increased with age (Fig. 7b), a result we validated using an orthogonal
472 method (Fig. 7c). Thus, coronary diameters do not grow proportionally to heart volume,
473 which suggests that diameter expansion does not function to relieve vascular resistance
474 in the face of increased flow demand in adults.

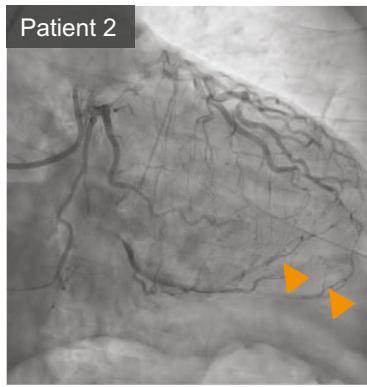
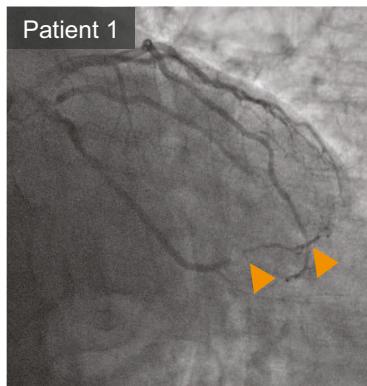
475 If arteries do not increase in diameter, additional branches must be added to at
476 least partially offset the increased flow that accompanies heart growth. We next
477 quantified branching during postnatal development. Comparing the Strahler ordering of
478 the two stages revealed that the number of distal vessels (order 9 and 8) were vastly
479 increased (Fig. 7d), aligning with qualitative observations from imaging (see Fig. 1).
480 Since the 3D SimVascular models did not contain arterioles distal to tertiary branches,
481 we further investigated morphometry by manually tracing all α -SMA vessels in a
482 representative branch—the Left Circumflex (LCx)(Fig. 7e, red). Imaris software filament
483 tracing binned each segment of the LCx according to branching levels and quantified
484 the number of arteriole tips (Fig. 7f). The number of branching levels spiked between
485 P0-6 and then hit a plateau until another spike between P25-32 (Fig. 7g). Number of
486 tips increased linearly up to P18 with another spike between P25-32 (Fig. 7h). The P6-
487 18 plateau in number of branch levels compared to the linear increase in number of tips
488 over the same time period indicated that the coronary arteries grow by adding branch
489 segments along the entire length of existing branches. We also observed that the length
490 of each segment was constant among all ages tested (Fig 7i). This results in a coronary
491 tree with many lateral branch segments of a set length.

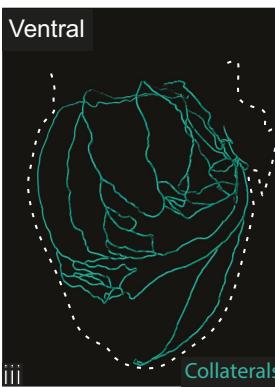
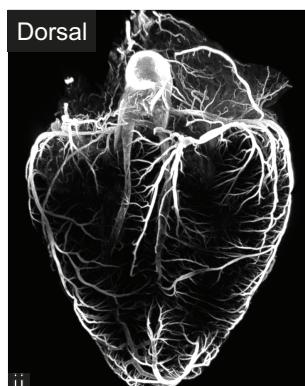
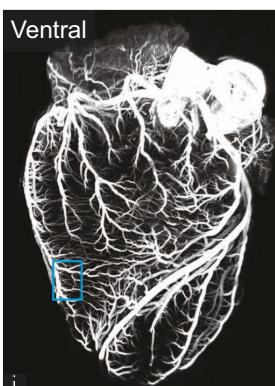
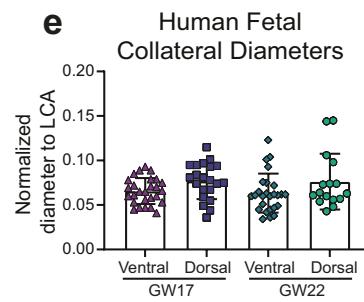
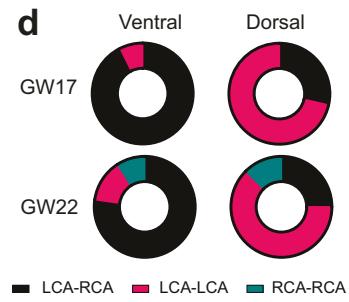
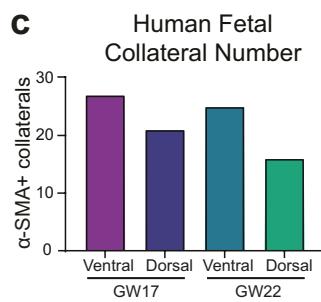
Coronary diameters remain constant

Branching and number of tips increase

Anbazhakan* and Rios Coronado* et al., Figure 7

494 **Figure 7: Main branch coronary artery diameters remain constant while**
495 **branching increases throughout postnatal development. (a)** Quantification of
496 diameter vs. Strahler order. **(b and c)** Main branch coronary diameter measurements
497 from additional hearts processed through iDISCO **(b)** or conventional whole mount
498 immunostaining without clearing **(c)**. **(d)** Number of artery segments per Strahler order.
499 **(e)** Semi-manual segmentation of LCA, highlighting the left coronary circumflex branch
500 (LCx, red). **(f)** Visual representation of branch levels in 3D reconstructed LCx traces. **(g)**







501 Number of branch levels of LCx at each timepoint. Arrowheads indicate rate of change
502 per day. **(h)** Number of arterial (art.) tips in the LCx at each age. Arrowheads indicate
503 rate of change per day. **(i)** Average art. segment length in LCx at each timepoint. **(a,d)**
504 n=1 P6, n=1 P60 hearts; **(b)** n=4 P6, n=3 P25 hearts; **(c)** n=5 P6, n= 4 P60 hearts;
505 **(g,h,i)** n=3 P0, n=7 P6, n=3 P11, n=2 P18, n=2 P25, n=2 P32 hearts. Scale bars: **f**, P0,
506 100 μ m; P6, 200 μ m; P18, 400 μ m; P32, 500 μ m. Error bars are st dev: **, p \leq .01.

507 **Human fetal and adult coronary collateral arteries**

508 A subset of human hearts contains collateral arteries, which are easily observed
509 during an angiogram and are correlated with increased survival in heart disease
510 patients^{55,56}. We sought to identify how our computational modeling studies could help
511 us better understand human collateral function. Thus, we compared the data available
512 from human hearts to our mouse models. We measured vessel diameters for the
513 collaterals observable in angiograms from five patients living with chronic total
514 occlusions (Fig. 8a). This patient population was chosen because their collaterals would
515 be expected to sufficiently support myocardial perfusion downstream of the occlusion
516 without exercise. To compare to mouse data, we also normalized human diameters to
517 the most proximal segment of the LCA. Collateral diameters were on average 15
518 percent of the LCA (Table 1). These values were in between those observed in the
519 neonate and adult mouse hearts (Table 1). However, a limitation of this comparison is
520 that diameters in angiograms were measured in a 2D projection, which may affect
521 accuracy of absolute values. We also found an average of 2 collaterals per heart (Table
522 1), but comparisons with mouse data using this parameter are less desirable because
523 angiograms will only highlight a subset of the collaterals that immunostaining would
524 label. These data provide a foundation to determine re-perfusion benefit, but a very
525 precise understanding in humans will need to consider the different pressure
526 distributions resulting from human specific morphology.

527 Using post-mortem perfusions, studies from the 1960s reported the presence of
528 coronary collateral arteries in infants and children^{57,58}, but no one has reported whether
529 collaterals develop during embryogenesis. Furthermore, using smooth muscle coverage
530 to identify collateral connections in humans has not been done. We processed two fetal
531 hearts aged 17 and 22 weeks with the same whole-organ immunolabeling method used
532 for murine hearts (Fig. 8b_{i-ii} and Fig. S5). Both hearts had visible collaterals on the

533 dorsal and ventral sides (Fig. 8b_{iii-iv} and Fig. S5). Remarkably, >17 collaterals were
534 detected per side (Fig. 8c), which suggests that the whole human heart has at least 40
535 pre-existing, smooth muscle covered collaterals forming during embryonic development.
536 On the ventral side, most connections bridged distal branches of the RCA and LCA
537 while the majority on the dorsal side connected two LCA branches (Fig. 8d). Collateral
538 diameters were not significantly different across locations or between ages and were on
539 average 7 percent of the most proximal LCA segment (Fig. 8e). Thus, unlike mouse,
540 human hearts have mechanisms in place to form native collateral arteries as part of
541 normal development, which we hypothesize could be the precursors for those that
542 preserve myocardium downstream of an occlusion.

a Human Adults CTO**b Human Fetal GW17****Quantification Human Fetal GW17 and GW22**

Anbazhakan* and Rios Coronado* et al., Figure 8

543

544 **Figure 8: Collateral arteries in adult and fetal human hearts.** (a) Representative
545 invasive angiograms from adult chronic total occlusion (CTO) patients. Orange
546 arrowheads indicate collaterals. (b_{i-ii}) Maximum intensity projections of fetal human
547 heart, ventral (b_i) and dorsal (b_{ii}) sides. (b_{iii}) Traced collateral connections on the
548 ventral side. (b_{iv}) High magnification (boxed in b_i) of collateral bridges (arrowheads). (c-
549 e) Quantification of collateral bridge numbers (c), connection types (d), and diameters
550 (e). GW, gestational week. Scale bars: 1 mm.
551

Species	Age	Condition	Number of Collaterals	Diameter Ratio to LCA	LCA Diameter (mm)	Measurement
Human	Adult	CTO	1.80±0.84	0.15±0.06	5.67±1.09	Angiogram
	Fetal GW17	Native	48	0.07±0.02	0.42	LSM
	Fetal GW22	Native	43	0.07±0.03	0.53	LSM
Mouse	Neonate	MI-4 days	13.9±3.95	0.28±0.08	0.12±0.04	LSM
	Adult	MI-4 weeks	7.75±2.49	0.12±0.03	0.13±0.04	LSM

552

553 **Table 1. Human fetal hearts have many relatively small collateral arteries.**

554 Quantification of collateral artery parameters in human adult CTO patients (n=5), fetal
 555 GW17 (n=1) and GW22 (n=1) hearts, neonate (P6) 4 days post-MI (n=9), and adult (16-
 556 weeks) 4 weeks post-MI (n=8) mouse hearts. GW, gestation week; P, postnatal day;
 557 CTO, chronic total occlusion; MI, myocardial infarction; LCA, left coronary artery; LSM,
 558 light sheet microscopy. Reported values are mean ± st dev.
 559

560 **Discussion**

561 This study is, to our knowledge, the first-time 3D CFD has been used to quantify
 562 hemodynamic forces in the adult and neonatal mouse coronary vasculature. The
 563 findings here suggest the possible benefit of promoting the growth of fewer, larger
 564 arteries and the natural benefit collaterals have in restoring pressure downstream of a
 565 stenosis in neonatal hearts.

566 Our whole-organ immunolabeling method identifying the structural relationship of
 567 collaterals to coronary artery branches suggested that, in mice, the septal artery could
 568 play a more critical role in cardiovascular recovery than previously thought. Recent
 569 studies utilizing flattened hearts for whole-mount imaging failed to distinguish the SpA
 570 from the RCA⁹. Here, tissue clearing and Light sheet microscopy allowed visualization
 571 of the intact 3D structure and the complete septal artery, revealing its architectural
 572 complexity in healthy hearts. Recent studies have outlined SpA development and
 573 proposed that the location of its origin from the aorta could significantly impact cardiac
 574 recovery during injury models⁵⁹. Our imaging results suggest a potential route to
 575 investigate how positional interactions between these branches could impact vascular
 576 repair.

577 While other studies have performed automatic segmentation and flow modeling
578 of mouse brain and retinal vasculature, there is currently no standard for segmentation
579 and 3D flow simulations in the entire mouse coronary vasculature³⁵. We manually
580 segmented over 300 vessels of the adult and over 200 vessels of the neonate coronary
581 network to ensure accurate representation and high model fidelity for fluid simulations
582 using SimVascular. Manual segmentations are currently required because the signal-to-
583 noise ratios, even with high performing antibodies such as anti- α -SMA, are easily
584 recognized by the human eye, but can cause errors in fully automatic segmentations.
585 Methods are in development to improve automation, such as TubeMap, which utilizes
586 machine learning algorithms to produce high fidelity automated segmentations of the
587 brain vasculature⁶⁰. Future work will focus on using or developing similar methods to
588 automate segmentation for cardiac vasculature.

589 One major advantage of CFD modeling over *ex vivo* measurements of
590 experimental samples is the capability to easily modify one feature, i.e. collateral
591 structure, while keeping all other parameters constant. We tested multiple collateral
592 configurations within the same model to understand the relationship of number, position,
593 and diameter on flow recovery, without potential secondary effects from mouse-to-
594 mouse variations in coronary structure. In this study, we considered values above 30%
595 of non-stenotic perfusion levels as being beneficial. This was based on previous *in vivo*
596 and *in vitro* studies suggesting that myocardial tissue receiving less than 25-30% of
597 baseline flow begins to display measurable signs of cardiac dysfunction. For *in vivo*,
598 when patients were subjected to balloon occlusion of the LCA, only those with greater
599 than approximately 30% coronary flow index maintained normal ST-segments during
600 electrocardiogram⁵¹. During Langendorff perfusion preparations, heart rate and left
601 ventricle pressures began recovering to normal values above 25% of normal perfusion
602 rates⁵². Simulations demonstrated that increasing diameters or positioning collaterals
603 more proximally allowed them to restore a greater volume of cardiac tissue to this 30%
604 re-perfusion value, more so than increasing numbers of smaller collaterals. One
605 limitation here is that we are not able to test the exact re-perfusion level required for
606 myocyte viability specific to each heart. However, we believe that these data are
607 valuable to other scientists in the field studying collateral arteries by giving them general

608 guidelines of how tested factors affect collateral flow and re-perfusion. With this
609 understanding, physical differences between phenotypes or conditions can be more
610 confidently related to functional differences.

611 It was surprising that even the most effective collateral configuration modeled in
612 the adult—9col, 40 μ m—re-perfused only ~20% of myocardium above the 30% ischemic
613 threshold. This is consistent with studies showing significant scar formation in MI
614 models in mice (permanent coronary ligation), even in the presence of collaterals¹⁰. This
615 underscores the importance of understanding blood flow through experimentally-
616 induced collateral arteries when considering inducing these vessels as a therapeutic
617 option. Conversely, the virtual collaterals in the neonate with the same characteristics
618 were predicted to have a remarkable ability to shunt flow to the ischemic volume-at-
619 risk—consistent with studies demonstrating the resilience of neonates after total
620 occlusion MI experiments. This, combined with our data that neonates form more
621 numerous and larger collaterals naturally in response to injury, may explain why studies
622 show great recovery post-MI in the neonate via collateral arteries in contrast to adults⁹.

623 This innate difference in collateral function was attributed to a low pressure drop
624 in the neonatal coronary tree compared to adults due to the increased flow in the adult
625 not being compensated by an equal reduction in vascular resistance. It is important to
626 note that at both ages, the pressure at the tips is approximately 40 mmHg, indicating
627 that our two models were segmented to a similar extent. The gradual, steady decrease
628 in pressure in the adult arises from the more extensive branching observed compared to
629 the neonate, which is in agreement with studies of pig coronary arteries⁶¹. While we
630 demonstrated there is very little pressure drop in native neonate coronary arteries, the
631 pressure downstream of the 3D model is expected to abruptly drop to capillary levels.
632 The reduction in total coronary resistance from neonate to adult is in concordance with
633 general trends found with μ CT measurements of coronary vessels >40 μ m in mice aged
634 1 week to 6 weeks old, but quantitatively much greater in our models^{41,62}. While these
635 studies described the coronary tree morphology with quantitative scaling laws, they
636 were not able to quantify small diameter arteries, which is evident by the noticeably
637 missing arteries in their 1-week mouse coronary model compared to our Light sheet

638 imaged P6 hearts. Future work could investigate how these quantitative scaling laws
639 apply to vessels we are able to visualize with our method.

640 We next sought to compare our mouse results to human data. It was unexpected
641 that fetal human hearts contained more native collaterals than the injured neonate and
642 adult mouse as well as diseased adult human hearts, although it is difficult to make
643 comparisons between whole-organ α -SMA staining and angiograms. This finding
644 corresponds with data that suggests collaterals tend to decrease during adolescent
645 years because more were found in the fetal stages compared to neonate humans^{57,58}.
646 Since these collaterals are much smaller than those found in adult human diseased
647 hearts via angiogram, it may indicate that small collaterals in the adult heart go
648 undetected. In addition, if we can preserve and enlarge these collaterals in adulthood,
649 they have the potential to greatly improve cardiac perfusion in patients suffering from
650 CAD.

651 Overall, by combining advanced computational and imaging techniques, a novel
652 connection between collateral flow and native morphological differences, and thus
653 pressure distributions, was established. By bridging these two fields, we uncovered how
654 fundamental coronary morphology changes from embryonic to adult in both mouse and
655 humans affect collateral flow. These findings provide insight into why coronary collateral
656 arteries are better suited for recovering from an injury in young hearts compared to old.
657

658 **Limitations**

659 One limitation of this study is that we were not able to measure subject-specific
660 aortic flows and pressures for each mouse coronary vasculature *in vivo* to use for
661 boundary conditions. However, with literature-derived averaged flows scaled to the
662 model size, we expect this to have a very minor effect on the absolute quantities of
663 collateral flow as described here and thus little effect on the overall relative differences
664 between the collateral configurations and ages.

665 Another limitation is that it is not currently possible to measure the outlet
666 pressure of the coronary tree *in vivo* to validate computational modeling. Due to the
667 small size and inaccessibility of the coronary vasculature in mice, it is challenging to
668 determine *in vivo* flows and pressures at the pre-capillary level. Pressure

669 measurements taken from rabbits and dogs suggest that 50-70% of the pressure is lost
670 when blood reaches the capillary bed^{63,64}. In our study, we tuned the outlet boundary
671 conditions such that the resistance of the 3D model was 65% of the total coronary
672 resistance, which matches expected values from literature⁶³. We tested the sensitivity of
673 our results to changes in outlet pressure by adjusting the outlet resistances and found
674 that relative differences between the collateral configurations remained the same.

675 In our modeling approach, we assumed that the downstream arteries and
676 capillaries do not undergo remodeling. While this assumption is not valid for estimating
677 flow in collaterals that form in response to injury, we first sought to develop our
678 modeling to test the effectiveness of pre-existing collaterals. In future studies, we would
679 enhance our computational methods to capture capillary remodeling events that occur
680 due to the re-routing of blood flow.

681

682 **Methods**

683 **Animals**

684 All mouse colonies were housed and bred in the animal facility at Stanford
685 University in accordance with institutional animal care and use committee (IACUC)
686 guidance.

687 **Immunolabeling and iDISCO clearing**

688 Whole heart vasculature staining was performed following the modified iDISCO+
689 protocol previously described^{37,39}. For all following steps, tissue was always agitated
690 unless noted otherwise. Briefly, animals were perfused with PBS through the dorsal
691 vein, and fixed in 4% paraformaldehyde (Electron Microscopy Science 15714) at 4°C for
692 1hr (neonatal hearts) or 2hr (adult hearts), washed 3X in PBS and stored in PBS with
693 0.01% sodium azide (w/v, Sigma-Aldrich S8032) until ready to process. Hearts were
694 dehydrated in increasing series of methanol/ddH₂O dilutions (20%, 40%, 60%,
695 80%, 100% 2X) for 1hr each, followed by overnight incubation in 66% dichloromethane
696 (DCM, Sigma-Aldrich 34856) and 33% methanol. Next, tissue was washed 2X in
697 methanol 100% for 4hrs and bleached overnight at 4°C in 5% hydrogen peroxide

698 (Sigma-Aldrich 216763) in methanol. Next, the hearts are rehydrated in methanol/ddH-
699 $_2\text{O}$ dilutions (80%, 60%, 40%, 20%) for 1hr each, followed by PBS, 0.2% Triton X-100
700 PBS (2X) and overnight 20% dimethyl sulfoxide (DMSO), 2.3% Glycine (w/v, Sigma
701 G7126), 0.2% Triton X-100 PBS at 37°C for 2 days. For immunostaining, hearts were
702 blocked in 10% DMSO, 6% Normal Donkey Serum (NDS, Jackson ImmunoResearch
703 017-000-121) in 0.2% Triton X-100 for 2 days at 37C. Primary antibodies, α SMA-Cy3
704 conjugated (1:300, Sigma C6198), Connexin-40 (1:300, Alpha diagnostic cx40A), and
705 Podocalyxin (1:1000, R&D Systems MAB1556) were prepared in PBS with 5%DMSO,
706 3% NDS in 0.2% Tween-20, 0.1% Heparin (w/v, Sigma-Aldrich H3393) and incubated at
707 37°C for 4-14 days. Secondary antibodies conjugated to Alexa 647 (Jackson
708 ImmunoResearch) were matched 1:1 in concentration to their primary target and in
709 prepared in PBS with 3% NDS in 0.2% Tween-20, 0.1% Heparin for the same primary
710 incubation days at 37°C. Washes after each antibody incubation in PBS with 0.2%
711 Tween-20, 0.1% Heparin were performed in 30min increment until the end of the day,
712 followed by an overnight wash. Before clearing, samples were embedded in 1% low-
713 melting agarose (Sigma-Aldrich A9414) in PBS and dehydrated in methanol/ddH $_2\text{O}$
714 dilutions (20%, 40%, 60%, 80%,100% 2X) for 1hr each and 100% overnight. Next,
715 hearts were incubated in 66% DCM and 33% Methanol for 2.5hrs, followed 2X 30min
716 100% DCM. Finally, samples were cleared in ethyl cinnamate (ECi, Sigma Aldrich
717 112372), manually inverted a few times, and kept at RT in the dark until and after
718 imaging.

719 **Light sheet imaging**

720 Samples were imaged with LaVision BioTec Ultramicroscope II Light sheet
721 microscope in a quartz cuvette filled with ECi. For imaging, we used a MVX10 zoom
722 body (Olympus) with a 2x objective (pixel size of 3.25 μm / x,y) at magnification from
723 0.63x up to 1.6x. Up to 1400 images were taken for each heart and the z-steps are set
724 to 3.5 μm z step size, and light sheet numerical aperture to 0.111 NA. Band-pass
725 emission filters (mean nm / spread) were used, depending on the excited fluorophores:
726 525/50 for autofluorescence; 595/40 for Cy3; 680/30 for AF647 and 835/70 for AF790.
727 Exposure time was 10ms for single channel and 25ms for multichannel acquisition.

728 **Perfusion territory mapping**

729 To determine the approximate volume of myocardium each outlet of the coronary
730 model was responsible for perfusing we used (1) a model of the myocardial tissue as
731 the total volume to be perfused and (2) the outlet coordinates as the seed points for the
732 subvolumes. We used the background signal from the staining to segment the model of
733 the myocardial tissue and the cap centers for the outlet coordinates. Then, we used a
734 Voronoi diagram algorithm to assign subvolumes of the myocardial tissue to each outlet
735 of the coronary model such that every point in the myocardial mesh was assigned to the
736 closest outlet. Distances to the closest outlet were determined using a dijkstra
737 algorithm. By integrating the subvolumes of every outlet on each of the 3 main branches
738 (LCA, RCA, and SpA), we were able to calculate the approximate percentage of the
739 total myocardial volume that each main branch is responsible for. We used these
740 percentages as targets for the flow splits when tuning the outflow boundary conditions
741 for the fluid simulations.

742 We used outlet coordinates instead of centerlines because we were able to
743 better resolve the small coronary arterioles compared to prior studies⁶⁵. This allows us
744 to be certain that myocardial regions close to an outlet are perfused by that outlet,
745 rather than by a large artery nearby that has no outlet nearby.

746 **CFD simulation**

747 We constructed 3D subject-specific models of the mouse vasculature using
748 SimVascular's cardiovascular modeling pipeline⁴⁴. Briefly, we created path lines for
749 each vessel (about 349 vessels for the adult and 244 for the neonate). Vessels distal to
750 the quaternary branches were ignored. For each path line, the image data was viewed
751 in planes orthogonal to the tangent of the path line to segment the cross-section. Circles
752 were used to approximate the cross-section, as some areas of the vasculature
753 appeared collapsed or deformed. All segmentations were lofted to create a solid model
754 of each branch, and the branches were then unioned together to form a complete
755 geometric model. Finally, the lofted model was discretized into a linear tetrahedral mesh
756 using the commercial meshing library, MeshSim (Simmetrix, Troy, NY), resulting in a

757 total of 600 thousand and 1.8 million elements for the neonatal and adult models,
758 respectively.

759 After obtaining the mesh, we uniformly scaled it to account for the shrinkage that
760 occurs via iDISCO. We quantified the volume change due to our specific clearing
761 protocol using water displacement pre- and post- iDISCO and found that the heart
762 shrank to about 63% of its original volume. So, we uniformly scaled the entire volumetric
763 mesh by the inverse (1.58-fold) to ensure that our model faithfully matched the pre-
764 iDISCO geometry.

765 Inlet boundary conditions were determined as follows. We first determined typical
766 neonate and adult mean pressure and aortic velocity values from literature^{45,46,66} (Table
767 2, rows 1-2). Using the mean aortic velocity and the aortic cross sectional inlet area for
768 each mouse used, a subject-specific aortic inflow was calculated and applied. For
769 pulsatile flow simulations, we constructed representative flow waveforms for an adult
770 mouse by digitizing, smoothing, and scaling a waveform from the literature to match the
771 mean inflow at both ages as calculated previously⁶⁷. At the aortic outlet, we applied a
772 simple RCR boundary condition⁴⁷ (Table 2, rows 3-5). At the coronary artery outlets, we
773 applied a specialized lumped parameter network to represent the downstream coronary
774 vasculature and the time-varying intramyocardial pressure due to the beating cardiac
775 tissue^{48,49,68} (Table 2, rows 6-10). The resistance of each coronary outlet was estimated
776 using Murray's law and tuned such that each of the 3 main branches (LCA, RCA, and
777 SpA) had flow splits equal to the percent volume they perfused. To further tune the
778 capacitances and resistances of the coronary boundary conditions to match literature
779 pressure values^{63,64}, we used a 0D surrogate model for increased efficiency (Fig. S2).

	Description	Adult Value	Adult Source	Neonate Value	Neonate Source
Q_{aorta}	Aortic flow	$6 * 10^2$	Input	$6.3 * 10^1$	Input
P_{mean}	Mean aortic pressure	$1 * 10^2$	Target	$4 * 10^1$	Target
C_{RCR}	Aortic outlet capacitance	$1 * 10^{-2}$	Tuned	$1 * 10^{-2}$	Tuned
Rp_{RCR}	Aortic proximal resistance	$4.8 * 10^{-1}$	Tuned	$5 * 10^1$	Tuned
Rd_{RCR}	Aortic distal resistance	$1.9 * 10^1$	Tuned	$2.2 * 10^2$	Tuned
Ra_{LPN}	Coronary artery resistance	$1.9 * 10^2$	Tuned	$1.7 * 10^3$	Tuned
Ru_{LPN}	Coronary microvascular resistance	$3.1 * 10^2$	Tuned	$2.8 * 10^3$	Tuned
Rv_{LPN}	Coronary vein resistance	$9.5 * 10^1$	Tuned	$8.5 * 10^2$	Tuned
Ca_{LPN}	Coronary arterial capacitance	$3.96 * 10^{-6}$	Tuned	$3.96 * 10^{-6}$	Tuned
Cim_{LPN}	Intramyocardial capacitance	$3.204 * 10^{-2}$	Tuned	$3.204 * 10^{-2}$	Tuned

780 **Table 2. Simulation parameters used for mouse coronary flow modeling.** List of
781 parameters used for computational fluid simulations of the adult and neonate coronary
782 arteries. Input and target taken from literature. Tuned parameters were adjusted so that
783 the simulation matched target values given the input. Units: $Q, \frac{mm^3}{s}$; $P, mmHg$; $C, \frac{s^2 mm^4}{g}$;
784 $R, \frac{g}{mm^4 s}$.

786 We globally corrected the viscosity in our pulsatile simulations to 1.25cP to
787 account for the Fahraeus-Lindqvist effect; this is necessary because the apparent
788 viscosity of blood decreases in very small tube diameters ($<100\mu m$)⁶⁹. While this may
789 significantly underestimate the shear stress in the aorta, the pressure drop in the
790 coronaries was more representative and important for the findings presented here (see
791 Limitations).

792 We ran blood flow simulations with rigid walls using the stabilized finite element
793 svSolver code in the open-source SimVascular software package⁴⁴ to determine
794 spatially and temporally resolved hemodynamic values, such as pressure, velocity, and
795 wall shear stress at every node in the computational mesh. Simulations ran for 5 cardiac
796 cycles with timesteps of .0001 seconds, and hemodynamic values were determined

797 based on the final cardiac cycle. This took approximately 40 hours on 96 cores via
798 XSEDE and 90 hours on 96 cores via Sherlock. Paraview was used for visualization of
799 the results.

800 **Virtual collateral placement**

801 Virtual collaterals were strategically added to native coronary vasculature to
802 minimize the initial pressure difference of the two points the collateral was connecting.
803 Specifically, based on an initial simulation of the native vasculature (without any virtual
804 collaterals), a pressure distribution was determined. Using this pressure distribution,
805 virtual collaterals were placed such that each connected equal pressure zones. We
806 replicated realistic connections as closely as possible given size and pressure
807 constraints (Fig. S3). The resistance of each collateral configuration was calculated via
808 Poiseuille's Law (equation 1).

809
$$\text{Total Collateral Resistance} = \frac{8\mu L}{\pi n r^4} \quad (1)$$

810 Where μ is the viscosity, L is length of the collateral, n is the number of
811 collaterals in the configuration, and r is the radius of the collateral.

812 **3D Resistance**

813 To calculate the resistance of the 3D model, we first generated vessel centerlines
814 via the Vascular Modeling Tool Kit (VMTK; vmtk.org). Each point in the centerline was
815 identified as a branch segment if a perpendicular cross-section at that point did not
816 intersect with any other centerline point. If the cross-section intersected more than one
817 centerline point, then it was labeled as a junction region. This separated the centerline
818 into junctions and branch segments between junctions. After labeling every point, we
819 determined the parent (upstream) branch segment and child (downstream) branch
820 segments for each junction region. We then calculated the resistance for each branch
821 segment based on the pressure difference from the most proximal to distal point and the
822 flow within that segment from the simulation. Finally, the overall 3D resistance was
823 calculated starting from the most distal branches using a recursive method to add the
824 segment resistances in parallel or in series based on the connectivity.

825 **Diameter-defined Strahler Ordering**

826 We utilized the diameter-defined Strahler ordering system to compare
827 morphometric and hemodynamic quantities at similar positions in the coronary tree
828 between the neonate and adult. This system has been used in previous morphometric
829 studies to classify branch segments into orders that describe the hierarchical nature of a
830 vascular tree^{53,70,71}. Using the same labels for branch segments and junction regions as
831 in the 3D resistance calculations, we determined the initial Strahler ordering by setting
832 the most distal segments to order 1 and working backwards up the coronary tree to the
833 aorta. Parent segment orders were set to either equal the greater child order if the two
834 children orders were different or incremented by one if the two child orders were the
835 same. Since neither 3D model of the mouse vasculature included all arteries down to
836 the capillary level (only 5 distinct orders here vs. 11 in other studies⁵⁴), we translated all
837 the orders by a constant such that the order of the most proximal segment of the
838 coronaries was 12 and the aorta was order 13 to ensure consistency with previous
839 studies. Segments were then re-organized based on their diameter to ensure that
840 unbalanced branching (i.e. a very small vessel branching from a large one) was
841 properly accounted for. To do this, we iteratively moved segments to higher or lower
842 orders such that every segment within an order was within 1 standard deviation of that
843 order's mean diameter. With the final diameter-defined Strahler ordering, we compared
844 quantities such as diameter, length, flow, and pressure between the same orders of the
845 neonate and the adult.

846 **Semi-automated artery tracing**

847 Subsequential images were imported into ImageJ stacks files, these stacks were
848 then converted into 8-bit and resolution reduced to one-fourth the original. Using
849 ImageJ's plug-in, Simple Neurite Tracer, the branch structures of the LCx were able to
850 be drawn by placing seed points along the length of α -SMA+ vessels⁴³. Once every α -
851 SMA+ artery in the LCx branch was completely accounted for within the trace, isolation
852 of the traces was performed by the Fill Out option within the plug-in. The resulting image
853 stack was used as a 3D outline of the arterial structure as the foundation for further

854 modeling and analysis. After discontinuation of Simple Neurite Tracer, the updated
855 version SNT was used in similar manner as above⁴².

856 **3D Rendering**

857 The non-traced image stack was overlaid with the filled LCx stack using the Add
858 Channel option in Imaris. Pixel dimensions were updated from the non-reduced 16-bit
859 image metadata. The Filament Object Tracer module was used to generate an Imaris
860 customizable 3D LCx branch model. Branch tips and length were measured by
861 automatically generated data under Number of Terminal Points, and Total Length fields,
862 respectively. Branch levels were obtained from the Filaments Branch Hierarchy field.

863 Surface objects in Imaris were used for quantifying the sample heart volumes.
864 Myocardium volume was calculated by creating surface objects surrounding the entire
865 sample surface and objects encompassing the lumen of the ventricles. The volumes of
866 the ventricles were then subtracted from the entire heart volume to result in the
867 myocardium tissue volume.

868 **Murine LCA ligations**

869 Neonatal LCA ligations were performed as previously described⁹ with minimal
870 modifications. P2 neonates were cooled on ice for 6 minutes to induce hypothermic
871 circulatory arrest and placed in a supine position followed by disinfecting with iodine and
872 ethanol. Dissection was carried through the pectoralis major and minor muscles, and
873 the thoracic cavity was entered via the 4th intercostal space. The LCA was identified
874 and ligated at with a doble knot using 8-0 nylon suture, leaving the LCx intact. The chest
875 muscle and skin were then closed (independently) with interrupted 7-0 prolene sutures.
876 The neonate was then allowed to recover at 37°C warm plate and, when conscious,
877 returned to its mother's care.

878 Adult mice were performed as previously described⁷². Adult mice were subjected
879 to permanent coronary artery ligation, under anesthesia using initially 1.5%–4%
880 isoflurane chamber for induction. The chest cavity was opened, and a 7-0 silk suture
881 was placed around the left coronary artery, with occlusion verified by blanching of the

882 underlying myocardium. The chest was then sutured closed. Following surgery,
883 Buprenorphine (0.1 mg/kg) was used as an analgesic.

884 **Immunohistochemistry and confocal microscopy**

885 Neonatal or adult hearts were fixed in 4% PFA overnight at 4 °C, and then
886 cryopreserved in 30% sucrose in PBS for 1 day at 4°C. The following day, coronal heart
887 sections (50 µm in thickness) were cut on a cryostat. Sections were rinsed 3X with PBS,
888 blocked in 5% NDS, 0.5% Triton X-100 in PBS for 1hr at RT, and then incubated with
889 αSMA-Cy3 conjugated (1:300, Sigma C6198) in 0.5% Triton X-100 in PBS overnight at
890 4°C. Next, sections were rinsed 3X in 0.5% Triton X-100 in PBS and then mounted on
891 slides and covered with Fluoromount G (SouthernBiotech 0100-01). Tissue was imaged
892 using inverted Zeiss LSM-700 confocal microscope at 5x objective. Digital images were
893 captured with Zeiss Zen software and measured using ImageJ.

894 **Human hearts**

895 Under IRB approved protocols, human fetal hearts were collected for
896 developmental analysis from elective terminations⁷³. Gestational age was determined
897 by standard dating criteria by last menstrual period and ultrasound⁷⁴. Tissue was
898 processed within 1hr following procedure. Tissue was extensively rinsed with cold,
899 sterile PBS while placed on ice, followed by incubation in sterile 4% PFA for 4hrs at 4°C
900 before further iDISCO processing. Pregnancies complicated by multiple gestations and
901 known fetal or chromosomal anomalies were excluded.

902 Human adult samples were acquired from the Stanford Catheterization
903 Angiography Laboratory. All patients displayed symptoms of chronic angina and were
904 scheduled to receive conventional coronary angiography, which was performed
905 according to local clinical standards. Collateral number and size were confirmed by an
906 experienced cardiologist.

907 **Statistical Analysis**

908 Graphs represent mean values obtained from multiple experiments and error
909 bars represent standard deviation. Unpaired Student's t test was used to compare

910 groups within an experiment and the level of significance were assigned to statistics in
911 accordance with their p values (0.05 flagged as *, 0.01 flagged as **, less than 0.001
912 flagged as ***, less than 0.0001 flagged as ****). All graphs were generated using
913 GraphPad Prism software. Error bars represent \pm standard deviation.

914 **References**

- 915 1. Go, A. S. *et al.* Heart Disease and Stroke Statistics - 2014 Update: A report from
916 the American Heart Association. *Circulation* vol. 129 (2014).
- 917 2. Zimarino, M., D'andreamatteo, M., Waksman, R., Epstein, S. E. & De Caterina, R.
918 The dynamics of the coronary collateral circulation. *Nature Reviews Cardiology*
919 vol. 11 191–197 (2014).
- 920 3. Habib, G. B. *et al.* Influence of coronary collateral vessels on myocardial infarct
921 size in humans. Results of Phase I thrombolysis in myocardial infarction (TIMI)
922 trial. *Circulation* **83**, 739–746 (1991).
- 923 4. Helfant, R. H., Vokonas, P. S. & Gorlin, R. Functional Importance of the Human
924 Coronary Collateral Circulation. *N. Engl. J. Med.* **284**, 1277–1281 (1971).
- 925 5. Kim, E. K. *et al.* A protective role of early collateral blood flow in patients with ST-
926 segment elevation myocardial infarction. *Am. Heart J.* **171**, 56–63 (2016).
- 927 6. Meier, P. *et al.* The impact of the coronary collateral circulation on outcomes in
928 patients with acute coronary syndromes: Results from the ACUITY trial. *Heart*
929 **100**, 647–651 (2014).
- 930 7. Red-Horse, K. & Das, S. New Research Is Shining Light on How Collateral
931 Arteries Form in the Heart: a Future Therapeutic Direction? *Current Cardiology*
932 *Reports* vol. 23 (2021).
- 933 8. Maxwell, M. P., Hearse, D. J. & Yellon, D. M. Species variation in the coronary
934 collateral circulation during regional myocardial ischaemia: A critical determinant
935 of the rate of evolution and extent of myocardial infarction. *Cardiovascular*
936 *Research* vol. 21 737–746 (1987).
- 937 9. Das, S. *et al.* A Unique Collateral Artery Development Program Promotes
938 Neonatal Heart Regeneration. *Cell* **176**, 1128-1142.e18 (2019).
- 939 10. Zhang, H. & Faber, J. E. De-novo collateral formation following acute myocardial
940 infarction: Dependence on CCR2+ bone marrow cells. *J. Mol. Cell. Cardiol.* **87**, 4–
941 16 (2015).
- 942 11. He, L. *et al.* Genetic lineage tracing discloses arteriogenesis as the main
943 mechanism for collateral growth in the mouse heart. *Cardiovasc. Res.* **109**, 419–
944 430 (2016).

- 945 12. Porrello, E. R. *et al.* Regulation of neonatal and adult mammalian heart
946 regeneration by the miR-15 family. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 187–192
947 (2013).
- 948 13. Hara, M. *et al.* Impact of coronary collaterals on in-hospital and 5-year mortality
949 after ST-elevation myocardial infarction in the contemporary percutaneous
950 coronary intervention era: a prospective observational study. *BMJ Open* **6**,
951 e011105 (2016).
- 952 14. Lucitti, J. L. *et al.* Variants of Rab GTPase-effector binding protein-2 cause
953 variation in the collateral circulation and severity of stroke. *Stroke* **47**, 3022
954 (2016).
- 955 15. Billinger, M. *et al.* Physiologically assessed coronary collateral flow and adverse
956 cardiac ischemic events: A follow-up study in 403 patients with coronary artery
957 disease. *J. Am. Coll. Cardiol.* **40**, 1545–1550 (2002).
- 958 16. Pohl, T. *et al.* Frequency distribution of collateral flow and factors influencing
959 collateral channel development: Functional collateral channel measurement in
960 450 patients with coronary artery disease. *J. Am. Coll. Cardiol.* **38**, 1872–1878
961 (2001).
- 962 17. Traupe, T., Gloekler, S., De Marchi, S. F., Werner, G. S. & Seiler, C. Assessment
963 of the human coronary collateral circulation. *Circulation* vol. 122 1210–1220
964 (2010).
- 965 18. Factor, S. M. *et al.* Coronary microvascular abnormalities in the hypertensive-
966 diabetic rat. A primary cause of cardiomyopathy? *Am. J. Pathol.* **116**, 9 (1984).
- 967 19. Braun, E. J. Intrarenal blood flow distribution in the desert quail following salt
968 loading. *Am. J. Physiol.* **231**, 1111–1118 (1976).
- 969 20. He, L. *et al.* Preexisting endothelial cells mediate cardiac neovascularization after
970 injury. *J. Clin. Invest.* **127**, 2968–2981 (2017).
- 971 21. Vasquez, S. X. *et al.* Optimization of MicroCT Imaging and Blood Vessel Diameter
972 Quantitation of Preclinical Specimen Vasculature with Radiopaque Polymer
973 Injection Medium. *PLoS One* **6**, e19099 (2011).
- 974 22. Merz, S. F. *et al.* Contemporaneous 3D characterization of acute and chronic
975 myocardial I/R injury and response. *Nat. Commun.* **10**, 1–14 (2019).

- 976 23. Honeycutt, S. E. & O'Brien, L. L. Injection of Evans blue dye to fluorescently label
977 and image intact vasculature. *Biotechniques* **70**, (2020).
- 978 24. Les, A. S. *et al.* Quantification of hemodynamics in abdominal aortic aneurysms
979 during rest and exercise using magnetic resonance imaging and computational
980 fluid dynamics. *Ann. Biomed. Eng.* **38**, 1288–1313 (2010).
- 981 25. Seo, J., Ramachandra, A. B., Boyd, J., Marsden, A. L. & Kahn, A. M.
982 Computational Evaluation of Venous Graft Geometries in Coronary Artery Bypass
983 Surgery. *Semin. Thorac. Cardiovasc. Surg.* (2021)
984 doi:10.1053/j.semtcvs.2021.03.007.
- 985 26. Min, J. K. *et al.* Diagnostic Accuracy of Fractional Flow Reserve From Anatomic
986 CT Angiography. *JAMA* **308**, 1237–1245 (2012).
- 987 27. Zhao, S. *et al.* Patient-specific computational simulation of coronary artery
988 bifurcation stenting. *Sci. Reports* **2021** *11* **11**, 1–17 (2021).
- 989 28. Shad, R. *et al.* Patient-Specific Computational Fluid Dynamics Reveal Localized
990 Flow Patterns Predictive of Post–Left Ventricular Assist Device Aortic
991 Incompetence. *Circ. Hear. Fail.* 737–745 (2021)
992 doi:10.1161/CIRCHEARTFAILURE.120.008034.
- 993 29. Su, B. *et al.* Numerical investigation of blood flow in three-dimensional porcine left
994 anterior descending artery with various stenoses. *Comput. Biol. Med.* **47**, 130–
995 138 (2014).
- 996 30. Peiffer, V., Rowland, E. M., Cremers, S. G., Weinberg, P. D. & Sherwin, S. J.
997 Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits:
998 Association with age. *Atherosclerosis* **223**, 114–121 (2012).
- 999 31. Lindsey, S. E. *et al.* Growth and hemodynamics after early embryonic aortic arch
1000 occlusion. *Biomech. Model. Mechanobiol.* **14**, 735–751 (2015).
- 1001 32. Vedula, V. *et al.* A method to quantify mechanobiologic forces during zebrafish
1002 cardiac development using 4-D light sheet imaging and computational modeling.
1003 *PLOS Comput. Biol.* **13**, e1005828 (2017).
- 1004 33. Suo, J. *et al.* Hemodynamic Shear Stresses in Mouse Aortas Implications for
1005 Atherogenesis Materials and Methods Geometry Data Acquisition of the Mouse
1006 Aorta. (2007) doi:10.1161/01.ATV.0000253492.45717.46.

- 1007 34. Shannon, A. T. & Mirbod, P. Three-dimensional flow patterns in the feto-placental
1008 vasculature system of the mouse placenta. *Microvasc. Res.* **111**, 88–95 (2017).
- 1009 35. Bernabeu, M. O. *et al.* Computer simulations reveal complex distribution of
1010 haemodynamic forces in a mouse retina model of angiogenesis. *J. R. Soc.
1011 Interface* **11**, (2014).
- 1012 36. Acuna, A. *et al.* Computational Fluid Dynamics of Vascular Disease in Animal
1013 Models. *J. Biomech. Eng.* **140**, 0808011 (2018).
- 1014 37. Rios Coronado, P. E. & Red-Horse, K. Enhancing cardiovascular research with
1015 whole-organ imaging. *Curr. Opin. Hematol.* **28**, 214–220 (2021).
- 1016 38. Renier, N. *et al.* IDISCO: A simple, rapid method to immunolabel large tissue
1017 samples for volume imaging. *Cell* **159**, 896–910 (2014).
- 1018 39. Renier, N. *et al.* Mapping of Brain Activity by Automated Volume Analysis of
1019 Immediate Early Genes. *Cell* **165**, 1789–1802 (2016).
- 1020 40. Pan, C. *et al.* Shrinkage-mediated imaging of entire organs and organisms using
1021 uDISCO. *Nat. Methods* **13**, 859–867 (2016).
- 1022 41. Feng, Y. *et al.* Bifurcation asymmetry of small coronary arteries in juvenile and
1023 adult mice. *Front. Physiol.* **9**, 519 (2018).
- 1024 42. Arshadi, C., Günther, U., Eddison, M., Harrington, K. I. S. & Ferreira, T. A. SNT: a
1025 unifying toolbox for quantification of neuronal anatomy. *Nat. Methods* **18**, 374–377
1026 (2021).
- 1027 43. Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple Neurite Tracer: open
1028 source software for reconstruction, visualization and analysis of neuronal
1029 processes. *Bioinformatics* **27**, 2453–2454 (2011).
- 1030 44. Updegrove, A. *et al.* SimVascular: An Open Source Pipeline for Cardiovascular
1031 Simulation. *Annals of Biomedical Engineering* vol. 45 525–541 (2017).
- 1032 45. Le, V. P. & Wagenseil, J. E. Echocardiographic Characterization of Postnatal
1033 Development in Mice with Reduced Arterial Elasticity. *Cardiovasc. Eng. Technol.*
1034 **3**, 424–438 (2012).
- 1035 46. Huo, Y., Guo, X. & Kassab, G. S. The flow field along the entire length of mouse
1036 aorta and primary branches. *Ann. Biomed. Eng.* **36**, 685–699 (2008).
- 1037 47. Vignon-Clementel, I. E., Figueira, C. A., Jansen, K. E. & Taylor, C. A. Outflow

- 1038 boundary conditions for 3D simulations of non-periodic blood flow and pressure
1039 fields in deformable arteries. *Comput. Methods Biomed. Engin.* **13**,
1040 625–640 (2010).
- 1041 48. Kim, H. J. *et al.* Patient-Specific Modeling of Blood Flow and Pressure in Human
1042 Coronary Arteries. doi:10.1007/s10439-010-0083-6.
- 1043 49. Tran, J. S., Schiavazzi, D. E., Ramachandra, A. B., Kahn, A. M. & Marsden, A. L.
1044 Automated tuning for parameter identification and uncertainty quantification in
1045 multi-scale coronary simulations. *Comput. Fluids* **142**, 128–138 (2017).
- 1046 50. Huang, Y., Guo, X. & Kassab, G. S. Axial nonuniformity of geometric and
1047 mechanical properties of mouse aorta is increased during postnatal growth. *Am.*
1048 *J. Physiol. - Hear. Circ. Physiol.* **290**, 657–664 (2006).
- 1049 51. Seiler, C., Fleisch, M., Garachemani, A. & Meier, B. Coronary collateral
1050 quantitation in patients with coronary artery disease using intravascular flow
1051 velocity or pressure measurements. *J. Am. Coll. Cardiol.* **32**, 1272–1279 (1998).
- 1052 52. Stoner, J. D., Angelos, M. G. & Clanton, T. L. Myocardial contractile function
1053 during postischemic low-flow reperfusion: critical thresholds of NADH and O₂
1054 delivery. *Am. J. Physiol. Circ. Physiol.* **286**, H375–H380 (2004).
- 1055 53. Huang, W., Yen, R. T., McLaurine, M. & Bledsoe, G. Morphometry of the human
1056 pulmonary vasculature. <https://doi.org/10.1152/jappl.1996.81.5.2123> **81**, 2123–
1057 2133 (1996).
- 1058 54. Kassab, G. S., Rider, C. A., Tang, N. J. & Fung, Y. C. B. Morphometry of pig
1059 coronary arterial trees. *Am. J. Physiol. - Hear. Circ. Physiol.* **265**, (1993).
- 1060 55. Wustmann, K., Zbinden, S., Windecker, S., Meier, B. & Seiler, C. Is there
1061 functional collateral flow during vascular occlusion in angiographically normal
1062 coronary arteries? *Circulation* **107**, 2213–2220 (2003).
- 1063 56. Meier, P. *et al.* The collateral circulation of the heart. *BMC Med.* 2013 **11** 11, 1–7
1064 (2013).
- 1065 57. Reiner, L., Molnar, J., Jimenez, F. A. & Freudenthal, R. R. Interarterial coronary
1066 anastomoses in neonates. *Arch. Pathol.* **71**, 103–112 (1961).
- 1067 58. Bloor, C. M., Keefe, J. F. & Browne, M. J. Intercoronary anastomoses in
1068 congenital heart disease. *Circulation* **33**, 227–231 (1966).

- 1069 59. Kolesová, H., Bartoš, M., Hsieh, W. C., Olejníčková, V. & Sedmera, D. Novel
1070 approaches to study coronary vasculature development in mice. *Dev. Dyn.* **247**,
1071 1018–1027 (2018).
- 1072 60. Kirst, C. *et al.* Mapping the Fine-Scale Organization and Plasticity of the Brain
1073 Vasculature. *Cell* **180**, 780-795.e25 (2020).
- 1074 61. Mittal, N. *et al.* Analysis of blood flow in the entire coronary arterial tree. *Am. J.*
1075 *Physiol. - Hear. Circ. Physiol.* **289**, 439–446 (2005).
- 1076 62. Huo, Y. *et al.* Growth, ageing and scaling laws of coronary arterial trees. *J. R.*
1077 *Soc. Interface* **12**, (2015).
- 1078 63. Chilian, W. M., Eastham, C. L. & Marcus, M. L. Microvascular distribution of
1079 coronary vascular resistance in beating left ventricle. *Am. J. Physiol. - Hear. Circ.*
1080 *Physiol.* **251**, (1986).
- 1081 64. Nellis, S. H., Liedtke, A. J. & Whitesell, L. Small coronary vessel pressure and
1082 diameter in an intact beating rabbit heart using fixed-position and free-motion
1083 techniques. *Circ. Res.* **49**, 342–353 (1981).
- 1084 65. Malkasian, S., Hubbard, L., Dertli, B., Kwon, J. & Molloj, S. Quantification of
1085 vessel-specific coronary perfusion territories using minimum-cost path assignment
1086 and computed tomography angiography: Validation in a swine model. *J.*
1087 *Cardiovasc. Comput. Tomogr.* **12**, 425–435 (2018).
- 1088 66. Van Doormaal, M. A. *et al.* Haemodynamics in the mouse aortic arch computed
1089 from MRI-derived velocities at the aortic root. *J. R. Soc. Interface* **9**, 2834–2844
1090 (2012).
- 1091 67. Hartley, C. J., Reddy, A. K., Michael, L. H., Entman, M. L. & Taffet, G. E.
1092 Coronary flow reserve as an index of cardiac function in mice with cardiovascular
1093 abnormalities. in *2009 Annual International Conference of the IEEE Engineering*
1094 *in Medicine and Biology Society* 1094–1097 (IEEE, 2009).
1095 doi:10.1109/IEMBS.2009.5332488.
- 1096 68. Sankaran, S. *et al.* Patient-specific multiscale modeling of blood flow for coronary
1097 artery bypass graft surgery. *Ann. Biomed. Eng.* **40**, 2228–2242 (2012).
- 1098 69. Fåhræus, R. & Lindqvist, T. THE VISCOSITY OF THE BLOOD IN NARROW
1099 CAPILLARY TUBES. *Am. J. Physiol. Content* **96**, 562–568 (1931).

- 1100 70. Kassab, G. S., Rider, C. A., Tang, N. J. & Fung, Y. C. B. Morphometry of pig
1101 coronary arterial trees. *Am. J. Physiol. - Hear. Circ. Physiol.* **265**, (1993).
- 1102 71. Dong, M. *et al.* Image-based scaling laws for somatic growth and pulmonary
1103 artery morphometry from infancy to adulthood. *Am. J. Physiol. - Hear. Circ.*
1104 *Physiol.* **319**, H432–H442 (2020).
- 1105 72. Raffrey, B. *et al.* Dach1 Extends Artery Networks and Protects Against Cardiac
1106 Injury. *Circ. Res.* (2021) doi:10.1161/circresaha.120.318271.
- 1107 73. Cunningham, F. G. *et al.* Abortion. in *Williams Obstetrics*, 25e (McGraw-Hill
1108 Education, 2018).
- 1109 74. Cunningham, F. G. *et al.* Prenatal Care. in *Williams Obstetrics*, 25e (McGraw-Hill
1110 Education, 2018).

1111 **Acknowledgements**

1112 We thank Andrew Olson and Marco Howard for technical support of Light sheet
1113 imaging, and Hanjay Wang for advice on surgical procedures. S.A. is supported by BioX
1114 Bowes Fellowship. P.E.R.C is supported by the NIGMS of the National Institutes of
1115 Health (NIH T32GM007276) and NSF-GRFP (DGE-1656518). M.L.D is supported by
1116 the NSF-GRFP (DGE-1656518). D. B. is supported by the Department of Defense
1117 CMDRP in Congenital Heart Disease (W81XWH-16-1-0727). K.N. is supported by the
1118 NIH/NHLBL (R01HL141712; R01HL146754). A.L.M is supported by NIH
1119 (R01EB018302) and NSF Award (1663671). K.R.-H. is supported by the NIH/NHLBL
1120 (R01-HL128503) and the New York Stem Cell Foundation (NYSCF-Robertson
1121 Investigator).

1122 **Contributions**

1123 S.A., P.E.R.C., A.L.M., and K.R.-H. conceived and designed the project. S.A.,
1124 P.E.R.C., A.N.L.S.-Q., and C.K.C. performed experiments. S.A, P.E.R.C., A.N.L.S.-Q.,
1125 A.S., and A.M.H. analyzed data. S.A. performed fluid simulations. P.E.R.C., B.C.R.,
1126 M.Z., and D.B. performed murine cardiac injury studies. K.N. and A.M.P. contributed
1127 human adult and fetal samples, respectively. S.A., M.L.D., and M.P. provided analysis
1128 tools. S.A. and P.E.R.C. prepared figures. S.A., P.E.R.C., A.L.M., and K.R.-H. wrote the
1129 manuscript.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplemental.pdf](#)