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Abstract
Understanding tissue rheology is critical to accuratelymodel the humanheart.While the elastic properties of cardiac tissue have
been extensively studied, its viscous properties remain an issue of ongoing debate. Here we adopt a viscoelastic version of the
classical Holzapfel Ogden model to study the viscous timescales of human cardiac tissue. We perform a series of simulations
and explore stress–relaxation curves, pressure–volume loops, strain profiles, and ventricular wall strains for varying viscosity
parameters. We show that the time window for model calibration strongly influences the parameter identification. Using a
four-chamber human heart model, we observe that, during the physiologically relevant time scales of the cardiac cycle, viscous
relaxation has a negligible effect on the overall behavior of the heart. While viscosity could have important consequences in
pathological conditions with compromised contraction or relaxation properties, we conclude that, for simulations within the
physiological range of a human heart beat, we can reasonably approximate the human heart as hyperelastic.

Keywords Cardiac mechanics · Human heart · Myocardium · Viscoelasticity · Finite element method

1 Motivation

Heart disease is the leading cause of death and disability in
the world, accounting for approximately 40% of all human
mortality generating an annual health care cost in excess of
$400 billion [1]. Its prevention and treatment have the utmost
importance from a medical and economical point of view.
Computational modeling is an emerging approach that helps
clinicians with prevention and treatment of heart diseases
[5,49]. Clinicians benefit from computational models when
internal metrics of heart are impossible to measure or surgi-
cal planning is challenging without risking the patient’s life.
When the complex anatomy of the heart and its electrome-
chanical function degenerate, for example in myocardial
infarction [6] and heart failure [16], computational models
offer a deeper insight that conventional methods cannot. The
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recent advancements in multiphysics modeling [18], fluid-
structure modeling [32] and patient-specific modeling tools
[10,49] are nowmaking personalized heart simulations more
affordable than ever.

Characterizing the passive mechanical response of the
tissue is key to accurately model the human heart. The car-
diacmodeling community has broadly adopted a hyperelastic
finite-strain continuum framework to represent the mechan-
ical behavior myocardial tissue. Current models of cardiac
mechanics account for compressibility [33] combined with
a transversely isotropic [30] and orthotropic [19,29] behav-
ior. However, including compressibility in conjunction with
a volumetric-isochoric decomposition is not trivial and has
been addressed in several recent studies [13,24,25]. Histor-
ically, ex-vivo mechanical testing of cardiac tissue samples
has been used to calibrate the parameters of these models
[14,46]. There is a recent focus on using inverse modeling
to identify the in-vivo material properties of the living heart
by comparing whole heart measurements to computational
simulations [16]. These techniques can be combined with
machine learning tools [2] to characterize whole ranges of
material parameters along with their uncertainties [39].

One open question in the quest to understand the mechan-
ics of the human heart is the importance of transient effects.
Similar to most soft tissues in human body, in relaxation and
creep tests, cardiac tissue displays a time-dependentmechan-
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ical behavior. These transient effects become important at
certain time scales and under specific loading conditions;
therefore this phenomenon should be reflected in an accurate
simulation of cardiac mechanics. On the structural level, the
time-dependent response is represented through the inertia
terms of a dynamic simulation [44]. On the constitutive level,
transient response is related to viscoelastic effects, which can
be attributed to macro- and micro-structural properties of the
tissues, including poroelasticity [51], collagen fiber content
[48] and titin-actin interaction [21]. Recent attempts focus on
understanding the time-dependent viscoelastic responsewith
experiments and replicating those with computational mod-
els. Several research groups have investigated the viscoelastic
behavior of animal and human cardiac tissue samples in lab-
oratory experiments [14,42,45,52].

Viscoelastic models for passive viscoelastic myocardium
can be distinguished in two classes: The first class of mod-
els uses kinematic internal variables to track the viscous
deformation history, for example to model the transversely
isotropic [35] or orthotropic [7] response. In this approach, a
dissipation potential characterizes the evolution of the inter-
nal variables. The second class of models uses stress-type
internal variables, for example to model the isotropic [27],
transversely isotropic [31] and orthotropic [23] response.
In this approach, the stress consists of equilibrium non-
equilibrium parts and the evolution of the non-equilibrium
stress results from convolution integrals. Here, we adopt a
viscoelastic constitutive model of the second class, which
uses the convolution integral approach to evolve the stress-
like viscous internal variables [23] and features a baseline
hyperelastic formulation that accounts for fiber dispersion
[15].

To model active muscle tissue contraction, we can use
active strain or active stress methods. Active strain meth-
ods are motivated by microstructural mechanics and use
the multiplicative decomposition of the deformation gradi-
ent into elastic and active parts [4]. This concept can be
complemented by a generalized Hill model [26] that uses
an additive decomposition of the stresses [20]. The general-
ized Hill model has proven successful in modeling cardiac
dysfunction [6] and large strain electro-visco-elasticity [8].
Active stress methods, on the contrary, are a convenient phe-
nomenological approach to reproduce active contractions.
They simply superpose an active stress component over a
passive stresses [34]. Here, we adopt the active stress method
because its modular nature allows us to independently cali-
brate the active response from pressure–volume data and the
passive response from separate experiments.

Here we build on the recent advancements in the exper-
imental characterization and material modeling of human
heart tissue to explore the role of viscoelasticity in cardiac
simulations. The significance of this study lies in exploring
the importance of viscosity, not experimentally in the lab,

but computationally, using a state-of-the-art four-chamber
heart model [5]. We assume that the heart is thick-walled,
orthotropic with two fiber families, electrically activate,
and viscoelastic. To model the passive response of the
myocardium, we adopt a viscoelastic version of Holzapfel-
Ogden type material model [15,23,29]. We drive mechanical
contraction by electrical activation [17] and solve the emerg-
ing multiphysics problem within a nonlinear finite element
setting [18]. We then post-process the finite element results
to calculate strain maps and pressure–volume loops to evalu-
ate the importance of viscoelasticity in realistic human heart
simulations.

This manuscript is organized as follows: In Sect. 2, we
state the problem of cardiac electromechanics and outline
our passive and active material modeling approach in a non-
linear continuum setting. In Sect. 3, we discuss the spatial
and temporal discretizations of the problem and introduce
our four-chamber finite element heart model. Section 4
presents the simulation results of the proposed computational
model. Specifically, we determine and analyze different
sets of parameters motivated by tissue characterization tests
reported in the literature. We compare the different parame-
ter sets by means of full heart simulations. We conclude by
discussing the implications of our study and adding some
final remarks in Sect. 5.

2 Continuummodel

2.1 Kinematics

We consider the beating heart at time t ⊂ R as a continuum
body in the three-dimensional space,B ⊂ R3.We introduce
the reference configuration as the body at initial time B0.
The mapping ϕ(B, t), maps a material point in the reference
configuration X ∈ B0 to its counterpart in the deformed
configuration x ∈ B,

ϕ :
{
B0 × T → B ⊂ R3

(X, t) �→ x = ϕ(X).
(1)

The deformation gradientF is the gradient of current position
with respect to reference position,

F = ∇Xϕ(X, t) and J = det(F), (2)

where J is the Jacobian of the deformation gradient, such that
F, cof(F) and J map material line elements, area elements,
and volume elements into current configuration,

dx = F · dX da = cof(F) · dA dv = J dV . (3)
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The multiplicative decomposition of deformation gradient,

F = F̄ · Fvol , (4)

introduces a spherical tensor that represents the volumetric
part of deformation gradient and a unimodular tensor that
represents the isochoric part,

Fvol = det(F)1/3 and F̄ = F · F−1
vol = det(F)−1/3 F. (5)

The associated rightCauchy-Greendeformation tensorC and
its isochoric counterpart C̄ take the following form,

C = Ft · F and C̄ = J−2/3C . (6)

It proofs convenient to introduce six invariants related to
these deformation tensors,

I1 = C : I Ī4f = C̄ : f0 ⊗ f0 I3 = det(C) = J 2

Ī1 = C̄ : I Ī4s = C̄ : s0 ⊗ s0 Ī8fs = sym(C̄ : f0 ⊗ s0),
(7)

where I is the second-order unit tensor and f0 and s0 are
the fiber orientations in the reference configuration. These
invariants complement the idea of the kinematic decompo-
sition of deformation gradient; J , Ī1 , Ī4f , Ī4s and Ī8fs are
measures of volumetric and isochoric deformations and of
the isochoric stretch in the fiber and cross-fiber directions.
The invariants Ī4f , Ī4s, and Ī8fs are calculated in Lagrangian
fashion using the unrotated fiber orientations in the refer-
ence configuration, f0 and s0. Importantly, the intermediate
and deformed fiber orientations f = F̄ · f0/||F̄ · f0|| and
s = F̄ · s0/||F̄ · s0|| are equivalent because the deformation
between these two configurations is assumed to be purely
volumetric. To incorporate fiber dispersion, we modify the
definition of the structural tensors [15], and the dispersed
fiber stretches are

Ī ∗
4f = κf Ī1 + [ 1 − 3κf ] Ī4f and Ī ∗

4s = κs Ī1 + [ 1 − 3κs ] Ī4s .

(8)

Here κf , κs ∈ [0, 1/3] are the dispersion parameters, where 0
represents perfectly aligned fibers whereas 1/3 recovers the
isotropic response due to heavily dispersed fibers.

2.2 Balance equation

The balance of linear momentum defines the mechanical
equilibrium in the geometrically nonlinear setting,

ρ0ϕ̈ = Div(F · S) + Fϕ in B0, (9)

where S is the second Piola Kirchhoff stress tensor, Fϕ is the
body force vector, and ρ0 is the material density in reference

configuration. The balance equation is supplemented by the
essential and natural boundary conditions, ϕ = ϕ on ∂B

ϕ
0

and S · N = T on ∂BT
0 , with the prescribed displacement ϕ

and surface traction vector T.

2.3 Constitutive model

We model the electro-active behavior of cardiac tissue
through passive and active stresses, S = Spas + Sact, and
further decompose the passive stress into volumetric elastic,
isochoric elastic, and viscous parts, Spas = Svol+Siso+Svsc,
such that the overall second Piola Kirchhoff stress consists
of four contributions,

S = Svol + Siso + Svsc + Sact . (10)

We briefly describe all four stress terms in the following
subsections.

2.3.1 Volumetric elastic stress

The volumetric elastic stress derives from the volumetric part
of the free energy density function,

ψvol = 1

2
κ

[
1

2
[ J 2 − 1 ] − ln(J )

]
, (11)

as a function of the Jacobian J and the initial bulkmodulus κ .
Consequently, the volumetric second Piola Kirchhoff stress,

Svol = 2
∂ψvol

∂C
= J SJ C−1 , (12)

becomes a function of the derivative of the volumetric free
energy (11),

SJ = ∂ψvol

∂ J
. (13)

The volumetric elastic tangent moduli,

Cvol = 2
∂Svol
∂C

= 2 [J 2S′
J + J SJ ]C−1⊗ C−1+ J SJ IC−1

(14)

follow from the derivative of the elastic volumetric stress Svol
with respect to the Cauchy Green deformation tensor C, in
terms of the second derivative,

S′
J = ∂2ψvol

∂ J 2
, (15)

and the fourth order tensor IC−1 = ∂C−1/∂C.
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2.3.2 Isochoric elastic stress

The isochoric elastic stress follows from the isochoric part
of the free energy density,

ψiso = a

2b
[exp(b( Ī1 − 3)) − 1]

+ af
2bf

[exp(bf( Ī ∗
4f − 1)2) − 1]

+ as
2bs

[exp(bs( Ī ∗
4s − 1)2) − 1]

+ afs
2bfs

[exp
(
bfs Ī

2
8fs) − 1

]
, (16)

and is the projection of the intermediate stress S̄iso using the
four-order projection tensor, IC̄ = ∂C̄/∂C,

Siso = 2
∂ψiso

∂C
= S̄iso : IC̄. (17)

The stresses in the intermediate configuration take the fol-
lowing explicit representation,

S̄iso = 2 [ S1I + S4f f0 ⊗ f0 + S4s s0 ⊗ s0 + S8fs(f0 ⊗ s0)
sym ] ,

(18)

in terms of the four scalars,

S1 = ∂ψiso

∂ Ī1
+ κf

∂ψiso

∂ Ī ∗
4f

+ κs
∂ψiso

∂ Ī ∗
4s

S8fs = ∂ψiso

∂ Ī8fs

S4f = ∂ψiso

∂ Ī ∗
4f

[1 − 3κf ] S4s = ∂ψiso

∂ Ī ∗
4s

[1 − 3κs] . (19)

The isochoric elastic tangent moduli,

C̄iso = 2
∂S̄iso
∂C̄

= 4 [
S′
1I ⊗ I + S′

4f f0 ⊗ f0 ⊗ f0 ⊗ f0
+ S′

4ss0 ⊗ s0 ⊗ s0 ⊗ s0
+ S′

8fs(f0 ⊗ s0)sym⊗ (f0 ⊗ s0)sym] (20)

follow from the derivative of the elastic isochoric stress Siso
with respect to the isochoric Cauchy Green deformation ten-
sor C̄, in terms of the second derivatives,

S′
1 = ∂2ψiso

∂ Ī1 2
+ κf

∂2ψiso

∂ Ī ∗2
4f

+ κs
∂2ψiso

∂ Ī ∗2
4s

S′
8fs = ∂2ψiso

∂ Ī 28fs

S′
4f = ∂2ψiso

∂ Ī ∗2
4f

[1 − 3κf ] S′
4s = ∂2ψiso

∂ Ī ∗2
4s

[1 − 3κs].
(21)

2.3.3 Viscous stress

Unlike the elastic response, the viscous response is history-
dependent. The treatment of the history-dependent variable,
the viscous stressSvsc, requires a rate-type evolution equation
and its integration across the time domain. Here we select
a linear first-order differential equation to characterize the
evolution of the viscous stress [23],

˙̄Svsc + 1

τ
S̄vsc = β ˙̄S1 (22)

where τ is the relaxation time with unit of time, β is the
dimensionless viscosity factor, and S̄1 = 2 S1I is the elastic
stress of equation (18).We substitute and re-write the viscous

stress evolution ˙̄Svsc from equation (22) in exact closed-form
expression,

S̄vsc =
t∫
0

exp

(
− t − s

τ

)
β ˙̄S1 ds , (23)

and assume that the initial configuration is viscous-stress
free, S̄vsc(t = 0) = 0. To discretize the viscous evolution in
time, we consider time intervals [0, tn] and [tn, t] within the
time domain of interest and define the time step Δt = t − tn .
Following the standard procedure [28], we identify a convo-
lution integral form, approximate it using the mid-point rule,
and perform standard numerical integration [23],

S̄vsc = exp

(
−Δt

2τ

) [
exp

(
−Δt

2τ

)
S̄nvsc − β [ S̄n1 − S̄1 ]

]
.

(24)

Here, S̄n1 and S̄
n
vsc denote the elastic and viscous stresses at the

previous time point tn , while S̄1 and S̄vsc denote the stresses at
the current time point t . Note that we do not need to compute

the convolution integral S̄nvsc = ∫ tn
0 exp(−[ tn−s ]/τ) β ˙̄S1ds,

because S̄n1 and S̄nvsc become the history variables and are
known at the previous time point tn . The viscous contribution
to the material tangent,

C̄vis = exp

(
−Δt

2τ

)
βC̄1 C̄1 = 2

∂S̄1
∂C̄

= 4 S′
1I ⊗ I (25)

is fairly straightforward since it does not dependent on the
loading history. For our the special case of our model, the
tensor variables in equations (24) and (25) are co-axial and
we can simplify them to the following format,

S̄1 = S1 I S̄vsc = Svsc I C̄vis = 4S′
vsc I ⊗ I. (26)

This reduces the number of internal variables from12, i.e., six
for S̄ and six for S̄vsc, to just two for S1 and Svsc. The updates
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of equations (24) and (25) then reduce to the following scalar
expressions,

Svsc = exp

(
−Δt

2τ

)[
exp

(
−Δt

2τ

)
Qn − β [ Sn1 − S1 ]

]

S′
vsc = exp

(
−Δt

2τ

)
βS′

1. (27)

We denote that using multiple viscous terms, and with it
multiple relaxation times τ and viscosity factors β, would
improve the approximation of experimental data; however,
here, we use a single viscous term to illustrate its physical
interpretation in view of the human heart.

2.3.4 Active stress

We assume that active tissue contraction is generated by an
active traction force Sact that acts along themuscle fiber direc-
tion f0. The active part of the second Piola–Kirchhoff tensor
Sact then takes the following simple form,

Sact = Sact f0 ⊗ f0 . (28)

For the active traction force Sact, we assume a time-varying
elastance model [22,50],

Sact = Smax
Ca20

Ca20 + ECa250
[ 1 − cos(ω) ] S′

act = ∂Sact
∂ Ī4f

.

(29)

where Ca0 is the peak intercellular calcium concentration
and ECa50 is

ECa50 = Ca0max

exp[B(l − l0)] − 1
with l = lR

√
Ī4f . (30)

Smax is the maximum tension, Ca0max is the maximum inter-
cellular calcium concentration, lR is the initial sarcomere
length, and l0 is the minimum sarcomere length. The angle
ω in equation (28) is

ω =
⎧⎨
⎩

π t/t0 when 0 ≤ t ≤ t0
π [t − t0 + tr ]/tr when t0 ≤ t ≤ t0 + tr
0 when t ≥ t0 + tr

(31)

with tr = m l+b, where t is the time elapsed after activation,
t0 is the time to reach the peak tension and m and b are
constants.

2.4 Constitutive subroutine

We implemented our constitutive model into the nonlin-
ear finite element platform Abaqus using the user material
subroutine VUANISOHYPER_INV. The algorithmic box 1

summarizes the input and output variables of this subroutine.
The variables stateold and statenew are the input-
output pair that allocate memory for history variables at the
integration points [37]. Here, these are the stress scalars Sn1
and Snvsc from the previous equilibrium time point tn needed
to calculate the viscous stress S̄vsc at time t . We assign S1
and Svsc to statenew at the end of each material point
calculation. In the following time step we assign these val-
ues from stateold to Sn1 and Snvsc.s Information about the
deformation state is stored in the sInvariant array vari-
able. Metrics that are available to the user are J , Ī1, Ī4f , Ī4s
and Ī8fs. This implies that VUANISOHYPER_INV inherently
assumes a volumetric-isochoric split by directly providing
deformationmetrics related to the isochoric deformation gra-
dient F̄. The user implementation is supposed to return stress
and tangent components through the variables,

duDii = ∂ψ

∂ Ii
and d2uDiDii = ∂2ψ

∂ I 2i
, (32)

where Ii = {J , Ī1, Ī4f , Ī4s, Ī8fs}. The algorithmic box 1 sum-
marizes our algorithmic implementation.

Algorithm 1 Stress and tangent calculation at the integration point

level.
Input : stateold, sInvariant

Initialize: stateold = 0
Output: statenew, duDi, d2uDiDi

Metrics of deformation
1 Assign: {J , Ī1, Ī4f , Ī4s, Ī8fs} ← sInvariant

2 Calculate: Ī ∗
4f , Ī

∗
4s, eq. (8)

Stress and tangent components
3 Calculate: SJ , S1, S4f , S4s, S8fs, eqs. (13 and 19)
4 Calculate: S′

J , S
′
1, S

′
4f , S

′
4s, S

′
8fs, eqs. (15 and 21)

The new viscous state
5 Assign: {Sn1 , Snvsc} ← stateold
6 Calculate: Svsc, S′

vsc, eq. (27)
7 Assign: statenew ← {S1, Svsc}
Active stress

8 Calculate: Sact, S′
act , eq. (29)

Return outputs
9 Assign: duDi ← {SJ , S1, S4f , S4s, S8fs, Svsc, Sact}

10 Assign: d2uDiDi ← {S′
J , S

′
1, S

′
4f , S

′
4s, S

′
8fs, S

′
vsc, S

′
act}

3 Computational model

In this section we describe our computational model of the
beating heart. For our study, we adopt the human heart model
described byDassault Systèmes [5], using the geometry from
Zygote Media [53]. This model is based on magnetic reso-
nance imaging of a 30 year-old male heart [47].
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Fig. 1 Humanheartmodel.Our three-dimensional four-chamberwhole
heart model was generated from high-resolution magnetic resonance
images and contains the atria, ventricles, aortic arch, pulmonary artery,
superior vena cava, and the coronary arteries [5]

Figure 1 shows the four-chamber CAD model of the
human heart adapted from a high resolution, three-
dimensional model, which includes the geometries of the
ventricles and atria and the veins and arteries of the coronar-
ies, aorta, pulmonary and superior vena cava.

3.1 Electromechanics model

An accurate simulation of mechanical contraction requires
an accurate electrical activation sequence. We adopted a
fast-conducting Purkinje fiber network, created using a
fractal-tree generation algorithm [43], to simulate accu-
rate conduction patterns throughout the heart. Throughout
the Purkinje network and across the myocardial tissue, we
employed a phenomenological electrophysiology model [3].
A fully electromechanical coupling within the finite element
framework has been performed for mono-domain electro-
physiology [18,20] and bi-domain electrophysiology [11,
12], and extended to electro-viscoelasticity [9].Here the chal-
lenge is that the ultrafine spatio-temporal resolution of the
electrophysiology problem makes fully-coupled simulations
computationally expensive [41]. In this study, we assume
a one-way electrical to mechanical coupling [5], which
implies that the entire electrical and mechanical problems
can be solved sequentially. This approach cannot account for
mechanically-induced excitationormechanically-modulated
conduction. However, sequential solving allows for adequate
discretizations of the electrical andmechanical problems and
helps keep the computational cost manageable. To obtain
converged electrical activation maps, we simulate five elec-
trical heart beats. We then simulate five mechanical beats,

using the converged activation maps of the last beat of the
electrical simulations.

3.2 Finite elementmodel

We adopted the Living Heart Human Model as our finite
elementmodel [40]. In thismodel, the electrical andmechan-
ical discretizations share the same geometry; however, the
electrical model also incorporates a Purkinje fibers network
for realistic tissue activation. We discretize the heart with
344,854 elements of which 263,028 actively contract and
81,826 only display a passive response. Figure 2 illustrates
our discretization with linear T1 tetrahedral elements. Each
element includes a discrete set of fiber and sheet directions
f0 and s0 that characterize the orthotropic tissue behavior.

For the active response, we mapped the activation times
from the electrical simlulation onto the finite elementmesh of
the mechanical simulation and used it to trigger the mechan-
ical contraction Sact. For the passive response, we adapted
sets of previously calibrated parameters [23]. To match real-
istic pressure–volume loops, we scaled the elastic parameters
ai = {a, af , as, afs} and bi = {b, bf , bs, bfs} by constants A
and B as summarized in Table 1. To explore the effects of
viscoelasticity, we varied the viscous parameters, the relax-
ation time τ and the viscosity factor β [23]. We assigned a
viscoelastic behavior to the ventricles and the atria shown
in red in Fig. 2. Gray regions employ a hyperelastic behav-
ior. To dampen high-frequency oscillations, we adapted a
small baseline Prony-series viscoelasticity with a very short
time-span. This viscous contribution is constant for each sim-
ulation and has a negligible effect on the overall results.

Fig. 2 Finite element model. The heart consists of 344,854 linear tetra-
hedral elements of which 263,028 actively contract and 81,826 only
display a passive response. The heart muscle of the atria and ventricles
displayed in red is viscoelastic while all other structures displayed in
grey are hyperelastic
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Table 1 Material parameters of
the baseline-elastic passive
model [23], scaled individually
for each chamber to match
realistic pressure–volume loops

Location a af as afs b bf bs bfs

LV 0.068 2.61 0.52 11.58 0.21 14.60 0.026 2.50

RV 0.068 2.61 0.52 11.58 0.21 14.60 0.026 2.50

LA 1.680 2.63 12.79 11.65 5.24 14.70 0.630 2.52

RA 0.640 2.58 4.85 11.44 1.99 14.44 0.240 2.47

LV Left ventricle, RV Right ventricle, LA Left atrium, RA Right atrium

3.3 Circulatory model

Pressure and volume readouts from the chambers of heart
provide the most important metrics to characterize the blood
pumping performance. We use a fluid-cavity definition in
both ventricles and atria to record pressure and volume values
throughout our simulations. To obtain realistic pressure–
volume loops, the mechanical model of heart needs to
exchange fluid with a circulatory system model. We approx-
imate the circulatory system using a closed-loop lumped
model [5]. For the arterial, venous, and pulmonary systems
we use elastic cubic volumes. In place of the valves, we use
resistive elements. We account for pre-stress caused by the
hemodynamic state, by mapping the reference state onto the
zero-stress state [38].

3.4 Boundary conditions

We fix the heart in space using the cut planes of the aortic
arch, pulmonary trunk, and superior vena cava [5]. Contin-
uumdistributed coupling constraints connect these cut planes
to control nodes at the center of the cuts. Elastic springs
ground the control nodes such that the motion is small dur-
ing the cardiac cycle.

4 Results

To investigate the role of viscoelastic effects, in this section
we compare the performance of elastic and viscoelasticmate-
rial models. First, we show the sensitivity of the viscoelastic
response with respect to the choice of the time window of
relaxation experiments and viscous parameters τ and β. We
then generate two sets of materials that include elastic and
viscoelastic characteristics at different levels. We systemati-
cally compare the results from simple stress relaxation tests,
pressure–volume loops, and strain distributions from simu-
lated cardiac cycles.

4.1 Time-window sensitivity of viscoelastic model

Arecent studyhas extensively tested theviscoelastic response
of human heart tissue and observed viscous stress relax-
ation in an equi-biaxial stretching experiment [45]. The study

applied 10% strain in the fiber and sheet directions f0 and
s0 using a constant rate ramp function and monitored stress
relaxation for 300s. A key observation from the experimen-
tal data, the red curve in Fig. 3, is that, at the end of the
recordingwindowof 300s, the viscous stress has not yet com-
pletely relaxed and, consequently, the stress has not reached
equilibrium. A shorter or a longer time window of observa-
tion would be equivalently reasonable, because the choice of
cut-off time is not unique unless the viscous stress has com-
pletely relaxed. This implies that a different time-window
would result in a different set of viscous parameters τ and
β. To show that this is the case, we fitted a single element
viscoelastic model to the reported equi-biaxial relaxation test
[45] using two different timewindows. Importantly, the fitted
viscous parameters only serve to illustrate the time-window
sensitivity and we replaced them with more adequate param-
eters in our later simulations. For the elastic response, we
used parameters from biaxial tests [23,45]. For the viscous
response, our viscous evolution equation (22) is a first-order
differential equation, which results in an exponential decay
function. To approximate experimental data with this equa-
tion, we utilized the mean lifetime value associated with
decaying functions.

Figure 3, top, illustrates the best fit of our single element
viscoelastic model to the relaxation curve. Themean lifetime
of an element, belonging to an exponentially decaying set of
discrete elements is given by τ , which is the time when the
population of the set is reduced to 36.79% of its initial value.
To fit our viscoelastic parameters to the stress relaxation data,
wematch the mean lifetime of our viscous model to the time-
point where 36.79% of the viscous overstress is observed in
the relaxation experiment. This fit results in a time constant of
τ = 14.6 s. Following the procedure for the stress relaxation
test and using the observed relaxation ratio of 40%,we obtain
the viscosity factor β = 1.03.

Figure 3, bottom, demonstrates the sensitivity of the vis-
cous parameters to the recording window where we fit our
model only to the first 50 s of relaxation data. Using the
mean lifetime value as before, we find the best fit value is
τ = 5.7 s. At 50s we observe 32% relaxation of viscous
stress. Following the experimental procedure for stretching
with a relaxation ratio of 32%, we find β = 0.71 to yield the
best fit. We conclude that we cannot find a unique best fit,
because the choice of the cut-off time of data acquisition is
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Fig. 3 Time-window sensitivity of viscoelastic model. Best fit stress
relaxation curves for time window of 300s, β = 1.03 and τ = 14.6 s
(top), and for time window of 50s, β = 0.71 and τ = 5.7 s (bottom).
Experimental data from biaxial relaxation tests [45] with stress shown
in mean fiber direction

subjective. Therefore, we study the effect of viscoelasticity
using a range of parameters, instead of considering a single
parameter pair obtained from a single best fit.

4.2 Parameter sensitivity of viscoelastic model

Next, we investigate the sensitivity of stress relaxation
response with respect to the viscosity factor β and relaxation
time τ . We compare the effects of varying the relaxation time
τ = 5s, 10 s, 20 s for a fixed viscosity factor β = 20 and vary-
ing the viscosity factor β = 5, 10, 20 for a fixed relaxation
time τ = 20s. Two elastic materials represent extremes of
the range of this viscoelastic behavior: baseline elastic, the
absence of viscous over-stress, and stiff elastic, the absence
of viscous relaxation. Table 1 summarizes the elastic mate-
rial parameters, except for the stiff-elastic material. For the

Fig. 4 Parameter sensitivity of viscoelastic model. Stress relaxation
curves for varying relaxation times τ at a fixed viscosity factor β (top),
and for varying viscosity factors β at a fixed relaxation time τ (bottom).
Experimental data from biaxial relaxation tests [45] with stress shown
in mean fiber direction

stiff-elastic material, we scaled the a values in Table 1 by a
factor 21, in order to replicate the instantaneous response of
the viscous material with β = 20 and τ = 20s.

Figure 4, top, shows the stress–relaxation curves for vary-
ing relaxation times τ = 5s, 10 s, 20 s for a fixed viscosity
factor β = 20.With increasing τ values, the initial peak stress
remains the same, but stress relaxation becomes slower. For
infinitely large τ , the transient response becomes constant in
time and converges to that of an elasticmaterial.With the first
set of parameters, we aim to approximate the same viscous
stress response to instantaneous stretching, while the tran-
sient response varies through the relaxation time constants.
For comparison, we also map the stress response of the two
elastic materials as the limits of the viscoelastic model: The
baseline elastic material represents the behavior in the com-
plete absence of viscosity; the stiff elastic material generates
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the same instantaneous stress as viscoelastic materials, but
does not display stress relaxation.

Figure 4, bottom, shows the stress–relaxation curves for
varying viscosity factor β = 5, 10, 20 for a fixed relaxation
time τ = 20s.With increasing β values, the initial peak stress
increases, while the rate of stress relaxation for a given stress
remains constant. For comparison, we also map the stress
response of the two elastic materials as the limits of the vis-
coelastic model.

4.3 Pressure–volume loops of viscoelastic model

In this section,we compare the elastic and viscoelastic behav-
ior of the human heart in terms of pressure–volume loops.
We simulate five cardiac cycles using the viscous parameters
from both parameter sets in Sect. 4.2 and extract the pres-
sure and volume readings from the ventricular cavities. We
assume that the electrical activation pattern of the heart is
identical for all five cycles, such that the mechanical differ-
ence between the individual cycles is exclusively a result of
the viscoelastic response of the myocardium.

Figure 5 and Table 2 summarize the pressure–volume
response of the left ventricle for varying relaxation times
τ at a fixed viscosity factor β during the first cardiac cycles,
top, and fifth cardiac cycles, bottom.

The first thing to note in the Fig. 5 is the difference
between the two elastic cases that are representative of vis-
cous extremes, baseline elastic shown inblack and stiff elastic
shown in red. The maximum pressure and volume are lower
for the stiff elastic material compared to baseline elastic. In
Table 2, we see the stiff elastic material results in a 10%
drop in ejection fraction as a result of the 36mL drop in end-
diastolic volume compared to baseline elastic.

Our second observation from the Fig. 5 is that all viscous
materials resulted in pressure–volume loops that are very
close to each other. The four-fold difference in the relaxation
time τ caused insignificant differences in the performance
metrics of pressure, volume, and ejection fraction.

During the first cardiac cycle, all viscous simulations with
fixed viscosity factor β closely resemble the red curve of the
stiff elasticmaterial. This is a result of the relatively short time
of a single cardiac cycle, approximately 1 s or 1.3 s including
the pre-inflation, compared to the characteristic relaxation
times τ that vary from 5 to 20s. We conclude that, within
the analyzed viscous parameter range for β and τ , we do not
observe significant effects of viscous relaxation. This implies
that the pressure–volume loops of a viscoelastic material can
be equally well approximated by a stiffer hyperelastic mate-
rial model.

During the fifth cardiac cycle, we see a slightly differ-
ent picture. Both elastic models display slightly different
pressure–volume loops between the first and fifth cycles.
This is because that the simulation starts from a zero stress

Fig. 5 Pressure–volume loop sensitivity of viscoelasticmodel. Pressure
volume loops for varying relaxation times τ at a fixed viscosity factor
β, for first cardiac cycle (top) and fifth cardiac cycle (bottom). ED End
diastole, EIC End-isovolumic contraction, ES End systole, EIR End-
isovolumic relaxation

state instead of starting from a converged cyclic simulation.
Between the first cycle and the fifth cycle, the difference of
ejection fraction between both elastic extremes dropped from
10% to 6%. In addition, the pressure–volume responses of
the viscous models have moved away from the stiff elastic
model. This is a result of the larger timespan of five cardiac
cycles, approximately 5 s, that reveal the viscous relaxation
effects on the pressure–volume loops. The most notable dif-
ference of the fifth cardiac cycle is that the blue curve with
the largest relaxation time of τ = 20s stays closest to the red
curve of the stiff elastic model, because its relaxation takes
longest. The green curve with the smallest relaxation time of
τ = 5s has separated most from the stiff elastic model the,
because of its short characteristic relaxation time.

Figure 6 and Table 3 summarize the pressure–volume
response of the left ventricle for varying viscosity factors
β at a fixed relaxation time τ during the first cardiac cycles,
top, and fifth cardiac cycles, bottom.
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Table 2 Pressure–volume loop
sensitivity of viscoelastic model

Left ventricle 1st cycle Max pressure (mmHg) Max volume (mL) Ejection fraction (%)

β = 20, τ = 20 s 122 129 56

β = 20, τ = 10 s 123 129 56

β = 20, τ = 5 s 123 129 56

Baseline elastic 152 165 66

Stiff elastic 122 129 56

Left ventricle 5th cycle Max pressure (mmHg) Max volume (mL) Ejection fraction (%)

β = 20, τ = 20 s 122 133 60

β = 20, τ = 10 s 124 134 61

β = 20, τ = 5 s 128 139 61

Baseline elastic 154 158 66

Stiff elastic 118 129 60

Maximum pressure, maximum volume, and ejection fraction from pressure–volume loops for varying relax-
ation times τ at a fixed viscosity factor β, for first cardiac cycle (top) and fifth cardiac cycle (bottom)

Fig. 6 Pressure–volume loop sensitivity of viscoelasticmodel. Pressure
volume loops for varying viscosity factors β at a fixed relaxation time
τ , for first cardiac cycle (top) and fifth cardiac cycle (bottom). ED End
diastole, EIC End-isovolumic contraction, ES End systole, EIR End-
isovolumic relaxation

The first thing to note is that the blue curves of the vis-
coelastic model with β = 20 and τ = 20s, and the red and
black curves of the stiff elastic and baseline elastic models
are sharedwith the previous simulations in Fig. 5 andTable 2.
A notable difference between the previous simulation with
varying τ values in Fig. 5 is that themechanical response, and
with it the pressure–volume loops, are altered significantly by
varying the β parameter. During the first cardiac cycle, we
already observe a clear separation of all three viscoelastic
models. During the fifth cardiac cycle, the pressure–volume
loops of all viscous models have moved away from the stiff
elasticmaterial and towards the baseline elasticmaterial. This
confirms the trend that we have observed in the stress relax-
ation curves of our initial sensitivity analysis in Fig. 4.

4.4 Fiber strain across the heart

Lastly, we investigate the distribution of strains in fiber direc-
tion across the heart throughout the first and fifth cardiac
cycle. Figure 7 shows the spatio-temporal distribution of
the Green Lagrange fiber strains throughout the first cardiac
cycle for the stiff elastic model, and two viscoelastic mod-
els with β = 20 and τ = 20s and with β = 20 and τ = 5s.
Recall that the pressure–volume loops of the left ventricle
in Fig. 5, top, suggest that the pump function of these three
material models is similar. The strain fields in Fig. 9 sup-
port this observation. The three rows of the elastic and two
viscoelastic models show virtually the same contour plots.
Figure 9, top, provides a quantitative comparison of the fiber
strains throughout the first cycle. Here, we plot the strains
only for the left ventricle, where the horizontal lines mark
the mean values in the strain distribution. As evident from
the plot, the strain distributions are almost identical which
supports the argument that viscous relaxation does not play
an important role in single-beat simulations.
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Table 3 Pressure–volume loop
sensitivity of viscoelastic model

Left ventricle 1st cycle Max pressure (mmHg) Max volume (mL) Ejection fraction (%)

β = 20, τ = 20 s 122 129 56

β = 10, τ = 20 s 132 141 60

β = 5, τ = 20 s 139 150 62

Baseline elastic 152 165 66

Stiff elastic 122 129 56

Left ventricle 5th cycle Max pressure (mmHg) Max volume (mL) Ejection fraction

β = 20, τ = 20 s 122 133 60

β = 10, τ = 20 s 136 144 62

β = 5, τ = 20 s 145 152 64

Baseline elastic 154 158 66

Stiff elastic 118 129 60

Maximumpressure,maximumvolume, and ejection fraction frompressure–volume loops for varying viscosity
factors β at a fixed relaxation time τ for first cardiac cycle (top) and fifth cardiac cycle (bottom)

Fig. 7 Fiber strain distribution
across the heart.Spatio-temporal
evolution of Green–Lagrange
strains in fiber direction E11
throughout the first cardiac cycle
with stiff elastic model (top), β
= 20 and τ = 20s (middle), and
β = 20 and τ = 5s (bottom).
Time points are indicated in
Fig. 5 (top). ED End diastole,
EIC End-isovolumic
contraction, ES End systole, EIR
End-isovolumic relaxation

Figure 8 shows the spatio-temporal distribution of the
Green Lagrange fiber strains, but now throughout the fifth
cardiac cycle. We can observe clear differences in the strain
contours between the stiff elastic model and the two vis-
coelastic models with β = 20 and τ = 20s and with β = 20
and τ = 5s. Although not obvious, these strain differences are
most apparent at end diastole and end-isovolumic contraction

in the second and third columns. For these time points, the
high strain regions shown in red differ, e.g., in the upper-left
ventricular wall. When comparing the end-diastolic state in
the second column, we observe that the high-strain regions
of left ventricle are largest for the β = 20 and τ = 20s model,
followed by the stiff elastic model, and the β = 20 and τ = 5s
model. Figure 9, bottom, reveals a similar result, with largest
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Fig. 8 Fiber strain distribution
across the heart. Spatio-temporal
evolution of Green–Lagrange
strains in fiber direction E11
throughout the fifth cardiac
cycle with stiff elastic model
(top), β = 20 and τ = 20s
(middle), and β = 20 and τ = 5s
(bottom). Time points are
indicated in Fig. 5 (top). ED End
diastole, EIC End-isovolumic
contraction, ES End systole, EIR
End-isovolumic relaxation

averaged fiber strains for β = 20 and τ = 20s, followed by the
stiff elastic model and β = 20 and τ = 5s. These results add
another perspective to the pressure–volume loops in Fig. 5,
bottom, where the stiff elastic model had the smallest end-
diastolic volume followed by the β =20 and τ = 20s and
the β =20 and τ = 5s models. These observations suggest
that the strain state of a whole heart model with viscoelastic
behavior is too complex to infer from low fidelity data such
as pressure–volume loops. We also observe that the violin
plots in Fig. 9 reveal differing strains for different material
models throughout the fifth cardiac cycle, in contrast to the
similar strain distributions throughout the first cycle. This
difference points to the importance of large-enough simu-
lation windows simulations, to capture the full viscoelastic
response.

5 Discussion

The objective of this study was to investigate the effect of
viscoelasticity in cardiac modeling. Towards this goal, we
used a finite-deformation viscoelastic continuum model. To
integrate the orthotropic character of cardiac muscle tis-
sue, we accounted for two families of elastic fibers, and

attributed the viscoelasticity exclusively to the matrix com-
ponent. Specifically, we adopted a viscoelastic version of the
Holzapfel-Ogden model and assumed an exponential decay
of the transient viscous stress. We implemented our vis-
coelastic constitutive model into the Living Heart Project,
which, to date, had only utilized a baseline elastic model.

Our study underlines the inherent subjectivity of fitting
viscoelastic material parameters to experimental data and,
more importantly, the relevance of the window of observa-
tion.We performed a sensitivity study to highlight the effects
of the simplest possible viscoelastic model and explored
the sensitivity of stress–relaxation curves, pressure–volume
loops, and strain profiles with respect to different viscoelastic
parameterizations.We studied two sets of viscous parameters
and compared both against two elastic parameterizations.

Our comparisons of pressure–volume loops and strain pro-
files revealed that tissue viscosity generally has a notable
effect on the resulting pressure–volume loops: Heart mus-
cle undergoes high peak strain rates during contraction and
the viscous contributions to themuscle stiffness result in visi-
bly shifted pressure–volume loops. However, the viscoelastic
nature of the tissue has negligible effects on the strain profile
throughout a given cardiac cycle. While viscous relaxation is
relevant within timewindows on the order of tens of seconds,
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Fig. 9 Ventricular wall strains. Distribution of strains in fiber direction
in the left ventricular wall for varying relaxation times τ at a fixed
viscosity factor β for first cardiac cycle (top) and fifth cardiac cycle
(bottom). Strains are recorded at end diastole

this phenomenon seems to be less important within physio-
logical contraction times on the order of a tenth of a second.
However, multiple successive cardiac cycles will span a time
window that is long enough to reveal the effects of viscous
relaxation. In such multi-beat simulations, we observed that
the pressure–volume loops shift with each cycle. In essence,
relaxation is significant between cardiac cycles, even though
it is not significant within an individual cycles. This suggests
that for single-beat simulations of cardiac mechanics, we can
reasonably well approximate the constitutive behavior of the
heart muscle tissue as hyperelastic. However, for simulations
involving more than one beat, myocardium viscosity can sig-
nificantly alter the results. This implies that, if viscoelastic
models are used, they should be run for multiple cycles until
they reach a fully converged steady state.

Our study has a few limitations, rooted in our motivation
of using a simple model to probe viscoelastic effects, and
on the limited availability of experimental data: First, we
employed a simple viscoelastic model based on a single rhe-
ological element with only two viscous parameters. While a

higher-order model would have provided a better fit to the
experimental data, the inherent sensitivity with respect to
the fitted time window would remain. Second, we have only
studied a certain range of viscoelastic parameters that are
in agreement with the range of suggested parameters in the
literature. Our conclusions may change outside this param-
eter range, and also when the heart rate deviates much from
its healthy range of about 1/s. Third, we have only consid-
ered viscosity for the isotropic matrix component. Studies
have shown that the extracellular matrix is the major con-
tributor of tissue viscosity [36]. Unlike fiber viscosity that
only acts in tension, matrix viscosity can be activated in both
stretch and shear deformation modes. Fourth, a limitation of
our continuum model is the use of the volumetric-isochoric
decomposition of the deformation gradient in conjunction
with compressible material parameters. We closely moni-
tor our deformations to ensure that they are not dominated
by the volumetric expansion, which remains within ±1.7%
throughout the five cardiac cycles. Last, an important lim-
itation of our study is that our viscous parameter selection
is based on ex vivo tissue experiments on isolated cubes of
myocardial tissuewhich are not representative of in-vivo con-
ditions.

In viewof these limitations,webelieve that the experimen-
tal characterization of the viscoelastic response of cardiac
tissue will be an important next step to identify the range of
validity of current hyperelastic models. Under physiological
conditions, cardiac tissue experiences relatively high strain
rates, and it is important to probe the tissue under conditions
that mimic this physiological regime. We believe that the
value of future viscoelasticity experiments will lie in focus-
ing on the viscoelastic response within the time-scales of a
cardiac cycle or even smaller. Understanding the role of tis-
sue viscosity is important whenmodeling healthy hearts as
well as pathological conditions and we believe that it has the
potential of making a dramatic impact on the accuracy of
simulation results.
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