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Abstract

We recently derived the unified continuum and variational multiscale formulation for fluid–structure interaction (FSI) using
he Gibbs free energy as the thermodynamic potential. Restricting our attention to vascular FSI, we now reduce this formulation
n arbitrary Lagrangian–Eulerian (ALE) coordinates by adopting three common modeling assumptions for the vascular wall.
he resulting semi-discrete formulation, referred to as the reduced unified continuum formulation, achieves monolithic coupling
f the FSI system in the Eulerian frame through a simple modification of the fluid boundary integral. While ostensibly similar
o the semi-discrete formulation of the coupled momentum method introduced by Figueroa et al., its underlying derivation
oes not rely on an assumption of a fictitious body force in the elastodynamics sub-problem and therefore represents a direct
implification of the ALE method. Furthermore, uniform temporal discretization of the entire FSI system is performed via the
eneralized-α scheme. In contrast to the predominant approach yielding only first-order accuracy for pressure, we collocate both
ressure and velocity at the intermediate time step to achieve uniform second-order temporal accuracy. In conjunction with
uadratic tetrahedral elements, our methodology offers higher-order temporal and spatial accuracy for quantities of clinical
nterest, including pressure and wall shear stress. Furthermore, without loss of consistency, a segregated predictor multi-
orrector algorithm is developed to preserve the same block structure as for the incompressible Navier–Stokes equations in
he implicit solver’s associated linear system. Block preconditioning of a monolithically coupled FSI system is therefore made
ossible for the first time. Compared to alternative preconditioners, our three-level nested block preconditioner, which achieves
mproved representation of the Schur complement, demonstrates robust performance over a wide range of physical parameters.

e present verification of our methodology against Womersley’s deformable wall theory and additionally develop practical
odeling techniques for clinical applications, including tissue prestressing. We conclude with an assessment of our combined
SI technology in two patient-specific cases.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid–structure interaction (FSI) problems present the challenge of coupling a deformable structural problem to
a fluid problem posed on a domain moving in accordance with the deforming structure. In the last four decades,
both interface-tracking and interface-capturing methods have been developed to account for the deforming fluid
domain. In interface-tracking methods, the coupling interface is resolved by the mesh, and the arbitrary Lagrangian–
Eulerian (ALE) formulation is adopted to describe mechanics problems posed on a moving domain [1–3]; in
interface-capturing methods, including the immersed boundary [4,5] and fictitious domain methods [6], the interface
is described implicitly on a background mesh. Whereas applications in cardiac mechanics involving valve leaflet
motion largely employ the interface capturing method [7–11], ventricular and vascular wall deformation are typically
modeled with the ALE method [12–15], allowing for hemodynamic attributes near the wall to be accurately resolved
for clinical implications.

In addition to this classification of FSI formulations, FSI coupling strategies can also be categorized into
monolithic and partitioned approaches. In monolithic approaches, the coupling conditions, namely the continuity
of velocity and stress at the fluid–solid interface, are exactly satisfied [16]. Despite their superior robustness, the
resulting system is highly nonlinear [12,17], requires novel algorithms for the coupled system, and necessitates
additional implementation efforts. On the other hand, partitioned methods are generally favored for their modularity,
as existing fluid and structure codes can be independently used and loosely coupled via transmission conditions at
the fluid–solid interface. Partitioned methods, however, were initially developed for aeroelastic problems [18], in
which the structural density is much larger than the fluid density. Numerical instabilities arise in problems involving
fluid and structural densities of comparable magnitudes. This so-called added-mass effect [19–21] does not vanish
with time step refinement and is particularly pronounced in hydroelastic problems such as cardiovascular FSI
problems, where the fluid and structural densities are almost identical. Many approaches, such as generalized Robin-
to-Robin transmission conditions [22], have been proposed to improve the stability of partitioned algorithms under
the added-mass effect. Yet, recent results also suggest that this improved stability may actually be at the expense of
critical dynamic characteristics of the structural sub-problem [23], signifying an alarming issue regarding partitioned
approaches for hydroelastic problems.

In this work on vascular FSI, we consider large vessels with lengths on the centimeter-scale and diameters on the
millimeter- to centimeter-scale, such that blood can be modeled as a Newtonian fluid [24,25]. We adopt our recently
developed unified continuum and variational multiscale (VMS) formulation [14], a monolithically coupled ALE
method. Derived using the Gibbs free energy rather than the Helmholtz free energy as the thermodynamic potential,
the formulation bridges the conventionally diverging approaches for computational fluid and solid mechanics. Its
ability to naturally recover important continuum models, including viscous fluids and hyperelastic solids, through
appropriate constitutive modeling drastically simplifies monolithic FSI coupling. Furthermore, the formulation is
well-behaved in both compressible and incompressible regimes, enabling simulation of structural dynamics with
a Poisson’s ratio up to 0.5. Given the nontrivial computational expense associated with an ALE formulation, we
apply three common modeling assumptions concerning the strain magnitude, geometry, and constitutive model of
the vascular wall–the infinitesimal strain, thin-walled, and linear elastic membrane assumptions, respectively–to
arrive at our so-called reduced unified continuum formulation. The resulting semi-discrete formulation presents a
monolithically coupled FSI system posed in an Eulerian frame of reference, in which the structural velocity degrees
of freedom are reduced to the fluid velocity degrees of freedom at the fluid–solid interface.

Despite its ostensible similarity to the semi-discrete formulation of the coupled momentum method (CMM), first
introduced by Figueroa et al. [26] and recently extended to a nonlinear rotation-free shell formulation [27], the FSI
coupling in CMM relies on an assumption of a fictitious body force in the elastodynamics sub-problem, defined in
relation to the fluid traction on the wall. While this coupling approach was inspired by Womersley’s derivation of an
analytical solution for axisymmetric flow in an elastic pipe [28,29], we believe this assumption of a fictitious body
force is unnecessary. Since its introduction, CMM has been implemented in the open-source blood flow simulation
software packages SimVascular [30,31] and CRIMSON [32] and extensively used in clinical applications ranging
from interventions for coronary artery disease [33–35] and aortic coarctation [36] to single-ventricle physiology [37],
and Alagille syndrome [38,39]. It has also been validated against experimental measurements from compliant in
vitro phantom models [40,41] and Womersley’s analytical solution for axisymmetric flow in a thin, linear elastic
pipe subject to an oscillating pressure gradient [42,43]. While the studies found good agreement for pressure, flow,
pulse wave propagation, and wall displacement, Filonova et al. [43] documented large errors in radial velocity.
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In this work, stabilized spatial discretization is performed with the residual-based variational multiscale formu-
lation [44], which retains numerical consistency across all scales and exhibits superior performance as a large eddy
simulation turbulence model when compared to approaches employing traditional stabilized formulations. We further
note that integration-by-parts is not adopted for the divergence operator in the continuity equation for two reasons.
First, from an energy perspective, the additional boundary integral term produced from integration-by-parts could
pollute the energy dissipation structure in the discrete scheme. In addition, integration-by-parts yields a contradiction
in the regularity of the pressure function space in the Galerkin formulation, though this contradiction seems not to
produce apparent numerical issues when the stabilized formulation is invoked.

The generalized-α method was initially proposed for structural dynamics as an unconditionally stable and
second-order accurate implicit scheme for temporal discretization with user-specified levels of high-frequency
dissipation [45]. When Jansen et al. first applied the generalized-α method to the compressible Navier–Stokes
equations [46], the pressure primitive variables were uniformly evaluated at the intermediate time step tn+α f .

he predominant approach in the computational fluid dynamics (CFD) and FSI communities today [26,44,47–
0], however, is to evaluate velocity at the intermediate step but pressure at time step tn+1. While the community
ontinues to reference the second-order temporal accuracy of the generalized-α method, we recently demonstrated
hat this particular dichotomous approach yields only first-order accuracy in pressure. Concurrent evaluation of
elocity and pressure at the intermediate step, as in our approach, recovers second-order accuracy for pressure [51].

In contrast to the use of the Newmark-β method [52] in CMM [26] for temporal integration of membrane
isplacements, we adopt the fully implicit generalized-α method for uniform temporal discretization of both the
uid and solid sub-problems, enabling second-order accuracy and high-frequency dissipation simultaneously in

he full FSI system. With a segregated predictor–multicorrector algorithm we previously used for the unified
ontinuum and VMS formulation [14,53], the three-by-three block structure for the matrix problem in the consistent
ewton–Raphson procedure can be reduced to a two-by-two block structure identical to that of the incompressible
avier–Stokes equations. Not only does this segregated algorithm preserve the consistency of the Newton–Raphson
ethod, but it also enables the use of existing CFD solvers with only minimal modifications. We exploit this

reserved two-by-two block structure for preconditioning of the linear system with our three-level nested block
reconditioner [53], which attains improved representation of the Schur complement with a “matrix-free” technique
o algorithmically define the action of the Schur complement on a vector. Our nested block preconditioning technique
s thus robust for cardiovascular simulations involving several contributing terms in the Schur complement of widely
arying orders of magnitude, associated with convection, diffusion, vascular wall stiffness, and reduced models at
he outlets representing downstream vasculature. We further note that our study represents the first in which block
reconditioning is performed for a monolithically coupled FSI system.

The body of this work is organized as follows. In Section 2, the unified continuum and VMS formulation is
implified to our reduced unified continuum formulation for vascular FSI via three modeling assumptions. The
patiotemporal discretization methods and the associated predictor multi-corrector algorithm are also presented. In
ection 3, the preconditioning technique for the associated linear system is developed. In Section 4, verification of

our reduced unified continuum formulation is performed against the rigid and deformable Womersley benchmark
cases using both linear and quadratic tetrahedral elements. Verification of CMM with linear elements is also
presented for comparison. In Section 5, we discuss practical modeling techniques for capturing physiological
behavior in patient-specific clinical applications. Among these practical modeling techniques is tissue prestressing
to account for the nonzero internal stress state of the vascular wall at imaging, which we iteratively update via
fixed-point iterations while solving a modified problem over the vascular wall under a fluid traction corresponding
to the cardiac phase at imaging. We additionally present a centerline-based approach for variable wall thickness
assignment to avoid unphysiological thicknesses produced by previous Laplacian approaches at regions of sharp
local changes in geometry. Finally, we conclude with an assessment of our combined FSI technology with two
patient-specific cases in Section 6.

2. Governing equations and their spatiotemporal discretization

In this section, we introduce the strong and weak forms of the elastodynamic and incompressible Newtonian
fluid problems following the unified continuum formulation [14] and outline the assumptions yielding our reduced
unified continuum formulation in the Eulerian description. This monolithically coupled FSI system is then integrated
in time using the generalized-α method, which is solved by a segregated predictor multi-corrector algorithm.
3
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2.1. Strong-form problem

We consider a domain Ω ⊂ R3 admitting a non-overlapping subdivision Ω = Ω f ∪ Ω s , ∅ = Ω f
∩ Ω s , in

hich Ω f and Ω s represent the sub-domains occupied by the fluid and solid materials, respectively. The fluid–solid
nterface is a two-dimensional manifold denoted by ΓI , and the boundary Γ := ∂Ω can be partitioned into four
on-overlapping subdivisions:

Γ = Γ
f

g ∪ Γ
f

h ∪ Γ
s
g ∪ Γ

s
h , and ∅ = Γ f

g ∩ Γ
f

h = Γ f
g ∩ Γ

s
g = Γ f

g ∩ Γ
s
h = Γ

f
h ∩ Γ

s
h = Γ

f
h ∩ Γ

s
g = Γ s

g ∩ Γ
s
h .

In the above, the four subdivisions represent the Dirichlet part of the fluid boundary, the Neumann part of the fluid
boundary, the Dirichlet part of the solid boundary, and the Neumann part of the solid boundary, respectively. We
note that since the present theory involves multiple unknowns in R3, the boundary Γ should in fact be generalized
to admit a different decomposition for each component of each unknown [54, p. 77]. To simplify our presentation,
however, we consider the same partition of Γ for all unknowns here and note that practical problems would require
eneralization. We demand Γ to be at least Lipschitz such that the outward normal vector n is well-defined almost

everywhere. We also assume that the interior fluid–solid interface ΓI is sufficiently smooth such that its outward
ormal vector is well-defined. In particular, we use n f and ns to represent the unit outward normal vector on ΓI

elative to Ω f and Ω s respectively, such that n f
= −ns . Let the time interval of interest be denoted by (0, T ) ⊂ R,

ith T > 0. With this geometric configuration in mind, we state the strong-form sub-problems separately for the
wo sub-domains.

Under the Stokes’ hypothesis and isothermal condition, the initial–boundary value problem in the solid sub-
omain Ω s can be stated as follows in the Lagrangian description [14]. Given the body force per unit mass bs ,
irichlet data gs , boundary traction hs , and initial displacement and velocity fields us

0 and vs
0, find the solid

isplacement us , pressure ps , and velocity vs , such that

0 =
dus

dt
− vs, in Ω s

× (0, T ), (2.1)

0 = βs
θ (ps)

dps

dt
+∇ · vs, in Ω s

× (0, T ), (2.2)

0 = ρs(ps)
dvs

dt
−∇ · σ s

dev +∇ ps
− ρs(ps)bs, in Ω s

× (0, T ), (2.3)

us
= gs, on Γ s

g × (0, T ), (2.4)

σ s n = hs, on Γ s
h × (0, T ), (2.5)

us(·, 0) = us
0(·), in Ω̄ s, (2.6)

vs(·, 0) = vs
0(·), in Ω̄ s . (2.7)

Here, βs
θ is the isothermal compressibility coefficient, ρs is the solid density, and σ s

dev is the deviatoric component of
the Cauchy stress. To characterize the material behavior, constitutive relations for βs

θ , ρs , and σ s
dev must be provided.

Interested readers may refer to [14, Sec. 2.4] for an overview of various constitutive relations for βs
θ and ρs and

their relations with different forms of volumetric free energies.

Assumption 1. The solid deformation is small enough such that the infinitesimal strain theory is valid.

Under the infinitesimal strain assumption, the reference and current frames coincide, as do the total (d/dt) and
partial (∂/∂t) time derivatives in (2.1)–(2.3). The density ρs(ps) takes the value in the reference configuration,
denoted ρs . Furthermore, one may show that βθ (ps) = 1/κs , where κs is the solid bulk modulus [55, p. 941].
Integrating (2.2) in time then yields

ps
= −κs

∇ · us . (2.8)

The infinitesimal strain tensor is given by

ϵ(us) :=
1 (
∇us
+
(
∇us)T

)
= ϵdev(us)+

1
∇ · us I,
2 3
4
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where ϵdev is the strain deviator and I is the second-order identity tensor. Given a strain energy function W (ϵdev),
the stress deviator is then

σ s
dev =

∂W (ϵdev)
∂ϵ

=
∂W (ϵdev)

∂ϵdev
:

∂ϵdev

∂ϵ
= PT ∂W (ϵdev)

∂ϵdev
, P := I−

1
3

I ⊗ I,

where P is the deviatoric projector, and I is the fourth-order symmetric identity tensor. The Cauchy stress for the
olid body thus takes the following form,

σ s
:= σ s

dev − ps I = PT ∂W (ϵdev)
∂ϵdev

+ κs
∇ · us I .

emark 1. As will be revealed, Assumption 1 renders the eventual FSI formulation implementationally and
omputationally appealing. While several promising results have been reported in the literature [43,56], its validity
ust be judiciously assessed under various physiological settings in both health and disease.

While the fluid sub-problem in an ALE formulation is indeed posed on a moving domain that tracks the solid
eformation, Assumption 1 guarantees this geometry adherence and renders mesh motion unnecessary. The initial–
oundary value problem for the incompressible Newtonian fluid in the fluid sub-domain Ω f can thus be stated as

follows. Given the body force per unit mass b f , Dirichlet data g f , boundary traction h f , and divergence-free initial
velocity field v

f
0 , find the fluid velocity v f and pressure p f , such that

0 = ρ f ∂v f

∂t
+ ρ f v f

· ∇v f
−∇ · σ

f
dev +∇ p f

− ρ f b f , in Ω f
× (0, T ), (2.9)

0 = ∇ · v f , in Ω f
× (0, T ), (2.10)

v f
= g f on Γ f

g × (0, T ), (2.11)

σ f n = h f on Γ
f

h × (0, T ), (2.12)

v f (·, 0) = v
f
0 (·), in Ω̄ f , (2.13)

wherein

σ
f
dev := 2µ f εdev(v f ), εdev(v f ) :=

1
2

(
∇v f
+
(
∇v f )T

)
−

1
3
∇ · v f I . (2.14)

Here, ρ f is the fluid density, σ
f
dev is the deviatoric component of the Cauchy stress for a Newtonian fluid, µ f is

the dynamic viscosity, and εdev is the deviatoric component of the rate-of-strain tensor. The Cauchy stress for the
fluid can be consequently given by σ f

:= σ
f
dev − p f I .

The strong-form FSI problem can be completed with the following kinematic condition enforcing the continuity
of velocity on ΓI ,

v f
= vs, on ΓI , (2.15)

and the following dynamic condition enforcing the continuity of stress,

σ f n f
= −σ s ns, on ΓI . (2.16)

Together, Eqs. (2.1)–(2.16) constitute the coupled strong-form FSI problem, in which the solid problem is restricted
to small-strain elastodynamics.

2.2. Semi-discrete formulation

In this section, we present the semi-discrete formulations for the two coupled sub-problems separately. By
invoking two more assumptions for the vascular wall, we then reduce the elastodynamics formulation to a thin-
walled, linear elastic membrane formulation, yielding a convenient FSI formulation that does not explicitly require
solid degrees of freedom. We further note that the reduction to a membrane formulation conveniently bypasses the
troublesome procedure of modeling the vascular wall, which current medical imaging techniques largely remain
unable to accurately resolve [15].
5
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2.2.1. Semi-discrete formulation for elastodynamics
Let Ss

v be the trial solution space for the solid velocity; let Ss
u and V s

u denote the trial solution and test function
spaces for the solid displacement. We can then state the semi-discrete elastodynamics formulation in Ω s as follows.
Find

ys
h(t) :=

{
vs

h(t), us
h(t)

}T
∈ Ss

v × Ss
u

such that

Bs
k

(
ẏs

h, ys
h

)
= 0,

Bs
m

(
ws

h; ẏs
h, ys

h

)
= 0, ∀ws

h ∈ V s
u,

where

Bs
k

(
ẏs

h, ys
h

)
:=

dus
h

dt
− vs

h, (2.17)

Bs
m

(
ws

h; ẏs
h, ys

h

)
:=

∫
Ωs

ws
h · ρ

s
(

dvs
h

dt
− bs

)
dΩ +

∫
Ωs

ϵ(ws
h) : σ s(us

h)dΩ −
∫
Γ s

h

ws
h · h

sdΓ , (2.18)

ith ys
h(0) =

{
vs

0, us
0

}T . Here, vs
0 and us

0 are L2 projections of the initial velocity and displacement fields onto the
discrete spaces Ss

v and Ss
u, respectively.

emark 2. In contrast to the conventional “acceleration form” in which only displacement degrees-of-freedom are
utilized, acceleration is represented here as the first time derivative of velocity via the kinematic relation (2.17) [57].
While this “momentum form” ostensibly introduces three additional velocity degrees of freedom on each node in
Ω s , we will later show that (2.17) does not enter the implicit solution procedure for the fully discrete formulation.
Furthermore, as will be discussed later, this first-order structural dynamics formulation is favorable for temporal
discretization via the generalized-α method.

Restricting our discussion to vascular FSI, we now introduce our second assumption pertaining to the vascular
wall geometry.

Assumption 2. Ω s is thin in one direction and can thus be parameterized by the fluid–solid interface ΓI and a
through-thickness coordinate in the unit outward normal direction.

To simplify our presentation, let ΓI be parameterized by a single chart Ξ ⊂ R2, a bounded open set. Let χ (ξ, η)
be a smooth one-to-one mapping of (ξ, η) ∈ Ξ onto the fluid–solid interface χ ∈ ΓI , where χ represents the
position vector of a generic point on ΓI . The unit outward normal vector to Ω f can be represented by

n f
=

eξ × eη

∥eξ × eη∥
, where eξ :=

∂χ

∂ξ
/

∂χ

∂ξ

 , eη :=
∂χ

∂η
/

∂χ

∂η

 .

iven this thin-walled assumption, we can introduce the following diffeomorphism from ξ := {ξ, η, ζ } ∈ Ξ × (0, 1)
to x ∈ Ω s ,

x(ξ ) = x(ξ, η, ζ ) := χ (ξ, η)+ ζhs(ξ, η)n f , (2.19)

where ξ and η are the in-plane parametric coordinates, hs is the wall thickness as a function of ξ and η, and ζ ∈ (0, 1)
s the through-thickness parametric coordinate. For any fixed ζ , the surface defined by this parameterization of Ω s is
lamina, and a corresponding lamina coordinate system {el

1, el
2, el

3}, denoted with a superscript l, may be constructed
s follows [54, Sec. 6.2],

el
1 :=

√
2

2

(
eα − eβ

)
, el

2 :=

√
2

2

(
eα + eβ

)
, el

3 := n f ,

in which,

eα :=
1 (

eξ + eη

)
/

1 (
eξ + eη

) , eβ := el
3 × eα/∥el

3 × eα∥.
2 2
6
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With these lamina basis vectors
{

el
i

}3
i=1, the coordinate transformation from the global coordinates x to the local

lamina coordinates xl is then given by xl
= Qx with the rotation matrix

Q :=
[
el

1 el
2 el

3

]T
.

From the parameterization (2.19), we have

j :=det
(

∂x
∂ξ

)
= hs n f

·

(
∂x
∂ξ
×

∂x
∂η

)
= hs n f

·

((
∂χ

∂ξ
+ ζ

∂hs

∂ξ
n f
)
×

(
∂χ

∂η
+ ζ

∂hs

∂η
n f
))

=hs n f
·

(
∂χ

∂ξ
×

∂χ

∂η

)
,

ndicating the following transformation of the volume element from Ξ × (0, 1) to Ω s ,

dΩ := dx = jdξ = jdξdηdζ = hs n f
·

(
∂χ

∂ξ
×

∂χ

∂η

)
dξdηdζ = hs n f

· n f dΓdζ = hsdΓdζ, (2.20)

where we have utilized the transformation of the area element from Ξ to ΓI ,

n f dΓ =
(

∂χ

∂ξ
×

∂χ

∂η

)
dξdη.

he volume integral over Ω s can thus be simplified in the following manner,∫
Ωs

(·) dΩ =
∫
ΓI

hs
∫ 1

0
(·) dζdΓ . (2.21)

e finally introduce the following membrane assumption for the vascular wall.

ssumption 3. The displacement us is a function of the in-plane parametric coordinates (ξ, η) only, and the
ransverse normal stress σ s

33 is zero in the el
3 direction of the lamina system.

Cardiac pulse wavelengths are at least three orders of magnitude larger than arterial diameters [58], causing
essels to respond to transverse loading primarily with in-plane stresses rather than bending stresses. Out-of-plane
otations and their corresponding bending effects are thus neglected under this membrane assumption, minimizing
he number of degrees of freedom and facilitating convenient fluid–solid coupling. In addition, to avoid thickness
ocking, also known as Poisson thickness locking in classical shell theories, the transverse normal stress is assumed
o vanish, which has been well-substantiated over time [59,60]. Furthermore, it is commonly known that when
he linear, constant strain triangle is used to model membrane components experiencing transverse loads in three-
imensional structures, it suffers from severe transverse and in-plane shear locking, thereby demonstrating overly
tiff behavior [61,62]. Transverse shear modes are therefore added to stabilize the linear membrane.

We now define the solid constitutive relation in the lamina coordinate system to enforce the zero transverse normal
tress condition. As a consequence of the interstitial fluid interspacing the intimal, medial, and adventitial layers of
he vascular wall as well as the surrounding tissues and organs, vascular deformation indeed exhibits viscoelasticity
ather than pure elasticity. Nonetheless, preliminarily considering the strain energy for isotropic linear elasticity,

W (ϵdev) = µϵdev : ϵdev,

he constitutive relation is given by

σ
s,l
dev = 2µsϵdev(us,l).

ecalling from (2.8) that the hydrostatic component of the Cauchy stress is already given by ps
= −κs

∇ · us,l , the
Cauchy stress can be written as

σ s,l
= σ

s,l
dev − ps I = Cs,lϵl(us,l), with Cs,l

:= 2µs(xl)I+ λs(xl)I ⊗ I,

wherein

σ s,l
=

{
σ

s,l
I

}
=

[
σ

s,l
11 , σ

s,l
22 , σ

s,l
12 , σ

s,l
23 , σ

s,l
31

]T
,

ϵl(us,l) =
{
ϵl }
=
[
ϵl , ϵl , 2ϵl , 2ϵl , 2εl ]T

=

[
us,l

, us,l
, us,l

+ us,l
, us,l

, us,l
]T

,
I 11 22 12 23 31 1,1 2,2 1,2 2,1 3,2 3,1

7
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Cs,l
=

[
Cs,l

I J

]
=

E
(1− ν2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν

ν 1
1− ν

2
κ

(1− ν)
2

κ
(1− ν)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
n Voigt notation. Here, µs and λs are the Lamé parameters related to the bulk modulus κs through the relation
s
:= 2µs/3+λs , E is the Young’s modulus, ν is the Poisson’s ratio, and κ = 5/6 is the shear correction factor [54,

.391]. This linear elasticity can be extended to nonlinear visco-hyperelasticity [63] in future investigations. We
ote that modeling of viscous effects, which has become increasingly common in both one- [64,65] and three- [66]
imensional FSI models, could be performed through a Robin boundary condition on the membrane in the form
f a Kelvin–Voigt model [66]. Our recent work highlights its importance in validating our FSI formulation against
n vitro hemodynamics in a benchtop flow circuit [67]. Now adopting the full tensor notation rather than Voigt
otation, the Cauchy stress in the lamina coordinate system can be rotated to the global coordinate system by

σ s
= QT σ s,l Q.

ssumption 3 further enables evaluation of (·) in (2.21) at ζ = 0, thereby reducing the volume integral over Ω s to
surface integral over ΓI ,∫

Ωs
(·) dΩ ≈

∫
ΓI

hs (·) |ζ=0dΓ . (2.22)

emark 3. The choice of a linear constitutive model can be well justified by experimental canine aortic and
ulmonary arterial data exhibiting linearity within the physiological range of pressures [68,69]. Nonetheless, material
onlinearity and anisotropy could instead be considered using an alternative form for the strain energy function

W (ϵdev) in the above derivation. We note that for problems characterized by large deformation, such as hypertensive
linical cases, Assumptions 2 and 3 could still be invoked, yet an ALE description of the fluid sub-problem would
e required, necessitating mesh motion and rendering the overall FSI formulation less computationally appealing.

.2.2. Residual-based VMS formulation for an incompressible Newtonian fluid
Let S f

v and S f
p denote the trial solution spaces for the fluid velocity and pressure, and let V f

v and V f
p be their

orresponding test function spaces. We can then construct the semi-discrete fluid formulation in Ω f using the
esidual-based VMS formulation [44] as follows. Find

y f
h (t) :=

{
v

f
h (t), p f

h (t)
}T
∈ S f

v × S f
p

uch that

B f
m

(
w

f
h ; ẏ f

h , y f
h

)
= 0, ∀w

f
h ∈ V f

v , (2.23)

B f
c

(
q f

h ; ẏ f
h , y f

h

)
= 0, ∀q f

h ∈ V f
p , (2.24)

here

B f
m

(
w

f
h ; ẏ f

h , y f
h

)
:= Bvol

m

(
w

f
h ; ẏ f

h , y f
h

)
+ Bh

m

(
w

f
h ; ẏ f

h , y f
h

)
+ Bbf

m

(
w

f
h ; ẏ f

h , y f
h

)
, (2.25)

Bvol
m

(
w

f
h ; ẏ f

h , y f
h

)
:=

∫
Ω f

w
f
h · ρ

f

(
∂v

f
h

∂t
+ v

f
h · ∇v

f
h − b f

)
dΩ −

∫
Ω f
∇ · w

f
h p f

h dΩ

+

∫
Ω f

2µ f ε(w f
h ) : ε(v f

h )dΩ

−

∫
Ω f ′
∇w

f
h :

(
ρ f v′ ⊗ v

f
h

)
dΩ +

∫
Ω f ′
∇v

f
h :

(
ρ f w

f
h ⊗ v′

)
dΩ

−

∫
∇w

f
h :
(
ρ f v′ ⊗ v′

)
dΩ
Ω f ′

8
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−

∫
Ω f ′
∇ · w

f
h p′dΩ , (2.26)

Bh
m

(
w

f
h ; ẏ f

h , y f
h

)
:= −

∫
Γ

f
h

w
f
h · h

f dΓ , (2.27)

Bbf
m

(
w

f
h ; ẏ f

h , y f
h

)
:= −

∫
Γ

f
h

ρ f β
(
v

f
h · n

f
)
−

w
f
h · v

f
h dΓ , (2.28)

B f
c

(
q f

h ; ẏ f
h , y f

h

)
:=

∫
Ω f

q f
h ∇ · v

f
h dΩ −

∫
Ω f ′
∇q f

h · v
′dΩ , (2.29)

wherein

v′ := −τ M

(
ρ f ∂v

f
h

∂t
+ ρ f v

f
h · ∇v

f
h +∇ p f

h − µ f ∆v
f
h − ρ f b f

)
, p′ := −τC∇ · v

f
h , (2.30)

τ M := τM I3, τM :=
1
ρ f

(
CT

∆t2 + v
f
h · Gv

f
h + CI

(
µ f

ρ f

)2

G : G

)− 1
2

, τC :=
1

τM trG
, (2.31)

G i j :=

3∑
k=1

∂yk

∂xi
Mkl

∂yl

∂x j
, G : G :=

3∑
i, j=1

G i j G i j , trG :=
3∑

i=1

G i i , (2.32)

M = [Mkl] =
3√2
2

⎡⎣2 1 1
1 2 1
1 1 2

⎤⎦ ,
(
v

f
h · n

f
)
−

:=
v

f
h · n

f
− |v

f
h · n

f
|

2
=

{
v

f
h · n

f if v
f
h · n

f < 0,

0 if v
f
h · n

f
≥ 0.

(2.33)

ere, Ω f ′ is the union of element interiors; y = {yi }
3
i=1 are natural coordinates in the parent domain; CI depends on

he polynomial order of the finite element basis functions, taking the values of 36 and 60 for linear and quadratic
nterpolations, respectively [26,70]; and CT is taken to be 4 [14,53]. Bbf

m is an additional convective traction shown
o be robust in overcoming backflow divergence [71,72], a well-known issue in cardiovascular simulations. It can
e shown that taking β = 1.0 guarantees energy stability for the numerical scheme adopted here. In this work, β

s fixed to be 0.2 to minimize its impact on the flow field and to improve robustness at larger time steps.

emark 4. In contrast to CMM [26,42,73], integration-by-parts is not performed for the divergence operator in the
ontinuity equation, which could otherwise lead to a loss of energy stability in the Galerkin formulation. Interested
eaders may refer to [74] for a thorough discussion of the Galerkin formulation for the Navier–Stokes equations.
n addition, we adopt the residual-based variational multiscale formulation [44], which has been shown to capture
he correct energy spectrum and decay of kinetic energy in isotropic and wall-bounded turbulent flows [44,75,76].
he conventional streamline upwind Petrov–Galerkin/pressure-stabilizing Petrov–Galerkin (SUPG/PSPG) method

70,77], on the other hand, cannot correctly describe the energy spectrum and is thus physically inappropriate as a
ubgrid-scale model [78]. Furthermore, the stabilization parameters are defined to be invariant to cyclic permutations
f node numbering [79,80].

emark 5. In the VMS formulation, the fine-scale solutions v′ and p′ can be derived by invoking the fine-scale
reen’s function [81]. When representing the coarse-scale solutions with C0-continuous basis functions, the fine-

cale solutions are driven by residuals of the resolved scales in element interiors (i.e., Ω f ′) as well as jump terms
n element boundaries. Nonetheless, given the negligible contribution of the jump terms on element boundaries
n advection-dominated cases [81,82], these jump terms are often neglected in advection–diffusion problems. It is
herefore not common to see the jump terms in recent VMS modeling for turbulent flows [76,83], and we similarly
hoose not to incorporate them in our formulation. Yet, some investigations suggest that the jump terms may enhance
ressure robustness for the Stokes system [82,84]. It thus remains an interesting topic to assess the impact of jump

erms in biofluid applications, where the Reynolds number is only moderately high.

9
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2.2.3. Reduced unified continuum formulation for vascular FSI
Discretization of the entire domain Ω by a single mesh with continuous basis functions across the fluid–solid

interface ΓI immediately guarantees satisfaction of the kinematic coupling condition (2.15) in the semi-discrete
ormulation. The implied relation

w
f
h = ws

h, on ΓI (2.34)

lso yields weak satisfaction of the traction coupling condition (2.16), that is

0 =
∫
ΓI

w
f
h ·
(
σ f n f

+ σ s ns) dΓ =
∫
ΓI

w
f
h ·
(
σ f n f

− σ s n f ) dΓ .

ith this mesh choice, the momentum balances (2.18) and (2.25) over Ω s and Ω f , respectively, can then be
ombined into a single momentum balance over the entire continuum body Ω ,

Bs
m

(
ws

h; ẏs
h, ys

h

)
+ B f

m

(
w

f
h ; ẏ f

h , y f
h

)
= 0, ∀ws

h ∈ V s
u and ∀w

f
h ∈ V f

v .

Having applied the outlined assumptions to collapse the three-dimensional elastodynamic problem in Ω s to a
wo-dimensional problem posed on ΓI , we now present the reduced semi-discrete FSI formulation. Let uw

h be the
embrane displacement on ΓI . Using the kinematic coupling condition (2.15), continuity of test functions on ΓI

2.34), and the transformation of volume integrals over Ω s (2.22), we can rewrite the kinematic Eq. (2.17) as

Bk
(

ẏh, yh
)
:=

duw
h

dt
− v

f
h = 0, on ΓI , (2.35)

and the momentum balance (2.18) over Ω s as

Bw
m

(
w

f
h ; ẏh, yh

)
:=

∫
ΓI

w
f
h ·ρ

shs

(
dv

f
h

dt
− bs

)
dΓ+

∫
ΓI

hsϵ(w f
h ) : σ s(uw

h )dΓ−
∫

∂ΓI∩Γ
h
s

hsw
f
h ·h

sdΓ , (2.36)

where ∂ΓI ∩Γ
h
s constitutes the Neumann partition of the boundary of ΓI . Finally, let Sw

u be the trial solution space
for uw

h . Our reduced unified continuum formulation posed only in the fluid domain Ω f is then stated as follows.
Find

yh(t) :=
{

uw
h (t), v f

h (t), p f
h (t)

}T
∈ Sw

u × S f
v × S f

p

such that

Bk
(

ẏh, yh
)
= 0, (2.37)

Bm

(
w

f
h ; ẏh, yh

)
:= Bw

m

(
w

f
h ; ẏh, yh

)
+ B f

m

(
w

f
h ; ẏ f

h , y f
h

)
= 0, ∀w

f
h ∈ V f

v , (2.38)

Bc

(
q f

h ; ẏh, yh

)
:= B f

c

(
q f

h ; ẏ f
h , y f

h

)
= 0, ∀q f

h ∈ V f
p . (2.39)

t is then clear that compared to the fluid sub-problem, the above FSI formulation Eqs. (2.37)–(2.39) consist of an
dditional coupling relation (2.37) and four additional terms corresponding to the vascular wall’s mass, body force,
tiffness, and boundary traction, all of which are embedded in (2.38) through the form Bw

m. Importantly, (2.38)
epresents the semi-discrete formulation for momentum balance over the entire continuum body consisting of both
he fluid and vascular wall. This FSI formulation therefore offers a computationally efficient approach for capturing
ascular wall deformation on a stationary fluid mesh.

emark 6. Despite the ostensible similarity between our reduced unified continuum formulation and the semi-
iscrete formulation of CMM, the fluid–solid coupling in CMM was achieved via a fictitious body force assumed
o be uniformly distributed through the vessel thickness [26,42] (see also [85, p. 10] and [86, p. 119]). Our recent
evelopment of the unified continuum and VMS formulation renders this assumption unnecessary for achieving the
esired coupling. Starting from the unified formulation in ALE coordinates, we have instead arrived at a similar
educed FSI formulation simply by invoking the small-strain, thin-walled, and membrane assumptions for the solid
ub-problem. We further note that the wall thickness has not been assumed to be uniform over each element and

hus appears within the integrals over ΓI in our formulation.

10
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2.3. Fully discrete formulation

To arrive at the fully discrete FSI formulation, we apply the generalized-α method for temporal discretization of
the first-order dynamic system. Let the time interval of interest (0, T ) be divided into Nts subintervals of equal size
∆tn := tn+1 − tn and delimited by a discrete time vector {tn}

Nts
n=0. The approximations of the solution vector and its

time-derivative at time step tn are denoted as

yn :=
{
uw

n , v f
n , p f

n

}
, and ẏn :=

{
u̇w

n , v̇ f
n , ṗ f

n

}
.

Let NA represent basis functions for all variational spaces, and let {ei } be the Cartesian basis vectors with i = 1, 2, 3.
We may then define the residual vectors as follows,

Rk
(

ẏn, yn
)
:=

{
Bk

(
ẏn, yn

)}
,

Rm
(

ẏn, yn
)
:=

{
Bm

(
NAei ; ẏn, yn

)}
,

Rc
(

ẏn, yn
)
:=

{
Bc
(
NA; ẏn, yn

)}
.

he fully discrete scheme can be stated as follows. At time step tn , given ẏn , yn , and the time step size ∆tn , find
ẏn+1 and yn+1 such that

Rk

(
ẏn+αm , yn+α f

)
= 0, (2.40)

Rm

(
ẏn+αm , yn+α f

)
= 0, (2.41)

Rc

(
ẏn+αm , yn+α f

)
= 0, (2.42)

ẏn+αm = ẏn + αm
(

ẏn+1 − ẏn
)
, (2.43)

yn+α f
= yn + α f

(
yn+1 − yn

)
, (2.44)

yn+1 = yn +∆tn ẏn + γ∆tn
(

ẏn+1 − ẏn
)
. (2.45)

n the above system, the three parameters αm , α f , and γ determine critical numerical properties of the discrete
ynamic system. For linear problems, the following parameterization has been shown to achieve second-order
ccuracy, unconditional stability, and optimal high frequency dissipation,

αm =
1
2

(
3− ϱ∞

1+ ϱ∞

)
, α f =

1
1+ ϱ∞

, γ =
1
2
+ αm − α f ,

wherein ϱ∞ ∈ [0, 1] is the spectral radius of the amplification matrix at the highest mode [45,46]. We note that as
long as α f ̸= 0, the generalized-α method (2.40)–(2.45) remains an implicit scheme for pressure, which is necessary
for enforcing the divergence-free condition at each time step [87, p. 284]. As a balanced choice between maximal
(ϱ∞ = 0) and minimal (ϱ∞ = 1) high-frequency damping, we choose ϱ∞ = 0.5, as is common in CFD and FSI
investigations [15,44,88].

Remark 7. While the Newmark-β method [52] used to integrate membrane dynamics in CMM [26] has classically
been used in structural dynamics and persists in today’s solvers, it faces several well-documented issues. First, it
cannot simultaneously achieve second-order accuracy and high-frequency algorithmic damping; second, all first-
order implementations of the Newmark-β method are overly dissipative in the mid-frequency modes [54, p. 501];
third, implicit schemes of the Newmark family are “not designed to conserve energy and also fail to conserve
momentum” for nonlinear structural dynamics [89]. As a result, despite its pervasiveness, the Newmark-β method
is not recommended for structural dynamics [57,90].

Remark 8. The generalized-α method was initially proposed as an integration scheme for structural dynamics [45]
and has since been applied to fluid dynamics [46] as well as FSI problems [47]. It exhibits all of the desirable
attributes of a competitive integration scheme for structural dynamics, as noted by Hilber and Hughes [90].

Moreover, when applied to a first-order structural dynamic system, it was recently found not to suffer from the

11
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‘overshoot’ phenomenon, a long-standing issue in computational structural dynamics, and to further possess smaller
dissipation and dispersion errors than when applied to a second-order system [91]. The generalized-α method is
thus highly recommended for integrating inertial type problems.

Remark 9. In both CFD and FSI literature, the fluid velocity and pressure are typically treated dichotomously
in the generalized-α method for the incompressible Navier–Stokes equations, such that pressure is collocated at
time step tn+1 rather than the intermediate time step tn+α f [26,73,75,92]. Despite the commonly cited second-order
accuracy of the generalized-α method, we recently demonstrated that this particular approach yields only first-order
temporal accuracy, at least, for pressure. Evaluating pressure at tn+α f recovers second-order accuracy for the overall
lgorithm, simplifies the implementation, and resolves a troubling issue in geometric multiscale modeling. Interested
eaders are referred to [51] for details.

.4. A segregated predictor multi-corrector algorithm

The fully discrete scheme can be solved iteratively with a predictor multi-corrector algorithm, in which the
ewton–Raphson method is used in the multi-corrector iterations to improve the initial prediction. Let yn+1,(l) and

ẏn+1,(l) denote the solution vector and its time derivative at time step tn+1 at the lth Newton–Raphson iteration,
here n = 0, 1, . . . , Nts − 1 and l = 0, 1, . . . , lmax,

yn+1,(l) := {u
w
n+1,(l), v

f
n+1,(l), p f

n+1,(l)}, and ẏn+1,(l) := {u̇
w
n+1,(l), v̇

f
n+1,(l), ṗ f

n+1,(l)}.

e can then denote the residual vectors at iteration number l as

R(l) := {Rk,(l), Rm,(l), Rc,(l)}
T ,

Rk,(l) := Rk

(
ẏn+αm ,(l), yn+α f ,(l)

)
,

Rm,(l) := Rm

(
ẏn+αm ,(l), yn+α f ,(l)

)
,

Rc,(l) := Rc

(
ẏn+αm ,(l), yn+α f ,(l)

)
,

nd the consistent tangent matrix as

K(l) =

⎡⎣Kk,(l),u̇w Kk,(l),v̇ f Kk,(l), ṗ f

Km,(l),u̇w Km,(l),v̇ f Km,(l), ṗ f

Kc,(l),u̇w Kc,(l),v̇ f Kc,(l), ṗ f

⎤⎦ ,

wherein

Kk,(l),u̇w := αm

∂Rk

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂ u̇w

n+αm

= αm I,

Kk,(l),v̇ f := α f γ∆tn
∂Rk

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂v

f
n+α f

= −α f γ∆tn I,

Kk,(l), ṗ f := 0,

Km,(l),u̇w := α f γ∆tn
∂Rm

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂uw

n+α f

,

Km,(l),v̇ f := αm

∂Rm

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂ v̇

f
n+αm

+ α f γ∆tn
∂Rm

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂v

f
n+α f

,

Km,(l), ṗ f := α f γ∆tn
∂Rm

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂p f

n+α f

,

w
Kc,(l),u̇ := 0,

12
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Kc,(l),v̇ f := αm

∂Rc

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂ v̇

f
n+αm

+ α f γ∆tn
∂Rc

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂v

f
n+α f

,

Kc,(l), ṗ f := α f γ∆tn
∂Rc

(
ẏn+αm ,(l), yn+α f ,(l)

)
∂p f

n+α f

.

he special block structure in the first row of K(l) can be exploited for the following block decomposition [93,94],

K(l) =

⎡⎢⎢⎣
I 0 0

1
αm

Km,(l),u̇w Km,(l),v̇ f +
α f γ∆tn

αm
Km,(l),u̇w Km,(l), ṗ f

0 Kc,(l),v̇ f Kc,(l), ṗ f

⎤⎥⎥⎦
⎡⎣αm I −α f γ∆tn I 0

0 I 0
0 0 I

⎤⎦ .

With the above decomposition, the original linear system for the Newton–Raphson method,

K(l)∆ ẏn+1,(l) = −R(l),

can be solved to obtain the increments ∆ ẏn+1,(l) := {∆u̇w
n+1,(l),∆v̇

f
n+1,(l),∆ ṗ f

n+1,(l)}
T at iteration number l in the

following two-stage segregated algorithm. In the first stage, intermediate increments are solved from⎡⎢⎢⎣
I 0 0

1
αm

Km,(l),u̇w Km,(l),v̇ f +
α f γ∆tn

αm
Km,(l),u̇w Km,(l), ṗ f

0 Kc,(l),v̇ f Kc,(l), ṗ f

⎤⎥⎥⎦
⎡⎢⎣∆u̇w∗

n+1,(l)

∆v̇
f ∗
n+1,(l)

∆ ṗ f ∗
n+1,(l)

⎤⎥⎦ = −
⎡⎣Rk,(l)

Rm,(l)
Rc,(l)

⎤⎦ . (2.46)

n the second stage, the increments are obtained from the following system of equations,⎡⎣αm I −α f γ∆tn I 0
0 I 0
0 0 I

⎤⎦
⎡⎢⎣∆u̇w

n+1,(l)

∆v̇
f
n+1,(l)

∆ ṗ f
n+1,(l)

⎤⎥⎦ =
⎡⎢⎣∆u̇w∗

n+1,(l)

∆v̇
f ∗
n+1,(l)

∆ ṗ f ∗
n+1,(l)

⎤⎥⎦ . (2.47)

rom (2.46) and (2.47), we make the following observations,

αm∆u̇w
n+1,(l) − α f γ∆tn∆v̇

f
n+1,(l) = ∆u̇w∗

n+1,(l) = −Rk,(l), ∆v̇
f
n+1,(l) = ∆v̇

f ∗
n+1,(l), ∆ ṗ f

n+1,(l) = ∆ ṗ f ∗
n+1,(l),

with which we may reduce the linear systems in the segregated algorithm to⎡⎣Km,(l),v̇ f +
α f γ∆tn

αm
Km,(l),u̇w Km,(l), ṗ f

Kc,(l),v̇ f Kc,(l), ṗ f

⎤⎦[∆v̇
f
n+1,(l)

∆ ṗ f
n+1,(l)

]
= −

⎡⎣Rm,(l) −
1

αm
Km,(l),u̇w Rk,(l)

Rc,(l)

⎤⎦ , (2.48)

∆u̇w
n+1,(l) =

α f γ∆tn
αm

∆v̇
f
n+1,(l) −

1
αm

Rk,(l). (2.49)

The segregated algorithm therefore consists of solving (2.48) for {∆v̇
f
n+1,(l),∆ ṗ f

n+1,(l)}
T , then subsequently obtaining

u̇w
n+1,(l) from the algebraic update (2.49). Furthermore, it has been shown in Proposition 5 of [14] that

Rk,(l) = 0 for l ≥ 2

olds true for any given update ∆v̇
f
n+1,(l) in (2.49), prompting us to set Rk,(l) = 0 for all l ≥ 1 in (2.48). While

his may lead to inconsistent updates of ∆v̇
f
n+1,(l) and ∆ ṗ f

n+1,(l) for l = 1, we have observed no deterioration of the
verall Newton–Raphson algorithm’s convergence rate in our collective experience. Interested readers are referred
o Appendix B of [14] for more details on the numerical analysis. For notational simplicity, we denote the block
atrices in (2.48) as

A(l) := Km,(l),v̇ f +
α f γ∆tn

αm
Km,(l),u̇w , B(l) := Km,(l), ṗ f , C(l) := Kc,(l),v̇ f , D(l) := Kc,(l), ṗ f . (2.50)

We can now summarize our above discussion in the following segregated predictor multi-corrector algorithm.
13
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Segregated predictor multi-corrector algorithm

Predictor stage: Set

yn+1,(0) = yn, ẏn+1,(0) =
γ − 1

γ
ẏn.

Multi-corrector stage: Repeat the following steps for l = 1, 2, . . . , lmax

1. Evaluate the solution vector and its time derivative at intermediate time steps,

yn+α f ,(l) = yn + α f
(

yn+1,(l−1) − yn
)
, ẏn+αm ,(l) = ẏn + αm

(
ẏn+1,(l−1) − ẏn

)
.

2. Assemble the residual vector R(l) using ẏn+αm ,(l) and yn+α f ,(l).
3. Let ∥R(l)∥l2 denote the l2-norm of the residual vector, and let tolR and tolA denote the prescribed relative

and absolute tolerances, respectively. If either of the following stopping criteria

∥R(l)∥l2

∥R(0)∥l2
≤ tolR, ∥R(l)∥l2 ≤ tolA,

is satisfied, then set

yn+1 = yn+1,(l−1), ẏn+1 = ẏn+1,(l−1),

and exit the multi-corrector stage. Otherwise, continue to step 4.
4. Assemble the following sub-tangent matrices,

A(l) := Km,(l),v̇ f +
α f γ∆tn

αm
Km,(l),u̇w , B(l) := Km,(l), ṗ f ,

C(l) := Kc,(l),v̇ f , D(l) := Kc,(l), ṗ f .

5. Solve the following linear system for ∆v̇
f
n+1,(l) and ∆ ṗ f

n+1,(l),[
A(l) B(l)
C(l) D(l)

][
∆v̇

f
n+1,(l)

∆ ṗ f
n+1,(l)

]
= −

[
Rm,(l)
Rc,(l)

]
. (2.51)

6. Obtain ∆u̇w
n+1,(l) from ∆v̇

f
n+1,(l) via the relation (2.49), that is,

∆u̇w
n+1,(l) =

α f γ∆tn
αm

∆v̇
f
n+1,(l) −

1
αm

Rk,(l).

7. Update the solution vector and its time derivative as

yn+1,(l) = yn+1,(l−1) + γ∆tn∆ ẏn+1,(l), ẏn+1,(l) = ẏn+1,(l−1) +∆ ẏn+1,(l).

In this work, unless otherwise specified, we set the tolerances to tolR = tolA = 10−6 and the maximum number
f nonlinear iterations to lmax = 20. To ensure temporal accuracy for our clinical applications involving pulsatile
ow, we discretize each cardiac cycle with two thousand time steps. The multi-corrector phase typically converges

n a few iterations, with optimal quadratic reduction of the nonlinear residual ∥R(l)∥l2 (see Table 2). One may wish
o use larger time step sizes in certain scenarios, in which case a more sophisticated nonlinear solution technique,
uch as the modified Newton–Raphson method and the line search algorithm [95], may be needed.

emark 10. We have chosen Rk,(l) = 0 for all l ≥ 1 in (2.48) to simplify the formation of the right-hand side of
he linear system. We note that the wall displacement update (2.49) still requires a consistent definition of Rk,(l), as
tagnation or divergence may otherwise be observed. Numerical evidence will be documented for patient-specific

linical cases in Section 6.3.

14
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Remark 11. In comparison to the consistent tangent matrix for the incompressible Navier–Stokes equations, only
block matrix A(l) has been modified to include the wall stiffness term α f γ∆tnKm,(l),u̇w/αm . As was shown in our
prior analysis [53], A(l) additionally consists of contributions from the transient, convection, viscous, and subgrid
scale modeling terms as well as multiple rank-one modifications from coupling with reduced models. Particular
attention will thus be paid to approximate A(l) in our design of the iterative solution method, as discussed in the
next section.

Remark 12. We further note that for time steps of practical interest, the use of the ‘frozen-coefficient’ tangent
matrix was previously deemed necessary for achieving stability in the first few time steps [46,96]. Nonetheless, we
implement the consistent tangent matrix here as in our previous studies [14,15,53] without stability issues, thereby
achieving rapid quadratic convergence.

3. Iterative solution method

In this section, we consider the linear system (2.51) arising in the aforementioned segregated predictor multi-
corrector algorithm, which often comprises the most time-consuming part of the overall algorithm. We focus on a
linear system

Ax = r (3.1)

exhibiting the following 2 × 2 block structure,

A :=
[

A B
C D

]
, x :=

[
xv

x p

]
, r :=

[
rv

r p

]
.

As is clear from our derivation of the consistent tangent matrix A in the previous section, the segregated
algorithm allows the implicit solver to retain the same block structure as that of the incompressible Navier–Stokes
equations [53]. From (2.50), we observe that block matrices B, C, and D are in fact identical to their counterparts
in the incompressible Navier–Stokes equations, and the block matrix A is only modified by an additional term
representing the wall contribution, scaled by the time step size and parameters in the generalized-α method. The
consistent tangent matrix A can be factorized as A = LDU , with

L =
[

I O
CA−1 I

]
, D =

[
A O
O S

]
, U =

[
I A−1B
O I

]
, (3.2)

where S := D − CA−1B is the Schur complement of A. The above block factorization immediately implies a
solution procedure for the linear system Ax = r . Applying L−1 to both sides of (3.1) transforms the linear system
to DUx = L−1r , which can be written explicitly as[

A B
O S

] [
xv

x p

]
=

[
rv

r p − CA−1rv

]
. (3.3)

The so-called Schur complement reduction (SCR) procedure [97,98] solves (3.3) via back substitution and therefore
involves solving smaller systems associated with A and S. At the outer level of our three-level nested block
preconnditioner, the linear system Ax = r is iteratively solved using the flexible GMRES (FGMRES) algorithm [99]
reconditioned by the SCR procedure, defined as P in Algorithm 1. At the intermediate level, the smaller systems
ssociated with A and S are solved by the GMRES algorithm preconditioned by PA and PS, respectively. The
topping criteria for these iterative solvers include relative tolerances δ, δA, and δS for A, A, and S, as well
s corresponding maximum iteration numbers nmax, nmax

A , and nmax
S . In this work, we set the relative tolerances

= 10−5, δ = 10−2 and maximum iteration numbers nmax
= nmax

= 100, nmax
= 200 unless otherwise specified.
A A A S

15
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Given the flexibility in preconditioner variation over iterations, the robustness and efficiency of the overall
iterative method can be well balanced with a proper design of P . We therefore turn our attention to the design
of PA and PS for the associated GMRES algorithms.

Algorithm 1 The action of P−1 on a vector s := [sv; s p]T with the output being y := [ yv; yp]T .

1: Solve for an intermediate velocity ŷv from the equation

A ŷv = sv (3.4)

by GMRES preconditioned by PA with δA and nmaxA prescribed.

2: Update the continuity residual by s p ← s p − C ŷv.

3: Solve for yp from the equation

S yp = s p (3.5)

by GMRES preconditioned by PS with δS and nmaxS prescribed. ▷ The action of S on a vector in the
GMRES iteration will be defined in Algorithm 2.

4: Update the momentum residual by sv ← sv − B yp.

5: Solve for yv from the equation

A yv = sv (3.6)

by GMRES preconditioned by PA with δA and nmaxA prescribed.

The block matrix A consists of a discrete convection–diffusion–reaction operator, subgrid scale modeling terms,
rank-one modifications from reduced models coupled to the outflow boundaries to represent the downstream
vasculature [53] (see also Section 5.3), and the stiffness matrix of the vascular wall (see (2.50)). Following [53],
we adopt the algebraic multigrid method (AMG) [100,101] to construct the PA.

The Schur complement S is implicitly defined through the four block matrices. The action of S on a given vector
can therefore be computed with the four block matrices on the fly in a so-called “matrix-free” algorithm, which is
stated in Algorithm 2 and used to construct the Krylov subspace in Step 3 of Algorithm 1. Inspired by the SIMPLE
lgorithm, the preconditioner PS is formed by BoomerAMG [101] based on a sparse approximation of S given by
ˆ := D − C (diag (A))−1 B. We note that replacing Eq. (3.5) in Algorithm 1 by Ŝ yp = s p eliminates the need for
he matrix-free algorithm and renders the overall algorithm similar to the SIMPLE algorithm. The preconditioner

stated in Algorithm 1 may therefore be regarded as a generalization of the SIMPLE algorithm, in which the
atrix-free algorithm is invoked to attain an improved approximation of the Schur complement.

Algorithm 2 The matrix-free algorithm for multiplying S with a vector x p.

1: Compute the matrix-vector multiplication x̂ p ← Dx p.

2: Compute the matrix-vector multiplication x̄ p ← Bx p.

3: Solve for x̃ p from the linear system

Ax̃ p = x̄ p

by GMRES preconditioned by PA with δI and nmaxA prescribed.

4: Compute the matrix-vector multiplication x̄ p ← Cx̃ p.

5: return x̂ p − x̄ p.

Step 3 of Algorithm 2 necessitates another solver at the inner level associated with A. Here, we reuse the
reconditioner PA constructed for Algorithm 1 and set its maximum number of iterations to be equal to nmax

A .
onsequently, the associated relative tolerance δI is the only parameter introduced in Algorithm 2 that impacts the
verall solver performance. Interested readers are referred to [94, Sec. 5.1.1] for a study on this parameter.
16
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4. Verification by the Womersley solution

In this section, we present two verification studies using the Womersley solutions describing pulsatile flow in an
axisymmetric cylindrical pipe, first with rigid walls and subsequently with thin, linear elastic walls. Furthermore, in
the case of the rigid pipe, we use analytical solutions for pressure, velocity, and wall shear stress (WSS) to perform
spatial convergence studies. All parameters are reported in centimeter-gram-second units in this work.

4.1. Womersley flow in a rigid pipe

The Womersley solution for pulsatile flow in a rigid pipe describes axisymmetric, fully developed flow subject
to a pressure gradient with both steady and oscillatory contributions [28,29]. The pressure can be expressed with
the following Fourier series,

p = pref +

(
k0 +

N∑
n=1

kneιnωt

)
z, (4.1)

where z is the longitudinal coordinate along the length of the pipe, pref is the reference pressure at the z = 0
surface, k0 is the steady zeroth mode of the pressure gradient, kn is the nth Fourier coefficient in the oscillatory
component of the pressure gradient, ι is the solution to ι2 = −1, Tp is the period of oscillation, and ω := 2π/Tp

is the fundamental frequency. Whereas k0 produces steady forward flow, the oscillatory component of the pressure
gradient drives a phase-shifted oscillatory flow with zero net flow over Tp. Per the assumptions of axisymmetric
and fully developed flow, the velocity is identically zero in the radial and circumferential directions and takes the
following analytical form in the axial direction,

vz =
k0

4µ f

(
r2
− R2)

+

N∑
n=1

ιkn

ρ f nω

(
1−

J0(ι
3
2 αn

r
R )

J0(ι
3
2 αn)

)
eιnωt , (4.2)

wherein r :=
√

x2 + y2, R is the pipe radius, J0 is the zeroth-order Bessel function of the first kind, and
n := R

√
ρ f nω/µ f is the Womersley number for the nth Fourier mode. The only nonzero component of WSS

akes the corresponding form,

τzr = σ
f

dev,zr |r=R =
k0 R

2
−

N∑
n=1

kn R

ι
3
2 αn

J1(ι
3
2 αn)

J0(ι
3
2 αn)

eιnωt , (4.3)

wherein J1 is the first-order Bessel function of the first kind. The complex forms of p, vz , and τzr in (4.1)–(4.3)
indicate the existence of two sets of real independent solutions. Here, we take the set of real components as the
benchmark solution and represent a single oscillatory mode (i.e., N = 1).

To reflect typical physiological flows, we set the pipe radius R to 0.3; fluid density ρ f and viscosity µ f to 1.0
and 0.04, respectively; period Tp to 1.1; reference pressure pref to 0; and Fourier coefficients k0 and k1 to −21.0469
and −33.0102+ 42.9332ι, respectively. Correspondingly, the fundamental frequency ω and Womersley number α1

were approximately 5.71 and 3.59, respectively. Furthermore, given the fully developed flow, we set a short pipe
length of 0.3. The no-slip boundary condition was prescribed on the wall, and traction boundary conditions were
prescribed on both the inlet and outlet. Simulations were performed with uniform time steps using both linear
(P1) and quadratic (P2) tetrahedral meshes of comparable numbers of nodes generated by MeshSim (Simmetrix,
Inc., Clifton Park, NY, USA), and relative errors of velocity, pressure, and WSS were computed. To circumvent
confounding errors from temporal discretization, temporal refinement was performed for each simulation until the
first three significant digits of all computed errors were preserved across two temporal refinement levels.

Fig. 1 plots the relative errors of velocity vh and WSS τ h in the L2 norm, and of pressure ph in the L2 and H1

norms. For three of the four computed errors (Fig. 1 A, B, and D), we consistently observe theoretical rates, with
P2 elements exhibiting spatial accuracy of one order higher than that of P1 elements. For P2 elements, however,
the relative error of ph in the L2 norm (Fig. 1 C), converges faster than the theoretical rate of 2.5. This is likely
due to the fact that the analytical solution for pressure here is only linear in space and thus falls within a subspace
smaller than the approximation space.
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Fig. 1. Relative errors of (A) vh in L2 norm, (B) τ h in L2 norm, (C) ph in L2 norm, and (D) ph in H1 norm for linear (P1) and quadratic
(P2) tetrahedral elements with different mesh sizes h normalized by the pipe radius R. Convergence rates computed from successive errors
and mesh sizes are annotated.

4.2. Womersley flow in a thin-walled elastic pipe

As in the rigid case, the Womersley solution for pulsatile flow in an elastic pipe describes axisymmetric flow
subject to a pressure gradient with both steady and oscillatory contributions. Given the motion of the elastic pipe,
however, the radial velocity of the fluid is no longer identically zero, and the pressure propagates down the pipe
with a gradient dependent on both time t and the longitudinal coordinate z [28,29]. This wave propagation is in
sharp contrast to the rigid case, in which the fluid oscillates in bulk.

Let cn be the nth complex-valued wave speed. Then under the long-wave approximation, namely that the
wavelength λn := cnTp = 2πcn/(nω) is much larger than the pipe radius R, and the assumption that the wave
speed cn is much larger than the fluid velocity, all nonlinear convective terms can be considered negligible, thereby
reducing the Navier–Stokes equations to a set of linear equations. As in the rigid case in Section 4.1, the solution
can then be represented as the summation of N superimposed Fourier series. In this case, pressure can be expressed
with Fourier coefficients Bn as follows,

p = pref + B0z +
N∑

n=1

Bneιnω(t−z/cn ), (4.4)

In addition to a thin-walled assumption for the elastic pipe (i.e., hs
≪ R), the radial wall displacement can be

assumed small such that the continuity of velocity at the fluid–solid interface can be imposed at the neutral position
of the wall, r = R. The fluid velocity components in the longitudinal and radial directions, vz and vr , can then be
expressed with the same Fourier coefficients Bn ,

vz =
B0

4µ f

(
r2
− R2)

+

N∑ Bn

ρ f c

(
1− Gn

J0(ι
3
2 αn

r
R )

3

)
eιnω(t−z/cn ), (4.5)
n=1 n J0(ι 2 αn)
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vr =

N∑
n=1

ιnωBn R
2ρ f c2

n

(
r
R
− Gn

2J1(ι
3
2 αn

r
R )

ι
3
2 αn J0(ι

3
2 αn)

)
eιnω(t−z/cn ), (4.6)

and the wall displacement components in the longitudinal and radial directions, uz and ur , are

uz =

N∑
n=1

ιBn

ρ f cnnω
(Gn − 1)eιnω(t−z/cn ), ur =

N∑
n=1

Bn R
2ρ f c2

n
(1− Gngn)eιnω(t−z/cn ). (4.7)

The volumetric flow rate can be found by integrating vz over a cross-section of the pipe,

Q =
∫ R

0
2πrvzdr =

−π B0 R4

8µ f
+

N∑
n=1

Bnπ R2

ρ f cn
(1− Gngn)eιnω(t−z/cn ). (4.8)

In the above analytical forms, Gn is the elasticity factor defined as

Gn :=
2+ γn(2ν − 1)
γn(2ν − gn)

, γn :=
Ehs

ρ f R(1− ν2)c2
n
,

nd the wave speed cn can be determined from the following equation,

(gn − 1)(ν2
− 1)γ 2

n +

(
ρshs

ρ f R
(gn − 1)+ (2ν − 0.5)gn − 2

)
γn +

2ρshs

ρ f R
+ gn = 0, (4.9)

wherein

gn :=
2J1(ι

3
2 αn)

ι
3
2 αn J0(ι

3
2 αn)

.

q. (4.9), commonly known as the frequency equation, is constructed by demanding a nontrivial solution to the
oupled system of the fluid and elastic pipe [29, Sec. 5.7]. Upon solving for γn from (4.9), cn can be represented

as

cn =

√
2

(1− ν2)γn
cinv,

where cinv is the wave speed in inviscid flows, as given by the Moens–Korteweg formula,

cinv =

√
Ehs

2ρ f R
. (4.10)

The consequence of this complex-valued wave speed cn can be understood from the following decomposition,
1
cn
=

1
cR

n
+ ι

1
cI

n
, cR

n :=
(
Re
[
c−1

n

])−1
, cI

n :=
(
Im
[
c−1

n

])−1
,

herein cR
n and cI

n are commonly referred to as the dispersion and attenuation coefficients, respectively representing
ifferences in the wave frequency and amplitude from the inviscid case. As is clear from above, cn depends not
nly on properties of the fluid and the pipe, but also on the frequency of oscillations.

We again considered only the real components as the benchmark solution and represented a single oscillatory
ode (N = 1). As in Section 4.1, we set the pipe radius R to 0.3, fluid density ρ f to 1.0, viscosity µ f to 0.04,

eriod Tp to 1.1, and reference pressure pref to 0. We further set the pipe length L to 15, and considered uniform wall
roperties, including a wall density ρs of 1.0, Poisson’s ratio ν of 0.5, thickness hs of 0.06, and Young’s modulus

E of 9.5678 × 106, which yielded a wave speed c1 of 886.31 + 29.786ι. In order to achieve the same volumetric
ow rate as in Section 4.1, the Fourier coefficients B0 and B1 were set to −21.0469 and −4926.29 − 4092.54ι,
espectively. Given these parameters, we may examine the validity of the invoked assumptions. At the fundamental
requency, the real component of the wave speed cR

1 = 887.31 is much larger than the maximum longitudinal velocity
ax{vz} = 21.0701. Correspondingly, the real component of the leading wavelength λR

1 := cR
1 Tp = 2πcR

1 /ω is
76.05, three orders of magnitude larger than R = 0.3, thereby satisfying the long wave approximation assumption.
e further verify for the elastic pipe that both the thickness hs

= 0.06 and the maximum radial wall displacement

ax{ur } = 0.0010 are much smaller than R.
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To account for the truncation of the semi-infinite domain used in Womersley’s derivation to a finite domain,
Cartesian velocity components were prescribed on the boundary nodes of the wall at z = 0 and z = L in the
following form,

v|r=R := {vx , vy, vz}|r=R = {vr cosθ, vr sinθ, vz}|r=R,

wherein θ is the four-quadrant inverse tangent of the point (x, y).1 Traction boundary conditions were prescribed
on both the inlet and outlet surfaces, where the traction h f was constructed from the pressure in (4.1) and the
following Cartesian velocity gradients,

∂vx

∂x
= cos2θ

∂vr

∂r
+

sin2θ

r
vr ,

∂vx

∂y
= sinθcosθ

(
∂vr

∂r
−

vr

r

)
,

∂vx

∂z
= cosθ

∂vr

∂z
,

∂vy

∂x
= sinθcosθ

(
∂vr

∂r
−

vr

r

)
,

∂vy

∂y
= sin2θ

∂vr

∂r
+

cos2θ

r
vr ,

∂vy

∂z
= sinθ

∂vr

∂z
,

∂vz

∂x
= cosθ

∂vz

∂r
,

∂vz

∂y
= sinθ

∂vz

∂r
,

∂vz

∂z
=

∂vz

∂z
,

wherein

∂vz

∂r
=

B0r
2µ f
+

N∑
n=1

ι
3
2 αn BnGn J1(ι

3
2 αn

r
R )

ρ f cn J0(ι
3
2 αn)

eιnω(t−z/cn ),

∂vz

∂z
=

N∑
n=1

−ιnωBn

ρ f c2
n

(
1− Gn

J0(ι
3
2 αn

r
R )

J0(ι
3
2 αn)

)
eιnω(t− z

cn )
,

∂vr

∂r
=

N∑
n=1

ιnωn Bn

2ρ f c2
n

⎛⎝1− Gn

2
(

J1(ι
3
2 αn

r
R )− J2(ι

3
2 αn

r
R )
)

ι
3
2 αn

r
R J0(ι

3
2 αn)

⎞⎠ eιnω(t−z/cn ),

∂vr

∂z
=

N∑
n=1

n2ω2 Bn R
2ρ f c3

n

(
r
R
− Gn

2J1(ι
3
2 αn

r
R )

ι
3
2 αn J0(ι

3
2 αn)

)
eιnω(t−z/cn ),

wherein J2 is the second-order Bessel function of the first kind. We note that our choice of boundary conditions
differs from the approach adopted in verification studies for CMM, in which only the normal components of the
tractions are prescribed on the inlet and outlet surfaces via impedance boundary conditions [42,43].

Simulations were performed over three periods with uniform time steps using linear and quadratic tetrahedral
meshes, both of 284,400 elements and respectively 53,879 and 404,473 nodes. The linear tetrahedral mesh was
additionally used to make comparisons against svSolver [102], the CMM implementation in SimVascular. For
each simulation, only the final period was analyzed. Given the assumptions and scaling analyses invoked in the
derivations, the analytical solutions (4.5)–(4.7) are only approximate solutions to the FSI problem presented in
Section 2 and thereby preclude any spatial convergence analyses. We show comparisons of analytical and numerical
solutions for the volumetric flow rates and pressures (Figs. 2, 3), longitudinal and radial fluid velocity profiles
(Fig. 4), and longitudinal and radial wall velocity and displacement (Fig. 5). We note that all numerical results are
nearly indistinguishable from the analytical solutions. Differences, however, can be observed in the detailed views,
where the P2 results are in closer agreement to the analytical solutions compared to the P1 results. In Figs. 2B
and 3, we observe that CMM yields larger discrepancies in pressure than our proposed method, likely due to
the different treatment of pressure in the temporal discretization (see Remark 9) [51]. Across all numerical cases,
the fluid velocity is in good agreement with the analytical solutions and presents axisymmetric profiles along the
radial direction. This is in sharp contrast to existing CMM verification results in the literature exhibiting a notable
lack of axisymmetry in the radial velocity profiles [43] that could be attributed to the outlet impedance boundary
condition [42,43], which neglects viscous traction components. Contrary to the fluid quantities, larger discrepancies
can be observed in the wall displacement and velocity. These discrepancies, which were not mitigated upon mesh
refinement, can be attributed to the assumptions inherent in the theory.

1 This function is commonly denoted as θ := atan2 y, x in programming languages.
( )
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Fig. 2. Analytical (solid) and numerical solutions from CMM (dashed) and our reduced unified continuum formulation using either P1
(dotted) or P2 (dash-dotted) elements for the inlet and outlet (A) volumetric flow rates and (B) pressures over a period. Detailed views are
shown in the right column.

Fig. 3. Analytical (solid) and numerical solutions from CMM (dashed) and our reduced unified continuum formulation using either P1
(dotted) or P2 (dash-dotted) elements for the pressures along the longitudinal axis at different time instances. The solutions at t = 0 and
= T are overlaid as a result of temporal periodicity. A detailed view is shown on the right.

. Physiological modeling techniques

In this section, we briefly present a suite of practical techniques for appropriate modeling of physiological
henomena in clinical applications. Specifically, these techniques pertain to vascular wall thickness heterogeneity,
n vivo tissue prestressing, and boundary conditions reflecting distal vasculature.
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Fig. 4. Analytical and numerical solutions from CMM (dashed) and our reduced unified continuum formulation using either P1 or P2
elements for the (A) longitudinal and (B) radial velocity profiles along the y-axis on the z = L/2 surface at different time instances.
Detailed views at t = T/5 and t = 3T/5 are shown in the bottom row.
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Fig. 4. (continued).

5.1. Spatially varying vascular wall thickness

The most commonly employed imaging modalities, such as computed tomography or magnetic resonance
angiography, do not adequately resolve vascular wall thicknesses for most applications of clinical interest. While
23
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o

Fig. 5. Analytical (solid) and numerical solutions from CMM (dashed) and our reduced unified continuum formulation using either P1
(dotted) or P2 (dash-dotted) elements for the (A) longitudinal and (B) radial fluid velocities at the wall, and the (C) longitudinal and (D)
radial wall displacements along the longitudinal axis at different time instances. The solutions at t = 0 and t = T are overlaid as a result
f temporal periodicity. Detailed views are shown in the right column.
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d
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Fig. 6. (A) Centerlines extracted for healthy models of the aortailiac (top) and coronary arteries (bottom). (B) Spatially varying wall thickness
istributions obtained from the centerline-based (left) and Laplacian (right) approaches. The wall thickness is precisely 20% of the local
adius everywhere in the centerline-based approach, but only at the inlets and outlets in the Laplacian approach. Local thickness-to-radius

ratios are annotated at multiple sites to highlight the Laplacian approach’s deviation from the prescribed thickness-to-radius ratio and its
resulting non-physiological wall thickness distribution.

intravascular ultrasound is a notable exception, it is only performed in a small subset of clinical cases, primarily in
the coronary vasculature. As a result, spatially varying distributions of vascular wall thicknesses must frequently be
prescribed with limited knowledge, commonly with an assumed local thickness-to-radius ratio [103]. In a previously
proposed Laplacian approach [59], a Laplacian problem is solved with prescribed Dirichlet boundary conditions
at the wall boundary nodes on all inlets and outlets [59]. A similar approach has also since been adopted for
prescribing cardiac fiber orientations in heart models [104]. While the Laplacian approach effectively generates
smooth distributions of wall thicknesses, it fails to capture sharp local changes in geometry as often occur in
disease, yielding physiological thicknesses near the inlets and outlets but significant deviations from the desired
thickness-to-radius ratio elsewhere. For example, non-physiological wall thicknesses up to 134% of the local radii
are prescribed in the coronary arteries near the ostia on the aortic root (Fig. 6B).

For more refined control over the local thickness, we instead adopt a centerline-based approach similar to
the one used in [105], in which centerlines for all inlet–outlet pairs are extracted using the Vascular Modeling
Toolkit [106–108]. Upon specifying a global distribution over the entire wall, we can overwrite thicknesses with
distinct local distributions for arbitrary sub-domains of the wall. We summarize our approach in Algorithm 3, in
which the conglomeration of all vessel centerlines is referred to as the global centerline. We note that for geometries
with sharp changes in radius, simply computing the local radius as the shortest distance to the global centerline
could yield values based not on the corresponding vessel centerline of interest, but rather on an alternate centerline
adjoined to the vessel centerline of interest. It is therefore sometimes necessary to overwrite sub-domain thicknesses
after extracting vessel-specific sub-domain meshes, which are readily available in SimVascular, and their associated
vessel-specific centerlines. In this work, we set a thickness-to-radius ratio of 20% [103], which is precisely satisfied

everywhere (Fig. 6B).
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Algorithm 3 Centerline-based assignment of spatially varying vascular wall thickness.

1: Extract the global centerline from the wall mesh [107]

2: for each node on the wall mesh do
3: Compute the radius r as the shortest distance to the global centerline

4: Compute the thickness hs
← x% r

5: end for
6: for each sub-domain with a distinct local distribution do
7: Extract the local centerline from the global centerline

8: for each node on the vessel-specific sub-domain mesh do
9: Compute the radius r as the shortest distance to the local centerline

10: Compute the thickness hs as desired

11: end for
12: end for

5.2. Tissue prestressing

The semi-discrete FSI formulation (2.37)–(2.39) assumes the in vivo vascular wall configuration at imaging to
be stress-free, yet vascular walls withstand physiological loading. An internal stress state, termed the prestress, must
exist to balance the in vivo blood pressure and viscous traction. In contrast to approaches that seek to determine a
stress-free configuration [27,109], here we generate the prestress σ 0 via a fixed-point algorithm similar to the one
proposed for an ALE formulation [110,111]. Given a prestress field σ 0, the wall momentum balance (2.36) in the
FSI formulation can correspondingly be modified as

Bw
m

(
w

f
h ; ẏh, yh

)
:=

∫
ΓI

w
f
h · ρ

shs

(
dv

f
h

dt
− bs

)
dΓ +

∫
ΓI

hsϵ(w f
h ) :

(
σ s(uw

h )+ σ 0

)
dΓ

−

∫
∂ΓI∩Γ

h
s

hsw
f
h · h

sdΓ . (5.1)

o determine σ 0, we consider the following variational problem for the vascular wall. Given the body force per unit
ass bs , boundary traction hs , and fluid boundary traction h f , find uw

h ∈ Sw
u and vw

h ∈ Sw
v , such that ∀w f

h ∈ V f
v ,

0 =
duw

h

dt
− vw

h , and 0 = Bw
m

(
w

f
h ; ẏh, yh

)
+

∫
ΓI

w
f
h · h

f dΓ , (5.2)

where Sw
u and V f

v are as previously defined in Section 2.2, and Sw
v is a suitable trial solution space for the wall

elocity. Using the prestress generation algorithm summarized below, σ 0 is then determined such that Eqs. (5.2)
re satisfied under the imaged wall configuration. We denote the prestress at the mth iteration as σ 0,(m) and the
aximum number of iterations as mmax.

Prestress generation algorithm

Initialization: Set σ 0,(0) = 0, uw
0 = 0, and vw

0 = 0.
Fixed-point iteration: Repeat the following steps for m = 0, 1, . . . , mmax.

1. Set σ 0 = σ 0,(m), uw
m = 0, and vw

m = 0.
2. From tm to tm+1, solve the variational problem (5.2) for uw

m+1 and vw
m+1 using the backward Euler method

for temporal discretization.
3. Update the prestress tensor as σ 0,(m+1) = σ s(uw

m+1)+ σ 0,(m).
4. Let tolP denote a prescribed tolerance. If the stopping criterion ∥uw

m+1∥l2 ≤ tolP is satisfied, then set
σ 0 = σ 0,(m+1) and exit the fixed-point iteration.
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Remark 13. To minimize cardiac motion artifacts, cardiac images are commonly acquired at diastole via
electrocardiogram gating. The fluid boundary traction h f at diastole can then be obtained from a separate rigid-
wall CFD simulation prescribed with a steady diastolic inflow rate and outlet resistances tuned to achieve the
corresponding diastolic pressures and flow splits.

5.3. Coupling with reduced models

As alluded to in Section 3, zero-dimensional models representing the downstream vasculature are frequently
coupled to outlets of the three-dimensional domain [92,112,113]. While we restrict our attention to Neumann
coupling with zero-dimensional models in which the boundary traction is a function of the flow rate at the
corresponding outlet surface only, we note that more generally, any arbitrary combination of Neumann (Dirichlet-
to-Neumann) and Dirichlet (Neumann-to-Dirichlet) inlets and outlets and their corresponding system of (nonlinear)
ordinary differential equations can be considered [114]. We consider the Neumann boundary Γ

f
h to consist of nout

non-overlapping planar outlet surfaces,

Γ
f

h =

nout⋃
i=1

Γ
f

out,i , Γ
f

out,i ∩ Γ
f

out,j = ∅, for 1 ≤ i, j ≤ nout and i ̸= j.

et Qk(t) be the volumetric flow rate through the outlet surface Γ
f

out,k,

Qk(t) :=
∫
Γ

f
out,k

v f (t) · ndΓ .

he boundary traction on Γ
f

out,k is then given by h f
= −Pk(t)n, where Pk(t) is related to Qk(t) by a functional

perator F k(Qk(t)) defined by the downstream vascular model (see, e.g., (A.1)–(A.2) in Appendix), and the term
2.27) can be written explicitly as

Bh
m

(
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h ; ẏ f

h , y f
h

)
:= −

∫
Γ

f
h

w
f
h · h

f dΓ =
nout∑
k=1

F k(Qk(t))
∫
Γ

f
out,k

w
f
h · ndΓ .

he corresponding contribution to the block matrix A(l) in (2.50) is then a weighted sum of rank-one matrices.
eaders are referred to [53, Section 2.4] for more details of the consistent tangent matrix. The three-element
indkessel model and coronary model, two commonly used zero-dimensional models for Neumann coupling in

ardiovascular simulations, are reviewed in Appendix.

. Clinical applications

In this section, we apply our combined FSI technology and practical modeling techniques to two patient-specific
odels, one of the pulmonary arteries of a healthy 9-year-old male and the other of the coronary arteries of a

ealthy 24-year-old male. Linear tetrahedral meshes were generated with three boundary layers each, at a thickness
radation ratio of 0.5. Patient-specific inflow waveforms were prescribed with parabolic velocity profiles. Leveraging
umerical optimization and computationally efficient zero-dimensional surrogate models, we tuned outlet boundary
onditions [115,116] to achieve target inlet systolic and diastolic pressures as well as assumed flow splits (Table 1).
pecifically, in the pulmonary model, all outlets were coupled to RCR models, and flow was assumed to be evenly
istributed to the left and right lungs; in the coronary model, the aortic outlet was coupled to an RCR model while
ll remaining outlets were coupled to coronary models. Furthermore, 4% of the flow was distributed to the coronary
rteries, with a 60%-40% split for the left and right coronary arteries. Consistent with Section 4.2, we adopt the
entimeter-gram-second units, and we set the fluid density ρ f to 1.0, fluid viscosity µ f to 0.04, and wall density
s to 1.0. Unless otherwise specified, we set the wall Poisson’s ratio ν to 0.5, and the Young’s modulus E to
.3× 106 uniformly for the pulmonary arteries [116], 7.0× 106 for the aortic root, and 1.15× 107 for the coronary
rteries [117]. The time step size was chosen to be Tp/2000. As discussed in Remark 13, we generated initial
onditions for each FSI simulation by first running a rigid-wall CFD simulation to generate solution fields at the
iastolic pressure. The prestress generation algorithm was subsequently used to obtain the prestress σ 0 balancing

he diastolic fluid boundary traction under zero wall displacement relative to the imaged configuration.
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Table 1
Model characteristics. Rin: inlet radius; Pin: target inlet pressure; CO: prescribed cardiac output; Tp : cardiac period; LPA: left pulmonary
artery; RPA: right pulmonary artery; AO: aorta; LCOR: left coronary artery; RCOR: right coronary artery.

Model Sex Age (year) Rin (cm) Pin (mm Hg) CO (L/min) Flow split Tp (s) Outlets

Pulmonary arteries M 9 1.24 24/8 4.59
50% LPA

0.811 46 RCR
50% RPA

Coronary arteries M 24 1.40 123/81 3.78
96% AO

1.43 1 RCR 25 coronary2.4% LCOR
1.6% RCOR

All results reported in this section were obtained using the TaiYi supercomputer, a Lenovo system equipped with
ntel Xeon Gold 6148 processors interconnected by a 100 GB/s Intel Omni-Path network. Each processor consists
f 40 CPUs and 192 GB RAM and operates at a clock rate of 2.4 GHz [118].

.1. Linear solver robustness

We examined the linear solver performance under varying wall properties. For this test, we set the relative
olerance δ = 10−8 for the stopping criterion, and the maximum number of iterations for the outer, intermediate,
nd inner solvers nmax

= nmax
A = nmax

S = 200. Relative tolerances δA and δS were jointly varied from 10−6 to 10−2,
and δI =

√
δA. As described in Section 3, the preconditioners PA and PS were formed by BoomerAMG based on

and Ŝ, respectively.
We additionally compared three other linear solver options. In the first alternative, we applied the block

reconditioner without invoking the inner solver, that is, replacing (3.5) in Algorithm 1 with Ŝ yp = s p. In the
econd alternative, we applied the additive Schwarz method to A, using the incomplete LU factorization for the
ubdomain solver. In the third alternative, we applied the Jacobi preconditioner to A. For the latter two alternatives,
e increased nmax

= nmax
A = nmax

S to 1×104, as significantly more iterations are generally required for convergence.
The pulmonary arterial mesh consists of 2.11 × 106 linear tetrahedral elements and 3.97 × 105 nodes,

orresponding to 1.59×106 degrees of freedom in the associated linear system. Solver performance was investigated
ith varying values of the prescribed Young’s modulus over three orders of magnitude, namely E = 1.3 × 105,
.3 × 106, and 1.3 × 107. The rigid-wall CFD simulation was also included as the extreme case of an infinitely
arge Young’s modulus. Simulations were performed on a single node with 16 CPUs. Fig. 7 depicts all convergence
istories and further annotates the CPU time for the linear solver averaged over ten time steps. We observe that
ith increasing Young’s moduli, all preconditioners require increasingly more iterations and time to converge. This

an be understood from the wall contribution Km,(l),u̇w in (2.50)1, in which an increased wall stiffness engenders
tronger heterogeneity for the block matrix A. In contrast, no wall contribution is present in the rigid-wall case,
nd all block preconditioners require fewer iterations and less time to converge. In addition, the additive Schwarz
nd Jacobi preconditioners closely resemble each other in convergence behavior and are evidently less robust than
he block preconditioners, signifying the importance of leveraging the block structure of A.

The coronary arterial mesh consists of 1.66× 106 elements and 3.15× 105 nodes, corresponding to 1.26× 106

egrees of freedom in the associated linear system. Solver performance was investigated for two values of the
oisson’s ratio ν = 0.5 and 0.3. Simulations were performed on a single processor with 48 CPUs. Fig. 8 depicts
ll convergence histories and again annotates the CPU time for the linear solver averaged over ten time steps. Only
inor differences are observed between the two cases, suggesting a smaller impact of ν on the linear system as

ompared to E .

.2. Fixed-size scalability

We examined the parallel performance of our proposed solution strategy, setting the relative tolerances δ = 10−8,
A = δS = 10−4, and δI = 10−2. While the same pulmonary arterial mesh was used as in Section 6.1, we used
finer coronary mesh of 6.44 × 106 linear elements and 1.25 × 106 nodes, corresponding to 5.01 × 106 degrees
f freedom in the associated linear system. Speed-up ratios were calculated based on a serial simulation for the
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Fig. 7. Convergence history for the pulmonary arterial model with varying values of the prescribed Young’s modulus. A rigid-wall CFD
imulation is also included for comparison. The latter three items in the legend correspond to the three alternative linear solver options
nvestigated. The horizontal dashed black line demarcates the prescribed stopping criterion for the relative error δ = 10−8. CPU times (s)

for the linear solver averaged over ten time steps are annotated. NC: no convergence within the prescribed maximum number of iterations.

pulmonary mesh and a parallel simulation with 20 CPUs for the coronary mesh. Each job was run for 20 time
steps. For the pulmonary arterial mesh, super-optimal parallel efficiency was observed for 2 and 4 CPUs (Fig. 9),
likely a consequence of more efficient utilization of the cache in these scenarios.

6.3. Performance of the segregated predictor multi-corrector algorithm

As discussed above in Remark 10, we have conveniently chosen Rk,(l) = 0 for all l ≥ 1 to allow for the simplified
ight-hand side in the linear system (2.51) in the segregated predictor multi-corrector algorithm. In Table 2, we
ocument the nonlinear residual R(l) and kinematic residual Rk,(l) at all Newton–Raphson iterations within two
ime steps of the cardiac cycle for each model, one at peak systole and the other at mid-diastole. We note that

k,(l) < 10−12 beginning with l = 1 and is driven close to machine precision for l ≥ 2, closely agreeing with our
rior analysis of the segregated algorithm [94]. We also note the expected quadratic convergence of the relative
29
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Fig. 8. Convergence history for the coronary arterial model with two different values of the Poisson’s ratio. The latter three items in the
egend correspond to the three alternative linear solver options investigated. The horizontal dashed black line demarcates the prescribed
topping criterion for the relative error δ = 10−8. CPU times (s) for the linear solver averaged over ten time steps are annotated. NC: no

convergence within the prescribed maximum number of iterations.

Fig. 9. Fixed-size scalability of our solution strategy. Annotated efficiency rates are computed from the total runtime.

nonlinear residual in the first two iterations of the Newton–Raphson procedure. The convergence rate from the
second to the third iteration is slightly reduced, likely a consequence of the linear solver accuracy.

6.4. Simulation with higher-order elements

Given limitations of the meshing software MeshSim, we were unable to generate a suite of spatially homogeneous
uadratic tetrahedral meshes with boundary layers that would be of tractable computational cost. We therefore
nvestigated the spatial convergence of peak systolic WSS with isotropic pulmonary arterial meshes of linear and
uadratic tetrahedral elements at three refinement levels of comparable numbers of nodes (4.0×105, 8.0×105, and

1.6× 106 nodes), in which the coarsest isotropic mesh was chosen to match the number of nodes in the boundary
layer mesh from Section 6.1. WSS results from the boundary layer mesh were verified to be mesh independent and
taken as reference values. Consistent with observations from our spatial convergence study in Section 4.1, quadratic
elements resolve WSS more accurately (Fig. 10). We do, however, note the presence of undesirable oscillations

yielding sharp local gradients and local WSS over/underestimations.
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Table 2
The nonlinear residual R(l) and kinematic residual Rk,(l) at all nonlinear iterations within time
steps n corresponding to peak systole and mid-diastole.

Model n l R(l)/R(0) Rk,(l)

Pulmonary

491
1 3.40× 10−1 4.73× 10−15

2 1.81× 10−5 4.51× 10−16

3 1.09× 10−7 6.78× 10−21

1246
1 2.23× 10−1 3.08× 10−15

2 3.71× 10−5 2.35× 10−16

3 1.08× 10−7 3.50× 10−18

Coronary

446
1 2.64× 100 2.49× 10−13

2 4.22× 10−4 4.93× 10−14

3 2.78× 10−7 4.44× 10−16

1223
1 2.28× 100 6.45× 10−14

2 8.51× 10−5 1.18× 10−14

3 4.12× 10−8 1.94× 10−18

Fig. 10. Spatial convergence of peak systolic WSS using isotropic linear (left) and quadratic (right) tetrahedral meshes of the pulmonary
rterial model at three refinement levels: (A) 4.0× 105 nodes, (B) 8.0× 105 nodes, (C) 1.6× 106 nodes. The peak systolic WSS distribution

of the boundary layer mesh with 2.11× 106 linear elements and 3.97× 105 nodes was taken as the reference distribution (top).
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Fig. 11. Effects of different wall thickness distributions and tissue prestressing on patient-specific pulmonary (left) and coronary (right) arterial
models. (A) Centerline-based (left) and Laplacian wall thickness distributions. (B) Peak systolic wall displacement (left) and wall shear stress
(WSS; right) magnitudes for unprestressed simulations with centerline-based thickness (top), prestressed simulations with centerline-based
thickness (middle), and prestressed simulations with Laplacian-based thickness (bottom). Red arrows and detailed views are included to
highlight WSS differences across the three cases.

6.5. Patient-specific simulations

In order to assess our proposed techniques for variable wall thickness assignment and tissue prestressing, three
simulations were performed for each model: (i) an unprestressed simulation with centerline-based thickness, (ii) a
prestressed simulation with centerline-based thickness, (iii) a prestressed simulation with Laplacian-based thickness.
In the centerline-based approach, the local thickness was prescribed to be 20% of the local radius everywhere; in the
Laplacian approach, the thickness was prescribed to be 20% of the corresponding cap radius at all wall boundary

nodes (Fig. 11A). Simulations were initialized from corresponding rigid-walled, zero-initialized CFD simulations,
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performed over three cardiac cycles with uniform time steps, and verified for convergence to a limit cycle. For each
simulation, only the final cardiac cycle was analyzed.

The wall displacement and WSS distributions at peak systole were compared across the three cases (Fig. 11B).
Relative to Simulation (ii), failure to consider tissue prestressing in Simulation (i) overestimates the maximum wall
displacement magnitude by 37.9% (0.189 vs. 0.137 cm) in the pulmonary arterial model and by 162% (0.119 vs.
0.0453 cm) in the coronary arterial model. It also overestimates the mean displacement magnitude by 29.4% (0.0616
vs. 0.0476 cm) over the main pulmonary arterial (MPA) bifurcation, by 159% (0.01829 vs. 0.00707 cm) over the
aortic root, and by 183% (0.0267 vs. 0.00942 cm) over the left coronary artery (LCOR). While prestressing yields
significantly different displacements in both models, our results suggest that prestressing is particularly critical in
the systemic circulation where the diastolic pressure is an order of magnitude larger than that in the pulmonary
circulation. In contrast, the Laplacian-based thickness in Simulation (iii) underestimates the mean displacement
magnitude by 29.8% (0.0334 vs. 0.0453 cm) over the MPA bifurcation, by 45.3% (0.00387 vs. 0.00707 cm) over
the aortic root, and by 45.7% (0.00511 vs. 0.00942 cm) over the LCOR. We note that while we prescribed Young’s
moduli that were previously determined to yield cross-sectional relative area changes observed from PC-MRI, tissue
prestressing was not considered in these prior studies [116,117]. More compliant wall properties would thus need
to be considered to achieve the same relative area changes under prestressing.

While local discrepancies in peak systolic WSS are also observed across the three cases (as highlighted by the
red arrows in Fig. 11(B), these drastic discrepancies in displacement do not produce discrepancies in volumetric
flow rates or spatially averaged WSS quantities. In fact, the mean WSS magnitude only differs by up to 2.03% over
the MPA bifurcation, 0.174% over the aorta, and 0.149% over the LCOR. Despite the rationale behind our proposed
modeling techniques, the merits of Simulation (ii) remain to be assessed with in vivo and/or in vitro validation data.

7. Conclusions

In this work, we derived a reduced unified continuum formulation for vascular FSI and presented strong
verification of our numerical methodology against Womersley’s deformable wall theory using both linear and
quadratic tetrahedral elements. Compared to the unified continuum ALE formulation [14], our reduced theory
invokes three assumptions for the vascular wall to achieve monolithic FSI coupling in the Eulerian frame for small-
strain problems. The residual-based VMS formulation is adopted for spatial discretization, and the generalized-α
method is adopted for temporal discretization such that velocity and pressure are uniformly second-order accurate
in time, a significant improvement over the predominant dichotomous approach. Block preconditioning of a
monolithically coupled FSI system is also performed for the first time. Using two patient-specific models, we
demonstrated the fixed-size scalability and enhanced robustness of our nested block preconditioner as compared
to alternative preconditioners for vascular FSI applications. Additionally, our recent work suggests that the overall
cost of the proposed FSI formulation is only mildly more expensive than rigid-walled CFD calculations [119]. To
appropriately model physiological phenomena, we further outlined a centerline-based approach for wall thickness
assignment and a fixed-point algorithm for prestressing the vascular wall at the imaged configuration. Validation of
our combined FSI methodology against in vitro data has been recently performed [67]. Validation against in vivo
data and applications in clinical studies remain as interesting topics to be pursued in the future.
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Fig. A.1. Schematics of the (A) three-element Windkessel and (B) coronary outlet models commonly used in cardiovascular simulations.

Appendix. Zero-dimensional models for Neumann coupling

A.1. Three-element Windkessel model

The three-element Windkessel model (Fig. A.1A), commonly known as the RCR model and described with the
ifferential–algebraic equations below, models the compliance of the downstream vasculature with a capacitance
k , the resistance of the downstream arteries with a proximal resistance Rk

p , and the resistance of the downstream
apillaries and veins with a distal resistance Rk

d ,

d Pk
c

dt
=

Qk

Ck
−

Pk
c − Pk

d

Rk
dCk

, Pk
= Pk

c + Rk
p Qk, (A.1)

wherein Pk
c is the pressure proximal to the capacitance Ck , and Pk

d is the distal reference pressure.

A.2. Coronary model

The coronary model (Fig. A.1B) similarly models the compliance of the downstream vasculature with a
capacitance Ck and the resistance of the downstream arteries, capillaries, and veins with corresponding resistances
Rk

a , Rk
c , and Rk

v , respectively,

d Pk
c

dt
=

Qk

Ck
−

Pk
c − Pk

c,im

Rk
c Ck

,
d Pk

c,im

dt
=

Pk
c − Pk

c,im

Rk
c Ck

im
−

Pk
c,im − Pk

d

Rk
vCk

im
+

d Pk
im

dt
, Pk

= Pk
c + Rk

a Qk . (A.2)

he addition of an intramyocardial capacitance Ck
im (with a corresponding proximal pressure Pk

c,im) and intramyocar-
ial pressure Pk

im, however, are distinctive features that capture the out-of-phase behavior of coronary flow relative
o aortic flow. Namely, the increased resistance due to ventricular contraction yields restricted coronary flow during
ystole. Depending on the location of the coronary artery of interest, Pk

im is prescribed as either the left or right
entricular pressure over time. Readers may refer to [120–122] for more details.
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