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Abstract—Genetic programming (GP) is a general, broadly
effective procedure by which computable solutions are con-
structed from high-level objectives. As with other machine-
learning endeavors, one continual trend for GP is to exploit
ever-larger amounts of parallelism. In this paper, we explore
the possibility of accelerating GP by way of modern field-
programmable gate arrays (FPGAs), which is motivated by the
fact that FPGAs can sometimes leverage larger amounts of both
function and data parallelism—common characteristics of GP—
when compared to CPUs and GPUs. As a first step towards more
general acceleration, we present a preliminary accelerator for
the evaluation phase of ‘“tree-based GP”’—the original, and still
popular, flavor of GP—for which the FPGA dynamically compiles
programs of varying shapes and sizes onto a reconfigurable
function tree pipeline. Overall, when compared to a recent open-
source GPU solution implemented on a modern 8nm process
node, our accelerator implemented on an older 20nm FPGA
achieves an average speedup of 9.7x. Although our accelerator
is 7.9x slower than most examples of a state-of-the-art CPU
solution implemented on a recent 7nm process node, we describe
future extensions that can make FPGA acceleration provide
attractive Pareto-optimal tradeoffs.

Index Terms—genetic programming, reconfigurable comput-
ing, FPGA devices

I. SUMMARY

In general, the parallelism opportunities implicit to tree-
based genetic programming (GP) are not fully realized by
general-purpose CPU/GPU systems [[1], [2], [3]]. Specifically,
although CPU/GPU systems can be made to exploit both data
and function parallelism—e.g., by evaluating multiple data
points, multiple operations, or multiple candidate solutions
in parallel [3], [4], [S]—these efforts are ultimately limited
by general-purpose execution/memory models or by frequent,
dynamic changes in control flow [2], [4]], [S]. In this paper,
we improve upon such limitations of CPU/GPU systems with
a hardware accelerator specialized to the evaluation phase of
tree-based GP, implemented by way of a modern, mid-range
FPGA device.

As shown in Fig. |1} our accelerator leverages a specialized,
full tree of generic computing resources that can compute
any program consisting of functions supported by the generic
resources, as long as the depth of the program is not larger than
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Average FPGA Speedup
Tool
Fitness Case
TensorGP  TensorGP
Threshold (<) DEAP (CPU) (GPU) Operon
10 427x 663% 931x 0.227x%
100 415x% 622x 860x 0.215x
1,000 270% 286x 388x% 0.097x%
10,000 187x% 60.2x 73.0x 0.127x%
100,000 146% 18.8x 9.7x 0.127x%

TABLE I: Average NEPS speedups for various fitness case
thresholds. For a given threshold value, the average is calcu-
lated from all results regarding thresholds less than or equal
to this value. The last row represents an overall average.

the depth of the tree, the latter of which is defined by the user.
By then pipelining the generic resources, the accelerator can
generate program outputs every clock cycle after some initial
latency. To further increase throughput, the accelerator also
dynamically compiles programs for the tree while evaluating,
so that the tree may switch between programs within a single
clock cycle. Importantly, such forms of parallelism have not
been achieved via general-purpose CPU/GPU architectures.

We compare the performance of our architecture with the
evaluation engines given by three GP software tools: DEAP,
TensorGP, and Operon From each tool, we use the eval-
uation engine—and no evolution engine—to execute a large
set of randomly generated programs for various amounts of
fitness cases (i.e., sample points), and we estimate evaluation
performance in terms of node evaluations per second (NEPS).
For each software-based tool, we utilize a 4.8 GHz, 12-
core 7nm AMD Ryzen 5900X CPU, and, additionally, an
8nm Nvidia RTX 3080 GPU for TensorGP. To implement
our hardware accelerator, we utilize a 20nm mid-range Intel
Arria 10 10AX115N2F40E2LG GX FPGA provided by an
Intel Programmable Acceleration Card (PAC) through the Intel
FPGA DevCloud service. We compile the accelerator by way
of Quartus Pro 19.2.0, Build 57.

Table [I] presents average speedups for the FPGA in terms
of numbers of fitness cases. Overall, compared to DEAP,
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Fig. 1: An illustration of how the proposed GP accelerator can parallelize evaluation of different solutions and/or different
training samples every cycle via a reconfigurable tree pipeline. Each node of the tree pipeline provides an implementation of
every function within the GP primitive set, in addition to a bypass, which allows for arbitrary program shapes.

a baseline GP software tool that we ran parallelized across
all cores of the chosen CPU, our architecture achieved an
average speedup of 146x. Compared to TensorGP, a recent
open-source GP software tool targeting both CPU and GPU
systems, our architecture achieved an average speedup of
18.8x in regard to CPU execution and 9.7x in regard to
GPU execution. Finally, compared to Operon, a recent state-
of-the-art GP software tool targeting CPU systems, our current
architecture executed about 7.9 slower on average.

Despite not achieving an average speedup over Operon, our
preliminary architecture demonstrates potential for significant
future improvements. First and foremost, we are currently
comparing an older 20nm FPGA (released in 2013) to a newer
7nm/8nm CPU/GPU (released in 2020); notably, our chosen
FPGA has 8x fewer floating-point DSP resources—our main
constraint—and slower clock speeds than some newer FPGAs
(e.g., [6]). Secondly, some GP applications can have additional
computational bottlenecks, such as non-linear least squares
for symbolic regression [5], [7], for which FPGAs have been
shown to have significant advantages [8]. In fact, the notable
solution quality frequently demonstrated by Operon—which is
not evaluated within this work—generally relies on non-linear
least squares [5]], [9]], which often significantly lowers runtime
performance [7]]. Lastly, it has been widely shown that FPGAs
generally have power and energy advantages when compared
to CPUs/GPUs [10]], [11l], sometimes with improvements of
up to several orders of magnitude (e.g., [[L1]). Although we do
not evaluate power and energy in this paper, if advancements
to our architecture can achieve performance comparable to
Operon, the power/energy advantages would likely be signif-
icant. Such advantages, in turn, could enable more energy-
efficient (and, thus, potentially more cost-effective) multi-
computer GP systems, as well as new embedded GP use cases.

Therefore, although this paper is a preliminary first step,
we expect future extensions of our architecture to constitute

a state-of-the-art, energy-efficient accelerator for many GP
applications.
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