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A B S T R A C T

The complex dispersion relation is important for understanding the wave propagation in periodic structures.
However, its calculation is much more expensive compared to calculation of the real dispersion relation, due
to the need to solve the dispersion equation at large number of frequencies. For uncertainty quantification in
the dispersion relations, the computational challenge is even higher. This paper proposes an adaptive Gaussian
process (AGP) model to efficiently predict the complex dispersion relations for periodic structures with different
properties. Instead of directly building GP for the dispersion relation, which is challenging due to discontinuity
in the dispersion relation, we first reformulate the problem as predicting the coefficients of the dispersion
equation at selected frequencies, where these coefficients are continuous and smooth functions of the properties
of periodic structures. Then GP model is trained to predict these coefficients, based on which the dispersion
equation is then analytically solved to establish the complex dispersion relation. Second, Principal component
analysis (PCA) is used to reduce the dimension of these coefficients to facilitate efficient training of GP model.
Third, an adaptive procedure is integrated to iteratively add training data that can most effectively improve
the GP model accuracy. Results verify the great efficiency and accuracy of the proposed approach for both
undamped and damped periodic structures. The proposed approach has great promise in improving efficiency
for uncertainty quantification, sensitivity analysis, and design optimization of periodic structures.
1. Introduction

In the last two decades, the research on elastic wave propagation
in artificial periodic structures, known as phononic crystals or elastic
metamaterials, has drawn the attention of many scientists and engi-
neers due to their special properties such as negative density, negative
refraction, and so on. These special properties have many potential
engineering applications. With proper design, periodic structures could
be fabricated to prohibit elastic waves in certain frequency regions,
which gives a new way to design the sound-proof materials and vi-
bration isolation structures in civil and mechanical engineering (Chen
et al., 2017; Xiao and Wen, 2020; Cheng and Shi, 2013b; Gao and Lu,
2020; Zhou et al., 2019; Yao et al., 2020). In particular, to attenuate
the harmful seismic responses of engineering structures, different types
of large-scale periodic structures, named periodic foundation(or meta-
foundation) and periodic wave barriers (or meta-barriers), have been
proposed (Jia and Shi, 2010; Cheng and Shi, 2013b; Dertimanis et al.,
2016; Palermo et al., 2018; Cheng et al., 2020; Wenzel et al., 2020).

To investigate the special dynamic properties of periodic structures,
ne important way is to solve the dispersion equation, which is an
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implicit function F between the wave number (𝑘 = 𝑘𝛼 + i𝑘𝛽 ) and
frequency number (𝜔). Ignoring the imaginary part of the wave number,
dispersion equation F(𝜔, 𝑘) can be given as an eigenvalue equation with
respect to the frequency 𝜔. For a given real wave number 𝑘𝛼 , 𝜔 can be
obtained easily by performing the mode analysis, which is the widely
used 𝜔(𝑘𝛼) method. Dispersion relation obtained by the 𝜔(𝑘𝛼) method
corresponds to real dispersion relation, which only includes dispersion
properties of propagative waves. Indeed, dispersion equation F(𝜔, 𝑘)
can also be solved by seeking the complex wave number 𝑘 for given
real frequencies 𝜔, which is the so-called 𝑘(𝜔) method. Interestingly,
the complex wave number 𝑘 = 𝑘𝛼+ i𝑘𝛽 includes all possible waves,
propagative wave as well as evanescent waves, into the dispersion
relation. Therefore, dispersion relation obtained by the 𝑘(𝜔) method is
named complex dispersion relation.

To analyze the wave attenuation properties (i.e., the evanescent
wave properties) for the damped and undamped periodic structures,
the 𝑘(𝜔) method must be used. However, it must be pointed out that
because the complex wave number is considered, computational effort
of the 𝑘(𝜔) method is much larger than that of the 𝜔(𝑘) method. Thus,
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only a few 𝑘(𝜔) numerical methods are reported (Laude et al., 2009;
eres and Berer, 2012; Xiao et al., 2012; Cheng et al., 2017, 2018).
For instances, the widely used 𝜔(𝑘𝛼) method, the plane wave expansion
(PWE) method, was modified by Laude et al. (2009) to calculate
the complex band structure of a two-dimensional periodic structure.
However, the PWE encounters convergence problems especially when
the material mismatch of the unit cell is large (Cheng and Shi, 2013a).
To overcome such problem, the Wave Finite Element Method (WFEM)
was developed (Mace et al., 2005; Mace and Manconi, 2008; Veres and
Berer, 2012). The WFEM can handle periodic structure of any shape
and its computational requirement is relatively large. To eliminate
this drawback, the Component Mode Synthesis (CMS) was recently
introduced to improve the WFEM (Palermo et al., 2018; Thierry et al.,
2018). Recently, Cheng et al. (2018) developed the extended differen-
tial quadrature element method (EDQEM) and investigated the complex
dispersion relations of periodic beams. Tang et al. (2021) employed
the method of the reverberation-ray matrix (MRRM) to provide better
physical understanding of flexural wavenumber spectral behaviors of
the beam coupled with periodic resonators. Furthermore, calculation
of the complex dispersion relations at large number of frequencies
with fine frequency resolutions (e.g., tens of thousands of frequencies)
requires repeated solution of the dispersion equation, which entails
significant computational effort. Therefore, so far investigations about
the complex dispersion relations are still limited.

In addition, in practice there are various uncertainties related to
the physical and geometrical parameters of the periodic structures.
Understanding how these uncertainties affect the dispersion relations
and the resultant bandgap characteristics is critical for understand-
ing the behavior the periodic structures and for designing periodic
structures with targeted performances that are robust to uncertainties.
For these purposes, typically uncertainty propagation, or sensitivity
analysis, or design optimization under uncertainty needs to be carried
out. Stochastic simulation techniques (such as Monte Carlo Simulation
(MCS)) can be used. However, they typically require large number
of model evaluations. Therefore, direct calculation of the complex
dispersion relations in the context of using stochastic simulation for
uncertainty propagation entails huge computational effort.

On the other hand, surrogate models have been used to address the
computational challenges when many model evaluations are needed
and the system models are expensive to evaluate (Sacks et al., 1989;
Simpson et al., 2001; Forrester et al., 2008). Surrogate models are
mathematical representations used to efficiently approximate the
input–output relationships for expensive system models. Surrogate
models are usually built/trained based on a small number of runs
of the system model. Once trained, they can be used to efficiently
predict the system outputs for new inputs that are not in the training
set. Various surrogate models have been used in the literature, for
example, polynomial response surfaces (Jones, 2001; Breitkopf et al.,
2005; Taflanidis et al., 2013), artificial neural networks, support vector
machines (Bourinet et al., 2011; Moustapha et al., 2018), polynomial
chaos expansions (Sudret, 2008; Yaghoubi et al., 2017; Schneider et al.,
2020), and kriging (also known as Gaussian process model) (Rasmussen
and Williams, 2006; Jia and Taflanidis, 2013; Jia et al., 2016; Lu et al.,
2019; Li and Jia, 2020). Among them, Gaussian process model has been
gaining popularity due to its flexibility in modeling complex functions
and also the ability to provide not only the mean prediction but also the
local variance of the prediction (Rasmussen and Williams, 2006; Zhang
et al., 2017, 2018; Li et al., 2019; Kyprioti et al., 2020). For system
model with high-dimensional outputs, it is typically computationally
prohibitive to train a surrogate model for each individual output. To
address this, dimension reduction or sparse representation techniques
have also been proposed in the literature (Jia and Taflanidis, 2013;
Blatman and Sudret, 2010; Marelli and Sudret, 2015; Jia et al., 2016;
Li et al., 2020).

To address the challenges in prediction and uncertainty quantifica-
tion for the complex dispersion relations, this paper proposes an adap-
2

tive Gaussian process (AGP) model to efficiently predict the complex 𝐮
dispersion relations for periodic structures with different properties.
The idea of using GP model to predict the complex dispersion is novel.
So far, investigations on the complex dispersion relation of periodic
structure are very limited because of the computational difficulty. Few
methods were developed and the computational requirement of these
methods is typically high, especially when uncertainty quantification
is considered. The use of GP model can significantly improve the
computational efficiency of carrying out the above analyses. Several
novel aspects are proposed and integrated to improve accuracy and
efficiency of the proposed approach. First, the problem is reformulated
by choosing proper inputs and output for the GP model to address the
discontinuity in the output to improve the accuracy of the established
GP model. Instead of directly building GP for the dispersion relation,
which is challenging due to the discontinuity in the dispersion relation,
we first build GP to predict the coefficients of the dispersion equation
(at selected frequencies), which are continuous and smooth functions of
the properties of the periodic structures. Second, Principal component
analysis (PCA) is used to reduce the dimension of these coefficients
(which correspond to high-dimensional outputs) and then the GP model
is efficiently trained with respect to the low-dimensional latent out-
puts. Based on the predicted coefficients by GP model, the dispersion
equation is then analytically solved to establish the complex dispersion
relations. In addition, an adaptive procedure using weighted accumu-
lative errors is integrated to iteratively add training data to effectively
improve the GP model accuracy. The overall proposed approach is
named as AGP-PCA. The efficiency and accuracy of the proposed ap-
proach are verified through prediction and uncertainty quantification
of the complex dispersion relations and bandgap characteristics for
periodic beams where the training data is established by the EDQEM.

The remainder of this paper is organized as follows. Section 2
presents the complex wave dispersion problem for periodic structures
and discusses the computational challenges in predicting the complex
dispersion relations and in quantifying the uncertainties in the com-
plex dispersion relations. Section 3 presents the proposed AGP-PCA
approach for efficient prediction of complex dispersion relations of
periodic structures. Section 4 presents the illustrative example with
application to periodic beams, and discusses the performances (e.g., ac-
curacy and efficiency) of the proposed approach in predicting the
complex dispersion relations, where both the case without damping
and the case with damping are investigated. Section 5 presents further
applications of the established AGP-PCA approach to facilitate efficient
uncertainty quantification and parametric study for the complex disper-
sion relations and bandgap characteristics of periodic beams. Finally,
Section 6 summarizes the research findings.

2. Problem formulation

2.1. Dispersion equations and complex dispersion relations

Complex dispersion problem for the flexural wave propagating in a
periodic Timoshenko beam structure, shown in Fig. 1(a), is considered.
The periodic beam structure consists of two materials: material 1 of
length 𝐿1 and material 2 of length 𝐿2. The lattice constant is 𝐿 =
𝐿1 + 𝐿2. E𝑚, G𝑚 and 𝜌𝑚 are the Young’s modulus, shear modulus and
density per volume of material 𝑚 (m = 1, 2). 𝐴𝑚 and 𝐼𝑚 are the cross-
sectional area and area moment of inertia with respect to the z axis of
material 𝑚.

Governing equations of the considered system are

⎧

⎪

⎨

⎪

⎩

𝜅𝑚G𝑚𝐴𝑚
(

𝜑𝑚 (𝑥, 𝑡) − 𝜕𝑣𝑚(𝑥,𝑡)
𝜕𝑥

)

− E𝑚𝐼𝑚
𝜕2𝜑𝑚(𝑥,𝑡)
𝜕𝑥2

+ 𝜌𝑚𝐼𝑚
𝜕2𝜑𝑚(𝑥,𝑡)

𝜕𝑡2
= 0

𝜕
𝜕𝑥

[

𝜅𝑚G𝑚𝐴𝑚
(

𝜑𝑚 (𝑥, 𝑡) − 𝜕𝑣𝑚(𝑥,𝑡)
𝜕𝑥

)]

+ 𝜌𝑚𝐴𝑚
𝜕2𝑣𝑚(𝑥,𝑡)

𝜕𝑡2
= 0

(1)

n which 𝑣 (𝑥, 𝑡) is the transverse deflection, 𝜑 (𝑥, 𝑡) is the rotation
ngle; 𝜅 = 5∕6 is the shear correction coefficient. By using the Bloch–
loquet theorem, the displacement field can be expressed as 𝐮(𝑥, 𝑡) =
(𝑥)𝑒i(𝑘⋅𝑥−𝜔𝑡). Here i =

√

−1, 𝑘 is the wave number. In particular,
𝑘
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Fig. 1. Illustration of (a) an infinite periodic Timoshenko beam, and the computational requirements for its (b) real dispersion, (c) complex dispersion and (d) uncertainty
quantification in complex dispersion.
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𝐮𝑘(𝑥) is a periodic function with the same periodicity as the unit cell,
𝑘(𝑥 + 𝐿) = 𝐮𝑘(𝑥). As such, the relations between the two ends of the
nit cell can be given as 𝐮(𝑥 + 𝐿, 𝑡) = 𝑒i𝑘⋅𝐿𝐮(𝑥, 𝑡), which is the so-called
periodic boundary condition.

Further, coupling the wave equation (Eq. (1)) and the periodic
boundary condition, the dispersion problem of the infinite domain will
e transferred into an eigenvalue problem of a finite domain, which
an be given as

(𝜔; 𝑘)𝐔 = (Φ(𝑘) − 𝜔2𝐌)𝐔 = 𝟎 (2)

n which Φ and 𝐌 are the stiffness and mass matrix of the system,
espectively. 𝐃(𝜔; 𝑘) is the reduced dynamic stiffness matrix. 𝐔 = (𝑉 , 𝜓)
s the displacement vector, 𝑉 (𝑥) and 𝜓(𝑥) are the steady-state responses
f 𝑣(𝑥, 𝑡) and 𝜑(𝑥, 𝑡), respectively.
When the viscous material damping or structural damping is in-

luded, the dynamic stiffness matrix 𝐃(𝜔; 𝑘) can be modified by the
ddition of the viscous or structural damping matrices as (Mace and
anconi, 2008)

(𝜔; 𝑘) = (Φ + iΦ′) − 𝜔2𝐌, 𝐃(𝜔; 𝑘) = Φ + i𝜔𝐂 − 𝜔2𝐌 (3)

n which Φ′ and 𝐂 are the viscous damping matrix and the structural
amping matrix, respectively.
Eq. (2) is the so-called dispersion equation, which can be solved by

using the 𝜔(𝑘𝛼) method or the 𝑘(𝜔) method. As using the traditional
𝜔(𝑘𝛼) strategy, only the real wave number 𝑘𝛼 is considered. And, the
dispersion relation, i.e., the real dispersion relation, can only indicate
dispersion properties of propagative waves (P mode in Fig. 1b). On the
other hand, if using the 𝑘(𝜔) strategy, the wave number 𝑘 will be a
complex number 𝑘 = 𝑘𝛼 +i𝑘𝛽 . Here, 𝑘𝛽 represents dispersion properties
(i.e., the attenuation properties) of the evanescent wave. As shown in
Fig. 1c, except for the propagative wave mode, another two evanescent
wave modes, i.e., the purely evanescent wave mode (PE mode) and the
evanescent edge wave mode (EE mdoe), are observed in the considered
frequency region (Cheng et al., 2018). These properties are missed
in the real dispersion curves. However, because the evanescent wave
mode is included, computational effort of the 𝑘(𝜔) strategy is much
larger than that of the 𝜔(𝑘𝛼) method. Only a few 𝑘(𝜔) numerical
methods are reported (Laude et al., 2009; Veres and Berer, 2012; Xiao
et al., 2012; Cheng et al., 2017, 2018).
3

2.2. Differential-quadrature approximation based methods

The Extended Differential Quadrature Element Method was recently
developed to calculate the complex dispersion relation of periodic
structures (Cheng et al., 2018). Within the EDQEM, the dispersion
quations can be written more explicitly as

⎡

⎢

⎢

⎣

Φ𝐷𝐷 − 𝜔2𝐌𝐷 Φ𝐷𝐼 Φ𝐷𝑃
Φ𝐼𝐷 Φ𝐼𝐼 Φ𝐼𝑃

Φ𝑃𝐷 (𝜆) Φ𝑃𝐼 (𝜆) Φ𝑃𝑃 (𝜆)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐔𝐷
𝐔𝐼
𝐔𝑃

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝟎𝐷
𝟎𝐼
𝟎𝑃

⎤

⎥

⎥

⎦

(4)

ere, the subscripts 𝐷, 𝐼, 𝑃 corresponds to the sampling points in
he discrete homogeneous domains, the sampling points at the inner
nterfaces of the unit cell and the sampling points at the outer interface
f the unit cell, respectively. 𝜆 = 𝑒i𝑘𝐿 represents the periodic boundary
ondition of the system. Detailed derivations can be found in Cheng
t al. (2018).
Rearranging Eq. (4), one can obtain

F(𝜔, 𝜆) = det[Φ𝑃𝑃 (𝜆) −Φ𝑃𝐸 (𝜆)Φ−1
𝐸𝐸 (𝜔)Φ𝐸𝑃 ] = 0 (5)

in which

Φ𝐸𝐸 (𝜔) =
[

Φ𝐷𝐷 − 𝜔2𝑀𝐷 Φ𝐷𝐼
Φ𝐼𝐷 Φ𝐼𝐼

]

; Φ𝐸𝑃 =
[

Φ𝐷𝑃
Φ𝐼𝑃

]

;

Φ𝑃𝐸 (𝜆) =
[

Φ𝑃𝐷 (𝜆)
Φ𝑃𝐼 (𝜆)

]𝑇

For given 𝜔, four roots 𝜆𝑛 (𝑛 = 1, 2, 3, 4) can be obtained by solving
Eq. (5). Then 𝜆𝑛 can be used to calculate 𝑘𝑛 through

𝑘𝑛 = −1i × log 𝜆𝑛 (6)

which will give the complex dispersion relations.

2.3. Computational challenges

As shown in the previous section, to establish the complex dis-
persion relations for a given periodic structure, we need to solve
Eq. (5) repeatedly for all the interested 𝜔 values. For example, to
establish the complex dispersion relations shown in Fig. 1(c), which
considers frequency in the range of [0, 2000] Hz with a frequency
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interval/resolution of 0.1 Hz (i.e., 20001 frequencies and Eq. (5) needs
to be solved 20001 times), using EDQEM, it takes around 1500 s (𝑡2)
in total. In comparison, when using the DQEM, the real wave number
varies in the first Brillouin zone [−1, 1] with an interval of 0.01, and
the wave numbers to be considered is 201. The total time is 𝑡1 = 0.3
s, i.e., approximately 0.02% of 𝑡2. Also, for the complex dispersion
relations, when the number of frequencies increases, the computational
effort will increase accordingly. Note that here the computational time
for EDQEM is reported, and when more expensive numerical models
(e.g., detailed finite element models) are used, the computational effort
could be even higher. The computational effort could also increase with
the dimension of the problem (e.g., more expensive when considering
two-dimensional or three-dimensional periodic structures). Therefore,
calculation of the detailed complex dispersion relations at large number
of frequencies with fine frequency resolutions (e.g., tens of thousands
of frequencies), which requires repeated solution of Eq. (5), could
potentially entail significant computational effort.

Also, note that the example discussed above is for a specific periodic
structure with specific material and geometrical properties. Many cases
we need to repeatedly predict the complex dispersion relations for pe-
riodic structures with different properties. One example is uncertainty
quantification. In practice there are various uncertainties related to the
physical and geometrical properties. To investigate the impacts of these
uncertainties on the dispersion relations and the resultant bandgap
characteristics, we need to propagate these uncertainties. Fig. 1(d)
shows the mean prediction of the complex dispersion relations and
associated variability/uncertainty due to uncertainties in the properties
of the considered periodic beam. Typically, stochastic simulation tech-
niques (such as MCS) can be used. However, they typically requires
large number of model evaluations. Therefore, direct calculation of the
complex dispersion relations in the context of using stochastic simu-
lation for uncertainty propagation entails huge computational effort.
To facilitate the above tasks, efficient models are needed to predict
the complex dispersion relations for periodic structures with different
properties.

3. Adaptive Gaussian process model with PCA for prediction of
complex dispersion relations

To address the above computational challenges, we propose an
adaptive Gaussian process surrogate model to efficiently predict the
complex dispersion relations at fine frequency resolution for periodic
beams with different properties. The proposed approach is named
AGP-PCA and is discussed in detail in this section.

3.1. Proper selection of inputs and outputs for Gaussian process model

For any given periodic beam characterized by input 𝐱 = [𝑥1,… , 𝑥𝑖,
… , 𝑥𝑛𝑥 ] of dimension 𝑛𝑥 (including material and/or geometrical prop-
erties), our goal is to build GP model to predict the corresponding
complex dispersion relations, or more specifically, calculate the cor-
responding 𝑘𝑛 = 𝑘𝛼,𝑛 + i𝑘𝛽,𝑛 (𝑛 = 1, 2, 3, 4) at specified frequencies
denoted 𝝎 = [𝜔1,… , 𝜔𝑖,… , 𝜔𝑛𝜔 ] where 𝑛𝜔 is the number of considered
frequencies and 𝜔𝑖 ∈ [𝜔𝑙𝑏, 𝜔𝑢𝑏] with 𝜔𝑙𝑏 and 𝜔𝑢𝑏 corresponding to the
lower and upper bounds of the interested frequency range. Typically
𝑛𝜔 is a large number. The finer the frequency resolution, the larger 𝑛𝜔
is.

The direct way of formulating this problem might be to train GP
model with 𝐱 as input and 𝑘𝛼,𝑛 and 𝑘𝛽,𝑛 at specified frequencies 𝝎
as outputs. Let 𝐲 = 𝐲(𝐱) represent the outputs, then we have 𝐲(𝐱) =
[𝐤𝛼,𝑛(𝐱),𝐤𝛽,𝑛(𝐱)] where 𝐤𝛼,𝑛 = [𝑘𝛼,𝑛(𝐱, 𝜔1),… , 𝑘𝛼,𝑛(𝐱, 𝜔𝑖),… , 𝑘𝛼,𝑛(𝐱, 𝜔𝑛𝜔 )]
and 𝐤𝛽,𝑛 = [𝑘𝛽,𝑛(𝐱, 𝜔1),… , 𝑘𝛽,𝑛(𝐱, 𝜔𝑖),… , 𝑘𝛽,𝑛(𝐱, 𝜔𝑛𝜔 )]. In more general
form, the outputs can be written as 𝐲(𝐱) = [𝑦1(𝐱),… , 𝑦𝑘(𝐱),… , 𝑦𝑛𝑦 (𝐱)]
where 𝑛𝑦 is the total number of outputs for given 𝐱 and here 𝑛𝑦 = 8𝑛𝜔.
Obviously, the outputs correspond to high-dimensional outputs.
4

Alternatively, we can treat 𝜆𝑛 (or more specifically, the real and
imaginary parts of 𝜆𝑛) as outputs. In this case, the output dimension
is still 𝑛𝑦 = 8𝑛𝜔. However, for either taking 𝑘𝑛 or 𝜆𝑛 as outputs for
the GP model, the challenge is that the relationship 𝐱 → 𝐲(𝐱) might
be non-smooth. This is especially the case when there is no damping
considered in the system. Mathematically, the reasons for this are: (i)
the roots 𝜆𝑛 (or more specifically, the real and imaginary parts of 𝜆𝑛)
are non-smooth functions of 𝐱, and (ii) when 𝑘𝑛 is the output, the
transformation 𝑘𝑛 = −1i × log 𝜆𝑛 means that the real and imaginary
parts of 𝑘𝑛 also have non-smooth variation with respect to 𝐱. Therefore,
irectly training GP model with either 𝑘𝑛 or 𝜆𝑛 as outputs has challenges
in certain regions of 𝐱 where the functional relationship 𝐱 → 𝐲(𝐱) is
non-smooth, which will reduce the accuracy of the trained GP model.
The low accuracy in predicting where the non-smoothness happens
has important implications in the current problem since the location
determines or corresponds to where the bandgap starts or ends.

To address the non-smoothness here, we reformulate the problem
as follows. Here instead of directly training GP model with 𝑘𝑛 or 𝜆𝑛 as
outputs, we train GP model for the coefficients of the quartic equation
in Eq. (5), which are continuous and smooth functions of 𝐱. Once the
coefficients are established, they are then plugged into the analytical
solutions of the quartic equation to find the corresponding 𝜆𝑛 (𝑛 =
1, ⋯,4), which can be further plugged into Eq. (6) to calculate the
corresponding 𝑘𝑛 (𝑛 = 1, ⋯,4).

First, for given 𝐱 and 𝜔, the quartic equation with respect to 𝜆 is
written explicitly as

𝑐1(𝐱, 𝜔)𝜆4 + 𝑐2(𝐱, 𝜔)𝜆3 + 𝑐3(𝐱, 𝜔)𝜆2 + 𝑐4(𝐱, 𝜔)𝜆 + 𝑐5(𝐱, 𝜔) = 0 (7)

In the current problem, we found that 𝑐1(𝐱, 𝜔) = 𝑐5(𝐱, 𝜔) and 𝑐2(𝐱, 𝜔) =
𝑐4(𝐱, 𝜔). Further normalizing the equation by 𝑐1(𝐱, 𝜔) leads to an equiv-
alent equation with two unique coefficients 𝜉1(𝐱, 𝜔) and 𝜉2(𝐱, 𝜔),

𝜆4 + 𝜉1(𝐱, 𝜔)𝜆3 + 𝜉2(𝐱, 𝜔)𝜆2 + 𝜉1(𝐱, 𝜔)𝜆 + 1 = 0 (8)

where 𝜉1(𝐱, 𝜔) = 𝑐2(𝐱, 𝜔)∕𝑐1(𝐱, 𝜔) and 𝜉2(𝐱, 𝜔) = 𝑐3(𝐱, 𝜔)∕𝑐1(𝐱, 𝜔). Note
that 𝜉1(𝐱, 𝜔) and 𝜉2(𝐱, 𝜔) are real numbers when there is no damping,
and they become complex numbers when damping is considered.

As an illustration, we consider the case of 𝐱 being a scalar 𝑥.
Fig. 2 shows the variation of 𝑘𝛼,𝑛(𝑥, 𝜔) and 𝑘𝛽,𝑛(𝑥, 𝜔) (𝑛 = 1, ⋯,4) as
a function of 𝑥 under a selected 𝜔 value for the case when no damping
is considered. The ‘‘kinks’’ in the functions can be clearly seen; for 𝑘𝛼,1
and 𝑘𝛼,2 there is no variation before the ‘‘kinks’’ as 𝑥 varies, while for
𝑘𝛽,1 and 𝑘𝛽,2 there is no variation after the ‘‘kinks’’ as 𝑥 varies. Fig. 3
shows the corresponding variation of 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) as a function
of 𝑥. As can be seen, 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) are continuous and smooth
functions of 𝑥.

Similarly, Fig. 4 shows the variation of 𝑘𝛼,𝑛(𝑥, 𝜔) and 𝑘𝛽,𝑛(𝑥, 𝜔) (𝑛
= 1, ⋯,4) as a function of 𝑥 under a selected 𝜔 value for the case
when damping is considered. In this case, because of the damping, the
‘‘kinks’’ that were present for the case with no damping were not there
anymore and the functions become smooth. In this sense, the prediction
of complex band structure for cases with damping is less challenging
than cases without damping. However, from part (a) of the figure, it
can be seen that still for most of the range of 𝑥 considered here the
variation of 𝑘𝛼,1 and 𝑘𝛼,2 is quite small (almost stay constant), while
after around 𝑥 = 1.15, the variation becomes more obvious. This type of
function will still create some challenges in building surrogate model.
Fig. 5 shows the corresponding variation of the real and imaginary parts
of 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) as a function of 𝑥. As can be seen, both the real
and imaginary parts of 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) are continuous and smooth
functions of 𝑥 with much obvious trend/variation information, which
makes training surrogate models for them easier.

Therefore, we will build GP model for the coefficients 𝜉1 and 𝜉2. The
outputs then correspond to 𝐲(𝐱) = [𝜉1(𝐱, 𝜔1),… , 𝜉1(𝐱, 𝜔𝑖),… , 𝜉1(𝐱, 𝜔𝑛𝜔 ),
𝜉2(𝐱, 𝜔1),… , 𝜉2(𝐱, 𝜔𝑖),… , 𝜉2(𝐱, 𝜔𝑛𝜔 )] with dimension 𝑛𝑦 = 2𝑛𝜔 when
there is no damping. When damping is considered, the outputs then

correspond to real (ℜ) and imaginary (ℑ) parts of the coefficients,
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Fig. 2. Variation of (a) 𝑘𝛼,𝑛(𝑥, 𝜔) and (b) 𝑘𝛽,𝑛(𝑥, 𝜔) as a function of 𝑥 under selected 𝜔.
Fig. 3. Variation of 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) as a function of 𝑥 under selected 𝜔.

i.e., 𝐲(𝐱) = [ℜ(𝜉1(𝐱, 𝜔1)),ℑ(𝜉1(𝐱, 𝜔1)),… ,ℜ(𝜉1(𝐱, 𝜔𝑖)),ℑ(𝜉1(𝐱, 𝜔𝑖)),… ,
ℜ(𝜉1(𝐱, 𝜔𝑛𝜔 )),ℑ(𝜉1(𝐱, 𝜔𝑛𝜔 )), ℜ(𝜉2(𝐱, 𝜔1)),ℑ(𝜉2(𝐱, 𝜔1)),… ,ℜ(𝜉2(𝐱, 𝜔𝑖)),
ℑ(𝜉2(𝐱, 𝜔𝑖)),… ,ℜ(𝜉2(𝐱, 𝜔𝑛𝜔 )),ℑ(𝜉2(𝐱, 𝜔𝑛𝜔 ))] with dimension 𝑛𝑦 = 4𝑛𝜔.

Note that based on Eq. (8) we know that the coefficients 𝜉1 and 𝜉2
are functions of both 𝐱 and 𝜔. Intuitively, we should be able to build
surrogate model with both 𝐱 and 𝜔 as inputs, and then use surrogate
model to directly predict the coefficients 𝜉1 and 𝜉2 for not only different
𝐱 values but also different 𝜔 values. This will eliminate the need to con-
sider high-dimensional outputs as well. However, through our investi-
gation it was found that the coefficients are in general more sensitive
to the variation in 𝐱 than 𝜔, if training GP model with both of them
as inputs, the variation of the coefficients due to variation in 𝜔 will be
difficult to capture, especially when 𝐱 varies in a large range. This will
lead to larger error and lower accuracy of the established GP model.
More importantly, since many times we are interested in accurately
predicting the complex dispersion relations (defined by frequencies and
corresponding 𝜆𝑛 pairs) under different 𝐱, it is desirable to treat 𝐱 as
inputs and treat the corresponding entire complex dispersion relations
as outputs. Therefore, to improve the prediction accuracy for the com-
plex dispersion relations, we train GP model with 𝐱 as inputs and with
𝐲(𝐱) = [𝜉1(𝐱, 𝜔1),… , 𝜉1(𝐱, 𝜔𝑖),… , 𝜉1(𝐱, 𝜔𝑛𝜔 ), 𝜉2(𝐱, 𝜔1),… , 𝜉2(𝐱, 𝜔𝑖),… ,
𝜉2(𝐱, 𝜔𝑛𝜔 )] as outputs.

To build the GP model, we first run 𝑛𝑙ℎ𝑠 evaluations of the numerical
model (e.g., EDQEM for the current problem) and establish a database,
which consists of an output vector {𝐲ℎ = 𝐲(𝐱ℎ);ℎ = 1,… , 𝑛𝑙ℎ𝑠} for each
input {𝐱ℎ;ℎ = 1,… , 𝑛 }. The database {𝐱ℎ, 𝐲(𝐱ℎ);ℎ = 1,… , 𝑛 } is
5

𝑙ℎ𝑠 𝑙ℎ𝑠
frequently referenced as the training set. The selection of input {𝐱ℎ;ℎ =
1,… , 𝑛𝑙ℎ𝑠} will impact the accuracy of the GP model. Initially, to ensure
the model have good prediction accuracy over the entire input space,
selections that can evenly fill the input space is typically used. For this
purpose, Latin Hypercube Sampling (LHS) is used here. We will denote
by 𝐗 = [𝐱1,… , 𝐱𝑛𝑙ℎ𝑠 ]𝑇 ∈ R𝑛𝑙ℎ𝑠×𝑛𝑥 and 𝐘 = [𝐲1,… , 𝐲𝑛𝑙ℎ𝑠 ]𝑇 ∈ R𝑛𝑙ℎ𝑠×𝑛𝑦
the corresponding input and output matrices, respectively. Later an
adaptive sampling procedure is introduced to sequentially add training
data that most effectively improve the accuracy of the built GP model.
The integration of the adaptive procedure is another novel component
of the proposed approach.

3.2. Gaussian process model with PCA

To address the challenge of building surrogate model for high-
dimensional outputs (i.e., 𝑛𝑦 is large), the kriging with PCA approach
proposed in Jia and Taflanidis (2013) and Jia et al. (2016) is adopted.
The overall idea is to use PCA to first reduce the dimensionality
of the outputs, then surrogate model is efficiently built with respect
to the low-dimensional latent outputs. For prediction at new inputs,
first, the corresponding latent outputs are predicted, which are then
directly transformed back to the high-dimensional outputs through the
inverse PCA transformation. One benefit of using PCA is that it can
automatically capture the correlation between the outputs. For the
current problem, that means the correlation between 𝜉1 and 𝜉2 as well
as between their values at different frequencies can be automatically
captured, which helps improve the prediction accuracy of the roots and
the complex dispersion relations.

3.2.1. Output dimension reduction by PCA
PCA is used to reduce the dimension of the outputs corresponding to

coefficients at selected frequencies. The corresponding low-dimensional
outputs are established by considering the eigenvalue problem for
the covariance matrix 𝛴𝐲 = 𝐘𝑇𝐘, and only the latent outputs and
associated eigenvectors corresponding to the 𝑛𝑧 largest eigenvalues are
retained (Jolliffe, 2011). The latent output matrix of size 𝑛𝑙ℎ𝑠 × 𝑛𝑧,
which is needed for developing surrogate models in latent space, can
be established through the transformation

𝐘𝑇 = 𝐏𝐙𝑇 , (9)

where P is the 𝑛𝑦 × 𝑛𝑧 projection matrix containing the eigenvectors
corresponding to the 𝑛𝑧 largest eigenvalues. The value of 𝑛𝑧 can be
chosen so that 𝑟𝑐 ≥ 𝑟𝑜, where 𝑟𝑐 is the proportion of the total variance
of original outputs accounted by the largest 𝑛𝑧 eigenvalues and 𝑟𝑜 is
a threshold value (e.g., 𝑟𝑜 = 99.99%). This leads to latent outputs
accounting for at least 𝑟 of the total variance of the data in 𝐘 (Tipping
𝑜
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Fig. 4. Variation of (a) 𝑘𝛼,𝑛(𝑥, 𝜔) and (b) 𝑘𝛽,𝑛(𝑥, 𝜔) as a function of 𝑥 under selected 𝜔 for the case that considers damping.
Fig. 5. Variation of 𝜉1(𝑥, 𝜔) and 𝜉2(𝑥, 𝜔) as a function of 𝑥 under selected 𝜔 for the case that considers damping. (a) shows the real part of 𝜉1 and 𝜉2, and (b) shows the imaginary
art of 𝜉1 and 𝜉2.
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nd Bishop, 1999). More specifically, if 𝜆𝑗 is the 𝑗th largest eigenvalue,
hen this selection is facilitated by selecting 𝑛𝑧 so that the ratio 𝑟𝑐 =
𝑛𝑧
𝑗=1 𝜆𝑗∕

∑𝑛𝑦
𝑗=1 𝜆𝑗 is greater than 𝑟𝑜. Typically, 𝑛𝑧 ≪ 𝑛𝑦, leading to a

ignificant reduction in the output dimension. With the latent output
atrix 𝐙 established through the transformation in Eq. (9), GP model
an be developed for the low-dimensional latent outputs.

.2.2. Gaussian process surrogate model for latent outputs
The set {𝐗,𝐙} (i.e., {𝐱ℎ, 𝐳(𝐱ℎ);ℎ = 1,… , 𝑛𝑙ℎ𝑠}) then forms a training

et for surrogate modeling. GP model is then built based on the training
et and used to predict the latent outputs at new inputs instead of
unning the original numerical model. Due to the low dimensionality
f the latent outputs 𝐳, a single surrogate model can be built with
espect to each or all of the latent outputs in 𝐳 (Jia and Taflanidis,
013; Jia et al., 2016). Here a single GP model is built for 𝐳. Based on
he training data, GP model establishes an approximation/prediction to
(𝐱), denoted 𝐳̂(𝐱), for any new input 𝐱 through (Sacks et al., 1989)

̂(𝐱) = 𝐟 (𝐱)𝑇𝜶∗ + 𝐫(𝐱)𝑇 𝜷∗, (10)

here 𝐟 (𝐱) is the 𝑛𝑝-dimensional basis vector (e.g., linear or quadratic
olynomials of x), 𝜶∗ = (𝐅𝑇𝐑−1𝐅)−1𝐅𝑇𝐑−1𝐙 and 𝜷∗ = 𝐑−1(𝐙 − 𝐅𝜶∗)
re 𝑛𝑝 × 𝑛𝑧 and 𝑛𝑙ℎ𝑠 × 𝑛𝑧 dimensional coefficient matrices, and 𝐅 =
𝐟 (𝐱1)… 𝐟 (𝐱𝑛𝑙ℎ𝑠 )]𝑇 is the 𝑛𝑙ℎ𝑠 × 𝑛𝑝 basis matrix. For the linear and
uadratic cases, 𝑛𝑝 equals to (𝑛𝑥+1) and (𝑛𝑥+1)(𝑛𝑥+2)∕2, respectively. 𝐑
s the 𝑛𝑙ℎ𝑠 ×𝑛𝑙ℎ𝑠 correlation matrix with the 𝑗𝑘𝑡ℎ element defined as the

𝑗 𝑘
6

orrelation function R(𝐱 , 𝐱 ). One commonly used correlation function w
s the generalized exponential correlation with tuning parameters 𝐬 =
𝑠1,… , 𝑠𝑛𝑥+1],

(𝐱𝑗 , 𝐱𝑘) =
𝑛𝑥
∏

𝑖=1
exp

[

−𝑠𝑖|𝑥
𝑗
𝑖 − 𝑥

𝑘
𝑖 |
𝑠𝑛𝑥+1

]

. (11)

(𝐱) is the 𝑛𝑙ℎ𝑠−dimensional correlation vector 𝐫(𝐱) = [𝑅(𝐱, 𝐱1),…,
(𝐱, 𝐱𝑛𝑙ℎ𝑠 )]𝑇 between the new input x and each of the elements of
. Through the proper tuning of the parameters s in the correlation
unction, GP model can efficiently approximate very complex func-
ions. The optimal selection of s is typically based on the Maximum
ikelihood Estimation (MLE) principle, and standard approaches for
olving this optimization are given in Lophaven et al. (2002). Besides
he predictor in Eq. (10), GP model also provides the local variance
f the predictor. This variance is a local estimate, meaning that it
s a function of the input x and not constant over the entire input
omain. This local variance information about the GP prediction can
e explicitly incorporated if needed.

.2.3. Prediction for the original high-dimensional outputs
For prediction at new input x, first the GP model predicts the

orresponding latent outputs. Based on the predictor for the latent
utputs, the predictor for the original high-dimensional outputs y(x)
s established using the linear transformation

̂(𝐱)𝑇 = 𝐏𝐳̂(𝐱)𝑇 (12)

̂
here 𝐳(𝐱) = [𝑧̂1(𝐱),… , 𝑧̂𝑙(𝐱),… , 𝑧̂𝑛𝑧 (𝐱)].
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3.3. Adaptive GP with PCA

To reduce the number of training data required to reach targeted
level of accuracy for the GP model, here we employ an adaptive sam-
pling procedure to sequentially add training data that most effectively
improve the accuracy of the GP model and the predicted complex
dispersion relations. A key step of the adaptive sampling is to choose an
appropriate infill criterion to balance the local exploitation as well as
the global exploration for the selection of new samples in each iteration.
Weighted accumulative error (WAE), defined based on the weighted
leave-one-out cross validation (LOOCV) prediction error (Jiang et al.,
2015), is adopted in this paper. The infill criterion 𝑒(𝐱) is expressed by

𝑒(𝐱) =

√

√

√

√

𝑛𝑡
∑

𝑖=1
𝑤𝑖(𝐱)(𝑦̂(𝐱) − 𝑦̂−𝑖(𝐱))2 (13)

here 𝑦̂(𝐱) is the prediction at 𝐱 from the GP model built on all 𝑛𝑡
raining data, 𝑦̂−𝑖(𝐱) is the prediction at 𝐱 from the GP model built
n the training data except the 𝑖th data 𝐱𝑖, and 𝑤𝑖(𝐱) is the weight at
for the corresponding prediction error, given by 𝑤𝑖(𝐱) = exp(−‖𝐱 −
𝑖
‖)∕

∑𝑛𝑡
𝑗=1 exp(−‖𝐱 − 𝐱𝑗‖). Note that Eq. (13) is used to calculate WAE

or scalar response 𝑦̂(𝐱), and if the response is multi-dimensional, the
quared error (𝑦̂(𝐱) − 𝑦̂−𝑖(𝐱))2 in the equation can be substituted by
he mean squared error (i.e., averaging squared errors over all the
imensions), which is used in this paper.
By solving the optimization problem (i.e., maximizing 𝑒(𝐱)), one or
ultiple new sample points can be selected and added to the existing
raining set. It is noteworthy to point out that in order to avoid clus-
ered new samples, a minimum distance constraint between the new
amples and the existing samples is introduced for the optimization.
o implement the adaptive sampling, we first generate 𝑛𝑙ℎ𝑠 (a small
umber) training data, and evaluate the EDQEM method to obtain
he corresponding response. The GP model is initially trained based
n this data. Then the new sample 𝐱𝑎𝑑𝑑 that maximizes the WAE,
alculated according to Eq. (13), is found by running an optimization.
ince calculation of the objective function 𝑒(𝐱) in Eq. (13) only involves
rediction from GP models, the overall optimization is quite efficient.
he new sample is then added to the training set, and the corresponding
esponse of the sample is calculated with the EDQEM method. Finally,
he GP model is updated with the new training set. This adaptive
ddition of new sample points can be carried out iteratively until
ome convergence criterion is reached, e.g., setting an upper limit on
he number of iterations, or a target level for the model prediction
ccuracy.

.4. Accuracy assessment

To assess the accuracy of the AGP model, LOOCV is used to estimate
he error statistics over the training set. Commonly used error statis-
ics include coefficient of determination (𝑅2) and mean squared error
𝑀𝑆𝐸), which are applied here. These statistics can be established for
oth the latent outputs and the original outputs. For the 𝑘th output, the
orresponding 𝑅2

𝑘 and 𝑀𝑆𝐸𝑘 are defined as

2
𝑘 = 1 −

∑𝑛𝑡
ℎ=1(𝑦

ℎ
𝑘 − 𝑦̂

ℎ
𝑘)

2

∑𝑛𝑡
ℎ=1(𝑦

ℎ
𝑘 − 𝑦̄𝑘)

2
; 𝑀𝑆𝐸𝑘 =

∑𝑛𝑡
ℎ=1(𝑦

ℎ
𝑘 − 𝑦̂

ℎ
𝑘)

2

𝑛𝑡
(14)

where 𝑛𝑡 is the number of training data, 𝑦ℎ𝑘 is the actual response over
he ℎth input, 𝑦̂ℎ𝑘 is the predicted value of 𝑦

ℎ
𝑘 , and 𝑦̄𝑘 is the mean of

ℎ
𝑘 over all the training data. Larger values for 𝑅

2
𝑘 (close to one) and

maller values for 𝑀𝑆𝐸𝑘 (closer to zero) indicate better accuracy of
he surrogate model. Further, the average 𝑅2 and𝑀𝑆𝐸 over all output
imensions can be established by ∑𝑛𝑦

𝑘=1 𝑅
2
𝑘∕𝑛𝑦 and ∑𝑛𝑦

𝑘=1𝑀𝑆𝐸𝑘∕𝑛𝑦,
respectively, which can be used to assess the overall accuracy of the
7

surrogate model in predicting the multi-dimensional outputs. i
3.5. AGP-PCA based prediction of complex dispersion relations

For prediction at new input x, the trained adaptive GP model with
PCA will be used to predict the coefficients for the quartic equation.
Then the coefficients are plugged into the analytical solutions of the
quartic equation to find the corresponding 𝜆𝑛, which can be plugged
into Eq. (6) to calculate 𝑘𝑛 and establish the complex dispersion re-
lations. The flowchart for the proposed AGP-PCA approach to predict
complex dispersion relations for periodic structures is shown in Fig. 6,
which shows the key steps. Note that in the flowchart the output
dimension 𝑛𝑦 is shown for the case when there is no damping, i.e., 𝑛𝑦 =
𝑛𝜔. When damping is considered, the outputs would include both the
eal (ℜ) and imaginary (ℑ) parts of the coefficients, in which case the
utput dimension 𝑛𝑦 = 4𝑛𝜔.

. Illustrative example

To illustrate the correctness and better performance of the pro-
osed approach, we consider the prediction of the complex dispersion
elations of periodic concrete–steel beams.

.1. Implementation details

In terms of material properties, for steel, it has elastic modulus of
𝑠𝑡 = 210 GPa, shear modulus of G𝑠𝑡 = 78.95 GPa, and density of 𝜌𝑠𝑡 =
850 kg/m3; for concrete, it has elastic modulus of E𝑐𝑜𝑛 = 25 GPa, shear
odulus of G𝑐𝑜𝑛 = 9.40 GPa, and density of 𝜌𝑐𝑜𝑛 = 2300 kg/m3. In terms
f geometrical parameters, for the concrete segment, the cross section
rea 𝐴1 = 0.1 m2, with moment of inertia 𝐼1 = 2.083 × 10−3 m4, and
ength 𝐿1 = 1.0 m. For the steel segment, the corresponding parameters
re represented by 𝐴2, 𝐼2, and 𝐿2. To investigate the impact of the
elative geometrical properties on the dispersion relations, we vary the
eometrical properties of the steel segment. For this purpose, we define
= [𝑥1, 𝑥2, 𝑥3] where 𝑥1 = 𝐴2∕𝐴1, 𝑥2 = 𝐼2∕𝐼1, and 𝑥3 = 𝐿2∕𝐿1. The
ange of 𝑥𝑖 is taken as [0.7, 1.3]. To establish the training data, EDQEM
ethod is used. For EDQEM, the number of sampling points is taken as
2. The range of frequency is selected as 1 to 2000 Hz with frequency
esolution of 1 Hz, leading to 𝑛𝑙ℎ𝑠,𝜔 = 2000 and 𝑛𝑦 = 4000. For the
nvestigation, in the first two subsections of Section 4.2 we first focus
n the case without damping, which is the more challenging case, and
ater in Section 4.2.3 also show the results and comparisons for the case
ith damping.

.2. Performance of the proposed AGP-PCA

.2.1. Adaptive selection of the training data
The initial number of training data 𝑛𝑙ℎ𝑠 is selected as 30, and

hen the adaptive procedure is used to sequentially add training data.
o select an appropriate total number of the training data 𝑛𝑡, we
nvestigate how the model accuracy changes over different 𝑛𝑡. The
rediction accuracy of the AGP-PCA model is assessed by the 𝑅2 and
𝑆𝐸 calculated based on LOOCV. For the infill criterion WAE, first

he WAE for 𝜉1, 𝜉2 (i.e., the high-dimensional outputs correspond to
he 𝜉1, 𝜉2) is used as the infill criterion in the adaptive sampling. The
rained AGP-PCA model is referred as AGP𝜉1 ,𝜉2 . In addition, we also
rained another model where the adaptive sampling uses the WAE for
𝛼 , 𝑘𝛽 as the infill criterion. This model is referred as AGP𝑘𝛼 ,𝑘𝛽 . Since
he ultimate goal is to establish AGP-PCA model that can accurately
redict the complex dispersion relations (i.e., 𝑘𝛼 , 𝑘𝛽), we compare the
ccuracy of these two models by the error statistics calculated for 𝑘𝛼 , 𝑘𝛽
y these two models.
Fig. 7 shows the variation of the average 𝑅2 and 𝑀𝑆𝐸 for 𝑘𝛼 , 𝑘𝛽

gainst 𝑛𝑡 for both models. As expected, the prediction accuracy for
oth models improve as 𝑛𝑡 increases, especially at the beginning stage
i.e., small 𝑛𝑡). When 𝑛𝑡 is larger than 120, there is little improvement

2
n the model accuracy and high average 𝑅 values are established for
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Fig. 6. Flowchart of the proposed AGP-PCA approach for prediction of complex dispersion relations for periodic structures.
l
(

oth models. Comparing the two models, we can see that the model
hat uses WAE for 𝑘𝛼 , 𝑘𝛽 has better accuracy (albeit not by much in
he current example). This better accuracy is attributed to the fact that
he adaptive sampling tries to add sample points to best improve the
ccuracy in terms of 𝑘𝛼 , 𝑘𝛽 ; on the other hand, the model that uses WAE
or 𝜉1, 𝜉2 tries to add sample points to best improve the accuracy in
erms of 𝜉1, 𝜉2. Although overall smaller error for 𝜉1, 𝜉2 would indicate
smaller error for 𝑘𝛼 , 𝑘𝛽 as well, due to the complex relationship between
𝜉1, 𝜉2 and 𝑘𝛼 , 𝑘𝛽 , the samples that most effectively improve the accuracy
in terms of 𝜉1, 𝜉2 may not necessarily be the same as those that most
effectively improve the accuracy in terms of 𝑘𝛼 , 𝑘𝛽 . For example, it
was found that for some 𝜉1, 𝜉2 values, even if there are relatively large
errors, such errors only have small impact on the 𝑘𝛼 , 𝑘𝛽 values (i.e., only
lead to small errors in the predicted 𝑘𝛼 , 𝑘𝛽). While for some 𝜉1, 𝜉2 values,
small errors may lead to large error in the predicted 𝑘𝛼 , 𝑘𝛽 and complex
8

dispersion relations. Overall, the comparison shows that using WAE for d
𝑘𝛼 , 𝑘𝛽 as infill criterion for the adaptive sampling should be preferred,
which is used for the rest of the investigations in this paper.

Fig. 8 shows the samples added over the iterations for the adaptive
sampling using WAE for 𝑘𝛼 , 𝑘𝛽 as infill criterion, including histograms
of samples for 𝑥1, 𝑥2, and 𝑥3 as well as the two dimensional plots of
the samples. The circles correspond to the initial 30 samples, while
the solid circles correspond to the added samples. As can be seen, for
all three inputs (especially 𝑥1, 𝑥2), more samples are added close to
some of the boundary regions where the combinations of 𝑥1, 𝑥2, and
𝑥3 could lead to large magnitude/variations in the 𝜉1, 𝜉2 values, which
may lead to potentially large prediction errors for 𝜉1, 𝜉2 values and the
corresponding 𝑘𝛼 , 𝑘𝛽 values.

In the end, 𝑛𝑡 = 150 training data is used. PCA is applied to the
outputs of the training data, and it was found that only 𝑛𝑧 = 15
atent outputs are needed to represent the original 𝑛𝑦 = 4000 outputs
i.e., capturing more than 99.999% of the total variance in the output

ata), corresponding to large reduction in the output dimension. The
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a

Fig. 7. Variation of (a) the average 𝑅2 and (b) 𝑀𝑆𝐸 for 𝑘𝛼 , 𝑘𝛽 against the number of training data for two AGP models, where one model is trained using WAE for 𝜉1 , 𝜉2 for the
daptive sampling, while the other uses WAE for 𝑘𝛼 , 𝑘𝛽 for the adaptive sampling.
Fig. 8. Histogram of samples of (a) 𝑥1, (b) 𝑥2 and (c) 𝑥3, and the samples added over the iterations for the adaptive sampling using WAE for 𝑘𝛼 , 𝑘𝛽 as infill criterion, shown for
(d) [𝑥1, 𝑥2], (e) [𝑥2, 𝑥3], and (f) [𝑥3, 𝑥1] where the open circles correspond to the initial 30 samples, while the solid circles correspond to the added samples.
variation of the captured variance against the number of principal
components used is shown in Fig. 9.

4.2.2. Accuracy of the AGP model
To illustrate the performance of the GP model, it is applied to

predict the complex dispersion relation for given 𝐱. First the accuracy
in the predicted coefficients will be discussed, and then the predicted
complex dispersion relation will be compared with those from EDQEM.
Fig. 10 shows the 𝜉1(𝜔) and 𝜉2(𝜔) predicted by EDQEM and AGP-
PCA at 𝝎 for 𝐱 = [1, 1, 1]. In the figure, close match (almost overlap)
between EDQEM and AGP-PCA can be observed. Fig. 11 compares the
corresponding complex dispersion relations obtained by EDQEM and
AGP-PCA for 𝐱 = [1, 1, 1]. At a glance, these two dispersion structures
are identical. Further, detailed comparisons of dispersion relations of
different wave modes are shown in Fig. 12. Obviously, the prediction
of dispersion relations of different wave modes by AGP-PCA closely
matches the prediction by EDQEM.

Once the complex dispersion relations are predicted, then the cor-
responding bandgap characteristics can be extracted, which are im-
portant information for design and application purpose. This way of
first predicting the complex dispersion relations and then extracting the
corresponding bandgap characteristics are attractive considering the
9

Fig. 9. Variation of the captured variance against the number of latent outputs used.
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Fig. 10. (a) 𝜉1(𝜔) and (b) 𝜉2(𝜔) predicted by EDQEM and AGP-PCA for 𝐱 = [1, 1, 1].
Fig. 11. Complex dispersion relations calculated by (a) EDQEM and (b) AGP-PCA for 𝐱 = [1, 1, 1].
Table 1
Bandgap characteristics for 𝐱 = [1, 1, 1] predicted by different numerical 𝑘(𝜔) methods.
Methods First bandgap Fourth bandgap DOFs 𝑁𝐿 Time (s)

LBF UBF 𝑚𝑎𝑥|𝑘1𝛽 | LBF UBF 𝑚𝑎𝑥|𝑘4𝛽 |

WFEM (Mace and Manconi, 2008) 162.5 172.5 0.0139 1692.5 1812.5 0.3892 42 2000 1040
EDQEM (Cheng et al., 2018) 162.5 171.5 0.014 1684.5 1796.5 0.1178 40 2000 150
AGP-PCA 162.5 171.5 0.0138 1685.5 1796.5 0.1170 – – 0.004
4
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fact that directly predicting the bandgap characteristics is challenging
(e.g., directly build surrogate model for the bandgap characteristics).
This is because as 𝐱 varies the bandgaps in a certain frequency range
ay exist for some 𝐱 values, but may not exist for other 𝐱 values,
reating discontinuity and challenge for directly predicting the bandgap
haracteristics. Table 1 shows the bandgap characteristics extracted
ased on the corresponding complex dispersion relations predicted by
DQEM and AGP-PCA. The characteristics include LBF, UBF, and the
aximum attenuation parameter for the 𝑛th bandgap (i.e., max |𝑘𝑛𝛽 |)
ith 𝑛 = 1,… , 4, where LBF and UBF are the lower and upper bound
requencies of a bandgap, respectively. For validation and comparison
urpose, results obtained by the WFEM (Mace and Manconi, 2008)
re also given. It is clear that results obtained by the proposed AGP-
CA method match well with those obtained by both the EDQEM and
he WFEM. More importantly, the computational time of the AGP-PCA
ethod is much smaller than those of the other two numerical methods.
he benefit of using the established GP model is that it can easily
ccommodate even finer resolutions without the need to run EDQEM
umerical model.
10

c

.2.3. Complex dispersion relations of damped systems
Complex dispersion relations of damped systems are also predicted

y the proposed AGP-PCA method. Here, complex damping model is
sed to include the material viscosity, and the Young’s modulus E is
eplaced by E′ = E(1+i𝜂) with 𝜂 the material loss factor. For simplicity,
he material damping of concrete is considered with the material loss
actor 𝜂 = 0.015, and the material damping of steel is neglected (Cheng
t al., 2018).
Fig. 13 compares the complex dispersion relations of the damped

eriodic concrete–steel beam obtained by EDQEM and AGP-PCA. As
xpected, because of the material viscosity effect, all wave modes trans-
er into the damped complex waves. The sharp corners at the bound
requencies of bandgaps of the undamped system become rounded.
nd, no clear bandgap can be identified. On the other hand, since
he non-smoothness of the dispersion relation curves is not present for
he damped system, the challenge for the proposed AGP-PCA method
n obtaining accurate prediction is also reduced. Good agreements
etween AGP-PCA and EDQEM can be observed in Fig. 13. Besides
he great accuracy, the AGP-PCA maintains great efficiency and the

omputational time of AGP-PCA is much smaller than that of EDQEM.
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Fig. 12. (a) P mode, (b) EE mode and (c) PE mode dispersion structures predicted by EDQEM and by AGP-PCA for 𝐱 = [1, 1, 1].
Fig. 13. (a) Complex dispersion relation of the damped periodic beam, (b) real dispersion curve (𝑘𝛼 vs. frequency) (c) imaginary dispersion curves (𝑘𝛽 vs. frequency) and (d)
avenumber components relationship (𝑘𝛼 vs. 𝑘𝛽 ) predicted by EDQEM and by AGP-PCA.
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. Further applications of the established AGP-PCA model

.1. Uncertainty quantification of the complex dispersion relations

Due to its good accuracy and great efficiency, the established AGP-
CA model is applied to efficiently quantify the uncertainties in the
omplex dispersion relations and bandgap characteristics, resulting
rom the uncertainties in the inputs 𝐱. In the current example, we
onsider the uncertainties in the geometrical properties. However, the
pproach can be applied to inputs that include uncertainties in not
nly geometrical properties but also material properties by defining
orresponding 𝐱. MCS is adopted here to propagate the uncertainties
11

o

n 𝐱 to investigate the impact of such uncertainties on the complex
ispersion relations and bandgap characteristics. As an illustration,
ach 𝑥𝑖 of the input vector 𝐱 is assumed to follow a normal distribution
ith mean of 1 and standard deviation of 0.05. The number of MCS
amples is selected as 500.
Fig. 14 shows the variability of the complex dispersion relations due

o uncertainty in 𝐱 calculated by EDQEM and by the AGP-PCA model.
o clearly show each realization of the complex dispersion relation, the
igure only shows 50 of the 500 realizations. In addition, the complex
ispersion relation for 𝐱 = [1, 1, 1] is also shown (corresponding to the
arker lines). Qualitatively, Fig. 14(a) and (b) show close match. Based
n the figures, it can be observed that in the low frequency range,
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d
P

Fig. 14. Variability of the complex dispersion relations due to uncertainty in 𝐱, calculated by (a) EDQEM, and (b) AGP-PCA.
Fig. 15. Comparison of statistics of the first bandgap characteristics (i.e., LBF, UBF, UBF-LBF, and max|𝑘𝑛𝛽 |) from EDQEM (upper) and AGP-PCA (lower).
the variability of the complex dispersion relations due to uncertainty
in 𝐱 is relatively smaller compared to that for the higher frequency
range. Overall, uncertainty in 𝐱 will have larger impact on the complex
ispersion relation in the high frequency range. This is true for all the
E, P, and EE modes.
In terms of the bandgap characteristics, Figs. 15 and 16 show the

histogram of the bandgap characteristics (i.e., LBF, UBF, UBF-LBF, and
max|𝑘𝑛𝛽 |) predicted by the AGP-PCA model for the first and second
bandgaps, respectively. Note that the bandgap characteristics are ex-
tracted from each of the 500 realizations for the complex dispersion
relations. For comparison purpose, results by the EDQEM are also
shown in these figures. From the figures, observations can be made
that the distributions of bandgap characteristics from the EDQEM and
the AGP-PCA are close, which indicates accurate prediction of the
bandgap characteristics. Table 2 further shows the mean 𝜇 and standard
deviation 𝜎 values of the bandgap characteristics from the EDQEM and
the AGP-PCA. Close match is observed between AGP-PCA and EDQEM
for all the four bandgaps. In particular, even though the first bandgap
is relatively narrow (with a bandgap of around 10 Hz), the established
AGP-PCA model can accurately capture it. Overall, comparisons in the
table further confirm the good prediction accuracy of the AGP-PCA
model.

In terms of the computational efficiency, to run 500 simulations
for uncertainty quantification, running the EDQEM model takes around
150 s for each simulation and total of 75,000 s, while the AGP-PCA
12

model takes less than 0.5 s for all 500 simulations, corresponding
Table 2
Comparison of bandgap characteristics from EDQEM and AGP-PCA.
Bandgap characteristics LBF UBF max|𝑘𝑛𝛽 |

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

𝑛 = 1 EDQEM 161.8 8.5 170.9 8.9 0.0138 0.0061
AGP-PCA 161.9 8.5 170.8 9.0 0.0135 0.0064

𝑛 = 2 EDQEM 519.2 20.5 730.4 37.1 0.2083 0.0116
AGP-PCA 519.3 20.4 730.3 37.2 0.2082 0.0117

𝑛 = 3 EDQEM 1050.9 46.4 1335.8 54.9 0.2681 0.0129
AGP-PCA 1051.1 46.2 1335.7 55.0 0.2677 0.0129

𝑛 = 4 EDQEM 1682.9 78.7 1793.7 40.9 0.1171 0.0418
AGP-PCA 1683.7 77.9 1793.4 41.5 0.1159 0.0403

to significant speedup. This speedup is of great importance to the
uncertainty quantification of the complex dispersion relations and the
bandgap characteristics, especially when the number of MCS samples is
large, where directly using EDQEM (or other numerical models) would
be computationally prohibitive.

5.2. Parameter study for the bandgap characteristics

Leveraging the good accuracy and great efficiency of the established
AGP-PCA model, a parameter study is also carried out using AGP-PCA
model to further investigate how the bandgap characteristics change
with the variation in the inputs 𝐱.
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Fig. 16. Comparison of statistics of the second bandgap characteristics (i.e., LBF, UBF, UBF-LBF, and max|𝑘𝑛𝛽 |) from EDQEM (upper) and AGP-PCA (lower).

Fig. 17. Variation of the first bandgap characteristics versus (a) (b) 𝑥1, 𝑥2, (c) (d) 𝑥1, 𝑥3, and (e) (f) 𝑥2, 𝑥3 obtained by AGP-PCA.
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Fig. 18. Variation of the second bandgap characteristics versus (a) (b) 𝑥1, 𝑥2, (c) (d) 𝑥1, 𝑥3, and (e) (f) 𝑥2, 𝑥3 obtained by AGP-PCA.
Figs. 17 and 18 show the variation of the bandgap characteristics
(i.e., LBF, UBF, and max|𝑘𝑛𝛽 |) predicted by the AGP-PCA model for the
first and second bandgaps with respect to variation of two of the inputs
(with the other input fixed at 1). Overall the LBF, UBF and max|𝑘𝑛𝛽 | vary
non-linearly with the three normalized geometrical parameters. Com-
paratively, it is observed that the width and the maximum attenuation
parameter of the second bandgap are much larger than those of the
first bandgap. In certain regions, the first bandgap is very narrow and
even disappears. Thus, in the current case, the first bandgap is more
sensitive to the variation of the geometrical parameters. Therefore, a
proper design is needed to obtain a wider low-frequency bandgap. The
fact that in certain regions the width of the first bandgap is zero further
illustrates the challenges in directly building surrogate model for the
bandgap characteristics due to the non-smooth nature of their variation.

On the other hand, in terms of computational effort, a thorough
parametric investigation typically entails a large number of model
evaluations. In this parametric study, a total of 2883 model evaluations
are needed (the surface plot has interval of 0.02 for 𝑥𝑖), and the com-
utation of the bandgap characteristics through the AGP-PCA model
nly takes around 10 s. By contrast, if the EDQEM method is applied
o calculate the bandgap characteristics, the estimated computational
ime is at least 120 h. The significant difference of the computational
ost between these two models further verifies the great efficiency of
he AGP-PCA model in analysis, uncertainty quantification, and design
14
of periodic structures when large number of model evaluations are
required.

6. Conclusions

This paper proposed an adaptive Gaussian process (AGP) model
to efficiently predict the complex dispersion relations for periodic
structures with different properties. Instead of directly building GP for
the dispersion relation, which is challenging due to the discontinuity
in the dispersion relation and the high-dimensionality of the outputs,
GP model is built for the coefficients of the dispersion equation that are
continuous and smooth functions of the properties of the periodic struc-
tures. Based on the coefficients predicted by GP model, the dispersion
equation is then analytically solved to establish the complex dispersion
relations. Principal component analysis (PCA) is used to reduce the
dimension of these coefficients and then the GP model is efficiently
built with respect to the low-dimensional latent outputs. An adaptive
sampling procedure using weighted accumulative errors (WAE) as infill
criterion is integrated to iteratively add training data to effectively
improve the GP model accuracy. Application to prediction and uncer-
tainty quantification of the complex dispersion relations and bandgap
characteristics for periodic beams demonstrates the high accuracy and
efficiency of the proposed approach.
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In the current paper, as an initial development of the proposed ap-
proach, to facilitate investigation of its various performances (e.g., com-
parison with results from numerical models, and comparison of un-
certainty propagation results), a bi-component periodic beam was in-
vestigated, where the numerical model is relatively less expensive
compared to more complex cases (e.g., two or three dimensional pe-
riodic structures). Future work will investigate the application and the
performances of the proposed approach to two-dimensional problems
where the complex dispersion relation becomes much more complex
and the computational challenge is expected to be much higher than the
EDQEM numerical model used here. The proposed approach in general
has great promise in improving efficiency for uncertainty quantifica-
tion, sensitivity analysis, and design optimization of periodic structures.
Future work will also investigate the use of the proposed approach for
optimization purpose where different adaptive sampling criterion needs
to be used.
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