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ABSTRACT

In this paper, we study the causal effects estimation problem on
networked observational data. We theoretically prove that standard
graph machine learning (ML) models, e.g., graph neural networks
(GNNGs), fail in estimating the causal effects on networks. We show
that graph ML models exhibit two distribution mismatches of their
objective functions compared to causal effects estimation, leading
to the failure of traditional ML models. Motivated by this, we first
formulate the networked causal effects estimation as a data-driven
multi-task learning problem, and then propose a novel framework
NetEst to conduct causal inference in the network setting. NetEst
uses GNNs to learn representations for confounders, which are
from both a unit’s own characteristics and the network effects. The
embeddings are then used to sufficiently bridge the distribution
gaps via adversarial learning and estimate the observed outcomes
simultaneously. Extensive experimental studies on two real-world
networks with semi-synthetic data demonstrate the effectiveness of
NetEst. We also provide analyses on why and when NetEst works.
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1 INTRODUCTION

Causal inference (also formalized as counterfactual reasoning [9,
33]) has attracted increasing interests on networked scenarios, such
as social networks [30, 31], online advertisements [29], and vac-
cine distribution [4]. Randomized controlled trials (RCTs) are still
the “gold standard” on networked data [11, 45]. However, RCTs
are usually time-consuming, highly-costly and even not doable,
which is especially true in the context of networks. Therefore, es-
timating the causal effects from networked observational data is
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an important yet challenging problem and the focus of this paper.
We use vaccine distribution as our motivating example throughout
this paper. Given the observed vaccine assignments (i.e., treatment)
and the immunity level [27] (i.e., outcome) of a social community
(i.e., network), we aim to answer the counterfactual questions like
“would the community immunity level be stronger had a different
group of people been vaccinated”?

The difficulties of causal inference on networked data are due
to the dependency between units in a network and the need of in-
ductive inference raised by real-world applications. First, compared
with traditional independent setting [19, 37, 43, 44], the non-i.i.d. na-
ture of networks introduces two-fold challenges to causal inference,
i.e., homophily [28] and interference [18]. Homophily describes the
phenomenon that similar units in networks tend to form social ties,
which brings in new confounders (factors that affect both treatment
and potential outcome) for causal effects in addition to the units’
own features (a.k.a., characteristics). Interference refers to the fact
that the potential outcome of a unit is caused by not only their own
but the neighbors’ treatments on networks, e.g., getting vaccines
protects both a person and their social contacts. In other words, the
traditional SUTVA [35] assumption that one’s potential outcome is
stable regardless of the treatment assignments of others is no longer
valid. Second, from the empirical view, many real-world problems
require to predict the causal effects on a new network without any
observed outcomes (known as “out-of-sample” estimation [37], or
“inductive” prediction [15] in machine learning), e.g., finding out
the best initial vaccine plan for a community. However, transferring
the estimation from the observed networks to a new network is
non-trivial because two network structures could be quite distinct.

To estimate causal effects on networked data, Forastiere et al. [7]
extend the “no unobserved confounders” assumption to networks
with interference, and propose a networked propensity score based
method to infer the causal effects. Arbour et al. [2] find out the ad-
justment variables on networks and estimate the treatment effects
via back-door criterion [33]. Despite the success on networks with
observed outcomes (known as “within-sample” estimation [37]),
these methods are not able to generalize the effects to a new net-
work where we do not have any outcomes observed. Recent works
propose to use network embeddings to capture unobserved con-
founders encoded in network structure [6, 12, 14, 25, 39]. However,
these works still follow the STUVA assumption and ignore the
interference, which induces estimation bias of real-world networks.

Given that networked observational data contains features, treat-
ments, observed outcomes and the network structure, a natural idea
is to train a standard graph machine learning model, e.g., graph
neural networks (GNNs) [23, 40-42], on the observed data and then
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to predict the counterfactual outcomes for causal effects estima-
tion. However, we theoretically demonstrate that such standard
graph machine learning models fail in inferring the causal effects
on networks, because there are two distribution mismatches be-
tween their objective functions (details in Sec. 3.1). In other words,
standard graph machine learning models are solving a different
optimization goal from estimating the causal effects on networks.
To fill this gap, we further find that it is sufficient to enforce the two
mismatched distributions to be uniform. These insights motivate
us to propose a novel framework NetEst, which formulates the
Networked causal effects Estimation into a data-driven multi-task
paradigm with two optimization goals: predicting the potential out-
comes and bridging the distribution gaps between standard graph
machine learning and networked causal inference. To facilitate this,
NetEst first uses GNNs to encode the confounders that are from both
a unit’s own and neighbors’ features into latent representations.
Together with both a unit’s own and their neighbors’ treatments,
these embeddings are then used to estimate the potential outcomes
via an estimator. Meanwhile, NetEst uses two adversarial learning
modules to force the mismatched distributions to follow uniform
distributions based on the embeddings. NetEst is applicable to both
the “out-of-sample” [37] and the traditional “within-sample” [19]
estimation on networked data.

Our main contributions are summarized as follows: First, we
theoretically prove that standard graph machine learning models
can not estimate causal effects on networks due to the distribution
mismatches between their objective functions. Second, we formalize
the networked causal effects estimation to a multi-task learning
problem and propose a novel framework NetEst that solves the
distribution gaps and alleviates the challenges induced by the nature
of neworked data. Third, we conduct extensive experiments on two
datasets, demonstrating the effectiveness of NetEst and present
empirical analyses of why and when NetEst works.

2 PROBLEM SETUP

We follow Arbour et al. [2] to set up the causal effects estimation
on networks. We first discuss the causal graph of networked data in
the presence of homophily and interference. Then we present the
definition of causal effects on networks and discuss its identification.
We list all the notations used in this paper in Table 1.

2.1 Causal Graph on Networks

Causal graph is a directed acyclic graph (DAG) that describes the
causal relations among variables [33]. Without loss of generality,
we still use vaccination as our motivating example to depict a plau-
sible causal graph on networks in Fig. 1. The social structure of a
three-unit community is described on the left, and right part shows
the causal relations of their features, treatments and potential out-
comes. In practice, a unit’s features (e.g., health condition) cause
both their (1) decisions to get vaccinated (treatment) and (2) immu-
nity to a virus (potential outcome), namely a unit’s features contain
confounders between treatment and potential outcome (indicated
by red edges in Fig. 1). In addition, a unit’s features may also affect
the neighbors’ treatments and potential outcomes as they may in-
fluence each other. For example, a person with a weakened immune
system may increase their risk of infection, prompting their family
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Table 1: Notations used in this paper.

Symbol Description
G,AX graph, adjacency matrix and feature matrix
ti, Xi, Yi treatment, feature and potential outcome of unit i
{xj}jen; features of i’s neighbors in network
T,Y treatment vector, potential outcome vector of all users
{tj}jen; treatments of i’s neighbors in network
{xj}Yje-n; treatments of i’s non-neighbors in network
A summary function of neighbors’ treatments
zi peer exposure of unit i
tii,zi observed outcome of unit i under ¢; and z;
Yi|do(t; = t,z; = z) potential outcome of unit i under #; and z;
Ni, N; i’s neighbors set, and size
T, T treatment effects, estimate of treatment effects
P, si representation function, representation of unit i
m outcome estimation function from representation
f outcome estimation function from feature
d;, d, discriminators
J loss function

il
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Figure 1: Causal graph of a network with three nodes. Left:
the network connection topology. Right: causal graph. x, t, y
are features, treatments and potential outcome respectively.
A red edge shows confounders from a unit’s own features,
a blue edge means confounders brought by network, an

edge represents the causal effects between a node’s own
treatment and potential outcome, and a edge shows the
peer effects of treatment. Only y; is shown for simplicity. We
assume that peer effects occur only between 1-hop neighbors
and that there are no unmeasured confounders.

members to get vaccinated. In other words, networks introduce new
confounders between the treatment and potential outcome (blue
edges in Fig. 1). Different from the independent setting, treatment
of a unit spills over to their neighbors. For example, getting vacci-
nation protects not only oneself, but others in the community (i.e.,
herd immunity [1]). This “peer effect” reflects the interference na-
ture of the network (marked by green edges in Fig. 1). Following [2],
we assume that network confounders and the peer effect only exist
among I-hop neighbors. We further assume that all treatments are
carried out at the same time without any order. In other words
treatments will not affect each other. The readers can refer to [32]
for other plausible causal graphs on networked data.
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2.2 Causal Inference on Networked Data

Formally, given a network G = (A, X), in which A € RV*V is
the adjacency matrix where V is the number of units (nodes) in
G; X € RV*k is the units’ features matrix and k is the feature
dimension. We use x; € R¥ to represent the feature of i-th node.
We denote T = [ty, ..., ty] as the treatment vector of all V units
where t; € {0,1} is the treatment of i-th unit. Following many
existing works [13, 19, 37, 39], we assume that ¢; is binary (e.g.,
t; = 1 means getting vaccinated while 0 means not). We then denote
the potential outcome vector Y = [y, ..., yy] where y; € R is the
potential outcome of unit i. We further assume y; is continuous
(e.g., a higher value means a stronger immunity). Following [2], we
can define the causal effects 7(X) on the whole network G as the
difference in the potential outcomes under two treatments vectors
T’ and T”’, which is formalized as:

7(X) = E [Y|do(T") - Y|do(T"")|X, A]. (1)
where the do-calculus [33] represents an intervention on treatments.
In our motivating example, T” and T”” can be two vaccine distri-
bution strategies. With Eq. (1), we can answer causal questions on
networks, such as comparing the impacts of two vaccine plans.

To measure the overall effects 7(X) on the entire network, we
need to estimate the treatment effects 7(x;) for every unit, namely
the individual treatment effects (ITE). From the individual view,
a unit’s potential outcome y; is caused by their own feature x;,

RNi%k and treatments

treatment ¢;, neighbors’ features {x;} ;e v, €
{titjen; €10, 1} as in Fig. 1, where N; is the number of 1-hop
neighbors of unit i. To represent the interference of neighbors’
treatments {t;} ;¢ ,, following [7], we define a summary function
Z : 2T — [0, 1] that reduces a set of treatments in 27 into a scalar.
We set z; = Z({tj} jen;), where z; is defined as the peer exposure
of unit i to neighbors’ treatments {¢;} je n;;- In this paper, we define
Z as a function to calculate the percentage of treated neighbors,
ie,zi = Y jen, tj/INil, and thus z; means the ratio of i’s neighbors
whose treatments are 1. Therefore, the range of z; is [0,1]. To
highlight these causes, we reformulate unit i’s potential outcome
y; as Yi|do(t; = t, z; = z), indicating the potential outcome under
the treatment t and the peer exposure z. Then individual treatment
effects (ITE) 7(x;) of unit i can be formalized as:

t(x;) = E [Yildo(t; =t/ z; = 2')=Y;ldo(t; = t"', z; = 2")|xi. {xj} je pv, |-

@
Given the treatment vector T and the topology A of networks,
we can compute the peer exposure z; for every unit. Therefore, the
network effects can be fully represented by the peer exposure z;
and neighbors’ features {x;} jep; from the individual view. The
presence of z; and {x;} je ; in Eq. (2) indicates the major difference
of networked ITE compared to the general independent scenarios
where potential outcomes are not affected by neighbors’ treatments.
To estimate ITE 7(x;) in Eq. (2), we need the two potential out-
comes under different treatments and peer exposures. However,
we can only observe at most one of them from observational data.
For instance, we can only observe the outcomes of a community
w.r.t. one vaccine distribution plan. Therefore, the core of 7(x;) is
to estimate the counterfactual outcome, namely the treatment-peer
exposure-potential outcome tuples that are not observed.
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Eq. (2) enables us to further study some interesting causal effects
questions on networks. As in [2], we focus the following three:

o Individual effects: Y;|do(t; = 1,2z; = 0) —Y;|do(t; = 0,z; = 0).
It represents unit i’s own treatment effects, e.g., how much
protection would I get if it was just me and none of my
friends were vaccinated?

o Peer effects: Yi|do(t; =0,z; =z") — Yi|do(t; = 0,z; =2""). It
reflects the effects of treatment inference, e.g., how much
protection would I get if different groups of my friends but
not me were vaccinated?

o total effects: Yildo(t; = 1,z; = 1) — Yj|do(t; = 0,z; = 0). It
describes the combined effects of individual treatment and
the network interference, e.g., how much protect would I get
if everyone is vaccinated?

2.3 Causal Identification on Networks

Causal inference is the estimation of causal quantities (e.g., i’s po-
tential outcome Y;|do(t; = t,z; = z)). However, only the statistical
quantities (e.g., i’s observed outcome Ytii,zi) are available in ob-
servational data. To ensure that these statistical quantities can be
used to infer the potential outcome (a.k.a., the causal identification
problem), we make the following essential assumptions.

Assumptions. We make two lines of assumptions on networked
data. First, we adapt the standard assumptions on independent data
to the network setting following [7]:

Assumption1: Positivity. The probability of a unit with their neigh-
bors to receive treatment or not is always positive, i.e., Vx,0 <
p(ti = Uxi, {xj}jen;) < 1.

Assumption2: Consistency. The potential outcome is same as the
observed outcome under the same treatment assignment and peer
exposure to neighbors , i.e., Yi|do(t; =t,z; =z) = Yti’z.

Assumption3: Strong Ignorability. Conditional to the features x;
and neighbors’ features {x;} ;e ;, potential outcome Yi|do(t; =
t,z; = z) is independent of treatment ¢; and peer exposure z; , i.e.,
Yildo(ti = t,zi = z) L ti, zilxi, {Xj} jen;-

In networked data, the standard SUTVA does not hold because
of the presence of interference. Therefore, to identify the causal
effects, we further assume the interference has the Markov property
(i.e., 1-hop) following [2] (here we set Ti; = {tj}jen; and T_p;, =
{tj}je-n; for simplicity):

Assumption4: Markov. The potential outcome of a unit is only
affected by their own and the immediate neighbors’ treatments,
ie,V TNi,T](]i, T_Ni,T_’Ni such that Z(Ty,) = Z(T1<li)’ we have
Yi|do(t,~ =1, TN,-sT—N,-) = Yi|d0(ti =1, TI(Ii’T—/Ni)'

Identification. Given these assumptions, unit i’s causal effects
7(x;) (Eq. (2)) is identifiable. To avoid mess, we omit the subscription
and denote by x = (xi, {xj}jen;) in the following proof:

ProOF.
7(x) = E [Y|do(t =t',z=2") - Y|do(t =tz = z"")|x]
=E[Yldo(t =t',z=2"))|x] - E [Yldo(t =",z =2")|x]
=E [Y|do(t =t z= z')|t =t z=12, x]
—E[Yldo(t=t"z=2")|t=t"z=2" x| (3)
=E [thjzf t=tz=2, x] -E [Yy/,zn’t =t z=2", x]. (4)
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Eq. (3) holds because of the “Strong Ignorability” assumption that
given x = (x;, {xj} je i), the potential outcome Y;|do(t; = t,z; = z)
is independent from the treatment ¢; and peer exposure z;. Eq. (4)
is true because of the “Consistency” assumption. O

3 METHODOLOGY

In this section, we introduce our proposed method. We first prove
why standard graph machine learning can not estimate causal ef-
fects. Then we breakdown the modules of NetEst in details.

3.1 Why Standard Graph Machine Learning
Fails in Causal Inference?

We show that the failure of standard graph machine learning in
estimating causal effects is due to two distribution mismatches
between their objective functions.

We first introduce several functions with their corresponding
notations. Following [37], we define a one-to-one projection func-
tion ¢ : X x 2X¥ — S, which maps a unit’s own features and
the neighbors’ features into representation space S. We denote
si = ¢(xi, {x;j}jen;) as unit i’s representation induced by ¢. We
will introduce the motivation of using this representation projec-
tion function in Sec. 3.2. We further define an estimation function
m: S x{0,1} X [0,1] — Y that estimates the potential outcome
from feature representation s;, treatment ¢; and peer exposure z;.
For simplicity, we also use a function f : Xx2%x{0,1}x[0,1] = Y
such that f(xi, t;,zi) = m(s, ti, 2;) = m(P(xi, {x;}jen; ) ti> zi) to
denote the whole estimation function starting from the original
features. An estimation objective function needs a loss function,
and we use the square loss in this paper. Now we can compare the
objective functions of standard graph machine learning J,,,;; and
causal effects estimation on networks Jc. For simplicity, we remove
the subscriptions in the following.

Objective function of machine learning J,,,;. Standard graph
machine learning estimates the potential outcome by optimizing
the estimation loss over the networked observational data. Given
network G, estimation function f, features x, treatment ¢, peer
exposure z and outcome Y, as stated in Sec. 2.2, the peer exposure
z sufficiently represents the network effects induced by network
G. Therefore, we can denote the observational data by the joint
probability p(x,t,z y). Then the objective function of standard
graph machine learning J,,; is:

T = /X /T /Z /y (f(t,2) — 9)2p(x b2, y) dxdidzdy  (5)

- /X /7 /Z | /y (F(x.t.2) — )2 p()p(H)p(lx, Dp(yl, £.2)
dxdtdzdy. (6)

Note that the effects of network is encoded in the graph function f
and peer exposure z, so G is not explicitly shown in Eq. (5). Eq. (6)
is a chain rule expansion of Eq. (5). We can build a graph machine
learning model f (e.g., GNNs) to predict the outcome by optimizing
Eq. (6) on observational data.

Objective function of causal effects estimation J... Causal
inference is to estimate the causal effects 7(x) defined in Eq. (2)
on network G. Therefore, given estimation model f, feature x,
treatment ¢, peer exposure z and outcome y, the objective function
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of causal effects estimation J.. is the estimation error of causal
effects 7(x) over all units:

Jee = / (#(x) - 7)) 2p(x) dx
X

<38 / / / / (flx,t,2) - y)zp(x)p(y|t, x,z) dx dt dz dy,
JXJTIZJY

®)
where 7(x) is the estimated causal effects. Eq. (8) is an upper
bound for the objective function J... Because directly optimizing
the original objective function Jce (Eq. (7)) is difficult, this upper
bound can be used as an approximated objective function and the
estimation function f can be built by optimizing it on the net-
worked observational data. We use a general format of causal effect
(x) = E [Yl,z' t=1,z= z’,x] -E [Y0,0|t =0,z = O,x] follow-
ing [7], which can be further decomposed as:

(7)

(x) =E [Yl’zf t=1z= z',x] -E [YO,Olf =0,z = O,x] 9)
=E [Ylyzr t=1z= z',x] -E [YO,z’ t=0,z= z',x] (10)
+[E [YO,Zr|t =0,z= z',x] -E [YO,Oit =0,z = O,x]. (11)

Eq. (10) captures the individual effects of treatment and Eq. (11)
models the peer effects from network interference. If we set z = 1,
Eq. (9) becomes to the total effects. Therefore, Eq. (9) is a general
format that contains all causal effects of interest in Sec. 2.2.

We then show the proof of upper bound in Eq. (8) as follows:
Proor. Given network G, model f, feature x, treatment t and

outcome y, an empirical estimate can be denoted as 7(x) = f(x,t =
1,z) — f(x,t = 0,0), which can be similarly decomposed as 7(x) =
flot=12)—f(x,t=0,2)+ f(x,t =0,2) — f(x,¢ =0,0). Finally
the objective function of causal effects estimation J., ! is as follows:

Joe = / () - 1(x))?p(x) dx
X

=/ [f(xt=12) = f(x,t =0,2)
X

— (E(Melt = 1,2,%) = E(Yoz|t = 0,2,%))
+f(x,t=0,2z) — f(x,t=0,0)

- ([E(Yl,zlt =0,2,x) — [E(Yo’z|t =0,0, x))]zp(x) dx  (12)
< 2/X [f(x,t: 1,z) — f(x,t=0,2)
—(EMielt = 1,2%) —E(XYoz|t = 0,2, 0)) | *p(x)dx  (13)
+2/X [f(xt=0,2) - f(x,t=0,0)
— (E(Yore|t = 0,2, %) - E(Yo|t = 0,0,%))|*p(x) dx,  (14)

where Eq. (12) is immediate with the definition of 7(x) and 7(x).

Eq. (13) and Eq. (14) are the estimation error of individual effects and

peer effects, respectively. The inequality holds because (a + b)? <

2(a® + b%). For clearness, we conduct the proof of them separately.
We first focus on the individual effects Eq. (13):

Eq. (13) = 2/)( [f(x,tz 1,2) - [E(Yl,z|t =1,2,x)
+( [E(Y0,z|t =0,z,x) — f(x,t =0, z))]zp(x) dx

IWith a square loss, ¢ is also know as Precision in Estimation of Heterogeneous
Effects (PEHE) [16]
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< 4/ [f(x,tz 1,2) — [E(Yl,z|t = l,z,x)]zp(x) dx
X

+4/ [f(x, t=0,z) — [E(Yo,z|t =0,z x)]zp(x) dx (15)
X

< 4/)( E [(f(x,t =1,z)— (Yl,z|t =1, z,x))z]p(x) dx

+4/X E[(f(x.t=02) - (Y0,2|t =0,z x))z]p(x) dx
(16)

- N )
) 4/X/y (fxt=1.2) = y) p(0)p(ylt = 1,x,2) dx dy

+4/(YL(f(x’tzO’Z)_y)zp(x)p(yltzo:X,Z)dxdy

“Jely

> (fat2) —y) p(p(yltx,2) dx dy
te{0,1}
(17)

S4/X/T/Z/y(f(x,t,z)—y)zp(x)p(y|t,x,z)dxdtdzdy.

(18)

Eq. (16) can be obtained by Jensen’s inequality. Given T is binary,
we can unify Eq. (17) to Eq. (18) with integral. With a similarly
technique, we have peer effects Eq. (14):

Eq. (14) = t=0,2) - f(x,t =0,

q. (14) Z/X[f(xt 0,2z) — f(x,t=0,0)
— (E(Yoz|t = 0,2, %) - E(Yoo|t = 0,0,%))]*p(x) dx
:2/X [f(x,t=02) - E(Yo|t = 0,2,x)

+ (E(Yo|t = 0,0,x) = f(x,t = 0,0))]*p(x) dx

S4/){/T/Z/y(f(x,t,z)—y)zp(x)p(y|t,x,z)dxdtdzdy.

(19)

Finally, add the upper bounds of individual effects Eq. (18) and
peer effects Eq. (19), we can obtain an upper bound of the causal
effects estimation error Je. (Eq. (7)):

JceSS/X/r/z/:v(f(x,t,z)—y)zp(x)p(y|t,x,z)dxdtdz;ly.)
20

Eq. (20) is Eq. (8), concluding the proof. O

Distribution mismatch. Comparing Eq. (6) and Eq. (8), we find
that standard graph machine learning actually models two more
conditional probabilities p(¢|x) and p(z|x, ¢) than the objective func-
tion of causal effects estimation. However, p(t|x) and p(z|x, t) are
typically biased in observational data due to confounders (known as
confounding bias [7, 37]). Consequently, a graph machine learning
model trained on observational data will have biased estimations of
the counterfactual outcomes and causal effects, because p(t|x) and
p(z|x, t) are different in the counterfactual data. These distribution
mismatches lead to the failure of applying standard graph machine
learning models to estimate causal effects on networks.
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How to fix it. To apply graph machine learning models for causal
effects estimation on networks, the distribution gaps must be mit-
igated. By comparing Eq. (6) and Eq. (8), we find a sufficient (not
necessary) solution is to force p(t|x) and p(z|x, t) as uniform dis-
tributions. In other words, causal effects estimation can be reduced
into a multi-task graph machine learning problem on networked
data. Namely, we can use a data-driven graph machine learning
model, with some appropriate and sufficient losses that can force
p(t|x) and p(z|x, t) to be uniformly distributed, to estimate the po-
tential outcome. Although the original data generation can not be
manipulated, we can achieve this goal by learning representations
s;j for every unit i. Our model NetEst is motivated by these insights.
For consistency, we still use p(t|x) and p(z|x,t) instead of s; to
denote the distributions to be uniformed throughout this paper.

Note that if the treatments are randomly assigned to units in a
data collection, e.g., randomized controlled trials, these two condi-
tional distribution p(t|x) and p(z|x, t) actually follow uniform dis-
tributions. In this case, it is safe to use a standard machine learning
model to estimate causal effects. p(t|x) is usually called propensity
score in existing literature [34]. Similarly, we refer to p(z|x, t) as
the peer exposure score in this paper.

3.2 NetEst

Our model NetEst follows multi-task paradigm that uses graph
machine learning to estimate causal effects on networks. NetEst is
composed of four modules: Encoder, p(t|x) Regularizer, p(z|x, t)
Regularizer and Estimator. Fig. 2 shows the overview of NetEst.
Encoder. The bias of propensity score p(t|x) and peer exposure
score p(z|x, t) in observational data is caused by confounders. Tradi-
tional methods like matching [17, 36] can partially alleviate this by
augmenting counterfactual data examples according to propensity
score. However, we argue that a single scalar propensity score is
not enough to capture the high dimensional confounders, especially
on networked data. To capture both confounders from individual
features x; and neighbors’ features {x;} ;¢ n;, while be flexible to
later distribution regularization, we propose to learn representation
for every unit on networks. In addition, because only immediate
neighbors are assumed to have influences on a unit (Fig. 1), we just
need to capture the features of i’s 1-hop neighbors as {x;} jen;-
Given this, we use Graph Convolutional Network (GCN) [23] as the
representation function ¢. A GCN layer aggregates the features of
immediate neighbors according to a weight w.r.t. both the a unit’s
and his/her neighbor’s degrees. The aggregated new features is
then transformed to low-dimensional embeddings. Formally, given

a network G, let rl.<l) e R4D be the embedding of i in the I-th
layer, where d(I) is the embedding dimension of the [ layer, the
embeddings will be forwarded as:

A (3 L)

—r;
L . J
jery Vid)

where o(+) is a non-linear function, d; and d; are the degrees of units

21

i and j, respectively. w® isa weight matrix of [-th layer, and N;
is the neighbors of node i. Note that because we need to retain the
features of i, N; also includes node i. Another benefit of using GCN
is that it is applicable to both “inductive” and “transductive” settings,
i.e., GCN could make predictions for a new network, or nodes within
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Figure 2: The overall framework of NetEst. NetEst is trained
adversarially. The unit features and network structure are
first encoded into embeddings via GNN. Then, the two dis-
criminators in p(t|x) regularizer and p(z|x, t) regularizer are
trained to recover treatment ¢t and peer exposure z from em-
beddings by optimizing the p(t|x) recover loss and p(z|x, t) re-
cover loss, respectively. With fixed parameters, the two well-
trained discriminators optimize the encoder by the p(¢|x) reg-
ularization loss and the p(z|x, t) regularization loss, together
with the potential outcome loss given by the estimator. Solid
lines are tensor forward propagation and dotted lines are
loss back propagation. Note that the p(t|x) regularization
loss and p(z|x, t) regularization loss are not used for the two
discriminators although propagated through them.

the same network. This property enables us to estimate both the out-
of-sample and within-sample causal effects. The final GCN layer
produces the embeddings s; = ¢ (xi, {x;j}jen;), Which encodes
confounders from both a unit’s own and neighbors’ features.

p(t|x) Regularizer. Based on the embeddings s;, we can uniform
the propensity score p(t;|x;) for every unit i. We propose to use
adversarial training paradigm [8] to achieve this goal. Specifically,
we first train a model (i.e., discriminator) that can recover the treat-
ment ¢; for every unit i from the fixed embeddings s; as much as
accurately. Formally, let d; : S — {0, 1} be the discriminator, it is
trained by the p(t|x) recover loss Jr; as:

4
Tro == 3 (tilogdr(si) + (1~ t) log(1 —dy(s)).  (22)
Vi
Having the well-trained discriminator, we fix it as a “referee” to
update the embeddings such that p(#|x;) is close to a uniform
distribution. Given that treatment ¢; is binary, the probability mass
function of a uniformly distributed p(#;|x;) is p(¢; = 0|x;) = p(t; =
1]x;) = 0.5. Therefore, the p(t|x) regularization loss Jy; used to
uniform p(t;|x;) is as:

vV
T = % ;(dt(si) ~0.5)2. (23)
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After many interactions of the “adversaries” between the encoder
¢ and discriminator d;, the embedding s; can finally be updated
such that the discriminator d; can not identify whether every unit
receives treatment or not (both have 0.5 probability), i.e., p(t|x) is
forced into a uniform distribution.

p(z|x,t) Regularizer. Similar to the p(t|x) Regularizer, we use
another adversarial training paradigm to make the peer exposure
score p(zi|x;, t;) uniformed for every unit i. A new discriminator
dz : §x{0,1} — [0, 1] is first trained to recover the peer exposure
z; given embeddings s; and treatment t; via the following p(z|x, t)
recover loss Jy:

v
1
N ;(dz(Si, t;) - zi)%. (24)

Then, we fix the discriminator d; to update embeddings s; to force
the peer exposure score p(z;|x;, t;) into uniform distribution. Recall
that z; is defined as ratio of treated neighbors of i, and therefore is a
continuous variable between 0 and 1. To approximate a continuous
uniform distribution over range [0, 1], we propose to uniformly
sample a different value c;~[0, 1] for every unit i in every training
iteration s, that is to say, every i has a varying label in every iteration.
In this case, the predicted Z; = d,(s;,t;) can be compared with
any value from [0, 1] with equal probability for multiple times.
Hence, the randomly generated labels can mimic a continuous
uniform distribution. Formally, the p(z|x, t) regularization loss J,,
at iteration s is:

1 |4
Juz = 37 ) (e tr) = )P,

i=1

(25)

Note that as shown in Fig. 2, the p(t|x) regularization loss J,; and
p(z|x, t) regularization loss F,; are only used to optimize the en-
coder, though they propagate gradients to their discriminators. We
parameterize the two discriminators d;, d, with neural networks.

Estimator. Another objective is to minimize the observed out-
comes estimation errors. We simply use neural networks as the
estimator, which takes embeddings s;, treatment t; and peer expo-
sure z; as inputs to estimate the potential outcomes. Formally, for
the estimator m : S x {0,1} x [0,1] — Y, we have the potential
outcome loss. Jp:

\4
Im = % Z(m(szu tizi) = Y. )%

i=1
Optimization. Algorithm. 1 shows the overall optimization pro-
cedure. NetEst optimizes the embedding s; adversarially: (1) it first
well trains the discriminators d; and d, by minimizing the p(t|x)
recover loss Jr+ and p(z|x, t) recover loss Jrz, (2) then updates the
estimator m with Jj, and optimizes the encoder with a multi-task
objective I + aJur + Y Juz, where a and y are coefficients that

control the strengths of p(t|x) and p(z|x, t) regularization.

(26)

4 EXPERIMENTS

In this section, we evaluate the effectiveness of NetEst. We first
set up the experiments and then report the results compared to
baseline models. We further study why and when NetEst works.
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Figure 3: Counterfactual estimation errors eysg v.s. percentages of units whose treatments are flipped (denoted as “flip rate”).
From left: BlogCatalog “within-sample”, BlogCatalog “out-of-sample”, Flickr “within-sample”, Flickr “out-of-sample”.

Algorithm 1 The optimization of NetEstimator

Input: Network G = (A, X); the observed treatment t;, peer

exposure z; and outcome Yt’; 2, coefficients o and y.

Output: Encoder ¢, p(t|x) Regularizer d;, p(z|x, t) Regularizer

d, and Estimator m.

Initialize ¢, d;, d, and m;

forw=1,2,..,Wdo

foro=1,2,..,0do

Compute Jr+;
Do one step of gradient descent for d;:

(o+1) _ p(o) .
Qdf = Qd? - ’7V9d, TJrts

foru=1,2,..,Udo
Compute Jrz;
Do one step of gradient descent for d;:

0 =01 — 1V, Frzs
fors=1,2,..,Sdo

Sample cf~[0, 1] for every i;

Compute Jm, Jut, Juz;

Do one step of gradient descent for ¢ and m:

05" = 05— 1V, (Jom + 0 Jut +yTz)
9'(i+1) — Gfrf) _ 'lvemjm;
Return ¢, d;,d; and m.

> Train model for W epochs
> Train d; for O steps

> 1 is learning rate

> Train d for U steps

> Train ¢ and m for S steps

4.1 Experiments Setup

Datasets. For every unit i, only one treatment ¢;, peer exposure z;
and outcome Yt’;_ , canbe observed(i.e., factual outcome). We can
never know the groundtruth counterfactual outcome, and thus it
is impossible to evaluate causal effects estimation directly. There-
fore, following [14, 25, 39], we use semi-synthetic datasets, i.e., the
networks (features, topology) are real but treatments and potential
outcomes are simulated. We use two real-world social networks
BlogCatalog and Flickr [14, 25]. In both datasets, a unit (node) is
a user and an edge indicates their social relationship. Because the
raw features of units are high-dimensional and very sparse, fol-
lowing [13, 25], we use LDA [5] to reduce the dimension to 10.
“Out-of-sample” estimation requires we have a new network with-
out observed outcomes, therefore, we use METIS [21] to partition
the original network into three sub-networks as train/valid/test

respectively. We evaluate the “within-sample” estimation on train
networks and “out-of-sample” on the test network. Treatments and
potential outcomes are simulated according to Fig. 1.

Treatments simulation. The treatment ¢; is affected by i’s fea-
tures x; and i’s neighbors’ features {x;} jc n;. Let wx, be arandomly
generated weight vector, then unit i’s “propensity to treatment” pt;
is defined as pt; = o(wx, - x;), where o(-) is the sigmoid function.
wyx, mimics the causal mechanism of the confounders to treatments.
We denote by pty, the average of all i’s neighbors’ propensities,
and denote by tpt; = fx * pt; + P * ptn, the total propensity to
treatment of i. Then the treatment #; is generated following:

. 1 iftpt; > tpt
"7 o else

where pt is the average of all tpt;. We set both Sy and 8, as 1.
Given t; and the network topology A, the peer exposure z;—the
ratio of treated neighbors of i—can then be easily calculated.

, 27)

Potential outcomes simulation. The potential outcome Y;|do(t;, z;)

of i is affected by four factors: i’s treatment ¢;, peer exposure z;, i’s
features x; and i’s neighbors’ features {x;} jc n;,. We define “propen-
sity to outcome” po; = o(wx, - x;), where wy, is randomly gen-
erated to represent the causal mechanism of features to potential
outcomes. Similarly, We let poy;, be the average of all i’s neighbors’
propensities. Then the potential outcome is simulated by:

Yildo(ti,zi) = Bt - ti + Bz - zi + Pp - poi + Po - pon; + €, (28)

where € is a noise term. The parameters f;, B, fp and f, are
strengths to potential outcome of treatment, peer exposure, features,
features of neighbors, respectively. We set ¢, B, Bp as 1 and B,
as 0.5. following the intuition that a unit’s own features should
have stronger effects than their neighbors. We use fixed parameters
across networks because the causal mechanism is invariant.

Metrics. We consider two metrics: Mean Squared Error (ep;sg =
% 2}1:1 (g — y;)?) for counterfactual estimation where gj; and y; are
the estimated and groundtruth potential outcomes, respectively, and

(epEHE = \/% ZY:1 (#(X) = 1(X))?) for causal effects estimation,
where 7(X) is the estimation and 7(X) is groundtruth. Lower is

better for both metrics.

Baselines. NetEst is compared with six baselines and three
variants. CFR [37]: State-of-the-art model for causal effects esti-
mation on independent data, which is optimized by the estimating
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Table 2: Results of causal effects estimation. The PEHE error epgpr (precision of estimating heterogeneous effects) is reported.
The best is boldface while the second best is underlined. “N/A” means the model is not applicable for the peer effects.

Data (Setting) effects TARNET CFR ND

TARNET(+N)

CFR(+N) ND(+N) NetEst_U NetEst_I NetEst_P NetEst

Individual 0.1140+0.0455
N/A
0.9952=0.0811

0.1292=0.0931
N/A
0.8708+0.0931

0.1442:x0.0942
N/A
0.8558+0.0941

0.1315=0.0411
BC

(Within-sample)

0.4850-0.0104
0.90270.0852

Peer
Total

0.1121x0.0546 0.0969x0.0a22 0.1207x0.0345 0.1088+0.0452 0.1139x0.0437 0.1186=0.0542

0.3346+0.0439
0.5566+0.1373

0.4680=+0.0321
0.7472=x0.1135

0.1245+0.0491
0.4101=0.0358

0.0632+0.0188
0.22680.0970

0.0685:+0.0176
0.2483x0.0791

0.0647=+0.0188
0.2214=0.1000

Individual 0.1169+0.0457 0.129240.0931 0.1444400944 0.1303+0.0406

0.1142+00540 0.1014:x0.0443 0.1199x0.0399 0.1040+0.0457 0.1114x0.0469 0.1159+0.0516

BC
Peer N/A N/A N/A 0.4830+0.0110  0.3347+00440  0.4682+00323 0.1243+0.0498 0.0630+00198 0.0679+0.0182 0.06100.0181
(Out-of-sample)
Total 0.9903=0.0866 0.8707x0.0931 0.8557+0.0943 0.8952x0.0892  0.5555+0.1360 0.0.7438x0.1145 0.4051x0.0422 0.2205x0.1017 0.2436+0.0823 0.2166=0.1043
Flick Individual 0.1029+0.0231 0.0760+0.0445 0.0926+00470 0.1195+0043¢ 0.0613+0.0306 0.1483+0.0678 0.1855+0.0556 0.1529+00588 0.1632:+0.0585 0.1513=0.0637
ickr
Peer N/A N/A N/A 0.4327+00177  0.2967+00370  0.4977+0.0066 0.0911+00188 0.0612+0.0298 0.0759+0.0184 0.0734+0.0284
(Within-sample)
Total 1.0144+0.0620 0.9470x0.0704 0.9317x0.0711  0.8661x0.0701  0.5212x0.0593  0.8331x00755 0.3715x0.063¢ 0.2996:+0.0583 0.3107x0.0669 0.3139=+0.0545
Flick Individual 0.1111x00215 0.0760+0.0445 0.0938+0.0467 0.1129+00376 0.0604+0.0297 0.1346+00568 0.1769+0.0543 0.1464=00502 0.1546+00627 0.1392:0.0646
ickr
Peer N/A N/A N/A 0.4220=0.0204  0.2967+.0370  0.4876+0.013¢  0.0827x0.0209 0.0544+0.0257 0.0662x0.0141 0.0568:0.0243
(Out-of-sample)
Total 0.9895=0.0648 0.9470+0.0704 0.9253+0.0621 0.8243+0.0654 0.5220+0.0586 0.7887x0.0822 0.3435+0.0647 0.2783x0.0572 0.2826+0.0586 0.2732x0.0571

observed outcomes estimation, and a so-called Integral Probability
Metrics(IPM) that forces treated and control group to be closer. We
use the Wasserstein distance implementation of IPM. TARNet [37]:
a variant of CFR without IPM. NetDeconf [14]: extension of CFR
to networked data, which uses GNN for encoding confounders,
and Wasserstein distance for representations balancing. CFR+(N),
TARNet+(N), NetDeconf+(N): because the above three models do
not consider interference, we add the peer exposure (+N) as extra
input to them to evaluate their ability under network interference.
NetEst_U, NetEst_I, NetEst_P: variants of NetEst without any reg-
ularizers (¢ = y = 0), only with p(t|x) regularizer (@ = 0.5, y = 0),
and only with p(z|x, t) regularizer (o = 0, y = 0.5), respectively.
Implementation details. We build our model as follow. We use
1 graph convolution layer as encoder?. We use 3 fully-connected lay-
ers for estimator and the two discriminators. All hidden embedding
size is 32. Coefficient @ and y are set as 0.5. For hyperparameters,
we use full-batch training and set the learning rate to 0.001 for all
modules. All parameters are randomly initialized and updated by
the Adam optimizer [22]. We run every task for five times (includ-
ing simulation) and reported the average and 1-standard deviation.
The experiment environment is an AWS g4dn.4xlarge instance.

4.2 Results Comparison

As stated in Sec. 2.2, we estimate the counterfactual outcomes
and predict three interesting causal effects: individual effects, peer
effects and total effects. For counterfactual estimation, a counter-
factual treatments assignment T is over the entire network, we
therefore simulate the counterfactual outcomes by flipping the
treatments of randomly sampled subgroups of units. We try flip
rates in {0.25,0.5,0.75, 1} and report the counterfactual estimation
errors in Fig. 3. In general, NetEst consistently outperform all base-
lines in “within-sample” and “out-of-sample” estimations on both
datasets, suggesting the effectiveness of our model in handling the
confounding bias. We notice all models’ errors increase with a

ZNote 1 layer is consistent with the Markov assumption of network effects in Sec. 2.3.
More layers may be necessary if network effects are beyond the 1-hop neighbors

larger flip rate, but NetEst is still robust, showing a much lower
error even we flip the treatments of 100% units. NetEst and its vari-
ants exhibit a similar superiority against baselines in predicting
the three causal effects (Table. 2). We observe that NetEst works
generally better than other models in estimating the total effects.
This empirically demonstrates our conclusion in Sec. 3.1 forcing
the p(t|x) and p(z|x, t) into uniform distributions is essential for
causal effects estimation on networks, which is derived by study-
ing the objective function of causal effects. We note that the two
variants NetEst_U and NetEst_I works better under some settings.
We speculate that forcing p(¢|x) into uniform distribution will also
make p(z|x,t) close to be uniformed and vice versa, since both
regularizers basically enforce the embeddings to be close with each
other (validated later in Fig. 5).

Task Errors (BC) Task Errors (Flickr)
04T 03T.

B ML model 04 B ML model
0.4 Causal model ’ Causal model 0314
0.221
0.3 0.3
.
<]
@o.2 0.2
0.1 0.1
0.017 0‘02 001300‘]9 003 ODIZ7

PEHE

0.0° Prediction Counterfactual

PEHE

0.0° Prediction Counterfactual
Figure 4: Errors of causal model NetEst and graph machine
learning model (GCN) on three tasks: prediction, counterfac-
tual estimation and causal effects estimation.

4.3 Why Does NetEst Work?

Motivation. We motivate NetEst by modifying the objective func-
tions of graph machine learning models for causal effects estimation.
To verify this modification, we compare NetEst with graph machine
learning model GCN in Fig. 4. Causal model NetEst has worse per-
formance on general prediction task compared to GCN but better
on causal estimation tasks. It shows, as intended, forcing p(t|x)
and p(z|x, t) into uniform distributions sacrifices the general pre-
diction performance but alleviates the distribution mismatches and
therefore favors beneficial for causal problem.
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Figure 5: T-SNE projections of learned units’ embeddings s;. Left: without (2#=0) and with («¢=0.5) the regularizer for p(t|x). A red
point is a unit who was treated while a blue point means a controlled unit. Right: without (y=0) and with (y=0.5) the regularizer
for p(z|x,t). Units are colored by their observed peer exposures z. Red means a higher z, i.e., ratio of treated neighbors in this
paper, while blue indicates a lower z. We use 3D projection for p(z|x,t) as z is continuous.

Visualized interpretation. The uniform regularizers are con-
ducted on the embeddings. We further visualize the learned em-
beddings s; to understand why adversarial training works. We use
t-SNE [38] to project units’ embeddings s; into 2-dimension colored
by their binary treatments #; and 3-dimension colored by their peer
exposures z; in for clearness in Fig. 5. With the distribution regular-
izers, the units points are highly overlapped on both figures. This
overlapping means that for a given unit s;, the discriminators d;,
d, can not recover the treatment ¢ and peer exposure z, suggesting
t and z are uniformly distributed given s;.

4.4 When Does NetEst Work?

The potential outcome scale varies a lot in observational data. We
stratify units by their potential outcomes and break down the coun-
terfactual estimation errors in Table. 3. We find NetEst works much
better on moderate samples than extreme ones. We speculate NetEst
can not alleviate the weakness of machine learning models on ex-
treme data just with the proposed distribution regularizers. Under-
standing and solving this challenge is an interesting future direction.

Table 3: Counterfactual estimation errors according to po-
tential outcome percentile. MSE error €)sr is reported.

Potential outcome strata BC Flickr

0-10% 0.3008+0.1529  0.2642+0.0784
10%-50% 0.1192x00375  0.0966+0.0143
50%-90% 0.0614+00235  0.0536=0.0060
90%-100% 0.2423+01756  0.4767=0.1368

5 RELATED WORK

Causal inference on independent data. Traditional causal infer-
ence is on independent data, where the Stable Unit Treatment Val-
ues Assumption (SUTVA) [35] guarantees potential outcome is not
affected by the treatments of others. To alleviate the confounding
bias in observational data, many existing works mimic the random
treatment assignment from the observational data. A predominate
approach is matching, which finds a similar peer for every unit
from the opposite group [36]. Propensity score [17], describing the
treated probability given features, is usually used as the criterion
for matching. Another method is inverse probability of treatment
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weighting (IPTW) [3], which balances the data by re-weighting
units based on their propensity scores. Recent works introduce
representation learning to causal inference. [19, 20, 24, 37, 43, 44]
learn embeddings for each unit via neural networks. The learned
embeddings could predict the potential outcomes and are forced
to be balanced between treated and control groups. Different from
these methods on independent data, our focus is on networked
scenarios, which has many practical use cases.

Causal inference on Networked Data. Unlike independent
data, the units on networks are implicitly correlated, which violates
the fundamental SUTVA assumption. Units on networks tend to be-
have similarly with their close neighbors (i.e., homophily [28]). They
also affect each other (i.e., interference [18]). The dependencies be-
tween units on networks provide more complicated confounders,
challenging the causal effects estimation. To infer networked causal
effects from observational data, many works extend the methods
on independent data into networks. [2] extends the back-door ad-
justment [33] into networks according to the causal graph built on
networks. [7] introduces a summary variable of neighbors’ treat-
ments. They then extend the propensity score into networks to
infer treatment effects. [26] applies Hilbert-Schmidt Independence
Criterion (HSIC) [10] on networks to infer the treatments effects un-
der interference. Our work follows the networked causal inference
settings in [2, 7], but proposes an alternative method that adapts
graph machine learning models for the causal effects estimation
from the perspective of aligning their objective functions.

6 CONCLUSION

This paper studies causal effects estimation on networked data.
We theoretically show the objective function of standard graph
machine learning has two distribution mismatches against causal
effects estimation, motivating our model NetEst that mitigates the
distribution gaps via representation learning. Future works could
study finding out the optimal treatment strategy, such as vaccine
distribution plan, on networks based on estimated causal effects.
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