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Abstract. This paper introduces planewave density interpolation methods for the regularization
of weakly singular, strongly singular, hypersingular, and nearly singular integral kernels present in 3D
Helmholtz surface layer potentials and associated integral operators. Relying on Green's third iden-
tity and pointwise interpolation of density functions in the form of planewaves, these methods allow
layer potentials and integral operators to be expressed in terms of integrand functions that remain
bounded or even more regular regardless of the location of the target point relative to the surface
sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretiza-
tion of boundary integral equations can then be numerically evaluated by standard quadrature rules
irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpo-
lation procedures are presented in this paper, which are used in conjunction with Chebyshev-based
Nystr\"om and Galerkin boundary element methods. A variety of numerical examples, including prob-
lems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate
the capabilities of the proposed technique.
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1. Introduction. Challenging weakly singular, strongly singular, hypersingu-
lar, and nearly singular surface integrals are ubiquitous to boundary integral equa-
tion (BIE) formulations of linear partial differential equations (PDEs). A plethora
of numerical and semianalytical procedures including, for instance, singularity sub-
traction1 [7, 17, 22, 23, 40, 41], Duffy-like transformations [14, 20, 31, 33, 34], po-
lar singularity cancelation [5, 21, 36], and singularity extraction [35, 37], among
other techniques, have been proposed in the literature for the evaluation of these
difficult integrals in the context of both Nystr\"om methods and boundary element
methods (BEMs). Despite all these significant efforts and the compelling advantages
that BIE methods offer over standard volume discretization techniques such as finite
element and finite difference methods---especially in handling unbounded domains
and seamlessly incorporating radiation conditions at infinity for time-harmonic wave
scattering---they still face criticism for being difficult to implement. From the au-
thors' viewpoint, the main source of practical difficulties arises from the significant
effort researchers and practitioners have to invest into understanding and implement-
ing a specific set of techniques tailored to handle the various integration scenarios
concerning the target point location relative to the surface sources. We hereby ad-
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PLANEWAVE DENSITY INTERPOLATION METHODS A2089

dress this issue for both Nystr\"om and Galerkin boundary element discretizations of
3D Helmholtz BIEs by introducing a universal semianalytical procedure capable of
regularizing all the aforementioned challenging surface integrals at the continuous
level, i.e., prior to numerical integration. For the sake of conciseness, we specifically
consider combined-field BIE formulations of sound-soft (Dirichlet) and sound-hard
(Neumann) scattering problems leading to the well-known Brakhage--Werner [3] and
Burton--Miller [6] integral equations, respectively, which feature all four boundary
integral operators of Calder\'on calculus.

As mentioned above, there is extensive literature on the subject. We refer the
reader to [30] for a thorough review concerning Nystr\"om methods and various ap-
proaches to dealing with nearly singular integrals. Regarding BEMs specifically, two
main groups of techniques can be distinguished. On one hand, we have semianalytical
techniques [7, 17, 22, 23, 40, 41] whereby singular terms are extracted from the ker-
nel to be integrated in closed form, while the remaining smoother part is integrated
numerically by means of standard quadrature rules. And, on the other hand, we have
techniques based on regularizing coordinate transformations [14, 20, 21, 31, 33, 34, 36]
whereby specialized changes of variables are utilized to turn singular integrands into
regular (analytic) integrands to which standard quadrature rules can be directly ap-
plied to achieve any desired accuracy. Although effective at dealing with the specific
classes of integrands (on polygonal surface meshes) and basis functions for which
they have been designed, none of the aforementioned techniques handles nearly sin-
gular integrals arising when target points lying off the surface are close to the surface
sources.

In detail, this paper presents planewave density interpolation (PWDI) methods for
the regularization of weakly singular, strongly singular, hypersingular, and nearly sin-
gular integral kernels present in Helmholtz layer potentials and the associated bound-
ary integral operators. Relying on Green's third identity and a certain Taylor-like
interpolation of the surface density in terms of homogeneous solutions of the under-
laying PDE (planewaves in this case), density interpolation methods [29, 30] allow
layer potentials and operators to be expressed in terms of integrand functions that
are smooth (at least bounded) regardless of the target point location. The resulting
surface integrals can then be numerically evaluated by means of standard off-the-shelf
quadrature rules irrespective of the singularity of the associated integral kernels. As
such, kernel-regularized layer potentials and operators can be directly evaluated at
target points that are arbitrarily close to their surface sources enabling, in particu-
lar, the straightforward Nystr\"om or Galerkin BEM discretization of BIEs involving
multiple obstacles that are close, touching, or even intersecting each other. Indeed,
we demonstrate through numerical experiments that BIEs posed on the surface of
composite obstacles, i.e., obstacles that can be expressed as unions of geometrically
simpler intersecting obstacles, can be recast as BIEs posed on the union of the bound-
aries of the simpler domains, which, upon application of the proposed PWDI kernel-
regularization technique, can be directly solved using the BEM retaining the expected
order of convergence. This aspect of the proposed technique may significantly simplify
the numerical solution of many real-world problems involving intricate obstacles, as
it effectively allows bypassing the often involved task of meshing complex surfaces.

The PWDI method presented here is closely related to the boundary regularized
integral equation formulation method (BRIEF) [24, 38, 39] and other low-order regu-
larization techniques [25, 26] that rely on interpolation of the surface density function
and Green's representation formula. In fact, the PWDI method can be viewed as an
extension/generalization of BRIEF in the sense that the PWDI method can be applied
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A2090 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

to all four boundary integral operators of Calder\'on calculus separately---including the
challenging hypersingular operator---thus enabling its use in both direct and indirect
BIE formulations free of spurious resonances. It can in principle produce surface in-
tegrands of any prescribed degree of smoothness, it can be used in conjunction with
nonsmooth surface representations such as those produced by triangular mesh gen-
erators, and it can handle intersecting surfaces. At the continuous level, before any
Nystr\"om or Galerkin BEM discretization is utilized, BRIEF can be considered equiv-
alent to the lowest-order version (with M = 0) of the PWDI method applied to the
classical Dirichlet first-kind or Neumann second-kind direct BIEs given in terms of
the single- and double-layer operators.

The structure of this paper is as follows: The theoretical basis of Taylor inter-
polation on regular surfaces, and of density interpolation methods in general, are
established in section 3. Two PWDI procedures are next introduced in section 4.
One amounts to the nontrivial extension to three dimensions of the low-order closed-
form analytic procedure put forth in [29] (section 4.1), while the other is a purely
numerical procedure for the construction of arbitrarily high-order planewave density
interpolants (section 4.2). Section 5 then provides the details on the discretization of
kernel-regularized layer potentials and integral operators by means of a Chebyshev-
based Nystr\"om method (section 5.1) and a Galerkin BEM (section 5.2). Section 6,
finally, presents a variety of numerical examples that validate and demonstrate the
various capabilities of the PWDI technique in the context of both Nystr\"om methods
and BEMs.

2. Preliminaries. For the sake of definiteness, we focus in this paper on scat-
tering problems related to acoustic sound-soft and sound-hard scatterers, e.g., either
Dirichlet or Neumann boundary conditions. We thus seek scattered fields that are
solutions of the following exterior Dirichlet and Neumann boundary value problems:

(2.1)

\left\{         
\Delta usD + k2usD = 0 in R3 \setminus \Omega ,

usD + uinc = 0 on \Gamma ,

lim
| \bfitr | \rightarrow \infty 

| \bfitr | 
\biggl( 
\partial usD
\partial | \bfitr | 

 - ikusD

\biggr) 
= 0

and

(2.2)

\left\{             

\Delta usN + k2usN = 0 in R3 \setminus \Omega ,
\partial usN
\partial \bfitn 

+
\partial uinc

\partial \bfitn 
= 0 on \Gamma ,

lim
| \bfitr | \rightarrow \infty 

| \bfitr | 
\biggl( 
\partial usN
\partial | \bfitr | 

 - ikusN

\biggr) 
= 0,

respectively, where \Omega \subset R3 is a bounded obstacle whose boundary \Gamma is a piecewise
smooth, oriented, and closed surface. (The incident fields uinc in (2.1) and (2.2) are
assumed to be solutions of the Helmholtz equation in all of R3.)

The Dirichlet (2.1) and Neumann (2.2) scattering problems can be formulated via
well-posed BIEs by means of the combined field approach introduced by Brakhage and
Werner [3] and Burton and Miller [6], respectively. The combined field approach relies
on the use of Helmholtz single- and double-layer potentials, hereby denoted as

(2.3) (\scrS \varphi ) (\bfitr ) :=
\int 
\Gamma 

G(\bfitr , q)\varphi (q) ds(q) and (\scrD \varphi ) (\bfitr ) :=
\int 
\Gamma 

\partial G(\bfitr , q)

\partial n(q)
\varphi (q) ds(q)
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PLANEWAVE DENSITY INTERPOLATION METHODS A2091

for \bfitr \in R3 \setminus \Gamma , respectively, where G(\bfitr , \bfitr \prime ) := (4\pi ) - 1eik| \bfitr  - \bfitr \prime | /| \bfitr  - \bfitr \prime | is the outgoing
free-space Green function for the Helmholtz equation in R3 with wavenumber k > 0.
(In what follows, we utilize the symbol \bfitr to denote points that do not lie on the
surface \Gamma , while the symbols p and q are used exclusively to refer to points on the
surface \Gamma .)

Interior and exterior Dirichlet/Neumann traces of the single- and double-layer
potentials give rise to the four boundary integral operators of Calder\'on calculus asso-
ciated to the Helmholtz equation. Specifically, the Helmholtz single-layer (S), double-
layer (K), adjoint double-layer (K \prime ), and hypersingular (N) operators are defined as

(S\varphi ) (p) :=

\int 
\Gamma 

G(p, q)\varphi (q) ds(q), (K \prime \varphi ) (p) :=

\int 
\Gamma 

\partial G(p, q)

\partial n(p)
\varphi (q) ds(q),

(K\varphi ) (p) :=

\int 
\Gamma 

\partial G(p, q)

\partial n(q)
\varphi (q) ds(q), (N\varphi ) (p) := f.p.

\int 
\Gamma 

\partial 2G(p, q)

\partial n(p)\partial n(q)
\varphi (q) ds(q)

(2.4)

for p \in \Gamma , where n(q) denotes the outward pointing unit normal to \Gamma at q \in \Gamma . As
usual, the initials f.p. in the definition of the hypersingular operator N stand for
Hadamard finite-part integral.

The combined field approach consists of looking for a scattered field us = usD
(resp., us = usN ) in the form

(2.5) us(\bfitr ) = (\scrD \varphi )(\bfitr ) - i\eta (\scrS \varphi )(\bfitr ), \bfitr \in R3 \setminus \Gamma ,

where \varphi = \varphi D : \Gamma \rightarrow C (resp., \varphi = \varphi N : \Gamma \rightarrow C) is an unknown density function
and \eta \in R is the coupling parameter. The enforcement of Dirichlet and Neumann
boundary conditions on \Gamma leads to the following combined field BIEs:

(2.6) (BW)
1

2
\varphi D(p) + (K\varphi D)(p) - i\eta (S\varphi D)(p) =  - uinc(p), p \in \Gamma ,

and, respectively,

(2.7) (BM)
i\eta 

2
\varphi N (p) - i\eta (K \prime \varphi N )(p) + (N\varphi N )(p) =  - \partial u

inc(p)

\partial n(p)
, p \in \Gamma .

Both BIEs (2.6) and (2.7) are well-posed in appropriate functional spaces provided
that \eta \in R, \eta \not = 0 [9].

As is well known, one of the main challenges in the numerical discretization of
BIEs (2.6) and (2.7) is posed by the singular character of the kernels of the boundary
integral operators defined in equations (2.4) as the integration point q approaches the
target point p. Indeed, for a sufficiently regular surface \Gamma \subset R3 the operators S, K,
and K \prime feature kernels with weak (integrable) singularities of type \scrO (| p - q|  - 1), while
the operators N feature hypersingular kernels of type \scrO (| p - q|  - 3) as \Gamma \ni q \rightarrow p \in \Gamma .
The numerical evaluation of the layer potentials (2.3), on the other hand, faces the
significant challenge of dealing with the nearly singular character of the integral kernels
at points \bfitr \in R3\setminus \Gamma lying near the boundary at which, although smooth, the integrands
exhibit large derivatives that ultimately hinder the accuracy of standard integration
procedures.

In what follows, we present a density interpolation method aimed at expressing
the boundary integral operators (2.4) and layer potentials (2.3) in terms of surface
integrands of prescribed regularity. For presentation simplicity and without loss of
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A2092 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

generality, instead of treating each one of the integral operators (2.4) and layer poten-
tials (2.3) separately, we focus on the combined field integral operators of the BW (2.6)
and BM (2.7) integral equations and the associated combined field potential (2.5).

3. Kernel regularization via density interpolation. Before we briefly em-
bark on the presentation of the proposed density interpolation method, we first state
some useful results of the differential geometry of surfaces that will provide the theo-
retical basis and the notation for the derivations presented below in this section. The
main result of the next section is summarized in Remark 3.1.

3.1. Taylor series on smooth surfaces. We assume throughout this section
that \Gamma is a regular surface. First, given a system of coordinates around p \in \Gamma with
x(x1, x2) = p, x : V \subset R2 \rightarrow \Gamma , we define the covariant basis of the tangent space
Tp\Gamma of \Gamma at a point p as

ei(p) :=
\partial x

\partial xi
(p), i = 1, 2.

We will follow the usual convention of not using the argument p whenever there is no
possibility of confusion. Using the Riemannian metric tensor

(3.1) gij := \langle ei, ej\rangle p = ei \cdot ej , 1 \leq i, j \leq 2,

we define the contravariant basis as ei :=
\sum 2

j=1 g
ijej , i = 1, 2, in terms of the inverse

of the metric tensor (gij) = (gij)
 - 1. We also denote by g the determinant of the

metric tensor (gij), that is, g = g11g22  - g212. With these notations in place, we have
that the unit normal at p \in \Gamma is given by n = e1 \wedge e2/

\surd 
g.

Given a function \varphi : \Gamma \rightarrow C, we define its tangential gradient (or contravariant
gradient) by the formula \langle d\varphi ,X\rangle p = grad \varphi \cdot X, for all X \in Tp\Gamma , where d\varphi =
\partial 1\varphi e1 + \partial 2\varphi e2 is a 1-form. An explicit formula for grad \varphi is given by

(3.2) grad \varphi = (g11\partial 1\varphi + g21\partial 2\varphi )e1 + (g12\partial 1\varphi + g22\partial 2\varphi )e2 = \partial 1\varphi e1 + \partial 2\varphi e2.

We also define the Hessian of \varphi , Hess(\varphi ), at p \in \Gamma as the linear operator

Hess(\varphi ) : Tp\Gamma \rightarrow Tp\Gamma , Hess(\varphi )(Y ) = \nabla Y grad \varphi , Y \in Tp\Gamma ,

where \nabla is the Riemannian connection on \Gamma . The latter can be expressed as

\nabla \bfe i
ej =

2\sum 
\ell =1

\Gamma \ell 
ije\ell 

in terms of the Christoffel symbols defined by \Gamma \ell 
ij :=

\partial ei
\partial xj

\cdot e\ell .

It can be shown that Hess(\varphi ) can be also viewed as a symmetric bilinear form
on Tp\Gamma given by Hess(\varphi )(X,Y ) = \langle Hess(\varphi )X,Y \rangle p, X,Y \in Tp\Gamma . The expression of
Hess(\varphi ) can be computed explicitly in the form

(3.3) Hess(\varphi ) =
2\sum 

i,j=1

\Biggl( 
\partial i\partial j\varphi  - 

2\sum 
\ell =1

\Gamma \ell 
ij\partial \ell \varphi 

\Biggr) 
ei \otimes ej ,

where ei \otimes ej = ei (ej)\top . For a scalar function \varphi : \Gamma \rightarrow C and a multi-index
\alpha = (\alpha 1, \alpha 2), \alpha j \in Z, \alpha j \geq 0, j = 1, 2, we denote

(3.4) \partial \alpha \varphi := \partial \alpha 1
1 \partial \alpha 2

2 \varphi =
\partial | \alpha | \varphi 

\partial x1\alpha 1\partial x2\alpha 2
,
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PLANEWAVE DENSITY INTERPOLATION METHODS A2093

where | \alpha | = \alpha 1 + \alpha 2.
Finally, we need to make use of the exponential map on \Gamma . This map is defined on

an open neighborhood \scrU of the origin in Tp\Gamma , that is, expp : \scrU \subset Tp\Gamma \rightarrow \Gamma , such that,
for v \in \scrU with | v| small enough, expp(v) is defined as the point on \Gamma which is distance
| v| away on the geodesic originating at p and having velocity v/| v| at p. With these
notations in place, we are in the position to state Taylor's formula in the form
(3.5)

\varphi (expp(v)) = \varphi (p) + v\top grad \varphi (p) +
1

2
v\top Hess(\varphi )(p) v +\scrO (| v| 3), p \in \Gamma , v \in Tp(\Gamma ),

as | v| \rightarrow 0, or equivalently as

(3.6) \varphi (q) = \varphi (p) + v\top grad \varphi (p) +
1

2
v\top Hess(\varphi )(p) v +\scrO (| p - q| 3), p, q \in \Gamma ,

as | p  - q| \rightarrow 0, where v = exp - 1
p (q) \in Tp\Gamma in the case when \varphi is a smooth function

defined on \Gamma . Taylor's formula can be carried to higher-order terms in the form

(3.7) \varphi (q) = \varphi (p) +

M\sum 
j=1

\nabla j
\Gamma \varphi (p)[v \otimes \cdot \cdot \cdot \otimes v] +\scrO (| p - q| M+1), q, p \in \Gamma ,

as | p  - q| \rightarrow 0, where v = exp - 1
p (q) \in Tp\Gamma and where the jth tensor (\nabla j

\Gamma )\varphi :
Tp\Gamma \times \cdot \cdot \cdot \times Tp\Gamma \underbrace{}  \underbrace{}  

j times

\rightarrow R is defined recursively as

\nabla j
\Gamma \varphi (Y ) = \nabla Y (\nabla j - 1

\Gamma \varphi ), j \geq 2, \nabla \Gamma \varphi := grad \varphi , Y \in Tp\Gamma ,

in terms of the Riemannian connection \nabla on \Gamma . Clearly, as the surface gradient (3.2)
and the Hessian (3.3), the higher-order terms \nabla j

\Gamma \varphi , j \geq 2, can be expressed as a
linear combination of tensor products of the form ei1 \otimes \cdot \cdot \cdot \otimes eij , i\ell \in \{ 1, 2\} , whose
coefficients, in turn, can be expressed as a linear combination of \partial \alpha \varphi for all | \alpha | \leq j.

Remark 3.1. The main takeaway message of this section is that Taylor's for-
mula (3.7) implies that if two smooth density functions, say \varphi and \psi , are such that
\partial \alpha \varphi (p) = \partial \alpha \psi (p) for some p \in \Gamma and for all | \alpha | \leq M , where the derivatives are taken
with respect to any local parametrization of the surface around the point p, then
\varphi (p) = \psi (q) +\scrO (| p - q| M+1) as \Gamma \ni q \rightarrow p \in \Gamma . In the next section, we will use that
result to produce a suitable Taylor-like interpolation of the density that will be used
to regularize the boundary integrals.

3.2. Kernel-regularized boundary integral operators and layer poten-
tials. Our density interpolation method relies on the use of certain families of smooth
functions \Phi : R3 \times \Gamma \rightarrow C that are solutions of the Helmholtz equation

\Delta \bfitr \Phi (\bfitr , p) + k2\Phi (\bfitr , p) = 0, \bfitr \in R3 for all p \in \Gamma .

Letting

(3.8) \Phi (q, p) := lim
\varepsilon \rightarrow 0

\Phi (q + \varepsilon n(q), p) and \Phi n(q, p) := lim
\varepsilon \rightarrow 0

\nabla \Phi (q + \varepsilon n(q), p) \cdot n(q)

for any given p \in \Gamma , and denoting the Dirichlet and Neumann traces of such functions,
respectively, we have that an application of the Green's third identity [9, 28] leads to

(3.9) 1\Omega (\bfitr )\Phi (\bfitr , p) =  - 
\int 
\Gamma 

\partial G(\bfitr , q)

\partial n(q)
\Phi (q, p) ds(q) +

\int 
\Gamma 

G(\bfitr , q)\Phi n(q, p) ds(q)
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for all \bfitr \in R3 \setminus \Gamma and p \in \Gamma , where 1\Omega denotes the characteristic function of the
domain \Omega , i.e., 1\Omega = 1 in \Omega and 1\Omega = 0 in R3 \setminus \Omega . Therefore, combining the layer
potential (2.5) with formula (3.9) we obtain the following equivalent expression for
the combined field potential (2.5):

us(\bfitr ) =  - 1\Omega (\bfitr )\Phi (\bfitr , p) +

\int 
\Gamma 

\partial G(\bfitr , q)

\partial n(q)
\{ \varphi (q) - \Phi (q, p)\} ds(q)

 - 
\int 
\Gamma 

G(\bfitr , q) \{ i\eta \varphi (q) - \Phi n(q, p)\} ds(q),

(3.10)

which is valid for all \bfitr \in R3 \setminus \Gamma and p \in \Gamma .
Then, letting \bfitr = p+ \varepsilon n(p), \varepsilon > 0, and taking the limit of both sides of (3.10) as

\varepsilon \rightarrow 0+, we obtain the following reformulation of the BW integral equation (2.6):

1

2
\{ \varphi (p) - \Phi (p, p)\} +

\int 
\Gamma 

\partial G(p, q)

\partial n(q)
\{ \varphi (q) - \Phi (q, p)\} ds(q)

 - 
\int 
\Gamma 

G(p, q) \{ i\eta \varphi (q) - \Phi n(q, p)\} ds(q) =  - uinc(p) for all p \in \Gamma ,(3.11)

where we have utilized the standard jump conditions of the single- and double-layer
operators [9, 28].

The scope of the proposed density interpolation technique is to explicitly and
efficiently construct a family of functions \Phi (\bfitr , p) such that the integrands that enter
(3.11) are regular (at least bounded) as \Gamma \ni q \rightarrow p \in \Gamma . To this end, for a given
\eta \in R, \eta \not = 0, and a scalar function \varphi : \Gamma \rightarrow C which is assumed to be (M + 1)-times
continuously differentiable at p \in \Gamma , we say that a family of functions \Phi (\bfitr , p) defined
above satisfies Taylor-like interpolation conditions of order M \geq 0 at p \in \Gamma if its
Dirichlet and Neumann traces, defined in equations (3.8), satisfy

(3.12a) lim
q\rightarrow p

\partial \alpha \{ \varphi (q) - \Phi (q, p)\} = 0 for all | \alpha | \leq M,

(3.12b) lim
q\rightarrow p

\partial \alpha \{ i\eta \varphi (q) - \Phi n(q, p)\} = 0 for all | \alpha | \leq M,

respectively, where all the derivatives are taken with respect to q on the surface. In
light of the Taylor's formula (3.7), it is clear that

(3.13) | \varphi (q) - \Phi (q, p)| \lesssim | q  - p| M+1 and | i\eta \varphi (q) - \Phi n(q, p)| \lesssim | q  - p| M+1

hold for all p \in \Gamma at which the Taylor-like interpolation conditions (3.12) are satisfied,
regardless of the surface parametrization underlaying (3.12) (see Remark 3.1). These
estimates imply, in turn, that\bigm| \bigm| \bigm| \bigm| \partial G(p, q)\partial n(q)

\{ \varphi (q) - \Phi (q, p)\} 
\bigm| \bigm| \bigm| \bigm| \lesssim | q  - p| M and | G(p, q) \{ i\eta \varphi (q) - \Phi n(q, p)\} | \lesssim | q  - p| M .

Therefore, from the estimates above we conclude that the proposed procedure ef-
fectively regularizes the singularities of the kernels of the boundary integral opera-
tors in (3.11) provided that \Phi satisfies the Taylor-like interpolation conditions (3.12)
for M \geq 0.

Similarly, taking the exterior normal derivative of the expression (3.10) we obtain
that the BM integral equation (2.7) can be equivalently expressed as

1

2
\{ i\eta \varphi (p) - \Phi n(p, p)\} +

\int 
\Gamma 

\partial 2G(p, q)

\partial n(p)\partial n(q)
\{ \varphi (q) - \Phi (q, p)\} ds(q)

 - 
\int 
\Gamma 

\partial G(p, q)

\partial n(p)
\{ i\eta \varphi (q) - \Phi n(q, p)\} ds(q) =  - \partial u

inc(p)

\partial n(p)
for all p \in \Gamma ,

(3.14)
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where the integrands satisfy\bigm| \bigm| \bigm| \bigm| \partial 2G(p, q)

\partial n(p)\partial n(q)
\{ \varphi (q) - \Phi (q, p)\} 

\bigm| \bigm| \bigm| \bigm| \lesssim | q  - p| M - 2,\bigm| \bigm| \bigm| \bigm| \partial G(p, q)\partial n(p)
\{ i\eta \varphi (q) - \Phi n(q, p)\} 

\bigm| \bigm| \bigm| \bigm| \lesssim | q  - p| M

and are at least bounded provided that \Phi satisfies the Taylor-like interpolation con-
ditions (3.12) at p \in \Gamma for M \geq 2.

Finally, we apply the proposed density interpolation technique to the combined
field potential (2.5) at observation points \bfitr \in R3 \setminus \Gamma near the boundary \Gamma . Letting
p = p\ast = argminq\in \Gamma | \bfitr  - q| \in \Gamma in the formula (3.10) for the combined field potential,
we obtain that the corresponding integrands in (3.10) satisfy\bigm| \bigm| \bigm| \bigm| \partial G(\bfitr , q)\partial n(q)

\{ \varphi (q) - \Phi (q, p\ast )\} 
\bigm| \bigm| \bigm| \bigm| \lesssim | q  - p\ast | M+1

| q  - \bfitr | 2
\leq | q  - p\ast | M - 1,

| G(\bfitr , q)\{ i\eta \varphi (q) - \Phi n(q, p
\ast )\} | \lesssim | q  - p\ast | M+1

| q  - \bfitr | 
\leq | q  - p\ast | M

provided that \Phi : R3\times \Gamma \rightarrow C interpolates \varphi ---in the sense of the conditions in (3.12)---
at a nearly singular point p = p\ast \in \Gamma . Clearly, for sufficiently large interpolation
ordersM , not only do the integrands vanish at p\ast , but so do their derivatives. Finally,
we mention that kernel-regularized expressions for the gradient of the combined field
potential can be obtained by direct differentiation of (3.10).

As we will see in the next section (and in numerical results presented section 6),
expressions for the potential and its normal derivative stemming from (3.10), with
p = p\ast = argminq\in \Gamma | \bfitr  - q| , can be exploited to produce kernel-regularized operators
for problems involving multiple obstacles that are close or even intersecting each other.

Remark 3.2. Derivations similar to the ones presented above can be carried out
to produce kernel-regularized expressions for all four integral operators of Calder\'on
calculus (2.4). In fact, such expressions for the double-layer and hypersingular oper-
ators are given by the left-hand sides of (3.11) and (3.14), respectively, that result
from setting \eta = 0, where \Phi must satisfy (3.12) with the corresponding \eta = 0 value.
Similarly, kernel-regularized expressions for the single-layer and adjoint double-layer
operators are given by the left-hand sides of (3.11) and (3.14), respectively, that result
from dividing them by  - i\eta and taking the limit \eta \rightarrow \infty , where \Phi must satisfy (3.12)
with the corresponding ( - i\eta ) - 1 = 0 value.

Remark 3.3. Maue's formula [9, Theorem 2.23] provides an alternative expression
for the hypersingular operator. In fact, for a sufficiently regular surface \Gamma and density
function \varphi , the hypersingular operator can be equivalently expressed as

(N\varphi )(p) = k2
\int 
\Gamma 

G(p, q)(n(p) \cdot n(q))\varphi (q) ds(q)

+ p.v.

\int 
\Gamma 

#     »

curlp\Gamma G(p, q) \cdot 
#     »

curlq\Gamma \varphi (q) ds(q),

(3.15)

where the tangential rotational operator at a point p \in \Gamma is defined as
#     »

curlp\Gamma =
 - n(p) \wedge gradp\Gamma in terms of the surface gradient (3.2) at p \in \Gamma which is here denoted
as gradp\Gamma . As usual, the initials p.v. in front of the integral sign stand for principal
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value integral. Using Maue's formula (3.15), we hence obtain that the BM integral
equation (2.7) can be alternatively expressed as

1

2
\{ i\eta \varphi (q) - \Phi n(q, p)\} + k2

\int 
\Gamma 

G(p, q)\bfn (p) \cdot \bfn (q) \{ \varphi (q) - \Phi (q, p)\} ds(q)(3.16)

+

\int 
\Gamma 

#     »

curlp\Gamma G(p, q) \cdot #     »

curlq\Gamma \{ \varphi (q) - \Phi (q, p)\} ds(q) - 
\int 
\Gamma 

\partial G(p, q)

\partial \bfn (p)
\{ i\eta \varphi (q) - \Phi n(q, p)\} ds(q)

=  - \partial uinc(p)

\partial \bfn (p)
for all p \in \Gamma ,

where the most singular integrand satisfies\bigm| \bigm| \bigm| #     »

curlp\Gamma G(p, q) \cdot 
#     »

curlq\Gamma \{ \varphi (q) - \Phi (q, p)\} 
\bigm| \bigm| \bigm| \lesssim | q  - p| M - 2

and is at least bounded provided that M \geq 2. Both the (3.14) and the (3.16) forms
of the BM integral equation are considered in the numerical examples presented in
section 6 below.

Remark 3.4. Yet another expression for the hypersingular operator can be easily
derived from (3.15) by ``moving"" the operator

#     »

curlp\Gamma outside the surface integral, i.e.,

(3.17) p.v.

\int 
\Gamma 

#     »

curlp\Gamma G(p, q) \cdot 
#     »

curlq\Gamma \varphi (q) ds(q) =  - curlp\Gamma 

\int 
\Gamma 

G(p, q)
#     »

curlq\Gamma \varphi (q) ds(q),

where the scalar rotational operator on the right-hand side is defined as curlp\Gamma =
 - divp\Gamma n(p)\wedge , with divp\Gamma denoting the surface divergence operator at p \in \Gamma . It thus
follows from (3.17) that the hypersingular operator can be evaluated by applying
the proposed technique to the single-layer operator alone, although separate Taylor-
like interpolants for each one of the three components of

#     »

curlq\Gamma \varphi (q) and n(q)\varphi (q) are
needed. This approach is utilized in section 6 to produce accurate BEM discretizations
of the BM integral equation using M = 0 and M = 1.

3.3. Multiple-scattering approach to scattering by composite surfaces.
Let \Omega j , j = 1, 2, be open and simply connected domains with smooth boundaries \Gamma j =
\partial \Omega j . Suppose \Omega \subset R3 is given by the union \Omega = \Omega 1 \cup \Omega 2, where \Omega 1 \cap \Omega 2 \not = \emptyset . For the
sake of conciseness and simplicity, we focus here on the exterior Dirichlet problem (2.1)
which we proceed to formulate as a multiple scattering problem encompassing the two
obstacles \Omega 1 and \Omega 2. This formulation is advantageous in many practical applications
where suitable discrete representations of the ``combined surface"" \Gamma = \partial (\Omega 1 \cup \Omega 2) (in
terms of surface meshes in the case of BEMs or manifold representations in terms
of coordinate patches in the case of Nystr\"om methods) are difficult to produce, but
separate discretizations of its component parts, \Gamma 1 = \partial \Omega 1 and \Gamma 2 = \partial \Omega 2, are easy to
generate. An important example in this regard are van der Waals molecular surfaces,
which are given by the union of a typically large number of spherical atoms (see,
e.g., [8]).

Instead of considering the BW integral equation (2.6) on \Gamma = \partial (\Omega 1 \cup \Omega 2), we
pose it on \~\Gamma = \Gamma 1 \cup \Gamma 2. Letting \~\varphi : \~\Gamma \rightarrow C be a density function, we look for the
scattered field in the form of the combined field potential us(\bfitr ) = ( \~\scrD \~\varphi )(\bfitr ) - i\eta ( \~\scrS \~\varphi )(\bfitr ),
where \~\scrD and \~\scrS are the double- and single-layer potentials in (2.3) but defined in terms
of surface integrals over \~\Gamma . The enforcement of the Dirichlet boundary condition on \~\Gamma 
yields the integral equation

(3.18)
1

2

\biggl( 
\varphi 1

\varphi 2

\biggr) 
+

\biggl( 
K11  - i\eta S11 K12  - i\eta S12

K21  - i\eta S21 K22  - i\eta S22

\biggr) \biggl( 
\varphi 1

\varphi 2

\biggr) 
=

\biggl( 
f1
f2

\biggr) D
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on \~\Gamma for the unknown density function \~\varphi , where \varphi j = \~\varphi | \Gamma j
and fj | \Gamma j

=  - uinc| \Gamma j
,

j = 1, 2. The operators Sij and Kij , i, j = 1, 2, in (3.18) are the single- and double-
layer operators in (2.4) but defined in terms of boundary integrals over \Gamma i and target
points p \in \Gamma j . Note that the Dirichlet data (f1, f2) in (3.18) requires the incident

field uinc to be defined on \~\Gamma \setminus \Gamma . Typically, uinc is given by an explicit expression
that can be directly evaluated almost everywhere in R3 including \~\Gamma . If that is not the
case, (f1, f2) can be defined by simply extending uinc to \~\Gamma \setminus \Gamma by zero.

In order to evaluate the integral operators in (3.18), we apply the proposed tech-
nique to each one of the operators involving integration over the closed surfaces \Gamma 1

and \Gamma 2. This is achieved by regularizing I/2 + Kij  - i\eta Sij for i = j as an integral
operator acting on \Gamma i using (3.11), and regularizing Ki,j  - i \eta Sij for i \not = j as a layer
potential that involves integration over \Gamma i and evaluation at target points \bfitr \in \Gamma j

using (3.10).
The effectiveness of this approach is demonstrated by numerical examples based

on the BEM presented in section 6. A more extensive study of the multiple-scattering
approach to scattering by composite surface---that, in particular, will include the BM
integral equation (2.7)---will be presented in a future contribution.

In the next section, we present an explicit construction of families of functions \Phi 
such that the conditions (3.12) are satisfied for any given smooth function \varphi .

4. Interpolating functions. This section is devoted to the construction of the
functions \Phi introduced in the previous section. Specifically, we look for expressions
of the kind

(4.1) \Phi (\bfitr , p) :=
M\sum 

| \alpha | =0

\partial \alpha \varphi (p)\Phi (1)
\alpha (\bfitr , p) + i\eta 

M\sum 
| \alpha | =0

\partial \alpha \varphi (p)\Phi (2)
\alpha (\bfitr , p),

where the derivatives \partial \alpha \varphi are defined as in (3.4) and where the expansion functions

\Phi 
(1)
\alpha and \Phi 

(2)
\alpha are taken to be linear combinations of planewaves:

(4.2) \Phi (1)
\alpha (\bfitr , p) :=

L\sum 
\ell =1

a\ell ,\alpha (p)W\ell (\bfitr  - p) and \Phi (2)
\alpha (\bfitr , p) :=

L\sum 
\ell =1

b\ell ,\alpha (p)W\ell (\bfitr  - p),

where W\ell (\bfitr  - p) = exp \{ ik\bfitd \ell \cdot (\bfitr  - p)\} , \ell = 1, . . . , L, have distinct directions \bfitd \ell 

(| \bfitd \ell | = 1). The directions \bfitd \ell may depend on p \in \Gamma , in which case we make the
dependence explicit in the notation \bfitd \ell = d\ell (p). Clearly, any linear combination of
the form (4.2) amounts to a homogeneous solution of the Helmholtz equation in the
variable \bfitr .

The following lemma, whose proof follows directly from Taylor's theorem in two
dimensions, establishes simple point conditions on the traces of the expansion func-
tions (4.2) that guarantee that the interpolation requirements (3.12) are satisfied.

Lemma 4.1. Let \Phi : R3 \times \Gamma \rightarrow C be given by (4.1), where \Phi 
(j)
\alpha : R3 \times \Gamma \rightarrow C,

| \alpha | \leq M , j = 1, 2, are the linear combinations of planewaves defined in (4.2). Then,
sufficient conditions for \Phi to satisfy (3.12) at p \in \Gamma are that the Dirichlet trace

\Phi 
(j)
\alpha (q, p) and the Neumann trace \Phi 

(j)
n,\alpha (q, p) = lim\epsilon \rightarrow 0 \nabla \bfitr \Phi 

(j)
\alpha (q + \epsilon n(q), p) \cdot n(q),

where q \in \Gamma and j = 1, 2, satisfy

(4.3a) \partial \beta \Phi (1)
\alpha (p, p) =

\biggl\{ 
1 if \beta = \alpha ,
0 if \beta \not = \alpha ,

\partial \beta \Phi (1)
n,\alpha (p, p) = 0,

(4.3b) \partial \beta \Phi (2)
\alpha (p, p) = 0 and \partial \beta \Phi (2)

n,\alpha (p, p) =

\biggl\{ 
1 if \beta = \alpha ,
0 if \beta \not = \alpha 

D
ow

nl
oa

de
d 

11
/0

9/
22

 to
 1

28
.2

35
.1

2.
25

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2098 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

for all subindices \beta \in Z2
+ such that | \beta | \leq M .

The following two sections address the problem of finding explicit expressions

for \Phi 
(1)
\alpha and \Phi 

(2)
\alpha , | \alpha | \leq M , by utilizing the point conditions (4.3).

4.1. Closed-form planewave expansion functions in the case \bfitM = 1. In

this section, we find closed-form expressions for the families of functions \{ \Phi (1)
\alpha \} | \alpha | \leq M

and \{ \Phi (2)
\alpha \} | \alpha | \leq M , defined in (4.2), whose traces satisfy the requirements in Lemma 4.1

for the interpolation order M = 1.

We thus search for functions \{ \Phi (1)
\alpha \} | \alpha | \leq 1 and \{ \Phi (2)

\alpha \} | \alpha | \leq 1 that are linear combi-
nations of planewaves whose directions \bfitd \ell depend on p \in \Gamma , that is, W\ell (\bfitr  - p) =
exp \{ ikd\ell (p) \cdot (\bfitr  - p)\} , \ell = 1, . . . , L. The planewave directions d\ell (p) are expressed in
terms of the basis \{ \bfittau 1(p), \bfittau 2(p),n(p)\} , that is,

d\ell (p) = d\ell ,1\bfittau 1(p) + d\ell ,2\bfittau 2(p) + d\ell ,3n(p), | d\ell (p)| = 1,

where the unitary contravariant vectors \bfittau j(p), j = 1, 2, are defined by

(4.4) \bfittau 1 :=

\sqrt{} 
g

g22
e1 and \bfittau 2 :=

\sqrt{} 
g

g11
e2

in terms of the Riemann metric tensor (gij) in (3.1) and its determinant g. Note that
we dropped the dependence on p of all the quantities in equations (4.4), as there is
no risk of confusion.

We begin by defining, for p \in \Gamma and a direction d(p) (which may not be unitary),
the following functions:
(4.5)
S(\bfitr , p,d(p)) := sin (kd(p) \cdot (\bfitr  - p)) and C(\bfitr , p,d(p)) := cos (kd(p) \cdot (\bfitr  - p))

for \bfitr \in R3. Clearly, for unitary directions d1(p) and d2(p), the products

C

\biggl( 
\cdot , \cdot , d1(p)\surd 

2

\biggr) 
C

\biggl( 
\cdot , \cdot , d2(p)\surd 

2

\biggr) 
, C

\biggl( 
\cdot , \cdot , d1(p)\surd 

2

\biggr) 
S

\biggl( 
\cdot , \cdot , d2(p)\surd 

2

\biggr) 
,

S

\biggl( 
\cdot , \cdot , d1(p)\surd 

2

\biggr) 
S

\biggl( 
\cdot , \cdot , d2(p)\surd 

2

\biggr) 
are linear combinations of planewaves of the form (4.2) with (unitary) directions
1\surd 
2
(d1(p) + d2(p)) and

1\surd 
2
(d1(p) - d2(p)) provided that d1(p) \cdot d2(p) = 0.

The following lemma introduces the sought linear combinations of planewaves.

Lemma 4.2. Let S and C be the functions defined in (4.5), and denote by L =
 - e1 \cdot \partial 1n = \partial 21x\cdot n, M =  - e1 \cdot \partial 2n =  - e2 \cdot \partial 1n = \partial 1\partial 2x\cdot n, and N =  - e2 \cdot \partial 2n = \partial 22x\cdot n
the second fundamental form coefficients at p \in \Gamma . Then, the Dirichlet and Neumann
traces of

\Phi 
(2)
(0,0)(\bfitr , p) :=

1

k
S (\bfitr , p,n(p)) ,(4.6a)

\Phi 
(2)
(1,0)(\bfitr , p) :=

2

k2

\sqrt{} 
g22
g
S

\biggl( 
\bfitr , p,

n(p)\surd 
2

\biggr) 
S

\biggl( 
\bfitr , p,

\bfittau 1(p)\surd 
2

\biggr) 
,(4.6b)

\Phi 
(2)
(0,1)(\bfitr , p) :=

2

k2

\sqrt{} 
g11
g
S

\biggl( 
\bfitr , p,

n(p)\surd 
2

\biggr) 
S

\biggl( 
\bfitr , p,

\bfittau 2(p)\surd 
2

\biggr) 
(4.6c)
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and

\Phi 
(1)
(0,0)(\bfitr , p) := C (\bfitr , p,n(p)) ,(4.7a)

\Phi 
(1)
(1,0)(\bfitr , p) :=

1

k

\sqrt{} 
g22
g
S (\bfitr , p, \bfittau 1(p)) - 

\biggl\{ 
g12M  - g22L

g

\biggr\} 
\Phi 

(2)
(1,0)(\bfitr , p)(4.7b)

 - 
\biggl\{ 
g12N  - g22M

g

\biggr\} 
\Phi 

(2)
(0,1)(\bfitr , p),

\Phi 
(1)
(0,1)(\bfitr , p) :=

1

k

\sqrt{} 
g11
g
S (\bfitr , p, \bfittau 2(p)) - 

\biggl\{ 
g12L - g11M

g

\biggr\} 
\Phi 

(2)
(1,0)(\bfitr , p)(4.7c)

 - 
\biggl\{ 
g12M  - g11N

g

\biggr\} 
\Phi 

(2)
(0,1)(\bfitr , p)

satisfy the requirements (4.3b) and (4.3a) of Lemma 4.1, respectively, for M = 1.

Proof. The proof follows directly from the computation of the tangential deriva-

tives of \Phi 
(1)
\alpha and \Phi 

(2)
\alpha at \bfitr = p \in \Gamma and the use of the identities [13]

\partial 1n =  - 
\bigl( 
g11L+ g12M)e1  - (g21L+ g22M

\bigr) 
e2,

\partial 2n =  - 
\bigl( 
g11M + g12N)e1  - (g21M + g22N

\bigr) 
e2,

(4.8)

where (gij) denotes the inverse of the metric tensor (gij).

The extension of the trigonometric ansatz technology utilized above to the con-

struction of closed-form families of functions \{ \Phi (1)
\alpha \} | \alpha | \leq M and \{ \Phi (2)

\alpha \} | \alpha | \leq M that sat-
isfy conditions in (4.3) for M \geq 2 is challenging. In particular, additional distinct
planewave directions ought to be incorporated in the ansatz. Because of the aforemen-
tioned difficulties, we advocate for the algebraic approach presented in the following
section to construct high-order planewave expansion functions in the case M \geq 2.

4.2. Higher-order planewave expansion functions. In this section, we de-

velop a purely algebraic algorithm to construct expansion functions \{ \Phi (1)
\alpha \} | \alpha | \leq M and

\{ \Phi (2)
\alpha \} | \alpha | \leq M at a given (regular) point p \in \Gamma . Unlike the analytical approach presented

in the previous section, we now select a collection of planewave directions \{ \bfitd \ell \} \ell =L
\ell =1

that are independent of p \in \Gamma . While the desired interpolation order M and the
number L of planewave directions are parameters in our algorithm, the planewave di-
rections themselves can be selected either randomly or uniformly from the unit sphere
in three dimensions.

It is clear from Lemma 4.1 that in order to find the desired expansion coeffi-
cients \{ a\ell ,\alpha \} \ell =L

\ell =1,| \alpha | \leq M (resp., \{ b\ell ,\alpha \} \ell =L
\ell =1,| \alpha | \leq M ) that determine the expansion functions

\{ \Phi (1)
\alpha \} | \alpha | \leq M (resp., \{ \Phi (2)

\alpha \} | \alpha | \leq M ) at p \in \Gamma , one has to impose the N = (M+1)(M+2)
independent conditions (4.3a) (resp., (4.3b)), which have to be satisfied exactly. Con-
sequently, a solvable linear system for the coefficients could be produced provided that
the number of planewave directions satisfies L \geq N . In order to form such a linear
system, we proceed to sort the N/2 indices \alpha = (\alpha 1, \alpha 2) satisfying \alpha 1 + \alpha 2 \leq M by
introducing a bijective mapping J : \{ | \alpha | \leq M\} \rightarrow \{ 1, . . . , N/2\} . Therefore, letting
\bfitdelta j , j = 1, . . . , N, denote the canonical vectors of RN , we have that conditions (4.3a)
lead to the linear system

(4.9) \bfitC (p)aj(p) = \bfitdelta j , j = 1, . . . , N/2,
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A2100 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

for the coefficient vector aj = [a1,J - 1(j), . . . , aL,J - 1(j)]
T \in CL, while conditions (4.3b)

yield the system

(4.10) \bfitC (p)bj(p) = \bfitdelta j+N/2, j = 1, . . . , N/2,

for the coefficient vector bj = [b1,J - 1(j), . . . , bL,J - 1(j)]
T \in CL, where \bfitC (p) is an N\times L

complex-valued matrix. Note that we have assumed in these derivations that the
first N/2 rows of \bfitC (p) correspond to the conditions on the Dirichlet traces, while the
remaining N/2 rows correspond to the conditions on the Neumann traces.

In the case when L > N , the solution of the linear systems (4.9) and (4.10) must be

understood in the least-squares sense. Letting \bfitC \dagger (p) =
\bigl[ 
c\dagger 1(p), . . . , c

\dagger 
N (p)

\bigr] 
\in CL\times N

denote the Moore--Penrose pseudoinverse of \bfitC (p), that is, \bfitC (p)\bfitC \dagger (p) = \bfitI , with
\bfitI \in RN\times N being the identity matrix and \bfitC (p) being full-rank, the unknown vectors
aj and bj , respectively, are given by

(4.11) aj(p) = c\dagger j(p) and bj(p) = c\dagger j+N/2(p), j = 1, . . . , N/2.

Note that under the assumption that \bfitC (p) is full-rank, \bfitC \dagger (p) can be computed explic-

itly via the formula \bfitC \dagger (p) = \bfitC \ast (p) (\bfitC (p)\bfitC \ast (p))
 - 1

, where \bfitC \ast denotes the Hermitian
transpose of \bfitC .

We present in the supplementary materials SM1, linked from the main article
webpage, a recursive approach to compute the entries of the matrices \bfitC (p) in the
case M = 3.

Remark 4.3. We have found it difficult to prove whether for a given set of dis-
tinct planewave directions \{ \bfitd \ell \} \ell =L

\ell =1 the matrix \bfitC (p) \in C(M+1)(M+2)\times L is full-rank
for any p \in \Gamma . We have observed in numerical experiments, however, that when
L = (M + 1)(M + 2) the resulting square matrix \bfitC (p) is very ill conditioned for
some points p \in \Gamma . We thus recommend in general to select L > (M + 1)(M + 2) in

order to sufficiently enrich the column space of \bfitC (p) so that its pseudoinverse \bfitC \dagger (p)
becomes computable. In practice, large enough \scrO (M2) numbers of planewave di-
rections, selected from a ``uniform"" spherical grid, give rise to numerically invertible
matrices \bfitC (p)\bfitC \ast (p) from where the \bfitC \dagger (p) can be computed. In detail, the planewave
directions for the construction of numerical PWDI interpolants used throughout this
paper are given by (cos \theta m sin\phi n, sin \theta m sin\phi n, cos\phi n), where \theta m = 2\pi (m  - 1/2)/L\theta 

for m = 1, . . . , L\theta and \phi n = \pi (n  - 1/2)/L\phi for n = 1, . . . , L\phi , with L = L\theta \times L\phi =
2\times 2, 4\times 3, 5\times 4, 6\times 5 for interpolation orders M = 0, 1, 2, 3, respectively.

5. Numerical evaluation of integral operators and layer potentials. This
section presents Nystr\"om and Galerkin BEM discretization schemes, based on stan-
dard quadrature rules, for the numerical evaluation of the kernel-regularized integral
operators and layer potentials associated to the combined field integral equations (2.6)
and (2.7).

5.1. Chebyshev-based Nystr\"om method. We here briefly describe the 3D
BIE method introduced in our previous contribution [30]. The surface \Gamma is represented

as the union \Gamma =
\bigcup Np

m=1 \scrP m of nonoverlapping patches \scrP m, m = 1, . . . , Np, where
\scrP m\cap \scrP l = \emptyset if m \not = l. It is assumed (throughout this section) that each surface patch
\scrP m has associated to it a bijective \scrC \infty coordinate map xm : \scrH \rightarrow \scrP m,

(5.1) xm(\bfitxi ) := (xm1 (\xi 1, \xi 2), x
m
2 (\xi 1, \xi 2), x

m
3 (\xi 1, \xi 2)) , m = 1, . . . , Np (\bfitxi = (\xi 1, \xi 2)),
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PLANEWAVE DENSITY INTERPOLATION METHODS A2101

where \scrH = [ - 1, 1]\times [ - 1, 1] \subset R2. Furthermore, the coordinate maps (5.1) are selected
in such a way that the unit normal nm(\bfitxi ) = \partial 1x

m(\bfitxi ) \wedge \partial 2xm(\bfitxi )/| \partial 1xm(\bfitxi ) \wedge \partial 2xm(\bfitxi )| 
at the point xm(\bfitxi ) \in \scrP m points outward to the surface \Gamma . The surface integral of
a sufficiently regular function F : \Gamma \rightarrow R---such as the integrands in (3.11), (3.14),
and (3.10)---can then be expressed as

\int 
\Gamma 

F (\bfitx ) ds =

Np\sum 
m=1

\int 
\scrH 
F ((xm(\bfitxi )) | \partial 1xm(\bfitxi ) \wedge \partial 2xm(\bfitxi )| d\bfitxi =

\int 
\scrH 
f(\bfitxi ) d\bfitxi .

In order to numerically evaluate the integral above with high precision, we utilize
open Chebyshev grids in the parameter space \scrH . Accordingly, \scrH is discretized by
means of the so-called Fej\'er's first quadrature rule [12], which yields the approximation

(5.2)

\int 
\scrH 
f(\bfitxi ) d\bfitxi \approx 

N\sum 
i=1

N\sum 
j=1

f(ti, tj)\omega i\omega j ,

where the quadrature points tj are the Chebyshev zero points

(5.3) tj := cos (\vargamma j) , \vargamma j :=
(2j  - 1)\pi 

2N
, j = 1, . . . , N,

and the Fej\'er quadrature weights are given by

(5.4) \omega j :=
2

N

\left(  1 - 2

[N/2]\sum 
\ell =1

1

4\ell 2  - 1
cos(2\ell \vargamma j)

\right)  , j = 1, . . . , N.

A key feature of this discretization scheme is that the quadrature rule (5.2) yields
spectral (superalgebraic) accuracy for integration of smooth C\infty (\scrH ) functions. As
expected, however, slower convergence rates are achieved for less regular integrands
(such as surface density functions associated to problems of scattering by piecewise
smooth obstacles). Yet another important feature of this discretization scheme is that
all the partial derivatives of the coordinate maps xm, unit normals nm, and functions
\varphi (xm(\bfitxi )) that are needed for the construction of the planewave density interpolant
\Phi : R3 \times \Gamma \rightarrow C can be efficiently and accurately computed at the grid points (ti, tj),
1 \leq i, j \leq N , by means of FFT differentiation. More details can be found in [30].

Finally, the proposed procedure for the numerical evaluation of the BW combined
field operatorK - i\eta S, using the method of section 4.2, is summarized in Algorithm 5.1.
A completely analogous procedure can be followed for evaluation of the BM combined
field operator N  - i\eta K \prime .

5.2. Galerkin boundary element method. This section concerns the use of
the proposed planewave density interpolation method within the standard second-
order Galerkin BEM discretization using triangular surface meshes.

To fix ideas, we consider once again the BW boundary integral equation (2.6)
which upon constructing an appropriate density interpolation function \Phi : R3\times \Gamma \rightarrow C
can be equivalently expressed (in strong form) as (3.11). Throughout this section, we
assume that \Omega \subset R3 is a bounded Lipschitz polyhedral domain. Therefore, associated
to the surface \Gamma = \partial \Omega there is a triangulation \scrT h such that \Gamma =

\bigcup 
T\in \scrT h

T . Note

that both the single- and the double-layer operators are bounded on H1/2(\Gamma ) and
that the Green's identities used in the derivation of (3.11) still hold true for \Gamma being
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A2102 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

Algorithm 5.1. Nystr\"om evaluation of the forward map (K  - i\eta S)\varphi .

Require: Grids \{ \bfitx k
i,j\} 

i,j=N
i,j=1 \subset \scrP k, k = 1, . . . , Np, corresponding to the discretization

of the surface \Gamma using Np nonoverlapping patches, generated using Chebyshev grids
in the parameter space \scrH ; discrete density function \varphi (\bfitx k

i,j) = \phi ki,j , i, j = 1, . . . , N.
k = 1, . . . , Np; planewave interpolation order M ; planewave directions \bfitd \ell , \ell =
1, . . . , L.
for k from 1 to Np do
Compute \partial \alpha \varphi of all orders | \alpha | \leq M on the patch \scrP k using FFT-based spectral

differentiation of the 2D array \{ \phi ki,j\} 
i,j=N
i,j=1

end for
Set Iki,j = 0 for i, j = 1, . . . , N and k = 1, . . . , Np

for each grid point \bfitx k
i,j do

Generate the coefficients a\ell ,\alpha r (\bfitx 
k
i,j) and b\ell ,\alpha r (\bfitx 

k
i,j) for \ell = 1, . . . , L and r =

1, . . . , (M + 1)(M + 2)/2
Compute the interpolating function \Phi (4.1) using the derivatives \partial \alpha \varphi at \bfitx k

i,j and
the coefficients a\ell ,\alpha r

and b\ell ,\alpha r

for m from 1 to Np do
Evaluate the approximate integral I =

\sum 
\bfitx m

p,q\in \scrP m f(\bfitx m
p,q)w

m
p,q \approx \int 

\scrP m f(\bfity ) ds, with f(\bfity ) =  - \varphi (\bfitx k
i,j)

2 +
\partial G(\bfitx k

i,j ,\bfity )

\partial n(\bfity ) \{ \varphi (\bfity )  - \Phi (\bfity ,\bfitx k
i,j)\}  - 

G(\bfitx k
i,j ,\bfity )

\bigl\{ 
i\eta \varphi (\bfity ) - \partial n\Phi (\bfity ,\bfitx 

k
i,j)

\bigr\} 
, using Fej\'er's quadrature rule

Update Iki,j = Iki,j + I
end for

end for
return Iki,j for i, j = 1, . . . N and k = 1, . . . , Np.

Lipschitz [27]. Therefore, assuming that uinc| \Gamma \in H1/2(\Gamma ), we readily have that
the variational formulation of (3.11)---or, equivalently, (2.6)---reads as follows: Find
\varphi \in H1/2(\Gamma ) such that

\int 
\Gamma 

\biggl\{ 
1

2
\{ \varphi (p) - \Phi (p, p)\} +

\int 
\Gamma 

\partial G(p, q)

\partial n(q)
\{ \varphi (q) - \Phi (q, p)\} ds(q)

\biggr\} 
\psi (p) ds(p)

 - 
\int 
\Gamma 

\biggl\{ \int 
\Gamma 

G(p, q)\{ i\eta \varphi (q) - \Phi n(q, p)\} ds(q)
\biggr\} 
\psi (p) ds(p) =  - 

\int 
\Gamma 

uinc(p)\psi (p) ds(p)

(5.5)

for all test functions \psi \in H - 1/2(\Gamma ).2 In order to find an approximate weak solution
\varphi h \in H1/2(\Gamma ) of (5.5), we resort to a Galerkin BEM for which we consider the
(finite-dimensional) subspace Wh = \{ v \in C(\Gamma ) : v| T is a linear function \forall T \in \scrT h\} \subset 
H1/2(\Gamma ) \subset H - 1/2(\Gamma ). Clearly, the set \{ vj\} Nj=1 of linear polynomials supported on\bigcup 

pj\in T T satisfying the condition vj(pi) = \delta i,j for all i, j = 1 . . . , N , where pj , j =
1, . . . , N are the mesh nodes, forms a basis of the subspace Wh. In detail, letting
p\tau 1 , p\tau 2 , and p\tau 3 , with \tau 1, \tau 2, \tau 3 \in \{ 1, . . . , N\} , denote the vertices of a triangle T \in \scrT h,

2We assume here the continuous extension of the standard real pairing (u, v) =
\int 
\Gamma uv ds for

u, v \in L2(\Gamma ) to the dual pairing \langle \cdot , \cdot \rangle H1/2(\Gamma )\times H - 1/2(\Gamma ).
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KT

pτ1

pτ2

pτ3

pκ1

pκ2
pκ3

p̃1
p̃2

p̃3

nT

nK

τT3

τT2

νT3

νT1

νT2
τT1

Fig. 1. Notation used for the the mesh triangles in the outer (T ) and inner (K) integrals
in (5.12) and in the Algorithm 5.2.

and defining the unit vectors (see Figure 1)

\bfittau T
1 =

p\tau 3  - p\tau 2
| p\tau 3  - p\tau 2 | 

, \bfittau T
2 =

p\tau 1  - p\tau 3
| p\tau 1  - p\tau 3 | 

, \bfittau T
3 =

p\tau 2  - p\tau 1
| p\tau 2  - p\tau 1 | 

,

\bfitnu T
1 = \bfittau T

1 \wedge nT , \bfitnu T
2 = \bfittau T

2 \wedge nT , \bfitnu T
3 = \bfittau T

3 \wedge nT ,

we have that the sought approximate density function \varphi h \in Wh is given by

(5.6) \varphi h(p) =
3\sum 

j=1

\varphi h(p\tau j )v\tau j (p), p \in T,

where the basis functions are

(5.7) v\tau j (p) = 1 - 
(p - p\tau j ) \cdot \bfitnu T

j

hTj
, j = 1, 2, 3, p \in T,

with hj = (p\tau i  - p\tau j ) \cdot \bfitnu T
j > 0, i \not = j. The discrete variational formulation can thus

be expressed as follows: Find \varphi h \in Wh such that\int 
\Gamma 

vj(p)

\biggl\{ 
1

2
\{ \varphi h(p) - u(p, p)\} +

\int 
\Gamma 

\partial G(p, q)

\partial n(q)
\{ \varphi h(q) - \Phi (q, p)\} ds(q)(5.8)

 - 
\int 
\Gamma 

vj(p)G(p, q)\{ i\eta \varphi h(q) - \Phi n(q, p)\} ds(q)
\biggr\} 

ds(p) =  - 
\int 
\Gamma 

vj(p)u
inc(p) ds(p)

for all basis functions vj \in Wh, j = 1, . . . , N .
Consider now the term in (5.8) associated to the single-layer operator, that is,\int 

\Gamma 

vj(p)

\biggl\{ \int 
\Gamma 

G(p, q)\{ i\eta \varphi h(q) - \Phi n(q, p)\} ds(q)
\biggr\} 

ds(p)

=
\sum 
T\in \scrT h

\sum 
K\in \scrT h

\int 
T

vj(p)

\biggl\{ \int 
K

G(p, q)\{ i\eta \varphi h(q) - \Phi n(q, p)\} ds(q)
\biggr\} 

ds(p).(5.9)

Clearly, both the outer and the inner integrals in (5.9) have to be evaluated by means
of quadrature rules for which typically the vertices of the triangles T \in \scrT h are used as
quadrature points. Suppose the vertices p\tau \ell , \ell = 1, 2, 3, are used as quadrature points
for evaluation of the outer integral (over T ). In order to regularize the integrand of the
inner integral (over K), then the normal derivative \Phi n of the planewave interpolant \Phi 
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has to approximate to sufficiently high order the density function i\eta \varphi h at the vertices
p\tau \ell , \ell = 1, 2, 3. Unfortunately, the problem with this numerical integration scheme
is that the construction of \Phi requires the surface unit normal and surface tangent
vectors to be properly defined at the vertices p\tau \ell , \ell = 1, 2, 3, which does not typically
happen for general polyhedral surfaces.

In order to circumvent this issue, we propose to use a second-order Gauss quadra-
ture rule for triangles that makes use of quadrature points \~p\ell , \ell = 1, 2, 3, that lie in the
interior T \circ of the triangle T [11, 15]. This quadrature rule yields the approximation\int 

T

vj(p)

\biggl\{ \int 
K

G(p, q)\{ i\eta \varphi h(q) - \Phi n(q, p)\} ds(q)
\biggr\} 

ds(p)

\approx | T | 
3

3\sum 
\ell =1

vj(\~p\ell )

\biggl\{ \int 
K

G(\~p\ell , q)\{ i\eta \varphi h(q) - \Phi n(q, \~p\ell )\} ds(q)
\biggr\} 
,

(5.10)

where the quadrature points are given by

\~p1 =
2p\tau 1
3

+
p\tau 2
6

+
p\tau 3
6
, \~p2 =

p\tau 1
6

+
2p\tau 2
3

+
p\tau 3
6
, \~p3 =

p\tau 1
6

+
p\tau 2
6

+
2p\tau 3
3
.(5.11)

Since the quadrature points \~p\ell , \ell = 1, 2, 3, lie in the interior of the triangle T (see
Figure 1), the surface unit normal and the surface tangent vectors---which are required
in the construction of the planewave interpolant---are uniquely defined at those points.

The inner integral, on the other hand, can be approximated by means of any
sufficiently high-order quadrature rule. Using the standard node-based quadrature
rule, for instance, we obtain\int 

T

vj(p)

\biggl\{ \int 
K

G(p, q)\{ i\eta \varphi h(q) - \Phi n(q, p)\} ds(q)
\biggr\} 

ds(p)

\approx | T | | K| 
9

3\sum 
\ell =1

3\sum 
m=1

vj(\~p\ell )G(\~p\ell , p\kappa m
)\{ i\eta \varphi h(p\kappa m

) - \Phi n(p\kappa m
, \~p\ell )\} ,

(5.12)

where p\kappa m
, m = 1, 2, 3, are the vertices of the triangle K (see Figure 1). A completely

analogous approach can be followed to evaluate the term in (5.8) involving the double-
layer operator.

Remark 5.1. Note that the terms inside the double sum on the right-hand side
of (5.12) are always well defined even when the triangles T and K coincide. The effect
of the PWDI technique lies then in the regularization of the nearly-singular integral
kernels that arise when the triangles T and K coincide or are close to each other. In
the latter case, however, the effectiveness of the proposed technique is affected by the
limited (piecewise planar) global regularity assumed on the surface parametrization.
It is thus not worth pursuing interpolation ordersM \geq 2 in the context of the proposed
BEM for piecewise planar surface representations.

In what follows, we describe in some detail the construction of the closed-form
planewave interpolant for M = 1 in the Galerkin BEM context. As discussed in
section 4.1 above, the construction of the planewave interpolant \Phi : R3 \times \Gamma \rightarrow C
requires the knowledge of a local smooth parametrization of the surface \Gamma at and
around the interpolation point p \in \Gamma . By construction, the interpolation point p
always lies in the interior of some triangle T \in \scrT h. Therefore, the local surface
parametrization has constant tangent vectors eT1 and eT2 that can be computed directly
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from the node data. In fact, selecting eT1 = \bfitnu T
1 and eT2 = \bfittau T

1 , for instance, we have
that the expressions for the planewave interpolants (4.6)--(4.7) simplify significantly
due to the fact that the metric tensor becomes the identity, i.e., gi,j = \delta i,j , and the
second fundamental form coefficients vanish, i.e., L =M = N = 0, at p \in T \circ .

Having defined the tangent vectors eT1 and eT2 , the surface derivatives of \varphi h \in Wh

at quadrature points \~p\ell \in T \circ , \ell = 1, 2, 3, can be computed by direct differentiation
of (5.6), which in turn involves the derivatives

(5.13) \partial \alpha v\tau j (\~p\ell ) =

\left\{                       

1 + 3\delta j,\ell 
6

if \alpha = (0, 0),

 - 
eT1 \cdot \bfitnu T

j

hTj
if \alpha = (1, 0),

 - 
eT2 \cdot \bfitnu T

j

hTj
if \alpha = (0, 1),

0 if | \alpha | > 1

of the basis functions (5.7). An algorithmic description of the numerical evaluation
of (vj , (K  - i \eta S)\varphi h) for j = 1, . . . , N is given in Algorithm 5.2.

Algorithm 5.2. Galerkin BEM evaluation of (vj , (K  - i\eta S)\varphi h) for j = 1, . . . , N .

Require: Triangular mesh \scrT h of the surface \Gamma \subset R3 consisting of M triangles and
N mesh nodes \{ pj\} Nj=1 \subset \Gamma ; coefficients \{ \varphi j\} Nj=1 \subset C of the density function

\varphi h(p) =
\sum N

j=1 \varphi jvj(p), p \in \Gamma , with respect to the basis \{ vj\} Nj=1 of piecewise linear
polynomials.
Set Ij = 0 for all j = 1, . . . , N
for \tau from 1 to M do
Compute eT1 , e

T
2 ,n

T = eT1 \wedge eT2 and the area | T | of the \tau th triangle T with vertex
indices \{ \tau 1, \tau 2, \tau 3\} \subset \{ 1, . . . , N\} 
Produce \~p1, \~p1, and \~p3 from the vertices p\tau 1 , p\tau 2 , and p\tau 2 using (5.11)
Compute \partial \alpha \varphi h, | \alpha | \leq M , at \~p\ell \in T , \ell = 1, 2, 3, using (5.13), to construct the
planewave interpolants \Phi (\cdot , \~p\ell ), \ell = 1, 2, 3
for \kappa from 1 to M do
Compute nK and the area | K| of the \kappa th mesh triangle K with vertex indices
\{ \kappa 1, \kappa 2, \kappa 3\} \subset \{ 1, . . . , N\} 
for m from 1 to 3 do
Evaluate F\ell = f(\~p\ell , p\kappa m

), \ell = 1, 2, 3, where f(p, q) =  - \varphi h(p)
2 +

\partial G(p,q)
\partial \bfn (q) \{ \varphi h(q)  - \Phi (q, p)\}  - G(p, q)\{ i\eta \varphi h(q)  - \Phi n(q, p)\} . The normal deriva-

tives \partial G(p,q)
\partial \bfn (q) and \Phi n(q, p) =

\partial \Phi (q,p)
\partial \bfn (q) are computed with respect to the unit

normal nK

Update I\tau 1 = I\tau 1 +
| T | | K| 

9 \{ v\tau 1(\~p1)F1 + v\tau 1(\~p2)F2 + v\tau 1(\~p3)F3\} 
Update I\tau 2 = I\tau 2 +

| T | | K| 
9 \{ v\tau 2(\~p1)F1 + v\tau 2(\~p2)F2 + v\tau 2(\~p3)F3\} 

Update I\tau 2 = I\tau 3 +
| T | | K| 

9 \{ v\tau 3(\~p1)F1 + v\tau 3(\~p2)F2 + v\tau 3(\~p3)F3\} 
end for

end for
end for
return Ij for j = 1, . . . , ND

ow
nl

oa
de

d 
11

/0
9/

22
 to

 1
28

.2
35

.1
2.

25
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2106 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

In order to tackle the BM integral equation (2.7), in turn we apply the closed-form
density interpolation technique to both the single- and the double-layer operators
separately. In detail, we first resort to identities (3.15) and (3.17) to express the
hypersingular operator in terms of single-layer operators. Then, upon integration
by parts, the discrete variational formulation for the BM integral equation reads as
follows: Find \varphi h \in Wh such that
(5.14)
i\eta 

2
(vj , \varphi h) - i\eta (vj ,K

\prime \varphi h) - 
\Bigl( 

#     »

curl\Gamma vj , S
#     »

curl\Gamma \varphi h

\Bigr) 
+ k2 (vjn, Sn\varphi h) =  - 

\biggl( 
vj ,

\partial uinc

\partial n

\biggr) 
for all basis functions vj \in Wh, j = 1, . . . , N , where (\cdot , \cdot ) denotes the standard real
pairing (\varphi ,\psi ) =

\int 
\Gamma 
\varphi (q) \cdot \psi (q) ds(q). Noting that (vj ,K

\prime \varphi h) = (Kvj , \varphi h), we hence
conclude that it suffices to apply the proposed technique to both S and K separately
(see Remark 3.2).

Finally, in order to produce accurate evaluations of the combined field poten-
tial (2.5) at target points \bfitr \in R3 \setminus \Gamma near the surface \Gamma , we resort once again to the
interior quadrature points (5.11). Indeed, in the context of the Galerkin BEM the
combined field potential at a point \bfitr \in R3 \setminus \Gamma can be expressed as

usD(\bfitr ) \approx  - 1\Omega (\bfitr )\Phi (\bfitr , p
\ast ) +

\sum 
T\in \scrT h

\int 
T

\partial G(\bfitr , q)

\partial n(q)
\{ \varphi h(q) - \Phi (q, p\ast )\} ds(q)

 - 
\sum 
T\in \scrT h

\int 
T

G(\bfitr , q) \{ i\eta \varphi h(q) - \Phi n(q, p
\ast )\} ds(q) with p\ast = argmin

q\in \Gamma 
| \bfitr  - q| ,

(5.15)

where the integrals over T are approximated as\int 
T

\partial G(\bfitr , q)

\partial n(q)
\{ \varphi h(q) - \Phi (q, p\ast )\} ds(q) \approx | T | 

3

3\sum 
\ell =1

\partial G(\bfitr , \~p\ell )

\partial n(\~p\ell )
\{ \varphi h(\~p\ell ) - u(\~p\ell , p

\ast )\} ,

\int 
T

G(\bfitr , q) \{ i\eta \varphi h(q) - \Phi n(q, p
\ast )\} ds(q) \approx | T | 

3

3\sum 
\ell =1

G(\bfitr , \~p\ell ) \{ i\eta \varphi h(\~p\ell ) - \Phi n(\~p\ell , p
\ast )\} .

Remark 5.2. Unless explicitly stated, we follow the standard ``5h"" rule [1] for both
the Nystr\"om and the Galerkin BEM versions of the PWDI method. Consequently,
fields at a distance smaller than five times the mesh size from the surface are evaluated
using the kernel-regularized combined field potential (3.14) (with p = argminq\in \Gamma | \bfitr  - 
q| \in \Gamma ), while fields at target points further away from the surface are computed using
the corresponding nonregularized expression (2.5).

6. Numerical examples. This section presents a variety of numerical experi-
ments that illustrate different aspects of the proposed methodology.

6.1. Validation of the density interpolation procedures. Our first numer-
ical example is devoted to the validation of the two density interpolation procedures
introduced above in section 4. We start off by taking \Gamma as the (smooth) boundary
of the bean-shaped obstacle displayed in Figure 2a, on which we define the density
function

(6.1) \rho (q) := \varphi (q) - \Phi (q, p\ast ), q, p\ast \in \Gamma ,

where \varphi is a given smooth density and \Phi is the planewave interpolant at p\ast \in \Gamma .
Note that, by construction, \rho and its first M tangential derivatives vanish at p\ast \in \Gamma .

D
ow

nl
oa

de
d 

11
/0

9/
22

 to
 1

28
.2

35
.1

2.
25

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PLANEWAVE DENSITY INTERPOLATION METHODS A2107
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Fig. 2. (a) (resp., (d)): Plot of the real and imaginary parts of \rho defined in (6.1) where the
planewave interpolant \Phi was constructed using the analytic (resp., numerical) procedure described in
section 4.1 (resp., 4.2). The interpolation point p\ast := x(\xi \ast 1 , \xi 

\ast 
2) = ( - 0.616, 0.310, 0.599) is marked

by a black dot. (b) and (c) (resp., (e) and (f)): Plots of the cross section of the partial derivatives
\partial \alpha \rho for all | \alpha | = 1 (resp., | \alpha | = 3) in the parameter space. Note that all the first- (resp., third-)
order derivatives vanish exactly at the interpolation points (\xi \ast 1 , \xi 

\ast 
2) = ( - 0.339, 0.790).

As was discussed in section 5.1, the surface \Gamma is here represented by means of six
nonoverlapping rectangular patches, each of which is discretized using Chebyshev
grids consisting of 50 \times 50 points. Figure 2a (resp., 2d) displays the real part of \rho 
produced by the closed-form (resp., algebraic) procedure. Figures 2b and 2c (resp., 2e
and 2f), in turn, display slices of the real part of \partial \alpha \rho , | \alpha | =M , at p\ast in the parameter
space, obtained using the closed-form (resp., algebraic) procedure with M = 1 (resp.,
M = 3). The density function \varphi utilized here is selected as the Dirichlet trace of the
field produced by a point source at the point \bfitr 0 = (0.1, - 0.1, 0.25) placed inside \Gamma .
The wavenumber and the coupling parameter considered in this example are k =
10 and \eta = k, respectively. These results demonstrate that the prescribed Taylor
interpolation order M is achieved by the proposed procedures. Similar results are
obtained for the imaginary part of \rho as well as for \rho n(q) = i\eta \varphi (q) - \Phi n(q, p

\ast ), which,
for the sake of brevity, are not displayed here.
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(a) Far-field evaluation grid (b) Near-field evaluation grid

Fig. 3. Grids utilized in the evaluation of the far- and near-field errors.

6.2. Nystr\"om and Galerkin boundary element methods. This section il-
lustrates the capabilities of the density interpolation method for the regularization of
the combined field potential and the associated BW and BM integral operators.

6.2.1. Simple surfaces. In our first example, we let \Gamma be a unit sphere at the
origin. (This simple surface has the advantage that can be easily represented using
both quadrilateral patches and triangular meshes, allowing us to tackle the same prob-
lems using both Nystr\"om methods and Galerkin BEMs.) In order to assess the numer-
ical errors, we consider an exact solution for both Dirichlet (2.1) and Neumann (2.2)
problems, which is given by usexact(\bfitr ) = eik| \bfitr  - \bfitr 0| /| \bfitr  - \bfitr 0|  - eik| \bfitr  - \bfitr 1| /| \bfitr  - \bfitr 1| , where
the source points \bfitr 0 = (0.2, 0.1, 0.1) and \bfitr 1 = ( - 0.1, 0.3, - 0.1) lie inside the unit
sphere \Gamma . The real part of the Dirichlet trace of usexact on \Gamma (for k = 1) is plotted
(in colors) in Figures 3a and 3b. The far-field errors in the numerical solution us are
measured by

(6.2) Error =
max\bfitr \in \Xi | usexact(\bfitr ) - us(\bfitr )| 

max\bfitr \in \Xi | usexact(\bfitr )| 
,

where \Xi is the spherical grid (of radius r = 10) displayed in Figure 3a. The near-field
errors, in turn, are measured using (6.2) but with \Xi being the grid of the cube of side
length two displayed in Figure 3b. Note that \Gamma touches the cube surface grid at the
center of its six faces.

The accuracy of the Chebyshev-based Nystr\"om method is assessed first. Fig-
ures 4a and 4b display the far- and near-field errors, respectively, in the approximate
Dirichlet solution obtained from the kernel-regularized BW integral equation (3.11)
for k = \eta = 1. These figures display the errors obtained using the (closed-form) ana-
lytical (A-PWDI) procedure as well as the (algebraic) numerical (N-PWDI) density
interpolation procedure introduced in sections 4.1 and 4.2, respectively, for various
discretization sizes N and density interpolation orders M . The surface \Gamma is here
represented using six quadrilateral patches, and each one of them is discretized us-
ing a Chebyshev grid of N \times N points. The near fields were computed using the
kernel-regularized combined field potential (3.10), while the far fields were, in turn,
computed using the nonregularized expression (2.5). We note here that the slightly
larger errors produced by the N-PWDI procedure for M = 0 and 1 can be attrib-
uted to the ill-conditioning of the matrix \bfitC (p)\bfitC \ast (p) that is inverted to generate the
planewave coefficients in the case of the N-PWDI. Results closer to the ones produced
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(a) Far-field (relative) errors

4 8 16 32 64

10
-6

10
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10
-2

10
0

(b) Near-field (relative) errors

Fig. 4. Far- and near-field errors in the solution of the Dirichlet problem (2.1) produced by
the Nystr\"om method discretization of the BW integral equation (2.6) using the two proposed PWDI
techniques for different interpolation orders M and grid sizes N (each quadrilateral surface patch is
discretized using N \times N quadrature points).

by the A-PWDI can be obtained by increasing the number of planewave directions L
used in the construction of the density interpolant (see Remark 4.3).

As can be observed in these results, the proposed technique yields third-order
convergence of the far fields (as the grid size N increases) for interpolation orders
M = 0 and 1 and fifth-order convergence for M = 2 and 3. In the near field, on the
other hand, third-order convergence is observed for all orders, with the only exception
ofM = 3, for which fifth order is achieved as N increases. It is worth mentioning that
the associated linear systems were solved iteratively by means of GMRES [32] with an
error tolerance of 10 - 8. A nearly constant number of iterations (\sim 10) was needed in
all the examples considered in Figure 4. As in the case of the Laplace equation in two
dimensions using the trapezoidal rule [30, Remark 6.1], the fact that the interpolation
orders M = 0 and 1, and also M = 2 and 3, render the same order of convergence can
be explained by the fact that Fej\'er's quadrature rule in this case integrates certain
odd singular terms exactly.

The geometric setup of Figure 3 is next used to assess the accuracy of the
Chebyshev-based Nystr\"om method when dealing with the more challenging BM in-
tegral equation (2.7) for the solution of the Neumann problem (2.2). The relevant
numerical results are summarized in Table 1, where it can be clearly seen that, de-
spite the overall smaller errors obtained for M = 3, both interpolation orders M = 2
and M = 3 yield far- and near-field errors that exhibit the same nearly third-order
convergence rate as N increases. As in the previous example, the near fields were
computed using the kernel-regularized combined field potential (3.10), while the far
fields were, in turn, computed using the nonregularized expression (2.5). Directly-
regularized (3.14) and Maue-regularized (3.16) versions of the hypersingular operator
were considered in these examples. A number of GMRES iterations as large as 200
was needed to achieve the desired accuracy in some of the examples considered in
Table 1 due to the known unfavorable spectral properties of the hypersingular oper-
ator present in the BM integral equation. As is well known, the number of GMRES
iterations can be drastically reduced by considering appropriate preconditioners for
the hypersingular operator (cf. [2, 4]).
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A2110 C. P\'EREZ-ARANCIBIA, C. TURC, AND L. FARIA

Table 1
Far- and near-field errors in the solution of the Neumann problem (2.2) produced by the Nystr\"om

discretization of the BM integral equation (2.7) using the numerical PWDI procedure of section 4.2
for M = 2, 3 and various grid sizes N .

Nystr\"om method --- BM integral equation

M = 2 M = 3

N Directly-regularized Maue-regularized Directly-regularized Maue-regularized

Far-field

4 8.55 \cdot 10 - 2 2.01 \cdot 10 - 1 8.89 \cdot 10 - 2 6.66 \cdot 10 - 2

8 1.73 \cdot 10 - 3 8.44 \cdot 10 - 3 3.55 \cdot 10 - 4 2.03 \cdot 10 - 3

16 3.46 \cdot 10 - 4 9.46 \cdot 10 - 4 5.31 \cdot 10 - 5 2.60 \cdot 10 - 4

32 4.13 \cdot 10 - 5 1.21 \cdot 10 - 4 7.22 \cdot 10 - 6 3.22 \cdot 10 - 5

Near-field

4 1.61 \cdot 10 - 0 9.37 \cdot 10 - 1 1.19 \cdot 10 - 0 2.48 \cdot 10 - 0

8 7.32 \cdot 10 - 3 1.63 \cdot 10 - 2 3.31 \cdot 10 - 3 6.72 \cdot 10 - 3

16 1.86 \cdot 10 - 3 1.53 \cdot 10 - 3 1.79 \cdot 10 - 4 8.35 \cdot 10 - 4

32 2.27 \cdot 10 - 5 2.02 \cdot 10 - 4 2.08 \cdot 10 - 5 8.29 \cdot 10 - 5

We next consider once again the Dirichlet and Neumann problems posed in the
exterior of the unit sphere but now utilizing Galerkin BEM discretizations of the
associated BW (2.6) and BM (2.7) integral equations. The numerical results are
summarized in Table 2. The closed-form analytical density interpolation procedure of
section 5.2 is used in all the examples included in this table. The discrete variational
formulations corresponding to the BW and BM integral equations are given in (5.8)
and (5.14), respectively. We recall that the latter is here discretized as indicated in
section 5.2---by expressing it in terms of kernel-regularized single- and double-layer
operators. The near fields in this case were computed using the kernel-regularized
combined field potential (5.15), while the far fields were computed as before using the
nonregularized expression (2.5). As expected, these results demonstrate that far-field
errors exhibit second-order convergence rates for both BIEs and interpolation orders
M = 0 and 1 as the mesh size h = maxT\in \scrT h,i,j=1,2,3 | p\tau i  - p\tau j | decreases. In fact, the
errors obtained using the interpolation orders M = 0 and 1 are almost identical. The
closeness of the errors observed might be explained by the possible dominance of the
Galerkin-BEM \scrO (h2) errors over the errors introduced by the numerical integration
procedure. The near-field errors, on the other hand, exhibit nearly second-order
convergence rates for both orders M = 0 and 1, with significantly smaller errors
obtained for M = 1.

6.2.2. More complex surfaces. In order to demonstrate the accuracy of the
Nystr\"om method when dealing with more complex geometries, we consider the scat-
tering of a planewave uinc(\bfitr ) = eik\bfitr \cdot \bfitd , in the direction \bfitd = (cos \pi 

3 , - sin \pi 
3 , 0), that

impinges on the three sound-soft obstacles shown in Figure 5. The resulting scat-
tered field is the solution of the exterior Dirichlet problem (2.1) that is here solved by
means of the Nystr\"om method applied to the kernel-regularized BW integral equa-
tion (3.11). The far-field errors reported in Figure 5 were produced by (6.2) with the
set \Xi being the spherical grid displayed in Figure 3a. The reference solution usexact
in (6.2) was generated using a fine discretization of the BW integral equation consist-
ing of Chebyshev grids comprising 36\times 36 points per surface patch. Both (algebraic)
numerical (with M = 2) and (closed-form) analytical (with M = 1) density inter-
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PLANEWAVE DENSITY INTERPOLATION METHODS A2111

Table 2
Far- and near-field relative errors in the solution of the Dirichlet problem (2.1) produced by

the boundary element discretization of the BW integral equation (2.6) using the analytical PWDI
technique for different interpolation orders M and mesh sizes h. The surface \Gamma considered in this
example is a sphere of unit radius and centered at the origin.

Galerkin BEM

Far-field Near-field

h DoF M = 0 M = 1 M = 0 M = 1

BW integral equation

5.34 \cdot 10 - 1 114 4.48 \cdot 10 - 2 4.50 \cdot 10 - 2 7.11 \cdot 10 - 2 5.98 \cdot 10 - 2

2.72 \cdot 10 - 1 400 1.29 \cdot 10 - 2 1.32 \cdot 10 - 2 2.70 \cdot 10 - 2 1.65 \cdot 10 - 2

1.36 \cdot 10 - 1 1507 3.54 \cdot 10 - 3 3.54 \cdot 10 - 3 2.76 \cdot 10 - 2 4.14 \cdot 10 - 3

6.87 \cdot 10 - 2 6009 8.98 \cdot 10 - 4 8.96 \cdot 10 - 4 4.81 \cdot 10 - 3 1.05 \cdot 10 - 3

BM integral equation

5.34 \cdot 10 - 1 114 5.55 \cdot 10 - 2 5.38 \cdot 10 - 2 8.80 \cdot 10 - 2 8.29 \cdot 10 - 2

2.72 \cdot 10 - 1 400 1.65 \cdot 10 - 2 1.61 \cdot 10 - 2 3.02 \cdot 10 - 2 1.94 \cdot 10 - 2

1.36 \cdot 10 - 1 1507 3.97 \cdot 10 - 3 3.95 \cdot 10 - 3 3.04 \cdot 10 - 2 5.49 \cdot 10 - 3

6.87 \cdot 10 - 2 6009 1.02 \cdot 10 - 3 1.01 \cdot 10 - 3 4.71 \cdot 10 - 3 1.38 \cdot 10 - 3

5 6 8 10 13 16 20 25 32

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 5. Far-field errors in the solution of the Dirichlet problem (2.1) corresponding to the
scattering of a planewave off three different surfaces using the Chebyshev-based Nystr\"om method of
section 5.1 applied to the BW integral equation (2.6) with k = \eta = 1. Both analytical (with M = 1)
and numerical (with M = 2) PWDI procedures were used in this example.

polation procedures are utilized in this example. Third- and fifth-order convergence
rates of the far-field errors are observed for M = 1 and 2, respectively, for the smooth
surface cases (bean and ellipsoid). Only second-order convergence is achieved in the
nonsmooth surface case (cube) for both interpolation orders M = 1 and 2. The poor
convergence rate observed in the latter case is explained by the singular behavior of
the integral equation solution \varphi along the edges of the cube (cf. [10]). In fact, for
the interior point source problem described above in this section---in which case \varphi 
is smooth up to the edges of the cube---third- and fifth-order convergence rates are
attained. The total field solution of a higher-frequency scattering problem for the
bean-shaped obstacle---whose diameter is 10\lambda (k = 2\pi /\lambda = 10\pi )---is shown in Fig-
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d

d

Fig. 6. Real part of the total field u = us
D + uinc, where us

D is the solution of the exterior

Dirichlet problem (2.1) corresponding to the scattering of the planewave uinc(\bfitr ) = eik\bfitr \cdot \bfitd , with k =
10\pi and \bfitd = (cos\pi /3, - sin\pi /3, 0), off of a bean-shaped obstacle. Top: total field at a plane parallel
to \bfitd that passes through the center of the obstacle. Bottom: total field at a plane perpendicular to
\bfitd that passes through the center of the obstacle. The surface \Gamma was discretized using six 48 \times 48
Chebyshev grids. The discretized BW integral equation (with \eta = k) was solved by means of GMRES,
which required 55 iterations to attain the prescribed 10 - 7 error tolerance.

ure 6. The near fields displayed in Figure 6 are accurate to at least four decimal places
everywhere, including near and on the surface of the bean obstacle.

To finalize this section, we present examples aiming at demonstrating the capa-
bility of the BEM solver of handling complex geometries of engineering relevance.
To this end, we consider a triangular mesh representation of a Falcon airplane pro-
duced by Gmsh [16], which is used in the solution of two Dirichlet problems (2.1)
with different incident fields. In the first example, we validate our BEM solver for
this challenging geometry by considering an incident field given by two point sources
placed inside the airplane's fuselage. The numerical solution is then compared with
the exact solution. For the wavenumber k = 0.5\pi and the mesh size h = 1.62, we
obtain a relative error (6.2) of 8.1 \cdot 10 - 2 at a sphere containing the airplane. The
near-field error at two different planes intersecting the airplane is displayed in the
first row of Figure 7. Finally, our second example considers a planewave incident field
in the direction \bfitd = (cos \pi 

4 , - sin \pi 
4 , 0) for the same wavenumber (k = 0.5\pi ). Two

views of the real part of the total field are displayed in the second row of Figure 7,
where the acoustic shadow can be clearly seen under the airplane.
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Fig. 7. First row: Two views of the absolute error in the Galerkin BEM solution of (2.1) with
k = 0.5\pi for an incident field corresponding to two point sources placed inside the surface \Gamma which
models a Falcon airplane. The relative error (6.2) on a sphere containing the airplane is 8.1 \cdot 10 - 2

in this example, where the mesh size is h = 1.62. Second row: Two views of the real part of the
total field solution of the problem of scattering (2.1) for a planewave incident field in the direction
\bfitd = (cos \pi 

4
, - sin \pi 

4
, 0). The analytical PWDI procedure with M = 1 was used in all these examples.

6.2.3. Composite surfaces. In this final section, we apply the approach put
forth in section 3.3 to the solution of the Dirichlet problem (2.1), posed in the exterior
of the composite domain \Omega = \Omega 1 \cup \Omega 2 with boundary \Gamma = \partial (\Omega 1 \cup \Omega 2), where \Omega 1 is a
sphere of radius 0.5 and \Omega 2 is a hemisphere of radius 1.5. The incident field used in this
example is a planewave uinc(\bfitr ) = ei k\bfitd \cdot \bfitr in the direction \bfitd = (cos \pi 

4 , 0, - sin \pi 
4 ) and k =

\eta = 1. The multiple-scattering BW integral equation (3.18), posed on \~\Gamma = \partial \Omega 1\cup \partial \Omega 2,
is discretized using the BEM detailed in section 5.2 with M = 1. Figure 8 presents
the far-field errors for various mesh sizes h. The error is defined here as in (6.2) with
\Xi being the spherical grid shown in Figure 3a and the reference solution usexact being
produced using a fine mesh discretization, with h = 0.11, of the surfaces \Gamma 1 and \Gamma 2.
Three different \Omega configurations, shown in inset plots in Figure 8, are considered,
including one (on the left-hand side) in which the two obstacles are touching at a
single point. Clearly, second-order convergence is achieved, as h decreases, in all three
configurations. The real part of the total field solution of the problem of scattering
(for k = \eta = 5), together with the absolute value of the error obtained using the
multiple-scattering approach and the standard approach, is shown in Figure 9. The
reference solution for the error estimation is produced using a fine-grid discretization
of \Gamma using h = 0.1.
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Fig. 8. Far-field errors in the solution of the Dirichlet problem (2.1) corresponding to the
scattering of a planewave in the direction \bfitd = (cos \pi 

4
, 0, - sin \pi 

4
) off of three different composite

structures using the Galerkin BEM presented in section 5.1 applied to the BW integral equation (2.6)
with k = \eta = 1. The analytical PWDI procedure with M = 1 was used in this example. Separate
meshes of the sphere and the hemisphere were used in this example.

Fig. 9. Left: total near field corresponding to the scattering of a planewave in the direction
\bfitd = (cos \pi 

4
, 0, - sin \pi 

4
) using the Galerkin BEM presented in section 5.1 applied to the BW integral

equation (2.6) with k = \eta = 4 using separated meshes for the upper sphere and lower hemisphere.
Center: error in the solution using separated meshes with h = 0.22. Right: error in the solution
using a combined mesh with h = 0.21. Reference solution computed using a combined mesh with
h = 0.1. The analytical PWDI procedure with M = 1 was used in this example.

Remark 6.1. Finally, we recall that the proposed regularization procedure for the
evaluation of the potential (3.10) and the multiple scattering operators of section 3.3
involves computing the distance from a given target point \bfitr \in R3 \setminus \Gamma to the surface
and finding its closest point p\ast \in \Gamma . In the numerical examples presented in section 6
above, these tasks were performed by means of a naive and rather expensive procedure
that consists in computing the distances from the target point \bfitr to every discretiza-
tion point p on the integration surface \Gamma . For Nt target points, this procedure entails
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an overall computational cost of \scrO (NtN), where N is the total number of discretiza-
tion points on \Gamma . This computational cost, however, can be significantly reduced by
introducing a hierarchical partition of the space containing the surface \Gamma , which can
at the same time be utilized to accelerate the linear system solution by means of the
fast multipole method [18] or \scrH -matrix compression [19]. In fact, having an octree
data structure enables the use of efficient algorithms that reduce the computational
cost of computing the distance and finding the closest point to \scrO (logN) operations
per target point, thus reducing the overall cost to \scrO (Nt logN) operations. This and
other issues concerning a fast version of the PWDI method will be addressed in a
future contribution.
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