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Abstract—Recently, with the advent of the Internet of every-
thing and 5G network, the amount of data generated by various
edge scenarios such as autonomous vehicles, smart industry,
4K/8K, virtual reality (VR), augmented reality (AR), etc., has
greatly exploded. All these trends significantly brought real-time,
hardware dependence, low power consumption, and security
requirements to the facilities, and rapidly popularized edge
computing. Meanwhile, artificial intelligence (AI) workloads also
changed the computing paradigm from cloud services to mobile
applications dramatically. Different from wide deployment and
sufficient study of AI in the cloud or mobile platforms, AI
workload performance and their resource impact on edges have
not been well understood yet. There lacks an in-depth analysis
and comparison of their advantages, limitations, performance,
and resource consumptions in an edge environment. In this
paper, we perform a comprehensive study of representative AI
workloads on edge platforms. We first conduct a summary
of modern edge hardware and popular AI workloads. Then
we quantitatively evaluate three categories (i.e., classification,
image-to-image, and segmentation) of the most popular and
widely used AI applications in realistic edge environments based
on Raspberry Pi, Nvidia TX2, etc. We find that interaction
between hardware and neural network models incurs non-
negligible impact and overhead on AI workloads at edges. Our
experiments show that performance variation and difference in
resource footprint limit availability of certain types of workloads
and their algorithms for edge platforms, and users need to
select appropriate workload, model, and algorithm based on
requirements and characteristics of edge environments.

Index Terms—edge computing, artificial intelligence, perfor-
mance, resource footprint

I. INTRODUCTION

In recent years, edge computing has become a research hotspot
in both academia and industry. In cloud computing, all the
resources are concentrated in the cloud or datacenter. The
data generated on terminal devices is transmitted to the cloud
through network, and both computing and data storage are per-
formed on the cloud platform. In edge computing, computing
and storage resources are mostly deployed on the edge (i.e.,
edge servers or IoT devices), and local data can be processed
nearby without transferring the data to the remote cloud. A
report from AlefEdge [3] predicts that the edge computing
market will exceed $4 trillion by 2030. The emergence of
edges can greatly save the network bandwidth and reduce
the transmission delay between the cloud and the terminal,
and their advantages can significantly help to achieve better
application performance and quality-of-service (QoS).

Meanwhile, artificial intelligence (AI) is being increasingly
deployed on edge computing. The emergence of intelligent
edge computing is the result of the continuous development
of computer hardware and software as well as the requirements
for new applications or scenarios. First, the rapid innovation
on hardware such as various AI dedicated chips enables to
deploy artificial intelligence models on modern edges. Next,
with the development of Internet-of-Everything, especially the
artificial intelligent Internet-of-Things (AIoT), various new
devices are constantly emerging and generating massive data.
For example, ubiquitous surveillance cameras produce huge
amount of video data every day, and a self-driving vehicle
could generate terabytes of data daily on the road. Sending
all the data onto cloud for processing is unaffordable for
today’s infrastructure. Besides, new scenarios and applications
also require local data processing. For example, autonomous
driving and industrial automation have high requirements for
real-time data processing. Finally, privacy is another concern
for edge computing as many data (i.e., pictures, audios, videos,
etc.) contain a lot of personal information. The best way
to protect privacy is to process data on device instead of
transmitting personal data to the cloud.

Over the last decade, many studies have been proposed
to study the AI performance in the cloud. As smartphones
become more popular, the research related to mobile AIs also
developed and improved rapidly. As AI or machine learning
(ML) workload becomes increasing complex and more data
is generated at the edge, it is also interesting and critical to
study different artificial intelligence application performance
on the edges and their impact on the system, especially in the
resource perspective. However, we find that recent research in
the edge AI area focuses more on the AI model compression
and optimization, or AI privacy protection and model security
on edge platforms. There lacks research on the resource
consumption and performance analysis of different AI models
or applications on various edge computing platforms, which
is important for the improvement of edge platforms and the
deployment of AI workloads and services.

In this paper, we present a detailed analysis of representative
AI workloads on edges and perform an empirical study of
their performance and resource footprints. To the best of our
knowledge, this paper is the first to explore these aspects
of AI workloads on edges. We have important findings that
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Fig. 1: Typical edge hardware. From left to right are Google Coral, Raspberry Pi, and Nvidia Jetson TX2.

could help user select the appropriate edge platforms for
their workloads and guide the optimization of existing edge
hardware. The rest of this paper is organized as follows. In
Section II, we investigate the edge hardware and most widely
used AI edge workloads. Then we present our methodology,
the software and hardware we used, and the machine learning
models and algorithms in Section III. We use representative
applications to evaluate the performance, measure the resource
consumption, analyze the overhead in Section IV, V and VI,
and review related works in Section VII. Finally, Section VIII
concludes this paper with insights.

II. MODERN EDGE HARDWARE AND ARTIFICIAL
INTELLIGENCE WORKLOADS

A. Edge Hardware

Processor with Accelerator. Similar to traditional cloud hard-
ware, there exist two types of processors or system-on-a-chip
(SoC) in edge devices. As shown in Figure 1, the most popular
design of edge chips is to separate the functions to adopt
heterogeneous tasks, where the CPU is mainly used for logic
and control while the majority of computing workloads are
executed on a specific accelerator (i.e., GPU, TPU, FPGA,
etc.). Despite sacrificing general-purpose computing power,
heterogeneous processor with dedicated acceleration units is
more efficient in many scenarios, which can significantly
reduce the execution time of workloads, and improve the
performance-to-power ratio on the hardware. For instance, Han
et al. [12] proposed an efficient speech recognition (ESE)
solution using FPGA to improve the efficiency of sparse long
short-term memory network on mobiles and accelerate speech
recognition applications. Compared to solutions implemented
with CPU or GPU, ESE built on FPGA can achieve up to 40×
and 11.5× on energy efficiency, respectively.

General Purpose SoC. In contrast to chips equipped with
specific accelerators, another type of SoC on edges is the
general processor, such as ARM chips on the Raspberry Pi.
By extending functions from data centers to edges, service
providers can process data much closer to terminal devices
and data sources. For instance, Intel Xeon D-2100 provides
an independent SoC which integrates all functions including
computing, storage, and networking inside the chip. ARM
recently announced two new processors, Cortex-M55 and
Ethos-U55, which provide built-in AI processing capabilities
for IoT devices. In recent years, in order to improve the

computing power of machine learning (ML) and AI, gen-
eral processors also add new instruction support for tensor
computing and increase the parallelism. For instance, Intel
added SIMD (single instruction stream multiple data stream)
and VLIW (very long instruction word) into its Habana chip,
which allows processing large amounts of parallel data with
only one instruction. Different from the processor with specific
accelerators, this type of solution makes the SoC architecture
more versatile and generalized.

Memory. The memory on edges also has a huge impact on
AI workload performance. As the memory speed is far slower
than processors, inefficiency on memory will not only limit
SoC performance, but also cause memory wall effect for
many applications. Based on statistics [2], 90% of the data
stored today was produced within past two years. Therefore,
data generation, calculation, and fast access have become an
inevitable part of the user experience on modern AIoTs. As
the size of most neural network models continue to grow,
it introduces significant challenges to the AI deployment on
edges. From the hardware perspective, we can use high-density
memory or speed up read and write through non-volatile
memory. Another strategy is to make neural network small
enough through model compression. If the model is difficult to
diminish, the data could also be directly computed in memory
without having to fetch data into processors. Normally, in-
memory calculation can greatly reduce the power consumption
and dramatically increase the speed of inference. However, in-
memory computing is essentially simulation calculation and
the algorithm accuracy might be limited.

Storage & Network. Besides the processor and memory,
storage is also critical for ML performance on edge devices,
especially for unstructured data such as pictures and videos.
Network connections, including 5G, Bluetooth, Wi-Fi, Ultra-
wideband, etc., also play an important role in edge AI of
distributed and parallel systems. As this paper focuses on AI
workload execution and resource footprint on the single edge
node, the above hardware will not be discussed in this research.

B. Edge AI Workloads

To find the most popular and widely used AI workloads on
edge infrastructure, we surveyed a selection of services and
categorized them based on their scenarios: Target Recognition
(Type α), Image Processing (Type β), and Object Segmentation
(Type γ). We present an overview of these applications along



TABLE I: Specifications of the measured devices.

Specification
Raspberry Pi Model 4B

(General edge architecture)
NVIDIA Jetson TX2

(Heterogeneous edge architecture)
Amazon EC2 t2.xlarge

(General cloud architecture)

CPU A quad-core cortex-A72
ARM v8 64-bit SoC 1.5GHz

A quad-core 2.0GHz 64-bit ARM v8 A57 processor; a
dual-core 2.0GHz superscalar ARM v8 Denver processor

A quad-core 3.0GHz Intel scalable
processor (vCPU)

GPU No GPU 56-core 1.33 TFLOPS NVIDIA Pascal No GPU

Cache
32 KB L1 data cache

48 KB L1 instruction cache
1MB L2 cache

64KB L1 data cache 128KB L1 instruction cache
2MB L2 cache

32KB L1 data cache
32KB L1 instruction cache

256KB L2 cache
Memory 4 GB LPDDR4-2400 RAM 8 GB 128-bit LPDDR4 1866 MHz 16 GB RAM (vMemory)
Storage 32 GB MicroSD Card 32 GB eMMC 5.1 disk 80GB HDD

with brief descriptions of their characteristics. Overall, edge
AI workloads have the following common features: First, the
application generates large amounts of data at the edge, which
is not necessary to upload all of them to the cloud. Instead,
most of the data is processed locally in real time, where the
network has little impact while SoC as well as memory deter-
mines its performance. Second, compared to cloud services,
edge applications are highly distributed, more fragmented
and miniaturized, which responses with less latency and data
transmission time. Third, the software and hardware of edge
computing is more diversified than cloud with fixed usage.
Although the edge can normally expand, it does not provide
universal functions as cloud, and the edge scenes are often
dominated by a single node. Lastly, each module of edge
computing also needs to continually iterate and update, but
the frequency is much less than cloud scenarios. Therefore, the
update on the edge is often unreliable and uncontrollable, and
cannot be as neat as cloud services to ensure the same version
and status in real time. Different from cloud, the execution of
edge service is more local data-driven.

(α.1) Object Recognition. In computer vision, object recog-
nition aims to use image processing theories and pattern
recognition methods to determine whether there are objects of
interest in given image or video. In recent years, object recog-
nition has received more attention, and has been applied in
many fields at edge devices. For instance, security companies
deployed object recognition in surveillance systems to track
objects and pedestrians. Smart city systems adopt monitoring
systems for traffic tracing, vehicle counting, plate detection
and recognition. Also, smartphones use AI for content-based
image retrieval, automatically collecting metadata for albums.

(α.2) Classification. Classification is one of the fundamental
tasks of many AI workloads. An example is to label input
images with fixed categories under the smallest classification
error. Generally, image classification can only tell categories
and their probabilities that appear in the picture, and limited by
categories that have been trained. Although many algorithms
and models can implement image classification, it still faces
many difficulties and challenges in reality, such as unbalanced
categories, fine-grained classification with high intra-class
variance, etc. Besides, image classification is also limited by
real-time inference ability of edge hardware.

(α.3) Facial Recognition. Facial recognition is a process that
identifies or verifies the identity of a subject in images or

videos based on facial characteristics (such as statistical or
geometric features). Right now, facial recognition is widely
used in life, such as iPhone FaceID. Other common applica-
tions of face recognition include access control, monitoring
systems, fraud detection, identity authentication, and social
media. The traditional facial recognition transmits the figure to
the cloud for recognition. This process takes large amount of
time. Moreover, in some cases where the network environment
is poor, traditional algorithms will be much slower. The facial
recognition in edge computing places the recognition process
locally, which saves time for repetitive transmission, improves
efficiency and security at low cost.

(β.1) Image Super-resolution. Super-resolution is to improve
the resolution of original image through algorithms. Low-
resolution images are generally obtained through a series of
degradation operations, which might lose lots of details but
also introduce much noise. The super-resolution process based
on deep learning is essentially using paired training data for
supervised learning, and then performing the inverse operation
to obtain the reconstructed high-definition image. Currently,
there exist two types of image reconstruction. One synthesizes
a high-resolution image from multiple low-resolution images.
The other obtains a high-resolution image from a single low-
resolution image. Image super-resolution has a wide range of
applications in movies, satellite images, medical imaging and
other fields. Through image super-resolution, reconstruction
of high-quality multimedia content can be completed without
consuming many resources, especially at the edges.

(β.2) Photo Enhancement. Photo enhancement is to improve
the overall or local characteristics of images, including me-
liorating the color, brightness, and contrast, making original
illegible parts clear, or highlighting the important objects
inside. Image enhancement has been adopted with many AI
tasks, such as target detection and item classification. In
edge computing, image enhancement is also widely used
such as identification of severe weather and night images in
autonomous driving. Images and videos captured under dim
light conditions often suffer from visibility, with significant
reductions in brightness and contrast. Therefore, industries
usually enhance images first, and then proceed to the detection
and recognition process.

(β.3) Bokeh Simulation. Recently, image effects have received
increasing attention in different applications. Bokeh is one
popular example which blurs the image at unfocused area.



TABLE II: Specifications of AI workloads.

Task Neural Network Description Resolution(px)

Object Recognition MobileNet v2 [31] A depthwise separable convolution network with linear bottlenecks between the
layers and linear bottlenecks between the layers 224x224

Classification Inception v3 [39] A widely-used image recognition model that has been shown to attain greater
than 78.1% accuracy on the ImageNet dataset 346x346

Classification Inception v4 [37] Built on Inception v3 but with specialized grid reduction 346x346
Facial Recognition Inception-ResNet v2 [14] A variation of Inception V3 with residual networks 346x346

Classification ResNet-50 v2 [14]
A 50 layers deep convolutional neural network, consists of 5 stages each with a
convolution and Identity block. Each convolution block has 3 convolution layers

and each identity block also has 3 convolution layers
346x346

Classification ResNet-152 v2 [14] Similar as ResNet-50 v2 but contains 152 layers 256x256
Classification VGG-16 [34] A CNN with 16 layers including 13 convolutional layers and 3 dense layers 224x224

Super-Resolution VGG-19 [21] Similar as VGG-16 but with 19 layers including 16 convolutional layers and 3
dense layers 512x512

Super-Resolution ResNet-SRGAN [22] Super-resolution Using a Generative Adversarial Network (GAN). Residual
block designed using ResNet 512x512

Image Deblurring SRCNN 9-5-5 [11] A deep learning method for single image super-resolution 512x512
Image Enhancement ResNet-DPED [17] A residual CNN improving color resolution and image sharpness 256x256
Bokeh Simulation U-Net [30] A convolutional network for fast and precise segmentation of biomedical images 512x512
Semantic Image

Synthesis Nvidia-SPADE [28] A semantic image synthesis system with spatially-adaptive normalization 128x128

Image Segmentation ICNet [43] A network for real-time semantic segmentation on high-resolution images 1024x1024
Image Segmentation PSPNet [44] Pyramid scene parsing network with pixel level prediction 720x720
Image Segmentation DeepLab v1 [9] A deep convolutional network for semantic image segmentation 512x512

Generally, this effect is achieved by large aperture of the fast
lens, which is difficult for mobile platform and edge cameras.
However, with artificial intelligence develops, it is much easier
to divide the focused area and background to achieve the
blurred effect in images, such as portrait mode on portable
cameras. With pre-trained neural networks, it can be applied
to any image to have an artistic blur.

(β.4) Semantic Image Synthesis (SIS). SIS is to semantically
control and modify scenes in images. Unlike traditional meth-
ods, data-driven graphics can use multiple image regions to
synthesize a new image and extract typical semantic features
based on large-scale image datasets. This method allows users
to specify structure of scene, modify contents, and effectively
eliminate discontinuities and artifacts generated during the
synthesis process. The current SIS system mainly generates
a realistic image based on user-specified semantic including
colors, sketches, textures and others. For example, Nvidia’s
GauGAN can not only generate good visual effects, but also
control the style and semantic structure of the generated
results, which is significantly useful in the modern virtual
reality (VR) or augment reality (AR) applications.

(γ.1) Semantic Segmentation. Object segmentation is another
key task in AI, which divides the image into several disjoint ar-
eas based on grayscale, color, spatial texture, geometric shape
and other characteristics. A common example is to separate the
target from the background image. The features in the same
area show consistency or similarity. Semantic segmentation
is extremely important in areas such as identifying buildings,
roads, and forests in satellite images, or locating lesions and
measuring areas in medical images, etc. In recent years, with
development of deep learning, image segmentation technology
has evolved into scene object segmentation, human back-
ground segmentation, human face parsing, 3D reconstruction,

etc., which has been widely applied in self-driving, augmented
reality, security monitoring and other industries.

III. METHODOLOGY

A. Hardware Platforms

We conduct our study on several representative edge devices.
For general purpose edge, we choose Raspberry Pi 4B with
quad-core CPU and 4GB of RAM. For edge hardware with
heterogeneous accelerators, we use Nvidia Jetson TX2, which
has a quad-core A57 processor, a dual-core Denver processor,
a 56-core GPU, and 8GB of RAM. In order to highlight
the performance difference between edge devices and cloud
servers, we also evaluate the workloads on an Amazon EC2
t2.xlarge VM, which is equipped with a quad-core vCPU
and 16GB of memory. All processor cores in SoC have a three-
level cache hierarchy that the L1 and L2 caches are private to
each core, while the last level cache (LLC) is shared among
all cores. Table I summarizes the key architectural parameters
of the hardware systems.

B. Framework, Benchmarks and Measurement

Based on the popularity of machine learning frameworks,
this paper mainly evaluates the performance of TensorFlow
Lite, which is widely adopted on mobile platforms, e.g., iOS,
Android, as well as IoT device operating system, e.g., Snappy,
TinyOS, Raspbian, etc. The performance discrepancy with
other frameworks such as Caffe2, MXNet, PyTorch can be
learned from Zhang’s report [41]. Keras is also extensively
used but it is still built based on TensorFlow.

TensorFlow Lite. TensorFlow is developed by Google in 2015,
which has integrated most of the common units into the
ML framework. Typically, when a ML model is implemented
and trained using TensorFlow, it usually generates a model
file that requires ample storage space and a GPU to run



inference. However, luxuries such as large storage and specific
accelerators are not available on most edge devices. Instead,
TensorFlow Lite is an open-source deep learning framework
for mobile and edge device and was presented in 2017. As a
successor of TF Mobile library, it provides better performance
and smaller binary size due to optimized kernels, pre-fused ac-
tivations and fewer dependencies. The version of TensorFlow
Lite we used in this paper is 1.14.

Workloads. AI Benchmark [1] is an open-source python
library for evaluating AI performance of various hardware
platforms. The benchmark relies on TensorFlow ML library,
and provides a lightweight and accurate solution for assessing
inference and training speed of key deep learning models. AI
Benchmark is distributed as a Python package and supports
any OSes. The version of AI Benchmark we are using is 0.1.2.
In total, it consists of 42 tests and 16 sections. The details of
workload and their neural network models can be found in
Table II. The tests cover all major deep learning tasks and
algorithms on modern systems and platforms.

Experimental Setup and Methodology. We execute workloads
in AI Benchmark to evaluate the AI and ML performance
on the above edge devices. Data from these workloads was
captured using Linux nmon [4] and the output files were then
converted into HTML files using nmonchart. These files were
further edited to highlight the duration of each test. The CPU
and memory statistics of each device were obtained, and their
efficiencies were analyzed. In addition, we also measured the
process context switch on edges, which was calculated by
counting number of processes that are enqueued or dequeued
from the run queue on each core every second.

C. Machine Learning Models and Algorithms

Convolutional neural networks (CNNs) have been deployed
successfully in a variety of AI applications, including image
classification, face recognition, and object detection. In 2012,
AlexNet was proposed and a variety of neural networks
have been invented since then. In 2014, researchers from
Oxford proposed VGG proving that increasing the depth
of networks can affect final results. Compared to AlexNet,
VGG16 [34] used several consecutive 3×3 convolution ker-
nels to replace the larger convolution kernels (e.g., 7×7) in
AlexNet. VGG19 [21] has three more convolutional layers
than VGG16, which performs better than VGG16 but requires
more computation. The most direct way to improve network
performance is to increase the network depth (number of
network layers) and width (number of neurons). However,
this method could introduce too many parameters, produce
overfitting, increase the calculation complexity and make it
difficult for optimization.

Another solution to improve neural network performance
is to add more customized functions on convolutional lay-
ers. In 2014, GoogLeNet proposed Inception structure [38]
to build a high-performance network. Inception V1 has a
sparse network structure but can generate dense data, which
not only improves the neural network performance, but also

guarantees the resource efficiency. Inception V2 [18] updates
the internal calculation logic of V1 and proposes factorizing
convolutions. Inception V3 [39] adds factorization to speed
up the calculation and increase the depth and nonlinearity of
the network. Inception V4 [37] uses residual connection and
further evolved to Inception-ResNet-v1 and Inception-ResNet-
v2 networks. With the popularity of mobile and IoTs, it is also
increasingly critical to study small and efficient CNN models.
In 2017, Google announced MobileNet V1 [15], a lightweight
deep neural network with depthwise separable convolution
for embedded devices. Next year, Google released MobileNet
V2 [31], which integrated inverted residual block with V1. The
experiment proves that V2 has similar amount of calculation
but V2 achieves better accuracy than MobileNet V1.

Although CNN has been widely used in image-level tasks
like object recognition and classification, many other AI work-
loads such as image enhancement and object segmentation
require pixel-level detection and analysis. Because CNN loses
image details during convolution and pooling, it could not
well indicate the specific outline of the object and thus many
new neural networks were designed based on CNN by adding
new features and modules. U-Net [30] is a segmentation
network that stitches features together in the channel to
achieve semantic segmentation. PSPNet [44] introduces more
context information on fully convolutional network (FCN)
algorithm and adopts global average pooling and feature
fusion to avoid false segmentation. ICNet [43] is built on
PSPNet and uses low-resolution semantic information as well
as high-resolution image details to achieve image semantic
segmentation. DeepLab [9] combines deep convolutional neu-
ral networks and dense conditional random field, and achieves
good results in semantic segmentation. In terms of image
super-resolution, many neural networks are also proposed in
combination with knowledge in other fields. For instance,
SRCNN [11] proposed using deep learning and traditional
sparse coding to apply in single-image super-resolution re-
construction. SRGAN [22] found that the image would be
too smooth and lack of realism if the image magnification
is larger than four. Therefore, it proposed to take advantage of
generative adversarial network (GAN) to generate more details
in the super-resolution image.

IV. OBJECT RECOGNITION AND CLASSIFICATION
PERFORMANCE AND ANALYSIS

We first evaluated the recognition and classification workloads
on edge devices and cloud VM. We used MobileNet-V2
model to recognize a 224×224-pixel photo from 1000 different
object classes. As Figure 2(a) shows, MobileNet is fast and
lightweight, which consumes very little CPU and memory.
For instance, compared to the Inception-V3 CNN with same
workloads, MobileNet only requires less than half of RAM and
the average CPU is nearly an order of magnitude lower, which
is more suitable to deployed on the edge and IoT devices
with resource constraints. Next, we executed Inception-V3
network, which is comprised of 11 inception blocks that
mainly consist of 1×1, 1×3+3×1, 1×7+7×1 and 3×3 con-
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Fig. 2: CPU and memory utilization of object recognition applications on edge devices and cloud VMs.

volutional layers, to recognize the same image set but with
larger input. Compared to MobileNet, Inception-V3 is larger
and more accurate, but consumes a much higher average CPU
as well as more memory. Inception-V4 also uses the similar
deep convolutional network and the performance and resource
footprint difference are relatively small compared to Inception-
V3. Lastly, we evaluated face recognition performance using
Inception-Resnet-V2 neural network. The size of input im-
ages is 346×346 pixels, and the dimensionality of feature
vectors is 128. Different from Inception-V3 and V4, Inception-
Resnet-V2 adopts a residual connection, which significantly
improves recognition performance. As depicts in Figure 2,
the CPU utilization is much less than Inception-V4 but the
Inception-Resnet-V2 consumes more memory than the general
deep convolutional network models. We also evaluated neural
network ResNet V2-50 with input 346×346, and ResNet V2-
152 with input 256×256. The peak CPU of ResNet V2-50 is
higher as the input picture is larger. However, ResNet V2-152
runs longer because it has more layers to calculate. VGG is
by far the most expensive architecture in terms of computing
requirements and number of parameters, although it has been
widely adopted in many applications. It can be observed from
Figure 2 that the average CPU, peak CPU and execution time
are similar as Inception and ResNet models even though the
input picture of VGG16 is much smaller. In addition, VGG16
consumes more memory, even if the input data is the same as
MobileNet. Therefore, it is highly recommended not deploying
VGG model on edge or IoT devices.

Besides above, we also observed that the most of image
recognition and classification workloads were CPU-intensive.
Therefore, we evaluated the same AI workloads on Nvidia
TX2, another edge device but equipped with an accelerator.
As Figure 2(b) shows, the CPU consumption are reduced

significantly due to the computation offloading onto GPUs.
For example, under Nvidia TX2, the CPU utilization of all
applications does not exceed 25% in comparison with more
than 80% on the Raspberry Pi. However, there also exist
additional overhead with external accelerators. First, the GPU
computation consumes lots of memory for input data, tem-
porary value and program instructions, and the free memory
drops significantly when the workload executes, as shown in
Figure 2(b). For instance, when Inception-V3 executes the
same load, Nvidia TX2 requires 2GB memory while Raspberry
Pi only needs 600MB. Second, we also found the process
context switch increases dramatically with GPUs. As shown
in Figure 3, the process switch number per second increases
with an order of magnitude compared to the computation with
only CPUs. This is due to the fact that the CPU has to interact
with the accelerators during the computation. For instance,
the CUDA framework function cudaMemcpy is frequently
processed during the data transmission between CPUs and
GPUs. In addition, we also evaluate the same workload on
cloud VM of Amazon EC2 and compare the results with edges.
As depicted in Figure 2(c) and Figure 3, the resource footprint
of edge devices (such as Raspberry Pi) performs similarly to
that of VMs on the cloud. However, the speed of cloud servers
far exceeds that of edge nodes.

V. IMAGE-TO-IMAGE PERFORMANCE AND ANALYSIS

Next, we evaluated the performance and resource footprint of
image-to-image workloads. As compute-intensive workloads,
the performance of image-to-image tasks on general edges
is similar as cloud VMs. Like the results in Section IV, the
heterogeneous architecture with accelerators reduces the CPU
utilization while consuming more memory. However, such the
hardware could effectively strengthen the system stability. We
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Fig. 3: Process context switches of AI workloads on edge devices and cloud VMs.

also observed similar results on Google coral with edge TPUs.
As depicted in Figure 4, compared to the Nvidia TX2, the AI
workload performance on cloud VMs is much close with that
on Raspberry Pi but with smaller variation. Instead, as the
OS is heavier and the cloud is equipped with thicker software
stack, the VM consumes more memory executing the same AI
workloads. In the following sections, we analyze individual
application with their neural network models.

Image deblurring is built on one of the most primitive
and lightweight neural network SRCNN. The structure of
SRCNN is very simple and only has three convolutional layers.
For a low-resolution image, this method first uses bicubic
interpolation to enlarge to the target size, and then performs
nonlinear mapping through a three-layer convolution network
to output a high-resolution image. The size of the convolution
kernel of three layers are 9×9, 5×5 and 5×5. As shown in
Figure 4, SRCNN model is much faster than VGG19 and
DPED. In our results, we also note that the processing time of
SRCNN is highly linear with the resolution of the test image.
The size of the highest image pixel that SRCNN can handle
increases linearly with the total RAM size of the device.

Compared to VGG16 in Section IV, there is no essential
difference of VGG19 except the network depth. Based on
AlexNet, VGG network uses a continual 3×3 small con-
volution kernel to replace the larger convolution kernel in
AlexNet (e.g., 11×11), which can better extract deep features
of data. Different from the previous models, VGG has a deeper
number of layers (19 layers in VGG19) and more parameters
(138 million parameters in VGG19), and thus consumes more
computing resources and executes much longer. We found that
most of its parameters are from the first fully connected layer.

SRGAN adopts generative adversarial network (GAN) for
image super resolution. The traditional methods focus on a
smaller image magnification. However, once the magnification
rate is above four, the generated images would become too
smooth and are lack of details. For the same input size,
the CPU utilization of SRGAN is much less than SRCNN
and VGG19, and the memory consumption is also smaller.
DPED also used GAN for image enhancement. The generation
network has 12 layers, which used three-channel image patch
as input, then performed by four residual blocks with two
convolution layers in each block, another three convolutional
layers and one three-channel convolutional layer. The dis-
criminator network has five convolutional layers and finally
generates a 2-dimensional probability vector. DPED proposes

a variety of loss functions, including content loss, textures
loss, detail enhancement, etc., to effectively evaluate the image
quality. As shown in Figure 4, DPED is also a compute bound
workload with similar CPU usage and memory consumption
as other neural network models.

U-Net is designed for semantic segmentation and here the
workload adopts U-Net to simulate the bokeh in the photo.
U-Net is a fully convolutional neural network where the input
and output are both images without fully connected layer. The
shallow high-resolution layer is used for locating pixel while
the deep layer is designed for pixel classification. Because the
adjacent pixel blocks are repeatedly processed, there exists
a lot of repetitive calculations and peak CPU is always high.
Unlike the classic convolutional neural network that uses fully
connected layers to obtain fixed-length feature vectors, U-Net
can accept input images of any size and restore it to the same
size of input image using deconvolution layers for sampling.
Therefore, its memory utilization, as illustrated in Figure 4, is
stable during the execution.

In recent years, many works have been proposed in image
generation, such as spatially-adaptive normalization (SPADE)
displayed by Nvidia at GTC 2019. SPADE is built on Batch-
Norm [18] and the input of generator is a vector which is
calculated by an image encoder and a specific style image.
After processing, SPADE generates a synthetical image based
on user scribble. Our measurements found that the CPU
and memory usage fluctuated during the SPADE processing.
We speculated that it is due to the fact that generators are
implemented by stacking multiple residual blocks. In the
SPADE architecture, the vector is processed by encoders
through inverse normalization. When using the trained model
to generate images, it can directly use the vector as generator
input. As each generator is compute-intensive, the performance
fluctuation can be observed on general edge devices as well
as the cloud VMs.

VI. SEGMENTATION PERFORMANCE AND ANALYSIS

Lastly, we evaluated the performance and system footprint
of various segmentation workloads. PSPNet is one of the
most widely used semantic segmentation algorithms. First,
the features of input image are extracted through a feature
extraction network. The features of different depths are ob-
tained by pooling operations of different scales. Next, an
1×1 convolutional layer reduces the feature dimension to a
quarter of the original one. Finally, these features are directly
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Fig. 4: CPU and memory utilization of image-to-image applications.

sampled to the same size and merged with the input features.
The process of feature merging is to fuse the details of the
target (shallow features) and the context information (global
features). As there needs to provide global context, feature
receptive field outputted by the feature extraction network
must be large enough. From resource perspective shown in
Figure 5, PSPNet has to run long enough and consumes much
CPU and memory resources.

ICNet is a real-time semantic segmentation network based
on PSPNet, which is designed to reduce the inference time. It
combines the efficiency of processing low-resolution images
and the inference quality of high-resolution images. Specif-
ically, the idea is to first obtain prediction based on low-
resolution images. Then, ICNet provides cascading feature
fusion unit and label to integrate high-resolution features and
gradually refine semantic graph. Experiments show that ICNet
can achieve a fast and high-quality segmentation model with
low computational cost. As depicted in Figure 5, although the
input of ICNet is larger, it still runs faster than PSPNet and
the peak CPU and memory consumption is much lower, which
is more suitable for deployment on edge or IoT devices.

DeepLab is a semantic segmentation network proposed by
Google in 2016. When processing semantic segmentation, the
previous DCNN (Deep Convolutional Neural Network) either
makes the output resolution smaller in multiple pooling or
loses important information when continuous downsampling.
DeepLab used hollow convolution, which can effectively con-
trol the receptive field and adjust the resolution. Meanwhile,
by setting the step size, DeepLab can reduce the resolution
while increasing the receptive field of hollow convolution.
DeepLab consists of DCNN and conditional random field
(CRF). The DCNN model uses pre-trained VGG16. Therefore,
its resource consumption is relatively high in both peak CPU

and memory usage. In addition, the predicted object location
of DCNN is not accurate and the object outline is rough. The
process of input images is gradually abstracted. Therefore,
we can observe lots of CPU and memory usage fluctuates in
Figure 5. Similar to the previous evaluations, the Nvidia TX2
offloads most of the computation onto GPUs and consumes
more memory. Due to the more powerful hardware, the cloud
server performs similar to the Raspberry Pi but is more stable
and faster than the edges. The CPU variation of execution on
the cloud is only 6% while edge CPU variation is nearly 15%.

VII. RELATED WORK

Artificial intelligence on edges. As increasing AI and ML
applications are deployed on the IoTs, a growing number of
studies start to focus on analyzing the efficiency at edges.
Canziani et al. [8] report an analysis of deep neural networks
(DNN) with their accuracy, memory footprint, parameters,
power consumption, etc. Bianco et al. [6] presents case studies
of more than 40 state-of-the-art DNN architectures trained on
ImageNet-1k. However, these works only focused on specific
types of applications such as image recognition and our work
is more in-depth and comprehensive for all representative
workloads. In 2017, Shanthamallu et al. [32] assessed various
ML models and methods in IoT data analytics, and presented
different algorithms and their efficiencies in extracting higher
level data from IoT devices. In 2018, Dong et al. [23]
presented research that focused on processing capabilities for
deep learning at the edge and Zhang et al. [41] studied various
edge devices with different ML packages. Different from the
above research working on efficient deep learning algorithms
or artificial intelligence models, our study focused on the
comparison and analysis of the system resources level and
how well they are processed and utilized by different models.
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Fig. 5: CPU and memory utilization of image segmentation applications.

Infrastructure efficiency on edges. Recently, many studies
explored how to optimize infrastructure performance to im-
prove edge computing efficiency for AI or ML workloads.
Morabito et al. [26] proposed to consolidate edge comput-
ing with lightweight virtualization including containers and
unikernels. Son et al. [35] proposed a framework with SDN
and NFV at edge environments, which greatly improve end-to-
end delay, network traffic, and power consumption in different
scenarios. Several other papers studies computation offload-
ing [36], frequency scaling [10], cloud-edge assisted [23] to
improve the energy efficiency, application performance and
system security. For instance, Li et al. [23] proposed to divide
DNN model into two parts and deployed the initial layers
computation on edge servers and higher layers on the cloud.
DeepDecision [29] and MCDNN [13] take an optimization-
based offloading approach with constraints such as network
latency and bandwidth, energy, and cost. Those studies are
orthogonal to our work.
Edge infrastructure resource management. Much effort [5],
[7], [19], [20], [24], [27], [33], [45] has been dedicated to
analyzing factors that affect edge application performance and
proposing effective solutions. Zhu et al. [45] designed and
implemented Slim, a low-overhead container overlay network
in which packets inside only traverse the network stack exactly
one time. Khalid et al. [19] reported that a container with
heavy network traffic can decrease the compute resource avail-
able to its neighbors on the same server, and thus proposed
a scheme, named Iron, to precisely account the consumed
CPU time and enforce fair resource allocation. Other works,
including the virtual routing, resource management [16], re-
distribution and reassignment [42], hardware offloading or
bypassing the inefficient parts inside kernel [40], focus on
optimizing the data path and improving system network pro-
cessing. There is also a large body of work dedicated to
elastic resource management and high resource utilization. For

instance, Mohan et al. [25] proposed optimizing cold start
through pre-allocating virtual network interfaces that are later
bound to new function containers. Different from the above
works, this research focuses on investigating the efficiency and
system footprint of AI workloads on edge infrastructure.

VIII. CONCLUSION AND INSIGHTS

In this paper, we present a detailed analysis of representa-
tive AI workloads on various edge devices. Specifically, we
perform a comprehensive empirical study and quantitatively
evaluate the classification, image-to-image, and segmentation
applications with different neural network models. We com-
pared the performance discrepancy on different types of edge
hardware as well as cloud platforms. To the best of our
knowledge, this paper is the first to explore the AI workloads
performance and their resource footprint on the edge plat-
forms. Our analysis and findings could help the users deploy
the appropriate models and workloads on their scenarios, and
shed light on guiding the optimization of AI workloads on
modern edge environments. To summarize, this paper has the
following findings and insights:

• General and heterogeneous edge architecture with ac-
celerators present a significant performance difference
of AI workloads. Good performance can be attained by
offloading computation to accelerators while it might
sacrifice with massive memory consumption.

• For the same type of workload, cloud and general edge
perform similarly and have analogous resource footprints.
For AI applications on edges, local hardware such as SoC
and memory determine its performance while the cloud
is faster and more stable.

• Same types of workloads perform comparably but al-
gorithm models such as neural networks could impose
certain overhead on resources. This is due to complex



interactions between the AI workloads and the software
stacks in edge devices.

• AI processing in edge devices is also concerned with
other factors such as response time, model volume and
cost. Overall, only a few AI workloads and related models
are suitable to execute or deploy on edges.
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