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A Spectral Approach to Nondestructive Testing via
Electromagnetic Waves

Fioralba Cakoni, Samuel Cogar™, and Peter Monk

Abstract—1In recent years, a new approach has been proposed
in the study of the inverse scattering problem for electromagnetic
waves. In particular, a study is made of the analytic properties
of the scattering operator, and the results of this study are
used to design target signatures that respond to changes in
the electromagnetic parameters of the scattering medium. These
target signatures are characterized by novel eigenvalue problems
such that the eigenvalues can be determined from measured
scattering data. Changes in the structural properties of the
material or the presence of flaws cause changes in the measured
eigenvalues. In this article, we provide a general framework
for developing target signatures and numerical evidence of the
efficacy of new target signatures based on recently introduced
eigenvalue problems arising in electromagnetic scattering theory
for anisotropic media.

Index Terms—Electromagnetic scattering, inverse problems,
modified transmission eigenvalues, Stekloff eigenvalues, target
signature.

I. INTRODUCTION

HE inverse scattering theory is central to such diverse

areas of applications, such as medical imaging, geo-
physical exploration, and nondestructive testing. Typically, the
inverse scattering problem is both nonlinear and ill-posed,
thus presenting particular difficulties in the development of
efficient inversion algorithms. Many existing algorithms are
based on either a weak scattering approximation (lineariza-
tion) or the use of nonlinear optimization techniques. Non-
linear optimization can successfully determine full details
of a scatterer (even when the scattering is not weak) in
many cases and is very flexible. Despite strong progress on
algorithms [1]-[7] and theory [8] for this problem, it is still
computationally intensive.

An alternative class of approaches, termed qualitative meth-
ods, attempts to use more extensive data to reduce computa-
tional cost while still avoiding the weak scattering assumption.
The target signature algorithms that we shall describe here
are motivated by our study of a particular qualitative method
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called the linear sampling method (LSM) (see [9], [10] and
references therein for background on the electromagnetic
LSM and [11] for recent progress). Approaches of the type
considered here originate in the work of Audibert ef al. [12]
for the Helmholtz equation.

The motivation for proposing target signatures in nonde-
structive testing is twofold. First, there are some problems that
are not amenable to existing methods of interrogation based on
linearization or optimization, and second, it may be desirable
to have a relatively simple method for the classification of
scatterers.

As an example of the first case, airplane canopies can
suffer degradation from continuous exposure to ultraviolet
radiation from sunlight. The degradation takes the form of the
weakening of the polymer structure of the canopy. It would,
therefore, be useful if these canopies could be quickly and
simply inspected so that replacements were not ordered earlier
than needed. In such a problem, complications arise due to
the fact that, in general, the spatially varying permittivity
and conductivity tensors of the material being tested are
anisotropic, thus not uniquely determined from any amount of
scattering data unless a specific structure is assumed (see [13]
for the Helmholtz case). In spite of this complication, one
would, nevertheless, like to test for either structural changes in
the material or the presence of voids or cavities. One approach
for doing this might be to identify certain discrete “target
signatures” characterized by novel eigenvalue problems such
that these eigenvalues can be determined from the measured
scattering data. Changes in the structural properties of the
material or the presence of voids or cavities can then poten-
tially be detected by changes in the measured eigenvalues.
In our investigation, the shape of the inhomogeneity is known
since it represents the object being evaluated. In addition,
changes in the structural properties of the object are iden-
tified without making use of the governing equations that
model the healthy material. Therefore, our approach, although
presented here at a conceptual level, could be adapted to
specific problems of monitoring the structural integrity of
a complicated material for which a precise model is not
available.

Another situation where target signatures may be of use is
in the classification of scatterers. This is not a nondestructive
testing application, but possibly the knowledge of target signa-
tures could be used to identify the scatterer from a predefined
dictionary. Indeed, this is the original intent of the singularity
expansion method (SEM) pioneered by Baum [14] (see [15]).

0018-926X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Rutgers University. Downloaded on January 12,2022 at 14:56:41 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6279-801X
https://orcid.org/0000-0002-6539-5897

8690

In this article, we shall consider the simple case of a
scatterer in free space as proof of concept. It is possible to
consider more complicated background media, and conceptu-
ally, the theoretical discussion will remain the same; however,
we choose this simple case to avoid technicalities in our pre-
sentation. It is obvious that much more work needs to be done
to adapt the method to any specific problem in nondestructive
testing. We note that, in the acoustic context, some progress
has been made in using target signatures to determine crack
density in solids [16]. Extensions of electromagnetic target
signatures in this direction would be worthwhile.

The novelty of this article is twofold: first, we present a
general framework for constructing target signatures using
eigenvalue problems, and second, we test one such method
on some basic test problems.

This article is arranged as follows. In Section II, we summa-
rize the forward scattering problem for Maxwell’s equations to
fix notation and the context of our study. Then, in Section III,
we discuss a general approach to obtaining target signatures.
We also give two examples: Steklov-type target signa-
tures and modified interior transmission eigenvalues. Finally,
in Section IV, we present some numerical results for the latter
class of eigenvalues.

II. SCATTERING BY AN INHOMOGENEOUS MEDIUM

We consider time-harmonic electromagnetic waves propa-
gating in a medium occupying the whole space R® with tensor
electric permittivity €, magnetic permeability x, and electric
conductivity o. With €y and uo denoting the permittivity and
permeability of free space, the relative permittivity, permeabil-
ity, and conductivity are given by

€ (x) :=e(x)/€0, ur(x) :=pu(x)/po

and o,(x) = +/to/€o(x). Denoting by w the angular
frequency of the radiation, the wavenumber is k > O defined
by k? = eguow?,

With this notation, if J(x) is the current density,
the complex-valued electric field E(x) and magnetic field
H (x) satisfy the time-harmonic Maxwell’s equations

curl E — iku,H =0, curl H + ike,E = J in R® (1)

where, by Ohm’s law, J(x) = o, E(x). In this case, the full
time domain electric and magnetic fields (£ and H, respec-
tively) are given by

E(x, 1) = JeR(E(x)e ")
H(x, 1) = JuoR(H (x)e™"").

We assume the existence of a (possibly anisotropic) inhomo-
geneity, here referred to as the target, occupying a region D,
which is a bounded simply connected subdomain of R* and
has piecewise smooth boundary 6D with v being the unit
outward normal vector. The relative electric permittivity €, (x),
the magnetic permeability u,(x), and the electric conductivity
o,(x) for x € D are allowed to be matrix-valued functions
with bounded entries with the property that, for all & € R3

&6 ()E > allél?, & ur(x)E = BIEIR, & o,(x)E >0
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Fig. 1. Cartoon of the direct electromagnetic scattering problem for
inhomogeneous media. The known incident field E?, H' impinges on the
inhomogeneous scatterer occupying the domain D. This creates a scattered
field E, H outside D and a total field E, H in D. The unit normal vector
v points outward from D.

with some constants o > 0 and f > 0 and for almost all
x € D. For simplicity of this presentation, we assume that the
above inhomogeneity D is situated in a homogeneous dielec-
tric background. Thus, in R? \ D, we have electromagnetic
parameters given by constants ¢, = 1, ¢, = 1, and ¢, = 0.

The inhomogeneity is probed by incident electromagnetic
fields £'(x,t) and H'(x,t) that, in general, are solutions to
the background Maxwell’s equations. Although more general
sources can be used (e.g., point sources), to fix our ideas,
we consider interrogating with a time-harmonic electric plane
wave

ikx-d

o S :
E':= % curlcurl p ™, H':= ?curl E' )

i
where d € R? is a unit vector giving the direction of
propagation and p € R?, p # 0, is the polarization vector.

Using our assumption of a bounded scatterer, we see that the
equations governing the time-harmonic electromagnetic wave
propagation in the background are

curlE —ikH =0, curl H +ikE =0 3)
whereas, in D, we see from (1) that E and H satisfy
curl E —iku,(x)H =0

i 4

curl H + ik(e,.(x) + %a,.(x))E =0. @

The time-harmonic scattered fields E° and H*® satisfy the

background equations (3) in the exterior of D and are outgo-
ing, i.e., satisfy the Silver—Miiller radiation condition

lim |x|(4/,u0HS x X — \/EES) =0
|x]|—> o0

uniformly with respect to X = x/|x|. Across the interface 0D,
the tangential components of the total field Ey = E* + E' and
Ho = H*+ H' in R*\ D and the total field £ and H in D
satisfying (4) are continuous, i.e.,

VX Ehg=v X E, vx Hy=v x HondD.

After eliminating magnetic fields, the scattering problem for
the time-harmonic electric fields reads: given the incident field
E':= E(x;d, p,k), find E* := E*(x;d, p,k) in R*\ D and
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E := E(x;d, p,k) in D such that

curlcurl E* —k* ES =0 inR*\ D
curl ' curl E — kz(e, + %a,)E =0 in D
vx E=v x (E*+ E" on 6D
v X ,u:lcurlE =v x (curl E* + curl E) on oD
lim (curl Ef xx— ik|x|ES) =0. ®))

|x]|— o0

A graphical representation of scattering by an inhomoge-
neous medium is given in Fig. 1. Under the assumptions
that we have made about the data for this problem, it is
possible to show that the problem is well-posed in standard
energy spaces (see for example [17]). Once this is done,
we see that, because E' depends on d and p, we may write
E' := E'(x:;d, p). The scattered field also depends on x, d,
and p, so E¥ 1= E*(x;d, p) in R*\ D and, in the same way,
E = E(x;d, p) in D.

It is known (see [19]) that the outgoing scattered electric
field E° has the asymptotic behavior

eiklxl 1
E'(x;d, p) = —[Eoo()?; d, p)+ 0(—)]
|x] x|
as |x| — oo uniformly with respect * = x/|x|. The tangential
function E.(%;d, p) defined on the unit sphere S? is the
far-field pattern of the scattered field, and we assume that
Eo(%;d, p) is known (in practice, measured) for all £, d € S°.
Real measurements would be for discrete incoming directions
and polarizations, and discrete measurement directions. This
is also true for our numerical tests in Section IV.

Our interest in this article will be in the inverse scattering
problem where, from the knowledge of E(%; d, p) for X,d €
S? and two linearly independent polarizations p tangential
to S? (here referred to as scattering data), we seek to find
information about €, (x), u,(x), o,(x) for x € D. We remark
that the scattering data, even known for all wavenumbers
k, do not uniquely determine the matrix-valued coefficients
€, 1y, and o, that are general functions of position due to
the possibility of transforming the interior of D, leaving the
boundary fixed, but distorting the coefficients while having
exactly the same scattered field. Thus, in this case, any inverse
scattering method would fail to reconstruct these coefficients.

Our inversion approach circumvents this difficulty by pro-
viding easily computable target signatures for changes in the
reference values of electromagnetic parameters corresponding
to an undamaged material instead of recovering any of the
coefficients ¢,, u,, and o,. More importantly, this is done
without the need to know the actual values of the electromag-
netic parameters of the healthy inhomogeneity being evaluated.
Our target signatures are designed to work for anisotropic,
conducting, and dispersive electromagnetic materials.

In our investigation of the inverse scattering problem, a
primary tool will be the far-field operator (known otherwise as
the relative scattering operator) F : L?(S*) — L?(S?) defined
for g € L2(S?) by

(PG = [ Bl d,g@)dst@) ©
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where L?(S?) is the space of square-integrable tangential fields
on S?. We note that F is a linear compact operator. It is
clear that Fg is the far-field pattern of the scattered field
corresponding to the incident field being an electric Herglotz
wave function with kernel g defined by

E (x) = /S 2 e lo(d)ds(d), ge LX(SP). (7N

Note that E, is a linear superposition of electric plane
waves. The study of mathematical properties of the far-field
operator F, or its modifications, introduces different sets of
eigenvalues for partial differential operators related to the scat-
tering medium. These eigenvalues, which can be determined
from scattering data, are the bases of our target signatures that
we develop in Section III.

III. SPECTRAL VALUES AS TARGET SIGNATURES

Spectral properties of operators associated with scattering
phenomena carry essential information about the scatterer and
may be useful, provided that such spectra can be determined
from the measured scattering data. As an example, the theory
of scattering resonances is a rich and beautiful part of scat-
tering theory (see [15] for a comprehensive survey). However,
this theory has not been fruitful in applications even though
the considerable effort was spent in the past on the related
SEM [14], which attempted to use such poles as a method
for the target identification of aircraft. In particular, this effort
proved to be problematic due to the difficulty of accurately
determining these complex wavenumbers from the measured
scattering data.

More recently, it was suggested to use transmission eigen-
values as target signatures [18], [19]. It is known that the
transmission eigenvalue problem is inherent to the scattering
phenomena [19]. However, they can only be determined from
scattering data for dielectric objects and require broadband
data. The newer eigenvalue problems that we present here
can work at a single fixed frequency and, in principle, for
conducting media although no tests have been performed yet
for such a medium.

Since transmission eigenvalues have been studied for some
time (see [20]), we will not discuss them here but acknowledge
that the methods presented here are motivated by them.
In particular, our approach leads to the modified transmission
eigenvalue problem and associated target signatures discussed
in Section III-C.

The simplest choice of target signature would be eigenvalues
of the far-field operator, but the connection between such
eigenvalues and the properties of the scatterer is not as evident
as for the eigenvalues that we shall consider [21].

A. Modified Far-field Operators and New Sets of Eigenvalues

The main idea behind modifying the far-field operator and,
hence, obtaining a new class of target signatures lies in the
simple fact that the physical total field E := E° + E'
corresponding to the scattering problem (5) can be rearranged
as E = (E* — Q%) + (Q° + E'), where Q° is the scattered
field for a fictitious scatterer (to become precise later) due to
the incident plane wave E’ (2). Thus, if we now probe by
the total field of this fictitious scatterer Q° 4+ E', in order to
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obtain the measured physical total field, the response of the
scatterer should be E® — Q°. This means that we can view the
total field measurements as coming from our electromagnetic
inhomogeneity situated in an artificially changed background
interrogated by the total field due to this background. Rewrit-
ing the above in terms of the far fields leads to a modified
far-field operator.

More precisely, let Qf;o (X;d, p, k) be the electric far-field
corresponding to an auxiliary electromagnetic scattering prob-
lem (to become precise later) due to the electric plane waves
E' (2) as incident field, and assume that this auxiliary scatter-
ing problem depends on a varying parameter A € C. We denote
by F?: L2(S?) — L2(S?) the corresponding far-field operator

(Flg)(®) = /S 0 (&:d, g(d))ds(d). (8)

Note that the scattering data are only needed at a fixed
frequency. We define the modified far-field operator F, :
L}(S?*) — L7(S?) by

F,g:=Fg—Flg. )

We emphasize that F is known from the measurements of
scattering data at the fixed frequency, whereas F? is precom-
puted by solving the chosen artificial scattering problem for a
range of A € C, which does not involve any information on the
electromagnetic properties of the medium under interrogation.
As we shall see in Sections III-B and III-C, the analysis of F;
yields new eigenvalue problems with 2 € C as the eigenvalue
parameter. These, in turn, can be used as target signatures.

B. Steklov Eigenvalues

To explain how a new eigenvalue problem arises from
the mathematical properties of F,, we first discuss a simple
auxiliary scattering problem that yields the Steklov eigenvalue
problem. To this end, we further specialize Q C R? to be
a simply connected region with smooth boundary 0Q such
that D C Q, and let Qﬁo(ﬁ,d, p) be the far-field pattern
for the scattering problem with artificial impedance boundary
condition

curlcurl Q° — k> Q¥ =0 inR*\ Q
Q=0 +E'(:d,p) inR*\ Q
vxcurlQ —Av x (@ xv)=0 on 0Q
lim (curl 0 xx — ik|x|QS) =0. (10)

|x|]—>o00

To see how the modified far-field operator gives rise to
an eigenvalue problem, we study the injectivity of the corre-
sponding modified far-field operator. If ;g = 0, by Rellich’s
lemma [19], we have that Eg = Qz, in R3 \ Q, where Eg
and Q, are the scattered ﬁf;lds of (5) and (10), respectively,
with special incident field E' = E, being the electric Herglotz
wave function (7). Continuity of the tangential components of
the total field £ := E* + E; and curl E across 0Q along
with the boundary condition (10) for @} + E, now imply that
the function W := Ez, + E,|q satisfies the Steklov eigenvalue
problem for Maxwell’s equations in Q

k
vx uteurl W — v x (W xv)=0

curl,u_1 curl W — k2 (E,. + l—(f,)W =0 inQ

on 0Q.
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Thus, if this homogenous problem has only the solution
W =0 (i.e., 4 is not a Steklov eigenvalue), then E* = —E,,
which is possible only if £, = 0 (i.e., g = 0) since E*
is outgoing field and E, is an entire solution of Maxwell’s
equations.

Thus, with a little more work, for the impedance choice
of the auxiliary scattering problem, we can state [22]: the
modified far-field operator F; : L>(S*) — L*(S?) is injective
and has dense range if and only if 4 is not Maxwell’s Steklov
eigenvalue with corresponding eigenfunction W such that
W — E, can be extended outside Q as an outgoing solution of
the homogenous Maxwell’s equations. Note that the existence
of Steklov eigenvalues in the case of zero absorption is proven
in [23].

Our point of view in [22] is that, to avoid the noncompact-
ness of the electromagnetic Neumann-to-Dirichlet operator,
we can perturb the rather arbitrary choice of the standard
impedance boundary condition to obtain a mathematically
simpler eigenvalue problem that can be analyzed using more
standard techniques than those in [23]. In particular, one may
replace the boundary condition in (10) by

vxcurlQ —AS[v x (Q xv)]=0 onoQ

where S is an appropriately chosen regularizing linear operator
defined on surface tangential fields on 0€Q. This change now
leads to the eigenvalue problem

curl,u_1 curl W — kz(e, + %ar)W =0 iinQ

vx uteurl W — 28w x (Wxv)]=0 onoQ. (11)

We refer the reader to [22] for a possible choice of the
operator S that defines the above problem as an eigenvalue
problem for a compact (and self-adjoint if o, = 0) operator.
Roughly, this operator maps surface tangential fields on Q to
tangential fields with zero surface divergence. For numerical
results with this operator, see [22]. We term these eigenvalues
generalized Steklov eigenvalues.

However, in our intended applications of nondestructive
evaluation, many materials have a significant level of absorp-
tion, i.e., o, # O0; hence, one deals with nonselfadjoint
(non-Hermitian) eigenvalue problems. In a further extension
of the impedance type technique [24], one of the authors
developed a modification of S in [22], in which § := S;
is a smoothing operator with a positive smoothing parameter
o allowing for the use of the theory of trace class operators
to show that infinitely many eigenvalues of this new problem
exist for an absorbing material whenever ¢ is sufficiently large.
More specifically, since 0€ is simply connected, every square
integrable tangential field & € L?(0Q) can be expressed as

00
5 = 2[5,1(11>V@QY,,, + f,slz)CUI‘laQYm]

m=1

where {Y,,}°°, is the orthonormal basis of L?(8Q) con-
sisting of the eigensystem (4,,Y,) of the nonnegative
Laplace—Beltrami operator, i.e.,

AsaYm = AnYn, m > 0.

Authorized licensed use limited to: Rutgers University. Downloaded on January 12,2022 at 14:56:41 UTC from |IEEE Xplore. Restrictions apply.



CAKONI et al.: SPECTRAL APPROACH TO NONDESTRUCTIVE TESTING VIA ELECTROMAGNETIC WAVES

Then, the smoothing operator Sy is defined as

oo
Ssé = Z /1,;55,1(12) curlso Y.
m=1

We refer to the eigenvalues (11) with S := S; as J-Stekloff
eigenvalues. In particular, Sy coincides with S chosen in [22],
and as § — 07, the set of 5-Stekloff eigenvalues converges to
electromagnetic Stekloff eigenvalues in [22]. The nonnegative
parameter J describes the degree of smoothing, i.e., the order
of decay of the singular values of this compact operator.
Applying Lidski’s Theorem for the trace class operators,
one can show that, for 6 > 1, there exists an infinite set
of o-Stekloff eigenvalues with oo as the only accumulation
point. For g, # 0, J-Stekloff eigenvalues are complex. The
stability analysis of these eigenvalues with respect to changes
in the anisotropic electric permittivity can be found in [24].
Yet, the use of o-Steklov eigenvalues has not been tested
numerically.

It was shown in [22] that generalized Steklov eigenvalues
can be detected from the behavior of the solution of the
far-field equation

Fig(®) = ES (%5 2,9,k), zeD 12)
where

|k .
ES (8 2.q) = L ( x q) x 2 e

is the far-field pattern of the electric dipole

eik\xfz\
curl curl g, q €R?

1
4rk? |x — 2|
having artificial polarization ¢ and originating at a source
point z. More specifically, for any sequence g&¢ € L*(S?)
satisfying

E¢(x;2z,q) =

lim 1785 — ES.(: 2 @) 13 = 0 (13)
| Egcll22(py is bounded for all z in ball B C D if and only if 1
is not a Steklov eigenvalue (of any of the three types mentioned
above, assuming they exist), where E is the electric Herglotz
wave function with kernel g¢.

The above result suggests that, if g,, is the solution of
the regularized far-field equation with regularization parameter
a > 0, i.e., the solution of

(ol + F;F;)g = F{EL (%, 2, q) (14)

with F; denoting the adjoint of F;, then varying z€ B C D
the Steklov eigenvalues will coincide with those values of
4, where max, ||E,, |l;2(py or (as is mostly used in prac-
tice) max; [|gzqll12(s2) becomes large. For more mathematical
details and preliminary numerical experiments, see [22].

It becomes now clear within the framework introduced in
this section that new modifications of the far-field operator
can be introduced based on other choices of the computed
auxiliary scattering problem, which will generate new sets
of eigenvalues. In the case of Steklov, generalized Steklov,
and o-Steklov eigenvalues, these can be determined from the
measured scattering data at a fixed frequency and can, thus,
generate target signatures to identify changes in the medium.
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The big question is which kind of eigenvalues is more sensitive
to what changes in the medium, and a general answer to this
question is not currently known.

In Section III-C, we introduce another class of eigenvalues
called the modified transmission eigenvalue problem, which
features an adjustable parameter that might be used to tune
the method. These eigenvalues will be used for the numerical
tests in this article.

C. Modified Transmission Eigenvalue Problem

To define the modified transmission eigenvalue problem
suggested in [25], we consider the auxiliary scattering problem
(which we precompute before processing the measured data).
Given the electric incident plane wave E' := E'(-; d, p), find
the total vector field Q, the scattered vector field Qf, and a
scalar field g with [, gdx =0, satisfying

curlcurl Q° —k? Q¥ =0 inR*\ Q
curly teurl Q — k> Q +k*Vg =0 in Q
V.-0=0 in Q
V-0 =0 on 0Q
VX Q—-vxQ =vxE on 02
vxy teurl Q =v x curl(E' + Q) on 62
lim (curl 0 xx — ik|x|QS) =0 (15)

|x|—>o00

where the fixed real parameter y #* —1 is nonzero and
n € C is a complex number that will serve as an eigenvalue
parameter. Note that the appearance of the additional scalar
field g restores ellipticity in the above transmission problem,
which is a great mathematical convenience when we study the
eigenvalue problem that it generates.

As explained earlier, we view our unknown inhomogene-
ity as situated in an artificial background described by this
scattering problem. In particular, y < 0 corresponds to a
metamaterial artificial background. For Q% (%; d, p, k) being
the far-field of the scattered field Q°, we consider the corre-
sponding modified far-field operator F,, defined by (9) (with 4
replaced by 7). The same analysis of the mathematical proper-
ties (injectivity) of F;, as discussed in Section III-A, generates
the following modified transmission eigenvalue problem: Find
nontrivial vector fields W and V and a scalar field o with
Jovdx =0 satisfying

curl,u_l curl W — kz(e, + %a,)W =0in Q
curly teurl V —k*pV +k*Vo = 0in Q
V-V=0inQ

v-V = 0onoQ

vX W —vxV =0onodQ

vxy teurlW—vx g teurlV=00n0Q (16)

where e =y =1and ¢ =0 in Q\ D.

Definition: Values of n € C for which the above-modified
transmission eigenvalue problem has a nontrivial solution are
called modified transmission eigenvalues.

In [25], it is shown that, if x = 1,y > 0, and y # 1, the set
of modified transmission eigenvalues is discrete without finite
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accumulation point. If o, = 0, then all eigenvalues are real,
and infinitely many exist. For ¢, > 0, it can be shown that
all eigenvalues are complex, but their existence is yet to be
proven. In case when y < 0 and y # —1, the modified trans-
mission eigenvalue problem has better mathematical structure;
in particular, if ¢, = 0, then all but finitely many modified
transmission eigenvalues are of one sign, and they satisfy a
max—min principle, which provides monotonicity properties
of the eigenvalues in terms of u, and ¢,. A theoretical study
of the modified transmission eigenvalue problem for y < 0 is
the subject of a forthcoming paper by the present authors.

As for the Steklov problem, from the aforementioned dis-
cussion, we see that the modified transmission eigenvalues
(real and complex) can be determined from the knowledge
of the (measured) scattering data E.(%;d, p) at a fixed
frequency and precomputed far-field patterns Q2 (%; d, p) for
%,d € S? and two linearly independent polarizations p.

Definition: Modified transmission eigenvalues, measured
from the far-field data, are the set of target signatures using
the auxiliary problem in this section.

In Section IV, we show numerical procedures for the deter-
mination of modified transmission eigenvalues and present
numerical examples showing the viability of these eigenval-
ues as target signatures to detect changes in an anisotropic
electromagnetic medium (¢,, u,, and o).

IV. NUMERICAL EXPERIMENTS

The numerical experiments in this section serve to illustrate
how one class of target signatures, modified transmission
eigenvalues, can be detected from far-field data. In addition,
we provide some evidence of the sensitivity of the eigenvalues
to changes in the scatterer. While the theory discussed in the
preceding sections is applicable to general position-dependent
coefficients, we restrict our attention to simple scatterers in
which the coefficients adopt constant values throughout the
medium. This approach is intended to lay the groundwork to
understand the relationship between the eigenvalues and the
medium for more complicated examples that better reflect the
types of materials found in a real-world setting. All the results
are for synthetic (computed) far-field data. For all experiments,
we use the wavenumber k£ = 2, and we limit ourselves to the
dielectric case when o = 0.

We limit our study to two scatterers D.

1) The unit cube D centered at the origin [see Fig. 2 (left)].

2) The puck that is a circular cylinder of radius 0.8823 units

and height 0.5882 centered at the origin. This “hockey
puck” was suggested to us as a simple test scatterer.
Holes can be drilled in the puck to represent flaws.
For this reason, we also consider the “flawed” puck
formed from our original puck with a hole of radius
0.08823 centered at a point 0.294 units from the center
of the puck and parallel to its axis [see Fig. 2 (right)].
The ratio of the radius of the puck to height is that of
a hockey puck.

For these tests, we always take Q to be the unit sphere, which

allows us to reuse the auxiliary far-field data.

All experiments (except the computation of modified inte-
rior eigenvalues for the puck and damaged puck) were run

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 12, DECEMBER 2021

Fig. 2. Scatterers D showing surface meshes for the scattering problem.
Left: the unit cube D in the unit sphere Q. Right: the damaged puck D inside
the unit sphere Q.

on a Dell desk-side computer having two Intel Xeon Gold
6138 CPUs 2.00 GHz and 187 GB of RAM.
The main software components are given as follows.

1) Forward Problem: We use fourth-order Nédelec edge
elements of the second kind on tetrahedral elements
together with a spherical perfectly matched layer (PML)
to approximate (5) in the standard way. This is imple-
mented in Python 3 using the NGSpy front end to
Netgen [26]. The mesh is generated using a requested
mesh size of h = 2x/(4k), and the PML is taken to
start at radius 2+ 27 /k and be of thickness 7 /(2k) with
Netgen PML parameter set to 24/—1. Curved boundaries
are approximated by fifth-order polynomials.

2) Auxiliary Problem: In order to have a rapid scheme for
computing the far-field pattern of the auxiliary prob-
lem (15), we assume that Q is the unit sphere for all
experiments and use a standard Mie series approach,
as given in [25]. This is implemented in MATLAB
(version 2020a).

3) Modified Transmission Eigenvalues: To check that our
predicted eigenvalues are true eigenvalues and monitor
missing eigenvalues, we also solve the transmission
eigenvalue problem (16). We again use Netgen/NGSpy
to approximate this problem; however, the formulation
given in (16) is not convenient for implementation.
Instead, we introduce a new variable W = W — V,
which has the advantage of a homogeneous boundary
condition on Q. We then reformulate the problem
in terms of W and V. The resulting equations are
discretized using a Lagrange multiplier to enforce the
divergence-free condition and quartic edge elements.
The mesh is chosen to have mesh size h = 2z /(4k).
Eigenvalues are computed using the Arnoldi method
with 160 vectors. Typically, the computation of eigen-
values is more memory intensive than for the forward
problem and limits the maximum wavenumber that we
can consider.

4) Modified Far-Field Equation: The far-field patterns E
and QZ are computed using measurement and incident
directions at the vertices of an unstructured mesh of S?
found using Netgen (and for two orthogonal polariza-
tions). We considered two cases.

a) A mesh with an element size of 0.4, which resulted
in a mesh with 99 vertices.

b) A mesh with an element size of 0.3, which resulted
in a mesh with 161 vertices.
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If N denotes the number of vertices on the unit sphere,
we, thus, have 2N, far-field patterns recorded at the
Ny measurement directions. Each far-field pattern has
two independent polarizations (being tangential to S?)
and so the measurements of the scattering data and
auxiliary data result in a 2Ny x 2Ny matrix [F computed
from E., — QJ. We then find an approximation to g,
denoted g, at the vertices of the surface grid by solving
a matrix version of the Tikhonov regularized prob-
lem (14). We use a constant regularization parameter
a = 1073, all three independent auxiliary polarizations,
and ten randomly chosen auxiliary source points z inside
[—1/5,1/5]%.
Having found g for each source point and source
polarization, we average the L’-norm of the surface
function defined by g and then use this quantity to
detect target signatures by graphing the average norm
of g against the eigenvalue parameter #. Peaks in this
graph should signal modified transmission eigenvalues.
It is obvious that the parameters used here would have
to be modified for different wavenumbers and different
scattering experiments.
The most time-consuming part of this algorithm is the calcula-
tion of the far-field pattern of the auxiliary problem (15). This
must be done for a dense discrete set of # in the interval where
the modified transmission eigenvalues are sought. However,
fixing the auxiliary domain Q to be the unit sphere means that
this only needs to be done once in an off-line stage for each
different choice of k, #, and far-field grid (independently of the
scatterer provided that it fits in Q). Moreover, for the sphere,
we can use a Mie series as pointed out above. In practice,
the far-field pattern of the forward scattering problem would
be measured, and so it remains to solve the discrete far-field
equation for each source point z and polarization ¢. In our
study, using 161 source and points and 1701 values of 7,
this procedure took approximately 582 s, which includes the
time-consuming need to read in large text data files.

A. Unit Cube

We start by investigating target signatures for a simple
unit cube. We choose ¢ = 1 and € = 2 in the cube
(except when we consider an anisotropic scatterer later in this
section) and take Q to be the unit ball. In Fig. 3, we show
the “exact” modified transmission eigenvalues computed by
our finite element code as stars along the x-axis. Using
99 incoming directions and measurements results in a poor
approximation of some of the eigenvalues (the eigenvalues
around # = 12 in particular). Such inaccuracy can be due
to excessive noise, or an insufficiently resolved calculation,
but, in this case, we tested adding more directions. From the
figure, it appears that a choice of 161 directions results in an
improved agreement between peaks and eigenvalues, with the
exception of one eigenvalue that is not detected in either case
by the LSM approach. We use this number of directions in all
remaining simulations, recognizing that a sufficient number
may depend on the geometry of the scatterer. There is not yet
a rule of thumb for how many directions are needed for a
given problem.
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Fig. 3. Detection of eigenvalues for an isotropic cube with y = 0.5, 2%
relative noise, and both 99 (dashed curve) and 161 (solid curve) incident
directions.
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Fig. 4. Change in eigenvalues due to changes in the scatterer depends
on the eigenvalue (and on the nature of the change). Here, we track two
eigenvalues as € varies. The eigenvalue tracked in the left figure has a small
change, whereas the eigenvalue in the right figure shows significant sensitivity
to changes in €. These results are for an isotropic cube with 161 incident
directions, y = 0.5, and 2% relative noise.
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Fig. 5. Similar result to that in Fig. 4 but for the choice y = 2. This choice
of y provides less sensitivity to the changes in € compared to y = 0.5.

Next, we investigate the sensitivity of eigenvalues to
changes in bulk € for a homogeneous isotropic cube. As ¢
varies, the eigenvalues shift. The magnitude of the shift
depends on index of the eigenvalue, as well as the choice of
the auxiliary parameter y . In Fig. 4, we track two eigenvalues
when y = 0.5, and Fig. 5 shows the corresponding result when
y = 2. In both cases, we consider € = 1.9, 2, and 2.1. Com-
paring the two results, it is clearly beneficial to use y = 0.5
and use the eigenvalue near # = 12.7 to detect changes in €.
Of course, a good choice of y and an eigenvalue to consider
likely depends on the scatterer of interest. In particular, an
optimal choice of y has not been determined.

One interest in target signatures is to detect changes in
anisotropic scatterers. If € and u are allowed to be general
symmetric positive definite matrix functions of position, it is
not possible to reconstruct € and u from far-field mea-
surements (the discussion in [13] carries over to Maxwell’s
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Fig. 6. Detection of eigenvalues for an anisotropic cube with 161 incident
directions. Left: y = 2. Right: y = 0.5. Both have 2% relative noise on the
data.
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Fig. 7. Indicator function plots for an isotropic cube and an anisotropic cube
with 161 incident directions, y = 0.5, and 2% relative noise.

equations directly). Changes in target signatures could detect
changes in anisotropy. To initiate an investigation of this idea,
we compare target signatures for 4 = 1 and € = 2 with those
of an anisotropic scatterer with

19 0 0 1 0 O
0o 0 2 0 0 09

In Fig. 6, we show the determination of modified interior
transmission eigenvalues for the anisotropic cube. It is clear
that we can determine an approximation to several eigenvalues
from scattering data, and the spectrum for y = 0.5 is simpler
than that for y = 2.

Next, in Fig. 7, we show the displacement of the eigenvalues
for the isotropic and anisotropic cube. As for the isotropic case,
some eigenvalues are more sensitive than others. Interestingly,
the anisotropy splits the multiple eigenvalue at approximately
n = 12.7 [see Fig. 7(right)]. One of these is not picked up
from the far-field pattern.

B. Hockey Puck

It has been suggested to us that a hockey puck would
be a useful experimental dielectric scatterer. In this example,
we consider a puck-shaped dielectric scatterer with u = 1
and € = 2. We consider the “unflawed” isotropic puck and
the “flawed” puck with a hole drilled through it. The graph
of the indicator function against # is shown in Fig. 8. Note
that the location of predicted eigenvalues moves as a result
of this flaw. We are unable to verify the exact eigenvalues
due to limitations in our software (we are unable to refine
the mesh sufficiently to capture all eigenvalues accurately),
but the result is encouraging in that it shows that the scheme
can detect flaws of this type and not just bulk changes in €.
Of course, limitations due to numerical computations of the
forward problem or eigenvalues do not reflect any limitation
on finding target signatures from measurements since there is
no need to solve the direct problem to obtain target signatures.
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Fig. 8. Indicator function plots for an isotropic “unflawed” puck and a
“flawed” puck-with-a-hole using 161 incident directions, y = 2, and 2%
relative noise.

V. CONCLUSION

We have described new classes of target signatures based
on eigenvalue problems. We have demonstrated that one
class, modified transmission eigenvalues, may be determined
from single-frequency data using multistatic measurements.
We have also shown examples of how simple flaws or changes
in electromagnetic properties cause the eigenvalues to shift.
At this stage, it would be very interesting to try to use exper-
imental data to determine modified transmission eigenvalues
from far-field data.
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