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Gravitational waves may be one of the few direct observables produced by ultralight bosons, conjectured
dark matter candidates that could be the key to several problems in particle theory, high-energy physics and
cosmology. These axionlike particles could spontaneously form “clouds” around astrophysical black holes,
leading to potent emission of continuous gravitational waves that could be detected by instruments on the
ground and in space. Although this scenario has been thoroughly studied, it has not been yet appreciated
that both types of detector may be used in tandem (a practice known as “multibanding”). In this paper, we
show that future gravitational-wave detectors on the ground and in space will be able to work together to
detect ultralight bosons with masses 25≲ μ=ð10−15 eVÞ≲ 500. In detecting binary-black-hole inspirals,
the LISA space mission will provide crucial information enabling future ground-based detectors, like
Cosmic Explorer or Einstein Telescope, to search for signals from boson clouds around the individual black
holes in the observed binaries. We lay out the detection strategy and, focusing on scalar bosons, chart the
suitable parameter space. We study the impact of ignorance about the system’s history, including cloud age
and black hole spin. We also consider the tidal resonances that may destroy the boson cloud before its
gravitational signal becomes detectable by a ground-based follow-up. Finally, we show how to take all of
these factors into account, together with uncertainties in the LISA measurement, to obtain boson mass
constraints from the ground-based observation facilitated by LISA.
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I. INTRODUCTION

The existence of axions, or other ultralight bosons, could
potentially solve the strong charge-parity problem [1–3],
serve as stabilizing moduli in extra dimensional models
[4,5], and explain the nature of dark matter [6–14].
Gravitational waves (GWs) could be counted among the
few observables linked to these elusive particles [15–22], a
realization that has motivated a flurry of research on how
ground- and space-based GW detectors could join in the
hunt [18–31]. However, no study has yet explored the gains
from simultaneously leveraging both types of GW instru-
ments (a practice commonly known as “multibanding”). In
this paper, we show that a coordinated use of ground- and
space-based detectors will increase our chances of
detecting GWs from ultralight bosons: observations of a
binary inspiral signal detected by LISA [32] will provide
crucial information enabling targeted searches for ultralight
bosons with third-generation (3G) GW detectors such as
the Einstein Telescope (ET) [33] or Cosmic Explorer (CE)
[34–36].

The physical phenomenon at the core of this program is
the proposed superradiant amplification of ultralight-boson
fields around fast-spinning black holes (BHs) [15–22].
Indeed, if a boson exists whose Compton wavelength is
commensurate with the size of astrophysical BHs, its
presence could be revealed by the spontaneous growth
of a macroscopic, coherent quantum state in the BH
potential well—a “cloud,” containing up to ∼10% of the
mass of its BH host [37–39]. After a short period of
exponential growth, the cloud is expected to stabilize and
emit quasi-monochromatic (“continuous”) GWs, poten-
tially detectable by instruments on the ground or in space.
In the absence of boson self-interactions, this continuous
GW signal may persist for a long time (1−104 yr for our
parameters of interest) until the totality of the cloud has
been radiated away [21,22],
Detectors on the ground are most sensitive to GWs

between ∼½10; 103� Hz, which makes them suitable probes
of boson masses in the range ½10−14; 10−12� eV [18,21].
Although clouds formed by such bosons would not be
directly detectable by LISA, the BH harboring the cloud
may itself lie in a binary [40–43]; the binary would, in turn,
emit GWs in the LISA band of ∼½10−3; 1� Hz during its
inspiral. As explored below, this can happen for binaries
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with total mass in the range ∼½100; 6000� M⊙, and bosons
with masses within ∼½25; 500� × 10−15 eV (Fig. 1 and
Table I).
Searches for continuous GWs are drastically simpler by

knowledge of the source sky location and orientation, as
well as estimates of the expected signal frequency and
frequency derivative—all of which can be obtained from
the inspiral signal. This means that LISA will provide the
information required for 3G detectors on the ground, like
ET and CE, to conduct directed follow-up searches for
ultralight-boson signals. For simplicity, we will treat the
case of LISA and a single CE instrument on the ground, but
our conclusions are easily generalizable to arbitrary detec-
tor networks.
We begin by reviewing some essential background on

the dynamics of boson condensates and their associated
GW signals in Sec. II. We then outline our proposed
observation strategy in Sec. III, describing how a BBH
detection in LISA can inform a continuous wave (CW)
follow-up by CE. In Sec. IV, we report our results on the
feasibility of this measurement across the accessible

parameter space, including the effect of tidal resonances,
and discuss its interpretation in Sec. V. We offer concluding
remarks in Sec. VI.

II. BACKGROUND

In this section, we describe how an ultralight boson field
can interact with a fast-spinning BH to spontaneously give
rise to a macroscopic boson cloud (Sec. II A), which in turn
proceeds to radiate CWs for a long time (Sec. II B) if it is
not disrupted by tidal resonances (Sec. II C).

A. Cloud formation

Excited states of a boson field with massmb ≡ μ=c2, and
angular frequency ω ≈ ωb ≡ μ=ℏ, will be superradiantly
scattered off a Kerr BH if [5,44–47]

ω=m < ΩBH; ð1Þ

where m is the azimuthal quantum number of the boson’s
total angular momentum along the BH spin direction, and
ΩBH is the angular frequency of the hole’s exterior horizon
(see, e.g., [48]). A boson state that satisfies this super-
radiant condition will emerge with an enhanced amplitude
(increased occupancy number) from interactions with the
BH [5,15,21,22,46,47,49–54], by extracting energy from
its ergoregion in a manner fully analogous to the classical
Penrose process [44,45,55–58]. (See [47] for a review on
superradiance.)
A boson with Compton wavelength (λμ ≡ hc=μ) com-

parable to the BH size (rg ≡GM=c), may support semi-
bound states in the BH potential, with an energy-level
structure analogous to the electronic levels in the hydrogen
atom [49–52]. The level spacing is controlled by a system-
specific parameter α with the same role as the fine-structure
constant in the hydrogen atom. This is given by the ratio of
the two relevant length scales:

α≡ rg
ƛμ

¼ GM
c

mb

ℏ
¼ GM

c3
ωb; ð2Þ

where ƛμ ≡ λμ=ð2πÞ and M is the BH mass. For super-
radiant energy levels to exist, Eq. (1) demands

α <
1

2
mχ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �−1
<

m
2
; ð3Þ

where χ is the BH’s dimensionless spin, and the second
inequality is obtained by noting 0 ≤ χ < 1.
If a superradiant state exists and boson self-interactions

can be neglected, the occupancy number of the superradiant
level will grow exponentially at the expense of the BH
[50–52,58–61]. Superradiant growth can begin spontane-
ously, starting from quantum fluctuations in the field,
and can continue to extract up to ∼10% of the BH mass
[37,38,54]. The process efficiently harvests angular

FIG. 1. By analyzing BBH inspirals with GW frequencies
0.01≲ fGW=Hz≲ 1 (shaded blue band), LISA will be able to
provide crucial information for the search of GW signals from
bosons with masses 25≲ μ=ð10−15 eVÞ≲ 500 (shaded orange
band) using CE, or other 3G detectors, on the ground. Solid
curves mark the expected amplitude spectral densities of LISA
(blue) and CE (orange). We explore the details of this application
of multibanding starting in Sec. III, after providing some back-
ground in Sec. II.

TABLE I. Relevant parameters (approximate ranges).

Boson rest mass μ ½25; 500� × 10−15 eV
CW frequency (CE) fCW [12, 240] Hz
Binary total mass Mtot ½100; 6000� M⊙
CBC frequency (LISA) fLISA [0.001, 1] Hz
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momentum, greatly reducing the BH spin, until super-
radiance shuts down when Eq. (1) is saturated. As this
happens, the final BH spin χf asymptotically approaches

χf ¼
4αfm

4α2f þm2
; ð4Þ

with αf computed for the final BH mass. If only one level is
populated, then the final cloud mass will be [21]

Mc ¼ Mi −Mf ≈Mi
αiχi
m

; ð5Þ

where Mi and Mf are the initial and final BH masses, χi is
the initial BH spin, and the approximate equality holds for
αi ≲ 0.1. In these approximations, the α computed for the
initial BH mass, αi is larger than αf by ∼10%. A more exact
value for this quantity may be obtained by numerically
solving a set of differential equations, e.g., Eqs. (17)–(21)
in Ref. [46], assuming a quasiadiabatic evolution. In this
paper we follow this numerical approach, applying the
same methods as in Ref. [24].
Although a given system may support multiple super-

radiant levels, the different growth rates usually ensure that
there is a single, fastest-growing state that is relevant at any
given time. For a field with spin-weight s ¼ 0, 1 and
a BH with dimensionless angular frequency Ω̄BH ≡ χ=
ð2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ, the level with the fastest superradiant

growth will have angular quantum numbers fj; l; mg such
that j ¼ lþ s ¼ m ¼ ceilðα=Ω̄BHÞ [24], and the smallest
possible radial quantum number that yields a boson
energy satisfying Eq. (1). Consequently, the fastest-possible
growing level over all values of α and χ will be
j ¼ lþ s ¼ m ¼ 1, n ¼ 0. In this paper, we will focus on
scalar bosons (s ¼ 0), for which the overall dominant level
has l ¼ m ¼ 1, n ¼ 0.

The time it takes a single-level cloud to achieve its full
size can be characterized by the e-folding time in the
occupation number of the relevant quantum state, τinst. For
the dominant scalar level, in the nonrelativistic limit
(αi ≪ 1), this is [21]

τðsÞinst ≈ 27 days

�
Mi

10 M⊙

��
0.1
αi

�
9 1

χi − χf
: ð6Þ

Once superradiance has shut down and the cloud has
reached its maximum size, the BH and boson condensate
become energetically decoupled. The cloud may persist for
a long time, until its energy is depleted through GW
emission or resonant perturbations, as we review below.

B. Dissipation due to GW emission

The macroscopic, coherent quantum state that makes up
the boson cloud can be thought of as a classical system,
with a time-varying stress-energy tensor corresponding to

the square-density of the field amplitude [15–22]. This
time-varying stress-energy leads to the emission of GWs,
which slowly carry away the energy contained in the cloud,
as bosons annihilate into gravitons [15,18]. For the dom-
inant scalar level, it may be shown that this results in the
emission of a quasimonochromatic CW, with initial fre-
quency approximated by (αi ≪ 1)

f ≈
μ

ℏπ
≈ 645 Hz

�
10 M⊙

M

��
αi
0.1

�
; ð7Þ

and corresponding initial (angle-averaged) strain amplitude

h0 ≈ 8 × 10−28
�

Mi

10 M⊙

��
αi
0.1

�
7
�
Mpc
DL

��
χi − χf
0.1

�
; ð8Þ

whereDL is the cloud’s luminosity distance [17,19,46]. For
αi ≳ 0.1, this approximation breaks down and Eq. (8) tends
to overestimate the GW power [21]. Instead, we estimate h0
more accurately using the numerical results from [20,21].
We define the strain amplitude for the quadrupolar mode
following the usual LIGO-Virgo convention for the CW
plus and cross polarizations,1

hþ ¼ 1

2
h0ð1þ cos2ιÞ cos½ΦðtÞ�; ð9Þ

h× ¼ h0 cos ι sin½ΦðtÞ�; ð10Þ

where ι is the source inclination (angle between the BH
spin axis and the line of sight), and ΦðtÞ is the sinusoidal
phase evolution implied by f. For a BBH with aligned
spins, i.e., spins parallel to the orbital angular momentum,
the cloud’s inclination ι is the same as the inclination ιorb of
the binary’s orbital plane. In general, ι and ιorb need not be
equal for a BBH with precessing spins.
Since GW emission removes energy-momentum from

the cloud, the cloud mass gradually decreases, causing the
signal frequency and amplitude to evolve [41]. Initially, the
GW frequency increases with an approximate time deriva-
tive (with respect to the proper time)

_f ≈ 3 × 10−14 Hz=s

�
10 M⊙

Mi

�
2
�
αi
0.1

�
19

ðχi − χfÞ2; ð11Þ

for αi ≪ 1 [22,24]. This spin up is characteristic of
gravitationally bound systems, and distinguishes boson
clouds from other potential CWs sources, like nonaxisym-
metric neutron stars (see [62] for a review). The frequency
derivative itself evolves slowly, following _f ∝ − _McðtÞ ∝
ð1þ t=τGWÞ−2, where τGW is a characteristic timescale
[22,24],

1We factor in the correction in the Erratum of [24].
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τGW ≈ 6.5 × 104 yr

�
Mi

10 M⊙

��
0.1
αi

�
15 1

χi − χf
: ð12Þ

We incorporate this trend approximately by writing

fðtÞ ≈ f0 þ _f0τGW

�
1 −

1

1þ t=τGW

�
; ð13Þ

where f0 and _f0 are the initial frequency and frequency
derivative, respectively. Besides affecting the frequency, the
reduction in the boson cloudmass causes the GWamplitude
to decay [41],

hðtÞ ∝ h0ð1þ t=τGWÞ−1; ð14Þ

with the initial h0 determined numerically.

C. Depletion due to orbital resonances

The tidal perturbation of a massive companion in a
corotating (counterrotating) orbit may introduce hyperfine
(Bohr) resonances in the boson energy levels. This occurs
when the orbital frequency matches the energy gap between
superradiant and decaying modes (that is, modes with a
positive imaginary part of their eigenfrequencies) [40–43].
If this occurs, then the boson cloud depletes through the
excitation of a decaying mode. The characteristic strength
and timescale of the depletion depends on the ratio between
the mass of the perturber and the BH hosting the cloud. As
a conservative estimate, we will assume that the cloud
becomes totally depleted once the orbit hits a resonance
frequency. This is generally valid for equal mass BBH
systems, for which the decay rate of the resonant mode is
high and the decay timescale is much shorter than the
orbital timescale [40–43]. To a good approximation, the
observable result of this resonance will be to instantane-
ously turn off the GW signal.
For a BBH system in which the components have similar

masses but opposite spins, the frequency associated with
the hyperfine resonance will always be lower than of the
Bohr resonance [41,42]. This means that, as a binary
evolves from larger to smaller separations, the former will
be the first to become relevant. Hence, we restrict our
attention to hyperfine resonances, the inspiral GW fre-
quency of which is given by

fres ¼
1

12π
μχfα

5
f; ð15Þ

where χf is the BH spin at the saturation of superradiance
given by Eq. (4). For αi ≪ 1, χf ≈ 4αi, and

fres ≈
1

3πMi
α7i : ð16Þ

Because of resonances, the presence of a binary
companion can restrict the CW power that may be expected
from a boson cloud around a given BH: the boson mass that

would produce the strongest signal for an isolated BH may
also lead to resonances that destroy the cloud if the BH is in
a binary. We illustrate this in Fig. 2 for a BH with
Mi ¼ 1000 M⊙, χi ¼ 0.9, and DL ¼ 400 Mpc. The differ-
ent curves represent the CW amplitude h0, as in Eqs. (9)
and (10), for different boson masses (parametrized by αi),
with color representing the cloud age Tage, i.e., the time
after the end of superradiance. For a given Tage the emission
peaks for the value of αi that corresponds to a boson
optimally matching the BH, which we indicate by a cross.
Higher αs lead to faster depletion by Eq. (12), so the crosses
move left as Tage increases in Fig. 2. If we rely on LISA to
identify potential CW sources, then the cloud needs to
persist at least until the binary enters the LISA frequency
band. As we will see below, this means that the resonances
should not occur at frequencies fres < 0.8 Hz, or the
system will not be detected (gray region in Fig. 2).
Depending on the cloud age, this means that the loudest
CW we expect to see from a BH in a binary is generally
weaker than it would have been if the BH had been isolated
(marked by boxes in Fig. 2). For our example system, this is
the case for all shown Tage’s except Tage ¼ 0 (blue curve).
Cloud resonances may backreact on the binary’s orbit,

inducing a dephasing on inspiral GW waveforms [40,43].
Looking for such kind of dephasing may be another
smoking-gun evidence of the existence of boson.
However, as we will discuss below, our observation
strategy requires a sufficiently long segment of inspiral
in LISA and CW in CE before the resonance occurs.
Therefore, we ignore the effect of backreaction on either the
inspiral waveform or the cloud emission.

FIG. 2. Strain amplitude as a function of αi forMi ¼ 1000 M⊙,
χi ¼ 0.9, andDL ¼ 400 Mpc. The grey area indicates the αis that
are not observable by our technique due to resonant depletion.
Solid lines with different colors correspond to various Tage’s: zero
age (blue), 500 yr (green), 5 kyr (orange), and 50 kyr (pink). On
each colored line, the cross marker denotes the optimal αi which
generates the maximum amplitude without resonance, while the
square marker corresponds the best αi conditioned by resonance.
Two maxima are the same only for zero age. The optimal αis
before resonance are not observable for other Tage.

NG, ISI, HASTER, and VITALE PHYS. REV. D 102, 083020 (2020)

083020-4



Finally, the above calculations for resonant depletion
assume a perturbation of a weak tidal field generated by the
companion object. When the orbital separation reaches the
Roche radius, the strong tidal perturbation may also disrupt
the boson cloud significantly [63]. According to Ref. [63],
the critical frequency fcrit of this tidal disruption for an
equal-mass binary is

fcrit ≈
1ffiffiffiffiffiffiffiffi

250
p

πMi

α3i : ð17Þ

Comparing to Eq. (16), the ratio of this critical frequency to
the resonance frequency is

fcrit
fres

≈ 0.2α−4i : ð18Þ

Since the αis we will be interested lie in the range
∼½0.15; 0.45� (Sec. IVA), we expect the boson clouds
we target to deplete due to orbital resonances before having
a chance of being tidally disrupted.

III. OBSERVATION STRATEGY/SCENARIO

A BBH signal detected by LISA can provide crucial
information about the location and properties of the
component BHs, allowing detectors on the ground to
conduct a directed follow-up for ultralight bosons. For
this to be possible, the binary must do the following:

(i) have a total mass and initial orbital separation such
that the inspiral signal remains in the LISA fre-
quency band sufficiently long to be detectable;

(ii) have component BHs in the stellar-mass range so as
to potentially host boson clouds radiating GWs in
the CE (or ET) frequency band.

These conditions can be satisfied by equal-mass binaries
with total mass Mtot in the range ∼½100; 6000� M⊙.
Assuming a signal-to-noise ratio (SNR) threshold of 8,
LISA can detect such systems over a 4 yr observation
period if the initial orbital separation yields a starting GW
frequency of finiLISA ∼ 0.01 Hz. Meanwhile, component
BHs with masses in the range ∼½50; 3000� M⊙ may host
boson clouds sourcing GWs with frequencies in the range
∼½12; 240� Hz [cf. Eq. (7)], well within the most-sensitive
band of future ground-based detectors. Assuming αi ≈ 0.1,
this corresponds to bosons with rest masses μ within
∼½25; 500� × 10−15 eV [cf. Eq. (2)]. (See Fig. 1 and
Table I.)
As the binary inspirals towards merger, the orbit may

reach the resonance frequency of the cloud and destroy it
(Sec. II C). If this takes place before the BBH signal has
entered the LISA frequency band, the cloud will have
depleted before CE has had a chance to observe it.
Therefore, for our strategy to be successful, the pair of
Mf and μ must lead to resonances that only take place after
the binary has entered the LISA band. Even then,

resonances may hinder the CE follow-up: if the resonance
occurs during the LISA observation, the cloud CW will be
terminated sooner and CE’s available observation period
will be reduced. Below, we will factor this effect by
computing the reductions in CE SNR expected from the
resonances.
If at least one of the BHs in the binary indeed harbors a

boson cloud actively emitting CWs, its detectability by CE
will further depend on the source sky location, orientation
and distance from Earth, as well as the BBH orbital
parameters. All of these properties can be inferred based
on the LISA signal. Below, we describe how the two
measurements, by LISA and CE, would take place.

A. LISA measurement

LISAwill be able to detect the inspiral stage of compact
binaries with total mass above 10 M⊙. Such signals will
carry information about the masses and spins of the
component BH, as well as the system’s sky location,
luminosity distance, and orbital parameters (including
semimajor axis, orbital phase, and eccentricity). How well
these properties can be extracted from the data will depend,
in part, on the SNR of each particular signal.
To calculate inspiral SNRs in LISA, we follow Ref. [64]

and assume the full, 2.5-million-km-long, three-arm con-
figuration as proposed for the ESA L3 mission [32]. For a
face-on binary, i.e., one whose orbital plane is perpendicular
to the line of sight, the optimal sky-averaged SNR of LISA is
given by

ρLISA ¼ 8

Z
fðTLISAÞ

finiLISA

A2ðfÞ
SLISAðfÞ

df; ð19Þ

where finiLISA is the initial GW frequency, TLISA is the
observation duration, AðfÞ is the amplitude of the inspiral
waveform, and SLISAðfÞ is the instrument’s noise power
spectral density (PSD). We consider an inspiral signal to be
detectable if ρLISA ≥ 8. We assume the sky-location-aver-
aged sensitivity from the analytical fit in Ref. [64] (Fig. 1),
which accounts for both instrumental and galactic confusion
noise, and assume an observation time TLISA ¼ 4 years.
Since the binaries we are interested in only inspiral in the

LISA band, merging at much higher frequencies, we use
the stationary phase approximation for a circular, non-
spinning quadruple system to write [65]

AðfÞ ¼
ffiffiffiffiffi
5

24

r
Mf−7=6

π2=3DL
; ð20Þ

where M ¼ ð1þ zÞðM1M2Þ3=5=M1=5
tot is the redshifted

chirp mass and DL is the luminosity distance. For a given
TLISA and finiLISA, we evolve the system to obtain the final
frequency fðTLISAÞ, using Peters’s formula [66]. Since
finiLISA only depends on the initial binary separation, LISA
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may observe binaries with any finiLISA within its sensitive
frequency band. However, to select systems with minimal
loss due to resonant depletion, we demand finiLISA to be the
lowest possible, so as to get ρLISA ¼ 8. Hence finiLISA is
different for different Mtot, e.g., finiLISA ≈ 1 mHz for Mtot ≈
1000 M⊙ but finiLISA ≈ 6 mHz for Mtot ≈ 100 M⊙, assum-
ing DL ¼ 400 Mpc.
To estimate the impact of LISAmeasurement uncertainty

in the observable range of boson mass, we take the typical
1σ component mass and distance uncertainties to be ∼10%
and ∼20%, from Refs. [67,68], respectively. For concrete-
ness, below we restrict our attention to nearly equal mass
binaries.
If, in addition to the BBHmasses, LISA could accurately

determine the component spins χ1;2, Eq. (4) would immedi-
ately exclude boson masses with χfðμÞ ≤ χ1;2. This would
further narrow down CE’s potential search space. While the
spin magnitude measurement can be as good as Δχ ≈ 0.1
for massive binaries of ≥ 104 M⊙ [69], there is a lack of
detailed studies on the spin measurement for intermediate
mass binaries. In the following sections, we do not consider
the constraint from individual spin measurements.

B. Ground-based follow-up

The strategy for CE follow-up is similar to that of boson
clouds forming around compact binary coalescence (CBC)
remnants [24,25]: information about the source location
from LISA vastly simplifies what would otherwise be an
extremely expensive all-sky search for CWs from boson
clouds, and information about the BH mass significantly
narrows down the expected frequency space, through
Eq. (7). Unlike in the case of a CBC remnant, however,
LISA would provide us with post-, not pre-, superradiance
BH parameters (assuming a cloud is present). This follows
from the fact that, rather than newly born boson clouds, we
should expect LISA to detect systems long after the cloud
has formed.
Following up a BH in a binary involves some additional

complications with respect to solitary BHs. Most promi-
nently, the orbital motion will be imprinted in the boson
CW through a time-varying Doppler shift (Rømer delay).2

In the frequency domain, this has the effect of spreading the
signal power over orbital sidebands centered around the
intrinsic signal frequency fCW. An orbit with period P,
semimajor axis a and inclination ι will spread the GW
power over a bandwidth (see Sec. III E in Ref. [72])

B ≈
4πaj sin ιjfCW

cP

¼ 2j sin ιjfCW
�
GMtot

c3
fLISA

�
1=3

; ð21Þ

where we have assumed the orbit is Keplerian to write B in
terms of Mtot and fLISA, the GW inspiral frequency that
would be seen by LISA. For example, for an equal-mass
binary withMtot ¼ 1000 M⊙ inspiraling at fLISA ∼ 1 mHz,
and a boson cloud radiating at fCW ¼ 40 Hz, the band-
width is roughly B ≈ 1.3j sin ιj Hz.
There exist several established methods for detecting

CWs from sources in binaries with known sky locations
[70,72–75], all of which can collect the power distributed
across the orbital sidebands. In principle, knowledge of the
orbital parameters (including the phase) can be used to fully
demodulate the signal and recover all signal power, so that
the search sensitivity is not impacted by the orbital motion.
In our scenario, this will be made possible by the precise
characterization of the orbit through the LISA inspiral
measurement. We will thus base our CE sensitivity esti-
mates on previous studies for boson signals from isolated
sources in Ref. [24].
The projections of [24] were obtained through the search

method described in Refs. [70,71,75], although optimized
for signals with a positive frequency derivative to accom-
modate Eq. (11). When targeting binary systems, uncer-
tainties in the orbital parameters may be marginalized over
with minimal impact on the sensitivity [75]. The measure-
ment of ι is correlated with DL since both parameters affect
the overall amplitude of the inspiral signal, and a recent
case study suggests a full Bayesian parameter estimate may
return a poor ι measurement ∼1 rad for SNR ∼ 10 [76].
However, the usual implementation of this particular
method parallelizes the search by splitting the frequency
band in a way that requires B≲ 0.5 Hz, which would limit
accessible inclinations (e.g., ι≲ 10° for the 1000 M⊙
binary considered above). This limitation can be circum-
vented by reducing parallelization, at the expense of
increased computing cost.
Although the search for boson signals in CE data is

conceptually no different from other directed CW searches,
one feature sets our scenario apart: depending on the mass
ratio, we could expect CWs from clouds around both binary
components. In fact, if the two BHs have near-equal masses
and similar histories, they should both be compatible with
the same set of boson masses and, thus, lead to CWs signals
with the same intrinsic frequency given by Eq. (7). The
amplitudes of the two signals would depend on the
individual BH masses and histories (i.e., cloud age and
presuperradiance spin), following Eqs. (8) and (14).
Assuming the two clouds are formed simultaneously, the
amplitude ratio of the two CW signals hð2Þ0 =hð1Þ0 has a steep
dependence on the binary mass ratio,

hð2Þ0 =hð1Þ0 ≈ ðM2=M1Þ8; ð22Þ

for component massesM1;2. With a small asymmetry in BH
masses M2=M1 ¼ 0.9, the amplitude ratio drops to ∼40%.

2There will also be relativisitc effects, like the Shapiro delay,
but those are not relevant for semicoherent CW searches [70,71].
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Therefore, we generally expect one of the putative CW
signals to dominate.
Having two overlapping CW signals could, at best,

enhance the effective SNR available to the search.
Assuming that the power is added incoherently (as would
be the case for the methods mentioned above), the improve-
ment could be up to a factor of

ffiffiffi
2

p
for M1 ¼ M2. Methods

could be developed in the future to coherently track both
signals, taking into account orbital phase, and thus achieve
a factor of 2 improvement instead. In any case, an
amplitude enhancement is degenerate with a reduction in
the luminosity distance, so all quantities of interest (like
detection horizons) can be scaled trivially. Therefore, in the
detectability discussions below, we will simply assume a
single signal is present at a time.
Below, we assume a single CE instrument operating at

the design sensitivity projected in [35,77], and shown in
Fig. 1. While CE may observe boson CWs within DL ∼
10 Gpc [24] for the BH masses of interest, LISA may
detect binaries within DL ∼ 400 Mpc ð∼1000 GpcÞ for
Mtot ¼ 100 M⊙ð6000 M⊙Þ, respectively [78]. Therefore,
we expect our observation technique to be limited by LISA
(CE) in the lower (upper) mass end, respectively.

IV. DETECTABLE PARAMETER SPACE

Assuming LISA has detected a given BBH, we would
now like to quantitatively characterize the conditions
needed for CE to detect a CW from a putative cloud in
the system, and identify the boson masses that can be
probed by such a measurement. As mentioned above, the
first requirement is that the total mass of the system be in
the range

100≲Mtot=M⊙ ≲ 6000: ð23Þ

This is however not a sufficient condition: BH age,
presuperradiance spin, and tidal resonances may all limit
the expected CW amplitude and, thus, its detectability. In
this section, we explore how these factors affect potential
boson-mass constraints (Sec. IVA); we discuss the effect of
uncertainties in the LISA measurement (Sec. IV B); and,
finally, we present detection horizons over parameter space
(Sec. IV C).
Throughout, we consider that CE is able to detect a given

CW if its amplitude exceeds a threshold hthr, estimated
using the scaling provided in Eq. (38) of Ref. [24] for one
detector, namely

hthrðfÞ ¼ 1.7 × 10−26
�
SnðfÞ
Sref

�1
2

�
8 d
Tdrift

�1
4

�
1 yr
Tobs

�1
4

; ð24Þ

where SnðfÞ is the noise PSD, Sref ¼ 1.6 × 10−47 Hz−1 is a
reference value, Tdrfit is the period of coherent segments of
the CW, and Tobs is the total observation time. For the case
of multiple detectors, SnðfÞ should be replaced by the

harmonic mean of the corresponding PSDs. As in Ref. [24],
we rescale Tdrift ¼ ð2_fÞ−1=2 to be the largest value allow-
able by the expected frequency evolution of Eq. (11) for a
given boson mass. We also take into account that the
cosmological redshift scales down the detector frame _f by
1=ð1þ zÞ2, as well as f by 1=ð1þ zÞ. Throughout this
study, we choose Tobs ¼ 1 yr.
In order to estimate the CW amplitude expected from a

given system, we approximate the presuperradiance BH
mass by its postsuperradiance value, as would be provided
by LISA. This is equivalent to assuming a ∼10% error on
the mass, which is comparable to the projected uncertainty
in LISAs component mass measurement (see Sec. III A).3

A. Idealized measurement

Let us first assume that LISA has detected a suitable
BBH and perfectly measured the masses of its components,
as well as the orbital and extrinsic parameters. The expected
GW strain produced by a boson cloud around one of the
BHs will depend on the particle mass, μ (or, equivalently,
αi), and the presuperradiance spin of the host BH, χi,
approximately following Eq. (8). With knowledge of the
BH mass, we may thus chart the values of χi and αi that
would yield a detectable signal in CE, i.e., h0 ≥ hthr.
Assuming we observe the cloud at birth, the blue region
in Fig. 3 demonstrates this for two example BH masses at
DL ¼ 400 Mpc. For a given value of αi, higher χis are
more favorable, since those values lead to a larger initial
cloud (the boson can extract more energy momentum from
the BH), and hence a stronger CW signal. The boundary at
large αis can be understood from Eq. (4), which sets the
critical spins; the boundary at small αis comes from the α7i
scaling in Eq. (8), which causes the signal amplitude to
shrink rapidly as αi decreases.
Unfortunately, it is safe to assume that LISA will not

observe a boson cloud at birth, since simulations of BBH
populations show that the typical inspiral timescale is
longer than OðMyrÞ before entering the LISA band
[79–86]. Rather, the observation will occur some (long)
time Tage after superradiance has taken place. Since the GW
amplitude decreases with time following Eq. (14), this will
have a strong impact on detectability. For Tage ≫ τGW, the
observed strain amplitude at t ¼ Tage is hðTageÞ ≈
h0τGW=Tage from Eq. (14), ignoring the frequency drift.
In the limit of αi ≪ 1, combining Eqs. (8) and (12) gives a
scaling relation hðTageÞ ∝ α−8i . Hence, the strain amplitude
in the large-αi region is unlikely to be detected above the
threshold if the BH is too old. In Fig. 3, we use different

3If needed, we could always (albeit at significant computa-
tional expense) remove this approximation by recursively solving
the cloud evolution equations to find the presuperradiance
parameters that would yield a final BH mass compatible with
the LISA measurement.
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colors to show the detectable region for different values of
Tage. As expected, the higher αi region is most affected by
the age of the cloud.
Besides age, we should consider the effect of orbital

resonances. If the orbit hits a resonant frequency, cloud
depletion may truncate the CW signal during the ground-
based observation, or possibly even before the binary
would be detected at all. Therefore, we must require that
the initial observation frequency in LISA, finiLISA, satisfy

finiLISA ≤ fres; ð25Þ

for a possible CW observation. If finiLISA > fres, the cloud
vanishes due to resonant decay before the inspiral enters the
LISA band and multibanding will be impossible. The
inequality Eq. (25) is not strictly necessary if there is
archival CE data before the start of LISA’s observation.
However, the current timeline suggests that CE will be
online after the launch of LISA [36]. Therefore we require
Eq. (25) to be conservative. From Eq. (16), the resonance
frequency scales as α7i for a fixed BH mass. This implies
that resonant depletion happens at an earlier stage in the
inspiral and is more likely to hinder the CE observation in
the small-αi region. The inspiral frequency at the time of
the initial observation by LISA, finiLISA, is largely arbitrary,
since each BBH system is formed at a different reference
time and initial separation. Even if finiLISA < fres, we may
still miss the CW signal: because the SNR of a CW signal
scales as T1=4

obs for a semicoherent search, the truncation may
prevent CE from accumulating enough SNR to reach a
detectable level. (The possibility would remain, however,
of observing the CW signal in archival ground-based GW

data, assuming the resonance depletion occurred within a
timescale where such archival data exists.)
In Fig. 4, we show the detectable region for component

masses of 50 M⊙ and 1000 M⊙ at DL ¼ 400 Mpc,
accounting for resonances. For systems with the parameters
within the blue-hatched region but outside the green-
hatched region, the boson clouds would totally deplete
before the inspiral signal could be observed by LISA. In
contrast, systems with parameters enclosed by the green-
hatched region do not experience resonance depletion; in
this case, both the CW and inspiral emissions are observ-
able in CE and LISA, respectively. We notice that there is a
sharp cutoff in the small αi region when resonant depletion
turns on. This is because fres has a strong dependence of α7i
as shown in Eq. (16), which suggests that fres depends on αi
almost exclusively. Therefore, the criterion of fres ≥ finiLISA
prevents the observation of CW emission from systems
with small αis, irrespective of χi.

B. Measurement uncertainties

We have, so far, assumed that LISA can provide perfect
measurements of the luminosity distance DL, inclination ι,
and BH massMobs. However, true LISA measurements will
have uncertainties that will impact the CE follow-up. For
example, an underestimated distance would lead to an
overestimation of the CW detectable region and, corre-
spondingly, the range of boson masses μ that can be probed.
To map how LISA uncertainties affect detectability, we

calculate the detectable region corresponding to the boun-
daries of the projected 90%-credible intervals for Mi and
DL. To simulate such a measurement, we assume the LISA
posteriors are well represented by independent Gaussians

FIG. 3. Detectable parameter space ðαi; χiÞ at DL ¼ 400 Mpc for two example of Mi ’s. Each hatched region corresponds to the
detectable space for a host BH at different Tage’s: 10 yr (orange) and 30 yr (pink) for 50 M⊙; 5 kyr (orange) and 50 kyr (pink) for
1000 M⊙. Older clouds have had time to dissipated more energy momentum, and (since the strain amplitude is proportional to the cloud
mass) the detectable region decreases as Tage increases. The grey dotted line shows χf as a function of αi, which is the limit below which
Eq. (1) is violated and superradiance cannot occur. The grey dashed-dotted line shows the χi ∝ α−7i scaling in Eq. (8), which suppresses
the low αi amplitude due to insufficient cloud mass. In this and all other figures, we assume a CW observation time of Tobs ¼ 1 yr.
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with standard deviations given as fractions of the true
values, σMi

=Mtrue
i ¼ 0.1 and σDL

=Dtrue
L ¼ 0.2 for the mass

and distance, respectively (see Sec. III A).
We represent the effect of measurement uncertainty in

Fig. 5. For reference, the solid blue curve encloses the
parameters that we would know accessible to CE if we had
a perfect measurement ofMi andDL from LISA, assuming
Tage ¼ 0. Similarly, the solid orange (green) curve encloses
parameters that are accessible to CE for a perfect LISA
measurement, assuming only cloud dissipation (only res-
onant depletion) is present. Since Tage ≫ TLISA, we expect
only the systems in the overlap region within both the
resonance and age boundaries to be suitable sources.
In Figs. 5(a) and 5(b), we show how such the uncertainty

in the LISA distance measurement affects the expected
detectable region for two example BH masses: Mi ¼
50 M⊙ and 1000 M⊙. Each light-colored band surrounding
the solid curve of the same color shows the variation of the
boundary corresponding to the measurement uncertainty in
DL, for a fixed Mi. We compute this from the projected
90%-credible interval as described above: the upper (lower)
bound of the light-blue band corresponds to the 95th (5th)
percentile of the DL posterior for a BH with zero Tage.
The light-orange band reflects the same projection of
90%-credible interval of DL posterior, but Tage increases
to 10 (5000) years for Mi ¼ 50 M⊙ (1000;M⊙). Since
the strain amplitude scales as the inverse distance, the
inferred detectable region is larger for a smaller distance
measurement.
On the other hand, the right (left) bound of the light-

green band corresponds to the 95th (5th) percentile of the
DL posterior. This correspondence comes from the general
correlations and interdependencies between DL, finiLISA and

ρLISA. For a constant ρLISA ¼ 8, the inferred finiLISA increases
with larger DL. If finiLISA is kept fixed in the analysis, ρLISA
decreases with larger DL. Finally, for sources at a constant
DL, ρLISA increases with larger finiLISA until finiLISA ∼ 0.1 Hz,
after which the inspiral falls out the sensitive band of LISA.
For finiLISA greater than this bound, it is not possible to
accumulate enough ρLISA in the available observation time
of the LISA mission to claim a detection.
By the same token, Figs. 5(c) and 5(d) shows the

variation of the expected detectable regions due to the
uncertainty in LISA mass measurement. The upper (lower)
bound of the light-blue and light-orange band corresponds
to 5th (95th) percentile of the Mi posterior. As the boson
cloud will extract more energy and momentum from
heavier BHs, the strain amplitude increases with the BH
mass, and the detectable region expands accordingly if we
allow for higher BH masses. The right (left) bound of the
light-green band corresponds to 5th (95th) percentile of the
Mi posterior, since the resonance frequency is higher for
smaller mass.
Generally speaking, both uncertainties on Mi and DL

have a similar effect on the inferred detectable region. The
ignorance of the uncertainties on Mi and DL does not
matter for the boundary of χf which only depends on χf.
However, this will affect the inference of μs since
μs ∝ αi=Mi. We also note that the variation does not
exceed the boundary set by the final spin at the saturation
of superradiance in Eq. (4), since the superradiance con-
dition is not satisfied for χi < χf. Due to the sharp cutoff by
the resonance boundary at low αi, we conclude that the
uncertainties on Mi and DL have a smaller impact on
the detectable region compared BH aging and resonant
depletion.

FIG. 4. Detectable parameter space ðαi; χiÞ at DL ¼ 400 Mpc for two example Mi’s. The blue hatched region is the detectable space
without considering orbital resonances and is identical to the blue hatched region in Fig. 3. The green hatched region corresponds to the
detectable space that remains after imposing fres ≥ finiLISA, where f

ini
LISA is the minimum initial frequency that yields ρLISA ¼ 8: finiLISA ¼

5.8 mHz (0.8 mHz) for Mi ¼ 50 M⊙ (1000 M⊙). As fres increases almost monotonically with αi, the detectable region is truncated
sharply at αi ≈ 0.25.
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Finally, we consider the effect of inclination, which we
have so far assumed to be optimal. In general, the effect of
orbital precession could be included in the inspiral wave-
form to obtain the actual cloud’s inclination ι at any given
time, apart from the orbital inclination ιorb. Here, we
consider the simpler spin-aligned case in which ιorb ¼ ι
and we can directly take the LISA ιorb measurement as a
measurement of ι. The observed polarization content varies
with the inclination angle with respect to the line of sight.
For an interferometer with an interarm angle of 90°, such as
CE, the observed amplitude at some inclination angle ι
relative to a face-on emission scales as

hðιÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos2 ιÞ2F2þ þ 4 cos2 ιF2

×

q
; ð26Þ

from the quadrature addition of Eqs. (9) and (10) weighed
by the antenna pattern Fþ and F× defined in Eq. (57) of
Ref. [65]. Fþ and F× depend on the zenith and azimuthal
angles ðθ;ϕÞ of the source’s sky location, as well as
the polarization angle ψ . The inclination angle then affects
the detectable region, as shown in Fig. 6. To simplify the
relation, we chose the source location such that Fþ ¼ F×.
Regardless of intrinsic parameters, the expected amplitude
is the largest for face-on (ι ¼ 0°) emission, and the smallest

FIG. 5. Impact of LISA measurement uncertainties on the detectable parameter space ðαi; χiÞ for two example Mi’s, with true
DL ¼ 400 Mpc and face-on inclination. In each panel, the blue (cf. Fig. 3), orange (cf. Fig. 3), and green (cf. Fig. 4) hatched regions
bounded by solid lines correspond to the detectable parameter space without resonant depletion or cloud dissipation, with cloud
dissipation only, and with resonant depletion only, respectively. (The assumed Tage and finiLISA are the same as in Figs. 3 and 4.) The
regions hatched with all colors mark parameters that remain detectable after accounting for both cloud age and orbital resonances. The
semitransparent color bands around the edge of the hatched regions encode the variation in the boundary of the inferred detectable space
due to LISA measurement uncertainty in the distance [panels (a) and (b)], or mass [panels (c) and (d)]; the width of the bands
corresponds to the LISA 90%-credible interval. When the detectable regions approach the χi < χf constraint (dotted line), the error
bands shrink until disappearing; this is because χf is independent of Mi and DL, and hence uncertainty in those parameters does not
affect our conclusions about detectability. The vertical light-green band around the true finiLISA corresponds to variations in the inferred
finiLISA linked to theMi or DL uncertainty. ForMi ¼ 1000 M⊙, the light-blue and light-orange bands overlap almost completely at small
αis, because τGW ≫ Tage in this region.
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for edge-on (ι ¼ 90°) emission. Hence the detectable region
shrinks gradually from ι ¼ 0° to ι ¼ 90°.

C. Detection horizon

In the investigations above, we held the source distance
fixed. The amplitudes of GW emission from the cloud and
the binary both decrease as the distance increases.
Therefore, we expect that the mostly overlapped regions
in Fig. 5 shrink until no system can be observed. To
quantify the reach of our technique, we now investigate the
detection horizon as a function of Mi and Tage. We define
the detection horizon to be the largest distance such that
both SNR thresholds, of CE and LISA, are satisfied. Thus,
the detection horizon is a measure of the volume of space
within the reach of our analysis technique. For a given
expected rate of BBH mergers as a function of redshift, this
quantity also informs us about the number of systems that

we may expect to detect during a fixed observation period.
Unfortunately, there is large uncertainty in rates for BBH
mergers in the mass range of interest [87,88], so we do not
attempt to compute a number of expected detections.
We compute horizons assuming χi ¼ 0.9, and assume

the same definition of finiLISA as in Sec. III A. For each BH,
we identify the boson mass that generates the loudest CW.
This results in an optimal αi that maximizes the horizon for
each Mi. To include the amplitude decay due to BH aging,
we calculate the horizons for four ages: Tage ¼ 0, 500 yr,
5 kyr, and 50 kyr.
Figures 7(a) and 7(b) show the detection horizon as a

function of Mi without and with resonant depletion,
respectively. The color scale shows the value of αi that
yielded maximum strain amplitude for each ðMi;DL; TageÞ.
There are some features shared by both figures. First, since
we require both detections in LISA and CE, irrespective of

FIG. 6. Detectable parameter space ðαi; χiÞ for a BH with different inclination angles ι ¼ 0° (blue), 30° (green), 60° (orange), and 90°
(pink), for two examples BH massesMi, and DL again fixed at 400 Mpc. The strain amplitude is weaker when a source is seen edge on
(ι ¼ 90°), leading the detectable parameter space to shrink as ι increases.

FIG. 7. Detection horizon as a function ofMi for χi ¼ 0.9 and for various Tages, as indicated next to each curve. Color encodes the best
αi as described in the Sec. IV C. Equal-mass BBHs inside the grey region are not detectable by LISA (ρLISA < 8). Panel (a) shows the
horizons when resonant depletion is neglected, while panel (b) includes both the effects of resonant depletion and cloud dissipation.
Orbital resonances have the general effect of reducing horizons.
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resonances, systems with Mi ≲ 500 M⊙ are limited by the
LISA SNR threshold if Tage ∼ 0, because the CE horizon
lies outside the LISA one (gray region in Fig. 7) for those
systems; otherwise, our observation is limited by the CE
SNR threshold. Second, all curves follow a similar shape,
reflecting the features of CE’s PSD (cf. Fig. 1): for Mi ≲
500 M⊙ (fCW ≳ 20 Hz) CE’s sensitivity is roughly con-
stant and, because h0 ∝ Mi=DL, the detection horizon
increases with Mi; then, as Mi increases further, fCW falls
out of the CE frequency band, and the detection horizon
decreases. Third, and last, αi increases with Mi in both
panels: this is because CE is only sensitive to CW
frequencies ∼½10; 300� Hz, and so αi ∝ Mi to stay within
that range following Eq. (7).
There are also some features unique to both Figs. 7(a)

and 7(b), which reflect the impact of resonances on
detectability. The horizons are generally closer and the
overall scale of αi is higher in Fig. 7(b). This is because
systems with the true optimal αi experience resonant
depletion before entering the LISA band, leaving us only
with suboptimal configurations. As shown in Fig. 2,
resonances prevent us from observing clouds with the
overall optimal αi’s (crosses) for Tage ≳ 1 kyr; the best
among the leftover αis (squares) lead to weaker signals.

V. INTERPRETATION

The results of the CW search must be translated into a
statement about boson masses. Doing this is straightfor-
ward if a signal is indeed found: in that case, we would be
able to establish that an ultralight boson exists and
accurately infer its mass from a measurement of the CW
frequency. Detailed tracking of the frequency and ampli-
tude evolution would allow us to study the depletion of the
cloud, infer its age, and potentially look for evidence of
boson self-interactions. The CE measurement would also
provide us with estimates of the BH spin before and after
superradiance, complementing information provided by
LISA. After establishing that at least one CW signal is
present, the information gained could be used in a targeted
search to determine whether both BHs are hosting a boson
cloud each.
On the other hand, if a CW signal is not found by CE but

an inspiral signal is observed by LISA, then we would want
to cast upper limits on the strain amplitude into boson mass
constraints. The translation is hindered by our lack of
knowledge about the individual histories of the targeted
BHs: ignorance about the cloud age and presuperradiance
BH spin preclude a direct mapping from boson mass to
expected CW strain (see Sec. IV). Thus, unless additional
information is provided by other means, we will be limited
to constraints on the χi-μ-Tage space (Figs. 3–6).
A significant limiting uncertainty in the interpretation of

a null CW result in CE (with the presence of an inspiral in
LISA) is the difficulty to reliably quantify Tage for any
individual BH. The predicted lifetime of a cloud is in

general expected to be many orders of magnitude shorter
than the time between BH formation in a supernova and the
eventual merger of a BH binary. For simulated populations
of BBHs formed in a galactic field, typical distributions of
times between BBH formation and merger are OðGyrÞ or
larger, with a small-number tail reaching down to OðMyrÞ
[79–82]. The majority of BBHs formed through dynamical
interactions in dense stellar environments would, again
from simulated populations, exhibit similar timescales
[83–86], especially for binaries ejected from their formation
environments (through supernova kicks). If such a binary is
not ejected however, then the additional strong dynamical
encounters to which the binary would be exposed would
significantly decrease the time to merger and, thus, increase
the possibility that a binary with BHs harboring boson
clouds survive long enough for us to observe it. Binaries
originating in dynamical environments can also be formed
with significant eccentricities, or through direct captures
[89–93],whichwould decrease the time tomerger compared
to an equivalent quasicircular orbit, and similarly increase
the potential detectability of the two GW signals.
Additionally, self-interactions of the boson field could lead
to a prolonged cloud lifetime [94,95].

If there is no inspiral detection in LISA, then we cannot
carry out a CW follow-up in CE, and hence can make no
statements about bosons either.
Finally, the multiband technique proposed in this paper,

specifically a ground-based CW follow-up of a space-based
inspiral observation, is not limited to the search of ultralight
bosons. Another possible application may be a CW follow-
up of individual neutron stars in binaries observed by LISA
to look for GWs from nonaxisymmetries in their moments
of inertia [96].

VI. CONCLUSION

Future GW detectors on the ground and in space, like
CE and LISA, will be able to work together to detect
ultralight bosons with masses 25≲ μ=ð10−15 eVÞ≲ 500.
In detecting BBH inspirals, LISA will provide crucial
information enabling CE to search for continuous GWs
from boson clouds hosted by the component BHs (Fig. 1).
In this paper, we have laid out the detection strategy

(Sec. III), explored the relevant parameter space (Sec. IV),
and discussed the interpretation of possible measurement
outcomes (Sec. V). Focusing on dominant (l ¼ m ¼ 1)
scalar clouds, we have studied limitations on potential
boson constraints imposed by ignorance about the histories
of the individual systems, like their age and spin evolution
(Fig. 3). We have also quantified the impact of orbital
resonances, which may destroy the boson cloud before its
CW signal becomes detectable by a CE follow-up (Fig. 4).
We have shown how to take all of these factors into
account, together with uncertainty in the parameters mea-
sured by LISA, in order to obtain boson mass constraints
from the CE observation (Figs. 5–6). Finally, we plot
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detection horizons as a function of component BH mass
(Fig. 7). Although we focused on scalars, the conclusions
can easily be extended to vectors, which lead to similar
phenomenology with faster timescales and greater CW
power.
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