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Abstract—In this work, we consider a game-theoretic framework for

cyber-physical systems, where a defender develops a mitigation strategy

against an intelligent attacker who exploits the system’s uncertainty to

remain undetected. The goal of the defender is to optimize a perfor-

mance cost constructed specifically to account for robustness against

stealthy attacks, so that the system is regulated. Conversely, the goal

of the attacker is to disrupt the system’s performance by leveraging

its significant information advantage against the defender. Both players

implement their policies in a moving horizon fashion, according to the

principles of receding horizon control. However, because the defender

has no access to the full state of the system, it concurrently employs

receding horizon estimation to overcome this limitation. A rigorous

theoretical analysis shows that such a concurrent policy can guarantee

closed-loop boundedness, despite the stealthy attacks and the information

disadvantage. Simulations verify and clarify these findings.

Index Terms—Cyber-physical systems, game-theory, actuation attacks.

I. INTRODUCTION

Cyber-physical systems (CPS) are sophisticated systems, which

comprise interacting digital, analog and human components engi-

neered for function through integrated physics and logic. Because

of their complexity, CPS are extraordinarily exposed to adversaries

that can potentially cause failure or malfunction while remaining

undetected. For instance, CPS are vulnerable to actuation attacks [1],

i.e. false-data injection and spoofing attacks, which can introduce

perturbations in the CPS’s control input through interference with its

software, hardware or communication channels. As a result, there has

been an increasing demand for secure methods that can guarantee the

integrity and normal operation of CPS under stealthy attacks [2].

Game-theoretic tools [3] have been used to develop resilience

towards worst-case attacks in CPS. In particular, it is often for two-

player competition to arise between the operator of a CPS and a

potential intruder, which can be modeled as a game with a common

utility. In this case, game theory can yield resilient decision-making

mechanisms, which can guarantee an upper or lower bound on the

utility for each player. The corresponding decisions can also be

implemented in a moving horizon fashion to create feedback policies,

according to the principles of receding horizon control (RHC).

Related Work: RHC is a computationally efficient control method

that can stabilize a system using predictions of future costs over a

moving time horizon [4]. Especially relevant to the present work

is the so-called min-max RHC [5]–[9], which yields game-theoretic

policies that account for the worst case scenario regarding a potential

disturbance or uncertainty. Owing to this property, min-max RHC can

be effectively used on the field of CPS security, and guarantee CPS

stability, optimality, and robustness [10]–[12].

This work uses a heavily modified version of min-max RHC, which

significantly differs from results in the literature. In particular, a con-

strained version of game-theoretic RHC is employed, which generates

robustness targeted specifically against stealthy attacks – not against

a general class of adversarial inputs. As a result, the proposed RHC
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contains coupled, time-varying state-control constraints that account

for undetectability, hence classical min-max RHC cannot be directly

employed without significant modifications and a novel closed-loop

analysis. Additionally, we consider that only a partial state can be

measured by the CPS operator – even though the attacker can measure

the full state – and still prove boundedness of the closed loop using

concurrent moving horizon estimation and RHC. Such a concurrent

combination was studied in [13], [14], but only in discrete-time,

without any attacks and without coupled state-control constraints.

Regarding the attackers that can affect a CPS, the distinction of

them between stealthy and non-stealthy ones is crucial. For the latter

case, detection mechanisms can be employed as a tool to deal with

malicious adversaries [15]. For example, for continuous-time systems

and in the absence of uncertainties, the authors in [16] provided

conditions for the detection and identification of various types of

cyber-physical attacks. Additionally, for sampled-data continuous-

time systems affected by deterministic disturbances, a method to de-

tect adversarial inputs was developed in [17]. Nevertheless, in the case

that the attacks remain stealthy and hide under the uncertainties of

large-scale CPS, one must develop appropriate mitigation strategies.

Towards dealing with undetectable adversaries, various types of

stealthy attacks for discrete-time systems were characterized in [18].

In a similar fashion, the authors in [19] investigated the response

of a state estimation problem given different kinds of stealthy

attacks. They derived conditions under which the attackers can remain

undetected, though no robustness guarantees were provided. Similar

to our work, the authors in [20] solved a game to find the best-

response policies for the defender towards a stealthy attacker who

manipulates the system’s output and actuating data; however, the

derived policies were applied only in a non-receding time horizon. A

similar continuous-time optimization was proposed in [21] for secure

trajectory planning of robotic systems, while the authors in [22]

considered a game between an attacker that attempts to maximize

damage on a CPS and a defender who wants to minimize it.

Unlike the aforementioned studies, this is the first work wherein

a defender is tasked with controlling an uncertain system against

stealthy attacks using concurrent RHC and estimation. By targeting

exclusively stealthy attacks through the construction and the incorpo-

ration of appropriate constraints in the defender’s receding horizon

optimization, the conservatism of considering only worst-case attacks

is reduced. In addition, no knowledge of the full state of the system

is needed by the defender to guarantee boundedness of the closed-

loop. From the perspective of the attacker, the corresponding optimal

policies are also studied using Pontryagin’s principle. A preliminary

subset of this study has appeared in [23], where a game between a

defender and a stealthy attacker was also considered, but the behavior

of the corresponding closed-loop was not analyzed or studied. On the

other hand, in the present work we prove that the proposed defending

policy is secure, and can keep the closed-loop bounded despite the

stealthy attacks and the information disadvantage.

Notation: Given z P R
q , R P R

qˆq , ‖z‖ and ‖z‖8 are the l2 and

l8 norm of z, and ‖z‖R “ 1

2
zTRz. If ‖z‖8 ďz̄ and z̄ą0, then per

[24]: ‖z‖R,z̄ “
şz

0

`

tanh´1
`

w
z̄

˘˘T
Rdw. IqPRqˆq is the identity ma-

trix, and 1q P R
q is the vector of ones. The operators λminp¨q/λmaxp¨q

yield the minimum/maximum eigenvalue of a symmetric matrix.
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II. PROBLEM FORMULATION

Consider the following system, @t ě t0 ě 0:

9xptq “ Axptq `B
´

uptq ` dptq ` aptq
¯

,

yptq “ Cxptq, xpt0q “ x0,
(1)

where xptq P R
n is the state vector, yptq P R

p is the system’s output,

uptq P R
m is the defender’s input, aptq P R

m is the attacker’s input,

dptq P R
m is an exogenous disturbance, A P R

nˆn, B P R
nˆm,

C P R
pˆn are the plant, input, and output matrices, respectively.

We will consider a framework where the defender and the attacker

choose their policies based on a RHC setting. In particular, at every

time instant tj , j P N, the defender and the attacker each compute

a policy that optimizes a specific performance cost over a prediction

horizon rtj , tj ` T s, T ą 0. The defender and the attacker then

implement their policies on system (1), @t P rtj , tj`1s, where δ “∆

tj`1 ´ tj ď T a strictly positive control horizon. Even though the

attacker chooses its control input by optimizing a performance cost

at each time instant tj , j P N, it still wants to produce an output

that is compatible with the model of the uncertainty generated by the

disturbance. When such a compatibility is achieved for the output, we

will call the attack control input, as well as the corresponding attacker,

as undetectable. The following assumptions are now needed.

Assumption 1. The disturbance d is bounded by norm, so that

‖dptq‖8 ă ∆, @t ě t0. The constant ∆ is strictly positive and

known by both the attacker and the defender. l

Assumption 2. At each optimization instant tj , j P N:

‚ The attacker knows the initial condition xptjq “∆ xj and the

future disturbance dptq, @t P rtj , tj ` T s.
‚ The defender knows only the output history yptq, @t ď tj . l

Assumption 3. The pair pA,Cq is observable. l

Remark 1. Assumption 1 characterizes the model of the uncertainty

under which the attacker wants to hide. A larger disturbance bound

shall allow it to employ relatively high control effort, while a smaller

one will restrict its flexibility. Assumption 2 denotes that there is

an information asymmetry between the attacker and the defender,

which gives an advantage to the former. Moreover, no assumption

was imposed on whether each side knows the decision-making

mechanism of the other side. Finally, Assumption 3 is an observability

requirement that is common in output-based frameworks [13]. l

Define at each time instant tj , j P N, the cost functional

J
dptjq “

ż tj`T

tj

´ ∥

∥

∥
x
dpτq

∥

∥

∥

Qd
` ‖upτq‖Rd

´
∥

∥

∥
a
dpτq

∥

∥

∥

Kd

¯

dτ `
∥

∥

∥
x
dptj ` T q

∥

∥

∥

Fd
,

where xd is a trajectory of (1) given inputs pu, d, aq ” pu, dd, adq,

and Qd, Rd, Kd, F d ą 0, are weighting matrices of appropriate

dimensions. Then, the defender’s objective at each instant tj , j P N,

is described by the following optimization problem:

minimize J
dptjq,

subject to: Dynamics (1) and Assumptions 1 ´ 3,

considering: Stealthy attack a
d

and disturbance

d
d

maximizing J
dptjq.

(2)

Similarly, we define at each instant tj , j P N, the cost functional

J
aptjq “

ż tj`T

tj

´

‖xapτq‖Qa ` ‖uapτq‖Ra

´ ‖apτq‖Ka

¯

dτ ` ‖xaptj ` T q‖Fa ,

where xa is a trajectory of (1) generated with inputs pu, d, aq ”
pua, d, aq, and Qa, Ra, Ka, F a ą 0 are weighting matrices of

appropriate dimensions. Then, the attacker’s objective at t “ tj , j P
N, can be described by the following optimization:

maximize J
aptjq,

subject to: Dynamics (1) and Assumptions 1 ´ 3,

so that: Undetectability is achieved,

considering: Defense u
a

minimizing J
aptjq.

(3)

Notice that the expressions of Jd and Ja are chosen to be linear

quadratic, because such costs accurately capture the potential goals

of the defender and the attacker. Particularly, in the common scenario

where the defender wants to regulate the system to the origin, it is of

interest to minimize Jd so that the state x is driven to zero optimally.

Accordingly, to optimally disrupt the defender’s objective and lead

the system in undesired regions far from the origin, it is of interest for

the attacker to maximize the cost function Ja. Due to these properties,

linear-quadratic costs are commonly used in the context of CPS and

security [12], [20].

Remark 2. The attacker’s input is included in Ja because the attacker

wants to maximize the damage on the plant, while at the same time

avoiding creating disruption that will attract attention. That is, the

stealthy attacker wants to avoid creating large attacks that will expose

it through physical means. Moreover, the addition of the attacker’s

input in Jd and Ja is important in order to guarantee that problems

(2)-(3) are well-defined and feasible, and that they will not have

singular solutions stemming from the linearity of (1) [25]. l

Remark 3. Owing to Assumption 2, which defines (2), the defender

has to exploit the past output data that are available to estimate the

initial condition xj , @j P N. However, since it does not know the

past disturbances and attack signals that affected those data, it has

to consider the worst-case (maximizing) ones and find a worst-case

estimate of xj to guarantee closed-loop boundedness and robustness,

as it will be shown in Section IV. The same holds for the future

disturbance and attack; since the defender does not know them, it

assumes that they will maximize Jd, for the sake of robustness. l

Remark 4. Besides designing defending policies, methods for under-

standing the behavior of attackers are also crucial in enhancing CPS

security. In that respect, providing an efficient defending policy by

solving (2) does not suffice; the solution to the attacker’s problem

(3) is also important to derive, as it provides the basis for profiling

and modeling attacking behavior. Towards this end, a brief solution

to (3) will also be provided in the upcoming sections, which can

enable the defending side to better handle realistic attacks should the

information between the two sides be symmetric. l

III. OUTPUT DATA AND STEALTHINESS

In this section, we present some results needed to solve (2)-(3).

A. Time Reversal

To estimate xj , j P N, the defender has to utilize output data from

a past horizon while simultaneously guaranteeing robustness for the

receding horizon policy that minimizes Jd over a future horizon.

However, in our continuous-time framework, the Hamiltonian-based

conditions for optimality consist of boundary value problems that

are defined over only one horizon, so we cannot consider both a past

and a future horizon. Therefore, we redefine the past horizon over

which the output data are defined, so that it coincides with the future

horizon where Jd is optimized, as in the following Lemma.

Lemma 1. Consider, @t P rtj , tj ` T s, j P N, a trajectory xp :

rtj , tj ` T s Ñ R
n evolving according to the dynamics

9xpptq “ ´Axpptq ´B
`

up2tj ´ tq ` dp2tj ´ tq ` ap2tj ´ tq
˘

. (4)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195922

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 09,2022 at 16:18:30 UTC from IEEE Xplore.  Restrictions apply.



3

Let Assumption 3 hold. Then, the equation

Cxpptq “ yp2tj ´ tq,@t P rtj , tj ` T s, (5)

holds if and only if xpptjq “ xj .

Proof. Integrating (1) backwards on t P rtj ´ T, tjs, j P N, one has

yptq “ Ce
Apt´tjq

xj ` C

ż t

tj

e
Apt´τq

B

¨ pupτq ` dpτq ` apτqqdτ, @t P rtj ´ T, tjs. (6)

Setting t1 “ 2tj´t in (6) and changing the integration variable yields

yp2tj ´ t
1q “ Ce

´Apt1´tjq
xj ´ C

ż t1

tj

e
´Apt1´τq

B

¨ pup2tj ´ τq ` ap2tj ´ τq ` dp2tj ´ τqqdτ. (7)

Integrating (4) over rtj , tj ` T s, we derive, @t1 P rtj , tj ` T s, that

Cxppt1q “ Ce
´Apt1´tjq

xpptjq ´ C

ż t1

tj

e
´Apt1´τq

B

¨ pup2tj ´ τq ` ap2tj ´ τq ` dp2tj ´ τqqdτ. (8)

Deducting (8) from (7), for all t1 P rtj , tj ` T s we obtain

yp2tj ´ t
1q ´ Cxppt1q “ Ce

´Apt1´tjq pxj ´ xpptjqq .

Using Assumption 3, we conclude that Cxppt1q “ yp2tj ´ t1q, @t1 P
rtj , tj ` T s, if and only if xpptjq “ xj .

Remark 5. The differential equation (4) along with the constraint (5)

provided by Lemma 1 are defined over the future horizon rtj , tj`T s,
j P N, yet they still allow one to estimate the initial condition xj
using past output data. It should be reminded, however, that the past

disturbance and stealthy attack, which affect (4), are not known by

the defender and thus the true xj cannot be computed. Instead, to

guarantee robustness, the objective is to find the past disturbance and

attack that yield a worst-case estimate of xj while simultaneously

optimizing Jd, as noted in (2) and Remark 3. l

B. Characterization of Stealthy Attacks

Consider the attack-free model of (1)

9xhptq “ Axhptq `B puptq ` dhptqq ,

yhptq “ Cxhptq, xhpt0q “ x0, t ě t0,
(9)

where xhptq P R
n, yhptq P R

p are the states and the output if there

is no attack, and dhptq P R
m is any signal satisfying the bound from

Assumption 1, i.e., ‖dhptq‖8 ă ∆, @t ě t0. Many realizations of

the attack-free model (9) may exist, based on the choice of dh. To

remain stealthy over a horizon t P rtj , tj ` T s, j P N, the attacker

needs to imitate the behavior of one of these realizations, and find a

signal dh satisfying ‖dhptq‖8 ă ∆, @t P rtj , tj ` T s, for which

yptq “ yhptq, @t P rtj , tj ` T s. (10)

We will denote this class of signals as admissible. Although the

attacker does not know the actual input that the defender will employ,

it is still able to guarantee that (10) holds for some admissible signal

dh; hence, it can also guarantee undetectability as stated next.

Fact 1. Let ua, dah : rtj , tj `T s Ñ R
m, j P N, be functions of time,

such that ‖dahptq‖8 ă ∆ over the corresponding domain. Consider

also the states xa, xah : rtj , tj ` T s Ñ R
n evolving according to

9x
aptq “ Ax

aptq `Bpuaptq ` dptq ` aptqq,

9x
a
hptq “ Ax

a
hptq `B puaptq ` d

a
hptqq ,

x
aptjq “ x

a
hptjq “ xj , t P rtj , tj ` T s.

(11)

Given that the function dah and the attack vector a are chosen so that

C pxaptq ´ x
a
hptqq “ 0, @t P rtj , tj ` T s, (12)

then (10) holds, with the attacker’s admissible signal being dah. l

Remark 6. Based on Fact 1, as long as the attacker enforces (12)

and ‖dahptq‖8 ă ∆ to hold for all @t P rtj , tj ` T s, j P N, it

can pick ua and dah in any way it desires, while still guaranteeing

undetectability. As a result, no knowledge of the defender’s control

input u is needed to enforce these conditions. l

IV. MAIN RESULTS

We will now solve the defender’s and the attacker’s problems (2)-

(3). To this end, let us denote as Fj the set of piece-wise continuous

mappings from rtj , tj ` T s to R
m, and as Fj

d the set of piece-wise

continuous mappings from rtj , tj ` T s to R
m, such that if z P Fj

d

then ‖zptq‖8 ă ∆ for all t P rtj , tj ` T s.

A. Decision-Making for the Defender

Let A “∆ tad, adp, d
d, ddp, d

d
hu P Fj

A
“∆ rFjs2 ˆ rFj

d s3. Then,

@j P N, a relaxed version of the optimization problem (2) for the

defender can be written as the following zero-sum game:

min
uPFj

max
APF

j
A

J̃
d pu, A; tjq “

ż tj`T

tj

´ ∥

∥

∥
x
dpτq

∥

∥

∥

Qd
(13)

` ‖upτq‖Rd ´
∥

∥

∥
a
dpτq

∥

∥

∥

Kd
´

∥

∥

∥
a
d
ppτq

∥

∥

∥

Kd
´

∥

∥

∥
d
dpτq

∥

∥

∥

Dd,∆

´
∥

∥

∥
d
d
ppτq

∥

∥

∥

Dd,∆
´

∥

∥

∥
d
d
hpτq

∥

∥

∥

Dd,∆

¯

dτ `
∥

∥

∥
x
dptj ` T q

∥

∥

∥

Fd
,

subject to the following dynamics, @t P rtj , tj ` T s,

9x
dptq “ Ax

dptq `B
´

uptq ` a
dptq ` d

dptq
¯

, (14)

9x
d
pptq “ ´Axdpptq ´B

´

upptq ` a
d
pptq ` d

d
pptq

¯

, (15)

9x
d
hptq “ Ax

d
hptq `B

´

uptq ` d
d
hptq

¯

(16)

9ǫ
d
hptq “

∥

∥

∥
Cx

d
hptq ´ Cx

dptq
∥

∥

∥

Ip

, (17)

9ǫ
d
pptq “

∥

∥

∥
Cx

d
pptq ´ yp2tj ´ tq

∥

∥

∥

Ip

, (18)

where upptq “ up2tj ´ tq, with boundary conditions

ǫ
d
σptjq “ ǫ

d
σptj ` T q “ 0, σ P th, pu , (19)

x
d
hptjq “ x

d
pptjq “ x

dptjq, (20)

and Dd
ą 0. In the equations above, the dependence of all signals on

tj has been omitted to moderate notation. For example, the complete

notation for xdptq in (14) would be to denote it as xdpt; tjq; such an

extended notation will be used only when needed to avoid confusion.

The constraints imposed by (17)-(19) build on the following fact.

Fact 2. [26] Let a, b be positive constants such that a ă b. Consider

a continuous function f : ra, bs Ñ R
q , and a scalar trajectory

ǫ : ra, bs Ñ R evolving according to

9ǫptq “ ‖fptq‖Iq ,@t P ra, bs, ǫpaq “ 0. (21)

If ǫpbq “ 0, then fptq “ 0, @t P ra, bs. l

The dynamics in optimization (13)-(20) may now be explained:

‚ The state xd is a prediction of the future state x, assuming a

worst-case future disturbance dd and worst-case future attack ad.

The consideration of a worst-case future adversarial input is im-

portant to guarantee robustness, as the actual future adversarial

input is not known by the defender [27].

‚ The state xdh is a prediction of the future state x in an attack-free

scenario. Equations (17), (19) guarantee that the output of this

predicted attack-free state is compatible with the output of the

predicted attacked state xd. In particular, due to Fact 2, equations

(17), (19) enforce the undetectability condition of Fact 1. Hence,
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only worst-case stealthy attacks are considered by the defender

in its optimization problem, and not general types of attacks.

‚ The state xdp is a prediction of the past state xpptq “ xp2tj ´
tq, @t P rtj , tj ` T s. By considering worst-case past inputs

ddp and adp, equations (18)-(19) yield a worst-case estimate of

the initial condition xj owing to Lemma 1 and Fact 2. This

worst-case initial state is then used as an initial condition for

the worst-case predictions of the future states xd, xdh.

‚ Since the predicted future, past, and attack-free trajectories xd,

xdp, xdh computed by the defender may not coincide with the real

trajectories x, xp, xh, the superscript d is used to distinguish

them. This superscript is also used for the predicted future and

past attacks ad, adp, the predicted future and past disturbances

dd, ddp, and the disturbance ddh in the attack-free case.

Remark 7. The running cost in (13) includes a few more terms

than the running cost in (2), which explains why (13)-(20) is only

a relaxed version of (2). The purpose of these is to ensure that the

solution to (13)-(20) is sufficiently smooth [25], while also ensuring

that Assumption 1 is satisfied [24]. One could omit those extra terms,

but this would lead to the solutions of (13)-(20) being bang-bang or

singular [25], thus creating numerical difficulties. Therefore, from

a computational perspective, it is preferable to obtain a sub-optimal

solution by slightly modifying the cost in (2) into the cost (13). l

Remark 8. The suboptimality induced by the extra terms in (13)

depends on their weighting matrices Dd and Kd. Since Dd
ĺ

λmaxpDdqIm and Kd
ĺ λmaxpKdqIm, then as these matrices’

maximum eigenvalues approach zero, the extra terms in (13) vanish,

and (13) becomes equivalent to (2). On the other hand, as these

matrices’ maximum eigenvalues are increased, the optimal value of

(13) will monotonically decline and move further away from the value

of (2). Consequently, the induced suboptimality in (13) is proportional

to the maximum eigenvalues of these matrices. It should also be noted

that the term
∥

∥adpτq
∥

∥

Kd in the cost (13) is weighted with the same

matrix Kd as the one used in (2) only for the sake of moderating

notation; a different weighing matrix can be used otherwise. l

We now obtain the optimality conditions for problem (13)-(20).

Theorem 1. Let tu‹,A‹u P Fj ˆ Fj
A

be a Nash equilibrium to

the defender’s zero-sum game (13) subject to (14)-(20), with, A‹ “∆

tad‹, ad‹
p , d

d‹, dd‹
p , d

d‹
h u. Then, @t P rtj , tj ` T s, j P N:

u
‹ptq “ ´Rd

´1

B
Tpλptq ` λhptqq, (22)

a
d‹ptq “ K

d´1

B
T
λptq, (23)

d
d‹ptq “ ∆ ¨ tanhpDd´1

B
T
λptqq, (24)

d
d‹
h ptq “ ∆ ¨ tanhpDd´1

B
T
λhptqq, (25)

a
d‹
p ptq “ ´Kd´1

B
T
λpptq, (26)

d
d‹
p ptq “ ´∆ ¨ tanhpDd´1

B
T
λpptqq, (27)

where λ, λh, λp:rtj , tj `T s Ñ R
n, ρp, ρh:rtj , tj `T s Ñ R satisfy

9λptq“´AT
λptq´Qdxdptq´CT

Cpxdptq´xdhptqqρhptq, (28)

9λpptq “ A
T
λpptq ´ C

TpCxdpptq ´ yp2tj ´ tqqρpptq, (29)

9λhptq “ ´AT
λhptq ´ C

T
Cpxdhptq ´ x

dptqqρhptq, (30)

9ρpptq “ 9ρhptq “ 0, (31)

λpptj ` T q “ λhptj ` T q “ 0, (32)

λptj ` T q “ F
d
x
dptj ` T q, (33)

λptjq ` λhptjq ` λpptjq “ 0, (34)

subject to (14)-(20) for u “ u‹ and A “ A‹.

Proof. Define the Hamiltonian of the problem (13)-(20) as:

H
dp¨q “

∥

∥

∥
x
dptq

∥

∥

∥

Qd
` ‖uptq‖Rd ´

∥

∥

∥
a
dptq

∥

∥

∥

Kd
´

∥

∥

∥
a
d
pptq

∥

∥

∥

Kd

´
∥

∥

∥
d
dptq

∥

∥

∥

Dd,∆
´
∥

∥

∥
d
d
pptq

∥

∥

∥

Dd,∆
´
∥

∥

∥
d
d
hptq

∥

∥

∥

Dd,∆
`λTptq 9x

dptq

` λ
T
pptq 9x

d
pptq ` λ

T
hptq 9x

d
hptq ` ρpptq 9ǫ

d
pptq ` ρhptq 9ǫ

d
hptq,

where 9xd, 9xdp, 9xdh, 9ǫdp, 9ǫdh are given by (14)-(18), and λ, λp, λh,

ρp, ρh, denote the corresponding co-states. The conditions for opti-

mality demand that 9λptq “ ´BHd{Bxdptq, 9λhptq “ ´BHd{Bxdhptq,
9λpptq “ ´BHd{Bxdpptq, 9ρpptq “ ´BHd{Bǫdpptq, 9ρhptq “
´BHd{Bǫdhptq, from which we obtain (28)-(31). In addition, the

transversality necessary conditions yield (32)-(33). Next, notice that

due to the boundary condition (20), the possible variations with

respect to the initial conditions need to satisfy δxdpt0q “ δxdppt0q “
δxdhpt0q. Therefore, following [25], it is not difficult to prove that

(34) is also a necessary condition for optimality. Finally, by applying

the stationarity conditions
BHdp¨q

Bu
“ 0,

BHdp¨q
Bσ

“ 0, @σ P A, the

candidate optimal inputs u‹, A‹ given by (22)-(27) are derived.

Subsequently, notice that the Hamiltonian is strictly convex with

respect to u and strictly concave with respect to dd, ddp, d
d
h, a

d, adp.

Therefore, the stationary points (22) and (23)-(27) are global mini-

mizers and maximizers of the Hamiltonian, respectively. In addition,

the Hamiltonian is separable w.r.t. u and dd, ddp, d
d
h, a

d, adp, hence the

turn in which the Hamiltonian is minimized or maximized does not

affect the corresponding optimal solution. Therefore, we deduce that

H
d p¨, u‹

,Aq ď H
d p¨, u‹

,A‹q ď H
d p¨, u,A‹q (35)

Hence, the pair tu‹,A‹u satisfies all conditions characterizing a

saddle-point solution to problem (13)-(20). As a result, the existence

of a saddle point concludes, for all A P Fj
A

and u P Fj , that

J̃
dpu‹

, A; tjq ď J̃
dpu‹

, A‹
; tjq ď J̃

dpu, A‹
; tjq,

i.e., tu‹,A‹u is a Nash equilibrium for (13)-(20) [3].

Control law: Having solved the optimization problem (13)-(20),

the defender can choose its controller u by implementing (22) in a

receding horizon fashion. In particular, if u‹p¨; tjq is the signal (22)

derived in the j-th instance of the optimization problem (13)-(20),

j P N, then the defender’s receding horizon controller is given by

uptq “ u
‹pt; tjq, @t P rtj , tj`1s, j P N. (36)

B. Decision-Making for the Attacker

We now proceed to study the attacker’s decision-making mech-

anism. To this end, @j P N, a relaxed version of the optimization

problem (3) for the attacker can be written as the following game:

min
uaPFj

max
aPFj , da

h
PF

j
d

J̃
a pua, a, dah; tjq (37)

“

ż tj`T

tj

´

‖xapτq‖Qa ` ‖uapτq‖Ra ´ ‖apτq‖Ka

´ ‖dahpτq‖Da,∆

¯

dτ ` ‖xaptj ` T q‖Fa ,

subject to the following dynamics, @t P rtj , tj ` T s,

9x
aptq “ Ax

aptq `B
`

u
aptq ` aptq ` dptq

˘

, (38)

9x
a
hptq “ Ax

a
hptq `B puaptq ` d

a
hptqq , (39)

9η
aptq “ ‖Cxahptq ´ Cx

aptq‖Ip , (40)

with boundary conditions

x
aptjq “ x

a
hptjq “ xj , (41)

η
aptjq “ η

aptj ` T q “ 0, (42)

where Da
ą 0, and

!

ua‹, ta‹, da‹
h u

(

is the saddle point of

J̃a p¨, ¨; tjq. To distinguish between the different future and attack-
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5

free trajectories xa, xah predicted by the attacker, the superscript a

is used. This is also used for the admissible disturbance dah in the

attack-free scenario and for the considered defender’s input ua. Next,

it is shown that the solution to (37)-(42) yields an undetectable attack.

Theorem 2. Assume that the attacker chooses its policy a to be equal

to a‹ for all t P rtj , tj ` T s, j P N. Then, the attacker will remain

undetected, @t P rtj , tj ` T s.

Proof. Due to the constraints (40) and (42) of the optimization prob-

lem (37)-(42), it follows from Fact 2 that Cpxa‹
h ptq ´ xa‹ptqq “ 0,

@t P rtj , tj`T s, where xa‹, xa‹
h are the trajectories of (38)-(39) for

!

ua, a, dah

)

”
!

ua‹, a‹, da‹
h

)

. Since the infinity norm of da‹
h is

bounded by ∆, we can invoke Fact 1 and conclude that the attacker

will remain undetected, with da‹
h being the corresponding admissible

signal for the attacker.

Next, we present a formal statement that describes the Nash

equilibrium solution of the game (37)-(42) for the attacker.

Theorem 3. Let the tuple tua‹, ta‹, da‹
h uu constitute a Nash equilib-

rium to the game (37) subject to (38)-(42). Then, @t P rtj , tj ` T s,
it follows that

u
a‹ptq “ ´Ra´1

B
T
`

µ
aptq ` µ

a
hptq

˘

,

a
‹ptq “ K

a´1
B

T
µ
aptq,

d
a‹
h ptq “ ∆ ¨ tanh

´

D
a´1

B
T
µ
a
hptq

¯

where µa, µah : rtj , tj ` T s Ñ R
n, ξa : rtj , tj ` T s Ñ R satisfy

9µ
aptq “ ´AT

µ
aptq ´Q

a
x
aptq ´ C

T
C pxaptq ´ x

a
hptqq ξaptq,

9µ
a
hptq “ ´AT

µ
a
hptq ´ C

T
C pxahptq ´ x

aptqq ξaptq,

9ξ
aptq “ 0,

µ
aptj ` T q “ F

a
x
aptj ` T q, µahptj ` T q “ 0,

subject to (38)-(42) for ua “ ua‹, dah “ da‹
h and a “ a‹.

Proof. The proof is omitted as it is similar to that of Theorem 1.

Similar to the defender, the attacker can choose its controller a by

implementing a‹ in a receding horizon. In particular, if a‹p¨; tjq is

the signal a‹ derived in the j-th instance of the optimization (37)-

(42), j P N, then the attacker’s RHC will be given by

aptq “ a
‹pt; tjq, @t P rtj , tj`1s, j P N. (43)

C. Boundedness of the Closed-Loop Trajectories

Given that the solutions provided by Theorems 1, 3 are applied

to (1) iteratively in a receding horizon fashion @t ě t0, it is

crucial to guarantee safety of the closed loop, in the sense of

proving boundedness of the resulting trajectories of (1). The following

lemmas, which are needed for the overall analysis, show that the

solutions of (1), as well as the control signals arising in (13)-(20)

and (37)-(42), scale according to xj , @t P rtj , tj ` T s.

Lemma 2. There exists Ka‹ P R
mˆm and k1, k2 ą 0, such that if

Ka
ą Ka‹ then ‖a‹ptq‖ ď k1 ‖xj‖`k2, @t P rtj , tj `T s, @j P N.

Proof. Due to the saddle-point property of tua‹, ta‹, da‹
h uu, one has:

J̃
a pua‹

, a
‹
, d
a‹
h ; tjq ď J̃

a p0, a‹
, d
a‹
h ; tjq

ď

ż tj`T

tj

1

2

´

λmaxpQaq ‖xapτq‖2 ´λminpKaq‖a‹pτq‖
2
¯

dτ

`
1

2
λmaxpF aq ‖xaptj ` T q‖2 . (44)

Since the defending control input has been set to zero, the trajectory

xa satisfies xaptq “ eApt´tjqxj `
şt

tj
eApt´τqB pa‹pτq ` dpτqq dτ ,

for all t P rtj , tj ` T s. Hence, owing to Assumption 1 which

bounds the disturbance norm, there exist constants λ1, λ2, λ3 ą 0,

dependent on A,B,∆, T , such that for all t P rtj , tj ` T s:

‖xaptq‖2 ď λ1 ‖xj‖
2 ` λ2

ż tj`T

tj

‖a‹pτq‖
2

dτ ` λ3. (45)

Assume now that the statement of the theorem does not hold. Then,

for some interval rts, tes Ď rtj , tj ` T s, ‖a‹ptq‖ ě k1 ‖xj‖ `
k2 even as ‖xj‖ Ñ 8, no matter how large k1, k2 are picked.

In this case, if we substitute the bound from (45) in (44) and pick

λminpKaq, k1, k2 large enough, the right hand-side of (44) will tend

to ´8 as ‖xj‖ Ñ 8, meaning that J̃a pua‹, a‹, da‹
h ; tjq will also

tend to ´8. However, in the suboptimal scenario that the attacker

does not attack, the tuple tua‹, t0, duu yields a cost J̃a pua‹, 0, d; tjq
that is lower bounded by construction, hence J̃a pua‹, 0, d; tjq ą
J̃a pua‹, a‹, da‹

h ; tjq; a contradiction.

Lemma 3. Let Assumptions 1-3 hold. Then, there exist matrices

Kd‹, Ka‹ and constants µ1, µ2, δ
‹ ą 0, such that if Kd

ą Kd‹,

Ka
ą Ka‹ and δ ă δ‹, then

!

‖u‹ptq‖ ,
∥

∥ad‹ptq
∥

∥ ,
∥

∥ad‹
p ptq

∥

∥

(

ď
µ1 ‖xj‖ ` µ2, @t P rtj , tj ` T s, @j P N.

Proof. We will use an inductive proof. Assume that there exist

constants ζ1, ζ2 ą 0, such that ‖xj´1‖ ď ζ1 ‖xj‖ ` ζ2, j P N.

This inequality holds trivially at j “ 0, since x0 is bounded.

First, we will prove the results for the attack vectors ad‹ and ad‹
p .

Let xdj “ xdptjq be the initial condition predicted by the defender.

Owing to the constraints (17)-(20), it holds @t P rtj ´ T, tjs that:

yptq “ Ce
Apt´tjq

x
d
j `

ż t

tj

Ce
Apt´τq

B

¨
`

d
d‹
p p2tj ´ τq ` upτq ` a

d‹
p p2tj ´ τq

˘

dτ. (46)

However, from (1), for all t P rtj ´ T, tjs, it also holds that

yptq “ Ce
Apt´tjq

xj `

ż t

tj

Ce
Apt´τq

B

¨ pdpp2tj ´ τq ` upτq ` app2tj ´ τqq dτ. (47)

Subtracting (47) from (46) leads to:

0 “ Ce
Apt´tjqpxdj ´ xjq `

ż t

tj

Ce
Apt´τq

B

ˆ

d
d‹
p p2tj ´ τq

´ dpp2tj ´ τq ` pad‹
p p2tj ´ τq ´ app2tj ´ τqq

˙

dτ. (48)

Consequently, an integration of (48) yields:

x
d
j “ xj ´

«

ż tj´1

tj

e
ATpσ´tjq

C
T
Ce

Apσ´tjq
dσ

ff´1

¨

„
ż tj´1

tj

e
ATpσ´tjq

C
T

ż σ

tj

Ce
Apσ´τq

B
`

d
d‹
p p2tj ´ τq

´ dpp2tj ´ τq ` pad‹
p p2tj ´ τq ´ app2tj ´ τqq

˘

dτdσ
‰

. (49)

The matrix inversion in (49) is possible because the inverted term

is an observability gramian of the pair pA,Cq; an observable pair,

owing to Assumption 3. From (49) and (27), Lemma 2, Assumption

1 and the inductive assumption, we deduce that there exist constants

λ1, λ2, λ3 ą 0, dependent on A,B,C,∆, T , such that:
∥

∥

∥
x
d
j

∥

∥

∥

2

ď λ1

ż tj`T

tj

∥

∥

∥
a
d‹
p pτq

∥

∥

∥

2

dτ ` λ2 ‖xj‖
2 ` λ3. (50)

Subsequently, owing to the saddle-point property of tu‹,A‹u:

J̃
d pu‹

, A‹
; tjq ď J̃

d p0, A‹
; tjq ď

ż tj`T

tj

1

2

ˆ

λmaxpQdq
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¨
∥

∥

∥
x
dpτq

∥

∥

∥

2

´λminpKdq

ˆ

∥

∥

∥
a
d‹pτq

∥

∥

∥

2

`
∥

∥

∥
a
d‹
p pτq

∥

∥

∥

2
˙˙

dτ

`
1

2
λmaxpF dq

∥

∥

∥
x
dptj ` T q

∥

∥

∥

2

. (51)

Since the defending control input has been set to

zero, the trajectory xd satisfies xdptq “ eApt´tjqxdj `
şt

tj
eApt´τqB

`

ad‹pτq ` dd‹pτq
˘

dτ , for all t P rtj , tj ` T s.

Therefore, given also (50) and the fact that the infinity norm of dd‹

is bounded by ∆ given (24), there exist constants ρ1, ρ2, ρ3, ρ4 ą 0

dependent on A,B,C,∆, T so that for all t P rtj , tj ` T s:

∥

∥

∥
x
dptq

∥

∥

∥

2

ď ρ1 ‖xj‖
2 ` ρ2

ż tj`T

tj

∥

∥

∥
a
d‹pτq

∥

∥

∥

2

dτ

` ρ3

ż tj`T

tj

∥

∥

∥
a
d‹
p pτq

∥

∥

∥

2

dτ ` ρ4. (52)

Owing to (51)-(52), we can use the same arguments as in Lemma

3 to show that there exist Kd‹,Ka‹ P R
mˆm and µ1, µ2 ą 0,

independent of xj , such that if Kd
ą Kd‹ and Ka

ą Ka‹, then it

holds that
∥

∥ad‹ptq
∥

∥ ď µ1 ‖xj‖`µ2 and
∥

∥ad‹
p ptq

∥

∥ ď µ1 ‖xj‖`µ2,

@t P rtj , tj ` T s, @j P N.

From the minimizing perspective, notice that due to (51):

J̃
d pu‹

, A‹
; tjq ď

ż tj`T

tj

1

2

ˆ

λmaxpQdq
∥

∥

∥
x
dpτq

∥

∥

∥

2
˙

dτ

`
1

2
λmaxpF dq

∥

∥

∥
x
dptj ` T q

∥

∥

∥

2

, (53)

where xd satisfies (52). As a result, and since we have proved that
∥

∥ad‹ptq
∥

∥ ď µ1 ‖xj‖ ` µ2 and
∥

∥ad‹
p ptq

∥

∥ ď µ1 ‖xj‖ ` µ2, @t P
rtj , tj ` T s, @j P N, it follows that there exist constants ρ5, ρ6,

independent of tj , such that for all j P N:

J̃
d pu‹

, A‹
; tjq ď ρ5 ‖xj‖

2 ` ρ6. (54)

Hence, ‖u‹ptq‖ ď µ1 ‖xj‖ ` µ2 must also hold for some µ1, µ2,

otherwise (54) cannot hold for any xj P R
n by definition.

Finally, notice that for all t P rtj , tj ` T s, we have ‖u‹ptq‖ ď
µ1 ‖xj‖ ` µ2 and, due to Lemma 2, ‖a‹ptq‖ ď k1 ‖xj‖ ` k2.

Therefore, since ‖dptq‖8 ă ∆ and due to the linearity of the

dynamics (1), we can pick δ small enough, below a threshold δ‹

that is inversely proportional to k1 and µ1, and guarantee that

‖xptjq‖ ď ζ1 ‖xptj`1q‖ ` ζ2.

Lemma 4. Let the conditions of Lemmas 2-3 and Assump-

tions 1-3 hold. Then, for all i, j P N, there exist constants

αi´j , βi´j , γi´j , δi´j ą 0, so that, @t P rti, ti ` T s, the following

inequalities hold:

αi´j ‖xj‖ ´ βi´j ď
!

‖xptq‖ , ‖u‹pt; tiq‖ ,

‖a‹pt; tiq‖ ,
∥

∥

∥
a
d‹
p pt; tiq

∥

∥

∥

(

ď γi´j ‖xj‖ ` δi´j . (55)

Proof. The proof is a direct consequence of Lemmas 2-3, Assumption

1 and the linearity of the dynamics (1).

While Lemmas 2-4 provide useful information regarding the de-

rived control signals, they do not investigate whether the closed-

loop trajectories will diverge to infinity after infinite time. In order

to rule out this scenario, we will need the following controllability

assumption, which is standard in the RHC literature [4], [14], [28].

Assumption 4. The terminal cost F pxdq “
∥

∥xd
∥

∥

Fd is an input-to-

state stability control Lyapunov function for the dynamics (14), i.e.,

there exists ψ : Rn Ñ R
m such that

dF pxdptqq

dt
|u“ψpxdqď ´

∥

∥

∥
x
dptq

∥

∥

∥

Qd
´

∥

∥

∥
ψpxdptqq

∥

∥

∥

Rd

`
∥

∥

∥
a
dptq

∥

∥

∥

Kd
`

∥

∥

∥
d
dptq

∥

∥

∥

Dd,∆
. l

The following theorem presents the main result of this subsection.

Theorem 4. Let Assumptions 1-4 hold, and the defending and

attacking control laws be given by (36) and (43). Then, there exists

a constant δ‹ ą 0 and symmetric matrices Ka‹, Kd‹
ą 0, such that

if Kd
ľ Kd‹, Ka

ľ Ka‹ and δ ă δ‹, then the trajectories of the

system state xptq remain bounded, @t ě t0.

Proof. Given (13)-(20) at t “ tj , j P N, we will denote the

corresponding decision functions or trajectories @t P rtj , tj ` T s
with φpt; tjq, where φ is any trajectory or function of t P rtj , tj`T s
computed at t “ tj . Hence, let us denote the minimizing policy of

the optimization problem (13)-(20) computed at t “ tj as u‹pt; tjq,

the corresponding maximizing functions as

A‹pt; tjq “
!

a
d‹pt; tjq, a

d‹
p pt; tjq, d

d‹pt; tjq, d
d‹
p pt; tjq, d

d‹
h pt; tjq

)

,

the resulting optimal trajectory as xd‹pt; tjq, and the corresponding

optimal value of (13)-(20) as J̃dpu‹pt; tjq,A
‹pt; tjq; tjq “ J̃d‹ptjq.

Consider now the two first consecutive optimization problems

Pdptjq and Pdptj`1q of the form (13)-(20), solved at the time instants

tj and tj`1 respectively, with j P N. For problem Pdptjq and

for t P rtj , tj ` T s, given that the past attack is selected equal

to the real past attack, i.e., adppt; tjq “ apptq “ ap2tj ´ tq, and

the past disturbance is selected equal to the real past disturbance,

i.e., ddppt; tjq “ dpptq “ dp2tj ´ tq, then the initial condition is

constrained to be the true initial condition according to Assumption

3 and Lemma 1, i.e., xdptj ; tjq “ x0. In addition, for problem

Pdptjq and for t P rtj , tj`1s, given that the future attack and

disturbance signals are selected equal to the worst-case past attack

and disturbance signals of the problem Pdptj`1q, i.e., adpt; tjq “
ad‹
p p2tj`1 ´ t; tj`1q, and ddpt; tjq “ dd‹

p p2tj`1 ´ t; tj`1q, then

xdptj`1; tjq “ xd‹ptj`1; tj`1q. Now, note that since the future

attack is assumed to be stealthy, the output that will be generated

will always be compatible with the attack-free model (9). Therefore,

for this particular choice of adpt; tjq and ddpt; tjq, over t P rtj , tj`1s,
there exists an admissible signal d̄dh : rtj , tj`1s Ñ R

m with
∥

∥d̄dhptq
∥

∥

8
ă ∆, @t P rtj , tj`1s, so that if one sets dhptq “ d̄dhptq,

@t P rtj , tj`1s, the constraints of the optimization problem Pdptjq
are satisfied @t P rtj , tj`1s.

Finally, since for such a choice of past input signals over

t P rtj , tj ` T s and future signals over t P rtj , tj`1s we have

xdptj`1; tjq “ xd‹ptj`1; tj`1q, then @t P rtj`1, tj ` T s the inputs

adpt; tjq “ ad‹pt; tj`1q, ddpt; tjq “ dd‹pt; tj`1q and ddhpt; tjq “
dd‹
h pt; tj`1q satisfy the output compatibility constraints of problem

Pdptjq because they also satisfy the output compatibility constraints

of the problem Pdptj`1q. Note that, owing to Fact 1, the choice of

u does not affect the undetectability constraints.

Define now the policies:

ũpt; tj`1q “

#

u‹pt; tjq, t P rtj`1, tj ` T s,

ψpx̃dpt; tj`1qq, t P rtj ` T, tj`1 ` T s,

ã
dpt; tjq “

#

ad‹
p p2tj`1 ´ t; tj`1q, t P rtj , tj`1s,

ad‹pt; tj`1q, t P rtj`1, tj ` T s,

ã
d
ppt; tjq “ apptq, t P rtj , tj ` T s,

d̃
dpt; tjq “

#

dd‹
p p2tj`1 ´ t; tj`1q, t P rtj , tj`1s,

dd‹pt; tj`1q, t P rtj`1, tj ` T s,

d̃
d
ppt; tjq “ dpptq, t P rtj , tj ` T s,

d̃
d
hpt; tjq “

#

d̄dhptq, t P rtj , tj`1s,

dd‹
h pt; tj`1q, t P rtj`1, tj ` T s,

Ãpt; tjq “
!

ã
dpt; tjq, ã

d
ppt; tjq, d̃

dpt; tjq, d̃
d
ppt; tjq, d̃

d
hpt; tjq

)

,
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where x̃dpt; tjq is the trajectory of xd for Pdptjq by applying

u “ u‹pt; tjq and A “ Ãpt; tjq, @t P rtj , tj ` T s, and x̃dpt; tj`1q
the trajectory of xd for Pdptj`1q by applying u “ ũpt; tj`1q and

A “ A‹pt; tj`1q, @t P rtj`1, tj`1 ` T s. Due to the preceding

discussion, Ãpt; tjq is feasible with respect to the constraints of

the optimization problem Pdptjq, while ũpt; tj`1q is feasible for

the optimization problem Pdptj`1q. Hence, due to saddle-point

optimality, the following hold

J̃
d‹ptjq ě J̃

dpu‹pt; tjq, Ãpt; tjq; tjq, (56)

J̃
d‹ptj`1q ď J̃

dpũpt; tj`1q,A‹pt; tj`1q; tj`1q. (57)

Then, given (56)-(57) we have that,

J̃
d‹ptj`1q ´ J̃

d‹ptjq

ď J̃
dpũpt; tj`1q,A‹pt; tj`1q; tj`1q´J̃dpu‹pt; tjq, Ãpt; tjq; tjq

“

ż tj`1`T

tj`1

´ ∥

∥

∥
x̃
dpτ ; tj`1q

∥

∥

∥

Qd
‖̀ũpτ ; tj`1q‖Rd ´

∥

∥

∥
a
d‹pτ ; tj`1q

∥

∥

∥

Kd

´
∥

∥

∥
a
d‹
p pτ ; tj`1q

∥

∥

∥

Kd
´
∥

∥

∥
d
d‹pτ ; tj`1q

∥

∥

∥

Dd,∆
´
∥

∥

∥
d
d‹
p pτ ; tj`1q

∥

∥

∥

Dd,∆

´
∥

∥

∥
d
d‹
h pτ ; tj`1q

∥

∥

∥

Dd,∆

¯

dτ `
∥

∥

∥
x̃
dptj`1 ` T ; tj`1q

∥

∥

∥

Fd

´

ż tj`T

tj

´ ∥

∥

∥
x̃
dpτ ; tjq

∥

∥

∥

Qd
` ‖u‹pτ ; tjq‖Rd ´

∥

∥

∥
ã
dpτ ; tjq

∥

∥

∥

Kd

´
∥

∥

∥
ã
d
ppτ ; tjq

∥

∥

∥

Kd
´
∥

∥

∥
d̃
dpτ ; tjq

∥

∥

∥

Dd,∆
´
∥

∥

∥
d̃
d
ppτ ; tjq

∥

∥

∥

Dd,∆

´
∥

∥

∥
d̃
d
hpτ ; tjq

∥

∥

∥

Dd,∆

¯

dτ ´
∥

∥

∥
x̃
dptj ` T ; tjq

∥

∥

∥

Fd
. (58)

Note that, it holds that x̃dptj`1; tjq “ xd‹ptj`1; tj`1q. Since

the past disturbance input and attack for the optimization prob-

lem Pdptj`1q are set equal to the worst-case ones, it also holds

that x̃dptj`1; tj`1q “ xd‹ptj`1; tj`1q, and yields x̃dptj`1; tjq “
x̃dptj`1; tj`1q. Finally, given t P rtj`1, tj `T s we have ãdpt; tjq “
ad‹pt; tj`1q, d̃dpt; tjq “ dd‹pt; tj`1q, and ũpt; tj`1q “ u‹pt; tjq,

thus owing to x̃dptj`1; tjq “ x̃dptj`1; tj`1q we write x̃dpt; tjq “
x̃dpt; tj`1q, @t P rtj`1, tj ` T s. Therefore, (58), after taking into

account Assumption 4 reduces to,

J̃
d‹ptj`1q ´ J̃

d‹ptjq ď ´

ż tj`1`T

tj`T

∥

∥

∥
d
d‹
h pτ ; tj`1q

∥

∥

∥

Dd,∆
dτ

´

ż tj`1`T

tj`1`δ

´ ∥

∥

∥
a
d‹
p pτ ; tj`1q

∥

∥

∥

Kd
`
∥

∥

∥
d
d‹
p pτ ; tj`1q

∥

∥

∥

Dd,∆

¯

dτ

´

ż tj`1

tj

ˆ

∥

∥

∥
x̃
dpτ ; tjq

∥

∥

∥

Qd
` ‖u‹pτ ; tjq‖Rd ´

∥

∥

∥
d̄
d
hpτq

∥

∥

∥

Dd,∆

˙

dτ

`

ż tj`T

tj

´

‖appτq‖Kd ` ‖dppτq‖Dd,∆

¯

dτ (59)

ď´

ż tj`1

tj

∥

∥

∥
x̃
dpτ ; tjq

∥

∥

∥

Qd
dτ`

ż tj`T

tj

‖appτq‖Kd dτ`M1,

where M1 “ pT`δq max
dM Pr´∆, ∆sm

‖dM‖Dd,∆. This maximum exists

even if any entry of dM takes the values ˘∆ [24]. Letting ǫ ą 0 be

any arbitrary constant, there exist two cases: a) (Case ‖xj‖ ě ǫq: Due

to Lemma 4, it holds that ‖apptq‖ ď θ1 ‖xj‖`θ2, @t P rtj , tj `T s,
for some θ1, θ2 ą 0. On the other hand,

ştj`1

tj

∥

∥x̃dpτ ; tjq
∥

∥

Qd dτ ě

ι ‖xj‖
2

for some ι ą 0, because x̃dptj ; tjq “ xj , and the evolution of

the trajectories of x̃dp¨; tjq is affected by u‹ and a‹
pp¨, tj`1q, whose

norm is bounded by a linear function of ‖xj‖ as shown in Lemma

4, and by d̄dhp¨q, whose infinity norm is bounded by ∆. In addition,

θ1, θ2 Ñ 0 as λminpKaq Ñ 8. Therefore, if λminpKaq and ǫ are

picked sufficiently large, the right-hand side of (59) is negative; b) if

‖xj‖ ă ǫ then the value of J̃d‹ptjq is bounded by construction, by a

value dependent on ǫ. Aggregating both cases and the requirements

of Lemma 4, if Kd
ľ Kd‹, Ka

ľ Ka‹, and δ ă δ‹, then there

exists a constant JM ă 8, such that J̃d‹ptjq ď JM , @j P N.

Finally, consider the set Arpt; tjq :“ t0, apptq, 0, dpptq, 0u, where

the future attack and disturbance are set equal to zero, and the past

attack and disturbance are set equal to the real ones. Denote as x̃r

the resulting trajectory of xd in (14) if we apply u “ u‹pt; tjq and

A “ Arpt; tjq at t “ tj , @j P N. Then, due to optimality, over the

interval rtj , tj ` T s we obtain, @j P N,

JM ě J̃
d‹ptjq ě J̃

dpu‹pt; tjq,A
rpt; tjq; tjq “

ż tj`T

tj

`

‖x̃rpτq‖Qd

` ‖u‹pτ ; tjq‖Rd´ ‖appτq‖Kd´ ‖dppτq‖Dd,∆

˘

dτ` ‖x̃rptj ` T q‖Fd

ě

ż tj`T

tj

`

‖x̃rpτq‖Qd ´ ‖appτq‖Kd

˘

dτ ´M2, (60)

where M2 “ T ¨maxdM Pr´∆, ∆sm ‖dM‖Dd,∆. Since the past attack

and disturbance were set equal to the actual ones, we have x̃rptjq “
xj . Hence, using identical arguments as in the previous paragraph,

due to Lemma 4, if Kd
ľ Kd‹, Ka

ľ Ka‹, and δ ă δ‹, then from

the right part of (60) we derive J̃d‹ptjq ě π1 ‖xj‖
2 ´ π2 for some

π1, π2 ą 0, @j P N. Thus, (60) gives ‖xj‖ ď
b

JM `π2

π1
, @j P N,

which combined with Lemma 4 yields suptět0 ‖xptq‖ă8.

Remark 9. The proposed game-theoretic methodology for the de-

fender has some similarities with the methods of Chapter 5 in [29].

In particular, [29] also considers output-based game-theoretic control

techniques for systems under the effect of unknown deterministic

disturbances. However, different than [29], the optimal control prob-

lem of the defender presented here also considers attacks that are

constrained by an undetectability equation, and the initial condition

is not assumed to lie in a predefined compact set. In addition, [29]

does not study the receding horizon version of its game-theoretic

controller, nor provides closed-loop boundedness guarantees. l

V. SIMULATIONS

We consider a linearized version of the Aero-Data Model in

Research Environment (ADMIRE) benchmark aircraft [30], whose

state is initially at the origin. The disturbance signal is set equal to

dptq “ 0.02 sinp2πtq17, and its known upper bound is ∆ “ 0.1.

The goal is to keep the full state vector of the aircraft regulated

around its nominal value despite the stealthy attacks and the additive

disturbance. The parameters of the receding horizon framework are

picked as: Qd “ 2I5, Rd “ 0.1I7, Kd “ 10I7, Dd “ 2I7,

F d “ 10I5, Qa “ I5, Ra “ 0.5I7, Ka “ 6I7, Da “ 5I7, and

F a “ I5. The optimization horizon is set equal to T “ 0.1 [s],

while the control horizon is set equal to δ “ 0.005 [s].

We simulate the system for 8 seconds, with the defending and

attacking policies as in (36) and (43). To showcase the performance

deterioration that the stealthy attack can cause, we suppose that the

stealthy attack vanishes after the 4th second. The states, control

policies, and the predicted performance at each iteration are shown

in Figures 1-2. It can be seen that, although the performance cost is

worse while the undetectable attacker is compromising the system,

closed-loop boundedness is maintained.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered a disturbed system under the influence

of a defender and an attacker that hides under the uncertainty

created by an unknown disturbance, with information asymmetry. We

provided a secure RHC mechanism for the defender, that guarantees

the boundedness of the closed-loop system without knowledge of the

full system state. In addition, we characterized the optimal policy for

the attacker, which guarantees its undetectability.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195922

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 09,2022 at 16:18:30 UTC from IEEE Xplore.  Restrictions apply.



8

0 2 4 6 8
-0.02

0

0.02

1 2 3 4 5 6 7 8
0

2

4

6

10
-4

Fig. 1. Evolution of the states and the predicted cost when the system is

under attack for t P r0, 4s.

Fig. 2. Evolution of the control policies when the system is under attack

for t P r0, 4s.

Future work will extend the results to cases where the CPS is

under attack by multiple adversaries, and where the defender and the

attackers have bounded rationality.
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