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Abstract—In this work, we consider a game-theoretic framework for
cyber-physical systems, where a defender develops a mitigation strategy
against an intelligent attacker who exploits the system’s uncertainty to
remain undetected. The goal of the defender is to optimize a perfor-
mance cost constructed specifically to account for robustness against
stealthy attacks, so that the system is regulated. Conversely, the goal
of the attacker is to disrupt the system’s performance by leveraging
its significant information advantage against the defender. Both players
implement their policies in a moving horizon fashion, according to the
principles of receding horizon control. However, because the defender
has no access to the full state of the system, it concurrently employs
receding horizon estimation to overcome this limitation. A rigorous
theoretical analysis shows that such a concurrent policy can guarantee
closed-loop boundedness, despite the stealthy attacks and the information
disadvantage. Simulations verify and clarify these findings.

Index Terms—Cyber-physical systems, game-theory, actuation attacks.

1. INTRODUCTION

Cyber-physical systems (CPS) are sophisticated systems, which
comprise interacting digital, analog and human components engi-
neered for function through integrated physics and logic. Because
of their complexity, CPS are extraordinarily exposed to adversaries
that can potentially cause failure or malfunction while remaining
undetected. For instance, CPS are vulnerable to actuation attacks [1],
i.e. false-data injection and spoofing attacks, which can introduce
perturbations in the CPS’s control input through interference with its
software, hardware or communication channels. As a result, there has
been an increasing demand for secure methods that can guarantee the
integrity and normal operation of CPS under stealthy attacks [2].

Game-theoretic tools [3] have been used to develop resilience
towards worst-case attacks in CPS. In particular, it is often for two-
player competition to arise between the operator of a CPS and a
potential intruder, which can be modeled as a game with a common
utility. In this case, game theory can yield resilient decision-making
mechanisms, which can guarantee an upper or lower bound on the
utility for each player. The corresponding decisions can also be
implemented in a moving horizon fashion to create feedback policies,
according to the principles of receding horizon control (RHC).

Related Work: RHC is a computationally efficient control method
that can stabilize a system using predictions of future costs over a
moving time horizon [4]. Especially relevant to the present work
is the so-called min-max RHC [5]-[9], which yields game-theoretic
policies that account for the worst case scenario regarding a potential
disturbance or uncertainty. Owing to this property, min-max RHC can
be effectively used on the field of CPS security, and guarantee CPS
stability, optimality, and robustness [10]-[12].

This work uses a heavily modified version of min-max RHC, which
significantly differs from results in the literature. In particular, a con-
strained version of game-theoretic RHC is employed, which generates
robustness targeted specifically against stealthy attacks — not against
a general class of adversarial inputs. As a result, the proposed RHC
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contains coupled, time-varying state-control constraints that account
for undetectability, hence classical min-max RHC cannot be directly
employed without significant modifications and a novel closed-loop
analysis. Additionally, we consider that only a partial state can be
measured by the CPS operator — even though the attacker can measure
the full state — and still prove boundedness of the closed loop using
concurrent moving horizon estimation and RHC. Such a concurrent
combination was studied in [13], [14], but only in discrete-time,
without any attacks and without coupled state-control constraints.

Regarding the attackers that can affect a CPS, the distinction of
them between stealthy and non-stealthy ones is crucial. For the latter
case, detection mechanisms can be employed as a tool to deal with
malicious adversaries [15]. For example, for continuous-time systems
and in the absence of uncertainties, the authors in [16] provided
conditions for the detection and identification of various types of
cyber-physical attacks. Additionally, for sampled-data continuous-
time systems affected by deterministic disturbances, a method to de-
tect adversarial inputs was developed in [17]. Nevertheless, in the case
that the attacks remain stealthy and hide under the uncertainties of
large-scale CPS, one must develop appropriate mitigation strategies.

Towards dealing with undetectable adversaries, various types of
stealthy attacks for discrete-time systems were characterized in [18].
In a similar fashion, the authors in [19] investigated the response
of a state estimation problem given different kinds of stealthy
attacks. They derived conditions under which the attackers can remain
undetected, though no robustness guarantees were provided. Similar
to our work, the authors in [20] solved a game to find the best-
response policies for the defender towards a stealthy attacker who
manipulates the system’s output and actuating data; however, the
derived policies were applied only in a non-receding time horizon. A
similar continuous-time optimization was proposed in [21] for secure
trajectory planning of robotic systems, while the authors in [22]
considered a game between an attacker that attempts to maximize
damage on a CPS and a defender who wants to minimize it.

Unlike the aforementioned studies, this is the first work wherein
a defender is tasked with controlling an uncertain system against
stealthy attacks using concurrent RHC and estimation. By targeting
exclusively stealthy attacks through the construction and the incorpo-
ration of appropriate constraints in the defender’s receding horizon
optimization, the conservatism of considering only worst-case attacks
is reduced. In addition, no knowledge of the full state of the system
is needed by the defender to guarantee boundedness of the closed-
loop. From the perspective of the attacker, the corresponding optimal
policies are also studied using Pontryagin’s principle. A preliminary
subset of this study has appeared in [23], where a game between a
defender and a stealthy attacker was also considered, but the behavior
of the corresponding closed-loop was not analyzed or studied. On the
other hand, in the present work we prove that the proposed defending
policy is secure, and can keep the closed-loop bounded despite the
stealthy attacks and the information disadvantage.

Notation: Given z € R?, R € R?4, ||z|| and |2/, are the I and
loo norm of z, and ||z|| , =527 Rz. If ||2]|,, <Z and 2>0, then per
[241: ||2]l 5. = §7 (tanh™" (£))" Rdw. [,eR?*7 is the identity ma-
trix, and 14 € R? is the vector of ones. The operators Amin(*)/Amax ()
yield the minimum/maximum eigenvalue of a symmetric matrix.
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II. PROBLEM FORMULATION

Consider the following system, V¢t > to = 0:
#(t) = Az(t) + B(u(t) () + a(t)),

y(t) = Cx(t), z(to) = zo,

where z(t) € R™ is the state vector, y(¢) € RP is the system’s output,
u(t) € R™ is the defender’s input, a(t) € R™ is the attacker’s input,
d(t) € R™ is an exogenous disturbance, A € R"*", B € R"*"™,
C € RP*™ are the plant, input, and output matrices, respectively.

We will consider a framework where the defender and the attacker
choose their policies based on a RHC setting. In particular, at every
time instant ¢;, 7 € N, the defender and the attacker each compute
a policy that optimizes a specific performance cost over a prediction
horizon [tj, t; + T], T" > 0. The defender and the attacker then
implement their policies on system (1), Vt € [t;, tj11], where § £
tj+1 —t; < T a strictly positive control horizon. Even though the
attacker chooses its control input by optimizing a performance cost
at each time instant ¢;, 7 € N, it still wants to produce an output
that is compatible with the model of the uncertainty generated by the
disturbance. When such a compatibility is achieved for the output, we
will call the attack control input, as well as the corresponding attacker,
as undetectable. The following assumptions are now needed.

(€]

Assumption 1. The disturbance d is bounded by norm, so that
ld()|l.,, < A, Vt > to. The constant A is strictly positive and
known by both the attacker and the defender. O

Assumption 2. At each optimization instant ¢;, j € N:

o The attacker knows the initial condition x(¢;) £ z; and the
future disturbance d(t), Yt € [t;, t; + T].
« The defender knows only the output history y(t), V¢ < t;. [

Assumption 3. The pair (A, C') is observable. O

Remark 1. Assumption 1 characterizes the model of the uncertainty
under which the attacker wants to hide. A larger disturbance bound
shall allow it to employ relatively high control effort, while a smaller
one will restrict its flexibility. Assumption 2 denotes that there is
an information asymmetry between the attacker and the defender,
which gives an advantage to the former. Moreover, no assumption
was imposed on whether each side knows the decision-making
mechanism of the other side. Finally, Assumption 3 is an observability
requirement that is common in output-based frameworks [13]. O

Define at each time instant ¢;, j € N, the cost functional
d Khe d
)= [ (|, o+ et
t; Q

=[] Jar + fetes + 1.

where z¢ is a trajectory of (1) given inputs (u,d,a) = (u,d?, a?),
and Q?, R?, K¢ F? > 0, are weighting matrices of appropriate
dimensions. Then, the defender’s objective at each instant ¢;, j € N,
is described by the following optimization problem:

T(t5),
Dynamics (1) and Assumptions 1 — 3,

minimize

subject to:

considering: Stealthy attack a® and disturbance @
d* maximizing J%(t;).

Similarly, we define at each instant ¢;, j € N, the cost functional

tj+T
)= (1l + 1Ol

J

— la(m)lla ) a7 + 2° (& + Tl po »
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8]

where x“ is a trajectory of (1) generated with inputs (u,d,a) =
(u®,d,a), and Q°, R*, K% F® > 0 are weighting matrices of
appropriate dimensions. Then, the attacker’s objective at ¢t = ¢;, j €
N, can be described by the following optimization:

maximize J(¢;),
subject to:  Dynamics (1) and Assumptions 1 — 3, 3)
so that: Undetectability is achieved,

considering: Defense u” minimizing J*(t;).

Notice that the expressions of J¢ and J® are chosen to be linear
quadratic, because such costs accurately capture the potential goals
of the defender and the attacker. Particularly, in the common scenario
where the defender wants to regulate the system to the origin, it is of
interest to minimize J¢ so that the state z is driven to zero optimally.
Accordingly, to optimally disrupt the defender’s objective and lead
the system in undesired regions far from the origin, it is of interest for
the attacker to maximize the cost function J“. Due to these properties,
linear-quadratic costs are commonly used in the context of CPS and
security [12], [20].

Remark 2. The attacker’s input is included in J* because the attacker
wants to maximize the damage on the plant, while at the same time
avoiding creating disruption that will attract attention. That is, the
stealthy attacker wants to avoid creating large attacks that will expose
it through physical means. Moreover, the addition of the attacker’s
input in J¢ and J® is important in order to guarantee that problems
(2)-(3) are well-defined and feasible, and that they will not have
singular solutions stemming from the linearity of (1) [25]. O

Remark 3. Owing to Assumption 2, which defines (2), the defender
has to exploit the past output data that are available to estimate the
initial condition x;, Vj € N. However, since it does not know the
past disturbances and attack signals that affected those data, it has
to consider the worst-case (maximizing) ones and find a worst-case
estimate of x; to guarantee closed-loop boundedness and robustness,
as it will be shown in Section IV. The same holds for the future
disturbance and attack; since the defender does not know them, it
assumes that they will maximize J¢, for the sake of robustness. O

Remark 4. Besides designing defending policies, methods for under-
standing the behavior of attackers are also crucial in enhancing CPS
security. In that respect, providing an efficient defending policy by
solving (2) does not suffice; the solution to the attacker’s problem
(3) is also important to derive, as it provides the basis for profiling
and modeling attacking behavior. Towards this end, a brief solution
to (3) will also be provided in the upcoming sections, which can
enable the defending side to better handle realistic attacks should the
information between the two sides be symmetric. O

III. OUTPUT DATA AND STEALTHINESS

In this section, we present some results needed to solve (2)-(3).
A. Time Reversal

To estimate x;, j € N, the defender has to utilize output data from
a past horizon while simultaneously guaranteeing robustness for the
receding horizon policy that minimizes J¢ over a future horizon.
However, in our continuous-time framework, the Hamiltonian-based
conditions for optimality consist of boundary value problems that
are defined over only one horizon, so we cannot consider both a past
and a future horizon. Therefore, we redefine the past horizon over
which the output data are defined, so that it coincides with the future
horizon where J¢ is optimized, as in the following Lemma.

Lemma 1. Consider, ¥t € [t;,t; + T], j € N, a trajectory x, :
[tj,t; + T — R™ evolving according to the dynamics

@p(t) = —Azp(t) — B(u(2t; —t) + d(2t; —t) + a(2t; — t)). (4)
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Let Assumption 3 hold. Then, the equation

Cxp(t) = y(2t; —t),Vt € [t;,t; + T, (5)
holds if and only if xp(t;) = x;.
Proof. Integrating (1) backwards on t € [t; — T, t;], j € N, one has

t
y(t) = CBA(titj)ZEj + CJ AT p
tj

(u(r) +d(1) + a(r))dr, Vte [t; — T,t;]. (6)
Setting ¢’ = 2t; —t in (6) and changing the integration variable yields

’ t, ’
y(2t; —t') = Ce A g, — C’J e AR
tj

(u2t; — 1) +a2t; — 1)+ d(2t; —7))dr.  (7)
Integrating (4) over [t;,t; + T, we derive, Vt' € [t;,t; + T, that

t/
Czp(t') = Ce g (85) — CJ e AT
tj

(u(2t; — 1) +a(2t; —7) +d(2t; —7))dT.  (8)
Deducting (8) from (7), for all ¢’ € [t;,t; + T'] we obtain
y(2t; = t') = Cap(t) = Ce A1) (2 — 2, (1)) -

Using Assumption 3, we conclude that Cz, (') = y(2t; —t'), Vt' €
[tj,t; + T, if and only if x,(t;) = ;. |

Remark 5. The differential equation (4) along with the constraint (5)
provided by Lemma 1 are defined over the future horizon [¢;,t; +71],
j € N, yet they still allow one to estimate the initial condition x;
using past output data. It should be reminded, however, that the past
disturbance and stealthy attack, which affect (4), are not known by
the defender and thus the true x; cannot be computed. Instead, to
guarantee robustness, the objective is to find the past disturbance and
attack that yield a worst-case estimate of x; while simultaneously
optimizing J d, as noted in (2) and Remark 3. OJ

B. Characterization of Stealthy Attacks
Consider the attack-free model of (1)

Zr(t) = Azp(t) + B (u(t) + dn(t)),

yh(t) = th(t)7 LEh(tO) = Xo, t = to,
where x5, (t) € R", yn(t) € R? are the states and the output if there
is no attack, and dj (t) € R™ is any signal satisfying the bound from
Assumption 1, i.e., ||dn(t)||l,, < A, Vt > to. Many realizations of
the attack-free model (9) may exist, based on the choice of dj. To
remain stealthy over a horizon ¢ € [t;, t; + 1], j € N, the attacker
needs to imitate the behavior of one of these realizations, and find a
signal dy, satisfying ||dn ()|, < A, Vt € [t;,t; + T, for which

y(t) = yn(t), Vi€ [t;,t; +T]. (10)

We will denote this class of signals as admissible. Although the
attacker does not know the actual input that the defender will employ,
it is still able to guarantee that (10) holds for some admissible signal
dp; hence, it can also guarantee undetectability as stated next.

(C)]

Fact 1. Let u®,dj : [t;, t; +T] — R™, j € N, be functions of time,
such that ||d,(t)||., < A over the corresponding domain. Consider
also the states x*,zf. : [tj,t; + T] — R™ evolving according to

z%(t) = Az®(t) + B(u®(t) + d(t) + a(t)),

y () = Azy (1) + B (u (t) + di (1)),

z®(t;) = zh(t;) = x5, L€ [t;,t; +T].
Given that the function dj, and the attack vector a are chosen so that

C(@*(t) —xh(t) = 0, VEe[t;, t; +T], (12)

an
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then (10) holds, with the attacker’s admissible signal being dj,. O

Remark 6. Based on Fact 1, as long as the attacker enforces (12)
and ||dj, (t)||,, < A to hold for all Vt € [t;, t; + T], j € N, it
can pick u® and dj in any way it desires, while still guaranteeing
undetectability. As a result, no knowledge of the defender’s control
input v is needed to enforce these conditions. OJ

IV. MAIN RESULTS

We will now solve the defender’s and the attacker’s problems (2)-
(3). To this end, let us denote as F” the set of piece-wise continuous
mappings from [¢;, t; + 7] to R™, and as F; j the set of piece-wise
continuous mappings from [t;, ¢; + T to R™, such that if z € FJ
then [|z(t)||,, < A for all ¢t € [t;, t; +T].

oo

A. Decision-Making for the Defender

Let A 2 {a%a% d de,dl} € F’ & [F)? x [FI]. Then,
V7 € N, a relaxed version of the optimization problem (2) for the
defender can be written as the following zero-sum game:

) 0 tj+T d
min j\reliz J (u, A; t;) = ftj (Hx (T)‘ o (13)
s = o), =[], = ]

[ oy =1 Yo o+ D

subject to the following dynamics, Vt € [t;,t; + 17,

Dd.A

& (t) = Az’(t) + B (u(t) +at(t) + dd(t)) , (14)
iy(t) = —Azp(t) = B (up(t) + ap(t) + dy(1)) . (15)
#(t) = Azl(t) + B (u(t) + di(t)) (16)
i) = |catw - ca') a”
OB (HOREIE] I as)
where u,(t) = u(2t; — t), with boundary conditions
eo(t;) = €o(t; +T) =0, o€ {h,p}, (19)
Zh(t;) = wp(ty) = (1)), (20)

and D¢ > 0. In the equations above, the dependence of all signals on
t; has been omitted to moderate notation. For example, the complete
notation for z%(t) in (14) would be to denote it as =% (t;t;); such an
extended notation will be used only when needed to avoid confusion.

The constraints imposed by (17)-(19) build on the following fact.

Fact 2. [26] Let a, b be positive constants such that a < b. Consider
a continuous function f : [a, b] — RY, and a scalar trajectory
€: [a, b] — R evolving according to

) = IlfF Ol ,Vt € [a, b], €(a) = 0. 21
If €(b) = 0, then f(t) =0, Vt € [a, b]. O

The dynamics in optimization (13)-(20) may now be explained:

« The state 2% is a prediction of the future state x, assuming a
worst-case future disturbance d¢ and worst-case future attack a?.
The consideration of a worst-case future adversarial input is im-
portant to guarantee robustness, as the actual future adversarial
input is not known by the defender [27].

« The state  is a prediction of the future state x in an attack-free
scenario. Equations (17), (19) guarantee that the output of this
predicted attack-free state is compatible with the output of the
predicted attacked state . In particular, due to Fact 2, equations
(17), (19) enforce the undetectability condition of Fact 1. Hence,
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only worst-case stealthy attacks are considered by the defender
in its optimization problem, and not general types of attacks.

« The state x§ is a prediction of the past state x,(t) = z(2t; —
t), Vt € [tj, t; + T]. By considering worst-case past inputs
dg and a;l, equations (18)-(19) yield a worst-case estimate of
the initial condition z; owing to Lemma 1 and Fact 2. This
worst-case initial state is then used as an initial condition for
the worst-case predictions of the future states =%, x¢.

« Since the predicted future, past, and attack-free trajectories x<,
xg, x$ computed by the defender may not coincide with the real
trajectories x, xp, Tn, the superscript d is used to distinguish
them. This superscript is also used for the predicted future and
past attacks a?, ag, the predicted future and past disturbances
de, dﬁ, and the disturbance d,dl in the attack-free case.

Remark 7. The running cost in (13) includes a few more terms
than the running cost in (2), which explains why (13)-(20) is only
a relaxed version of (2). The purpose of these is to ensure that the
solution to (13)-(20) is sufficiently smooth [25], while also ensuring
that Assumption 1 is satisfied [24]. One could omit those extra terms,
but this would lead to the solutions of (13)-(20) being bang-bang or
singular [25], thus creating numerical difficulties. Therefore, from
a computational perspective, it is preferable to obtain a sub-optimal
solution by slightly modifying the cost in (2) into the cost (13). O

Remark 8. The suboptimality induced by the extra terms in (13)
depends on their weighting matrices D? and K¢. Since D¢ <
)\maX(Dd)Im and K¢ < )\max(Kd)Im, then as these matrices’
maximum eigenvalues approach zero, the extra terms in (13) vanish,
and (13) becomes equivalent to (2). On the other hand, as these
matrices’ maximum eigenvalues are increased, the optimal value of
(13) will monotonically decline and move further away from the value
of (2). Consequently, the induced suboptimality in (13) is proportional
to the maximum eigenvalues of these matrices. It should also be noted
that the term Had(r) HKd in the cost (13) is weighted with the same
matrix K¢ as the one used in (2) only for the sake of moderating
notation; a different weighing matrix can be used otherwise. O

We now obtain the optimality conditions for problem (13)-(20).

Theorem 1. Let {u*, A*} € F7 x F be a Nash equilibrium to

the defender’s zero-sum game (13) subject to (14)-(20), with, A* &
{a®™, a®* d™, d¥, di*}. Then, Vte [t, t; +T], jeN:

u*( ) = —Rd’lBT(A(t) + (), (22)

() = K BTA®), (23)

dd* (t) = A - tanh(D*~ 1BT)\( 1), 24)

A (t) = A - tanh(D? B AL (1)), (25)

ap' (1) = =K BT (1), (26)

d*(t) = —A - tanh(D* " BTA, (1), 27)

where A\, An, A\p:[ts, t; + T — R"™, pp, pr:[tj, t; +T] — R satisfy

( )=—ATA6)—Q " (1) -CT C(a () —ah ()pn(t),  (28)

() = ATAp(t) — CT (Caiy(t) — y(2t5 — 1))y (t), (29)

A(t) = =A" () = CTC(@h(t) — 2(8))pn(2), (30)

Po(t) = pn(t) =0, G

Ap(tj +T) = An(t; +T) =0, (32)

At; +T) = F'a’(t; + T), (33)

A(t;) + An(t;) + Ap(t;) =0, (34)

subject to (14)-(20) for v = u* and A = A*.
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4
Proof. Define the Hamiltonian of the problem (13)-(20) as:
d d d d
i () - Hx t)HQd * Hu(t)HRd - Ha HKd - ‘ ap(t) ‘Kd
-] [ = 0], o303
Jawl,, . oa O], Y@
+ Ap(D)F5 (1) + AL (D)5 (1) + pp(t)ép () + pr(t)én(?),

where &4, @8, @, ¢l ¢t are given by (14)-(18), and A\, Ay, An,
Pp, Ph, denote the corresponding co-states. The conditions for opti-
mality demand that Nt) = —0H/ox(t), An(t) = —0H® /o (¢),
M(t) = —0HYoal(t), pp(t) = —0HJOl(t).  pnlt) =
—0H?/0€(t), from which we obtain (28)-(31). In addition, the
transversality necessary conditions yield (32)-(33). Next, notice that
due to the boundary condition (20), the possible variations with
respect to the initial conditions need to satisfy dz%(to) = 6z (to) =
69:%(750). Therefore, following [25], it is not difficult to prove that
(34) is also a necessary condition for optlmahty Finally, by applying
the stationarity conditions aﬁé, O = =0, % =0, Yo € A, the
candidate optimal inputs u*, A* given by (22)-(27) are derived.
Subsequently, notice that the Hamiltonian is strlctly convex w1th
respect to v and strictly concave with respect to d? ,dp7 dg,
Therefore, the stationary points (22) and (23)-(27) are global mini-
mizers and maximizers of the Hamiltonian, respectively In addition,
the Hamiltonian is separable w.r.t. u and d, dd Ldd e ap, hence the
turn in which the Hamiltonian is minimized or maximized does not
affect the corresponding optimal solution. Therefore, we deduce that

Hd ('7U*3A) ng ('7U*aA*)<Hd (',’U/,.A*) (35)
Hence, the pair {u*, A*} satisfies all conditions characterizing a

saddle-point solution to problem (13)-(20). As a result, the existence
of a saddle point concludes, for all A € }'54 and u € F7, that

JHu*, A; t) < JMu*, A% ty) < Ju, A*; t)),
ie., {u*, A*} is a Nash equilibrium for (13)-(20) [3]. m

Control law: Having solved the optimization problem (13)-(20),
the defender can choose its controller u by implementing (22) in a
receding horizon fashion. In particular, if «*(; ¢;) is the signal (22)
derived in the j-th instance of the optimization problem (13)-(20),
7 € N, then the defender’s receding horizon controller is given by

u(t) = u*(t; t;), YVt e [t;, tj+1], jeN. (36)

B. Decision-Making for the Attacker

We now proceed to study the attacker’s decision-making mech-
anism. To this end, Vj € N, a relaxed version of the optimization
problem (3) for the attacker can be written as the following game:

min max  J* (u®,a,dy; tj) 37)
ut€F) qeFi, dieF
tj+T
[ (1" @llge + 14" )l e a0
tj
~ 5 () pa s )7+ 11t + T) |
subject to the following dynamics, Vt € [t;,t; + T,
@(t) = Az"(t) + B(u®(t) + a(t) + d(t)), (38)
oy (t) = Azp(t) + B (u”(t) + di (1)), (39)
0 (t) = [[Cxh(t) = Cz" @), » (40)
with boundary conditions
z(t5) = zh(t;) = 5, (41)
n(t;) =n"(t; + T) =0, (42)

where D* > 0, and {u®,{a*,di"}} is the saddle point of
J% (+,+; t;). To distinguish between the different future and attack-
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free trajectories =, xj, predicted by the attacker, the superscript a
is used. This is also used for the admissible disturbance dj, in the
attack-free scenario and for the considered defender’s input u”. Next,
it is shown that the solution to (37)-(42) yields an undetectable attack.

Theorem 2. Assume that the attacker chooses its policy a to be equal
to a* for all t € [t;, t; +T], j € N. Then, the attacker will remain
undetected, Yt € [t;, t; + T.

Proof. Due to the constraints (40) and (42) of the optimization prob-
lem (37)-(42), it follows from Fact 2 that C'(z3* (¢t) — z*(t)) = 0,
Vit € [tj, t;+T], where %%, x3* are the trajectories of (38)-(39) for

u®, a, di + = Ju, a*, di* ;. Since the infinity norm of d}* is
bounded by A, we can invoke Fact 1 and conclude that the attacker
will remain undetected, with di* being the corresponding admissible

signal for the attacker. [

Next, we present a formal statement that describes the Nash
equilibrium solution of the game (37)-(42) for the attacker.

Theorem 3. Let the tuple {u®*,{a”*,dy*}} constitute a Nash equilib-
rium to the game (37) subject to (38)-(42). Then, Vt € [t;, t; + T,
it follows that
u™(t) = =R*7'BY (u(t) + pi(1)),
a*(t) _ KaleTua(tL
d2*(t) = A - tanh (D“_IBTMZ (t)>
where p®, g, : [t;, t; + T — R", €% : [t;, t; + T| — R satisfy
() = —ATpt () = Q"™ (t) — CTC (2" (t) — wh(t)) €°(1),
fih(t) = —AT5(t) — CTC (2h(t) — 2" (1) £°(8),
§°(t) =0,
p(t; +T) = F2(t; + T), palt; +T) =0,
subject to (38)-(42) for u® = u®*, dj = d}* and a = a*.
Proof. The proof is omitted as it is similar to that of Theorem 1. m

Similar to the defender, the attacker can choose its controller a by
implementing ¢* in a receding horizon. In particular, if a*(-; ¢;) is
the signal a* derived in the j-th instance of the optimization (37)-
(42), 7 € N, then the attacker’s RHC will be given by

a(t) = a’(t; t;), Ve [t;, tj+a], jeN. (43)

C. Boundedness of the Closed-Loop Trajectories

Given that the solutions provided by Theorems 1, 3 are applied
to (1) iteratively in a receding horizon fashion V¢ > {o, it is
crucial to guarantee safety of the closed loop, in the sense of
proving boundedness of the resulting trajectories of (1). The following
lemmas, which are needed for the overall analysis, show that the
solutions of (1), as well as the control signals arising in (13)-(20)
and (37)-(42), scale according to x;, Vt € [t;, t; + T

Lemma 2. There exists K € R™*™ and k1, ko > 0, such that if
K®* > K then Ha*(t)H <k HI‘JH + ko, Vt € [tj, tj -‘rT], V] e N.

Proof. Due to the saddle-point property of {u®*, {a*,d5*}}, one has:

T (™, a*, dits ty) < J0,a",di*; ty)
tj+T1 a a 2 a * 2
4‘ 5 (A (@) 12 DI =Ain( K a* (7)1 ) a7
tj

1 a a
+ 5Amax(F Y (t; +T)|>.  (44)

Since the defending control input has been set to zero, the trajectory
z% satisfies 2%(t) = ez, + Sz A B (a* (1) + d(7)) dr,
J
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for all t € [t;, t; + T]. Hence, owing to Assumption 1 which
bounds the disturbance norm, there exist constants A1, A2, Az > 0,
dependent on A, B, A, T, such that for all ¢ € [t;, t; + T]:
tj +T
@)1 < s+ 2e |
t
Assume now that the statement of the theorem does not hold. Then,
for some interval [ts, te] S [t;, t; + T, [la*(@)|| = k1 llz;]] +
ko even as |lz;|| — oo, no matter how large k1, ko are picked.
In this case, if we substitute the bound from (45) in (44) and pick
Amin(K®), k1, ko large enough, the right hand-side of (44) will tend
to —o0 as ||zj|| — oo, meaning that J* (u®*, a*, di*; t;) will also
tend to —oo. However, in the suboptimal scenario that the attacker
does not attack, the tuple {u®*, {0, d}} yields a cost J* (u®*,0,d; t;)
that is lower bounded by construction, hence J¢ (u®*,0,d; t;) >
J (u®*,a*,d¢*; t;); a contradiction. ]

la*(7)||” d7 + As. (45)

Lemma 3. Let Assumptions 1-3 hold. Then, there exist matrices
K*¥ K% and constants n1, p2, 0% >0, such that ide > K%,
K* > K* and § < &, then {|[u* ()|, ||a®™®)|,||ap* ®)||} <
1 HmJH + o, Vi e [t]', tj + T], VjeN.

Proof. We will use an inductive proof. Assume that there exist
constants (1,{2 > 0, such that ||z;—1] < G llaj|| + 2, j € N.
This inequality holds trivially at 7 = 0, since xo is bounded.

First, we will prove the results for the attack vectors a?* and ag*.
Let z§ = 2(t;) be the initial condition predicted by the defender.
Owing to the constraints (17)-(20), it holds V¢ € [t; — T, t;] that:

t
y(t) = CeA(tftj)x? + J Ce*t7p
tj

(dpr(2t; — 1) +u(r) +apt (2t — 7))dT. (46)
However, from (1), for all ¢ € [t; — T, t,], it also holds that

t
y(t) = CeA(tftj):cj +J cettt-Tp
tj

(dp(2t; — 7) +u(T) + ap(2t; — 7)) dr.  (47)
Subtracting (47) from (46) leads to:
t
0=Ce* ) (2 —a;) + J CeA(t_T)B(dZ*(Qtj -7)
tj
—dp(2t; — 7) + (al* (2t; — T) — ap(2t; — T)))dT. (48)

Consequently, an integration of (48) yields:

ti—1 -t
1’;1 =x; — J e T T oMt 4y
t

J

tj—1 o
i [J eAT(o-—tj)CTj C@A(U—T)B(df)* (2t] _ 7_)
tj tj

—dp(2t; — 7) + (al*(2t; — T) — ap(2t; — 7)))drdo].  (49)

The matrix inversion in (49) is possible because the inverted term
is an observability gramian of the pair (A, C); an observable pair,
owing to Assumption 3. From (49) and (27), Lemma 2, Assumption
1 and the inductive assumption, we deduce that there exist constants
A1, A2, A3 > 0, dependent on A, B, C, A, T, such that:

12 tj+T
) < Alf ‘
t

2! (50)
Subsequently, owing to the saddle-point property of {u*,.A*}:

dx 2d )\ 2
ap (T)|| d7 + A2 ||zj]]” + As.

J

7d * L 7d *. g ti+T 1
JO(uT, AT ty) < JY(0, AT t;) < 5
+.

J

Qm@%
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2 2 2
@ Amnr? (Had*(T) +[[ag(r) ))dT
1 day ||..a 2
+ AP [+ 1| 1)
Since the defending control input has been set to
zero, the trajectory x? satisfies x(t) eAtilgd 4

S: eAt-Tp (a®™(7) +d* (7)) dr, for all t € [t;, t; + T].
J
Therefore, given also (50) and the fact that the infinity norm of d%*

is bounded by A given (24), there exist constants p1, p2, p3, pa > 0
dependent on A, B, C, A, T so that for all t € [¢t;, t; + T:

a 2 5 tj+T 4 2
Hx (t)H < pu|lzgl|” + p2j Ha *(7')H dr
tj

T
s [ o
tj

Owing to (51)-(52), we can use the same arguments as in Lemma
3 to show that there exist K%, K € R™ ™ and p1,pue2 > 0,
independent of z;, such that if K¢ > K% and K® > K%, then it
holds that ||a®™ (t)|| < g1 ||z ]| + p2 and |lag* (8)|| < pa |l ]| + pee.
Vit e [tj, t; + T], VjieN.

From the minimizing perspective, notice that due to (51):

Je (u*, A% t;) < Jt Tl (/\max(Q ) Ha:d 7')H2)d7'

tj
T ) [P ] e

2
H dr + pa. (52)

where 2% satisfies (52). As a result, and since we have proved that
a™ @O < pllesll + pz and |lag* (@) < pallzgll + p2, VE €
[tj, t; + T, V5 € N, it follows that there exist constants ps, pe,
independent of ¢;, such that for all j € N:

JH(w*, A% ) < ps |25 + pe. (54)
Hence, [|u*(t)|| < g1 ||| + p2 must also hold for some fu1, po,
otherwise (54) cannot hold for any x; € R™ by definition.

Finally, notice that for all ¢ € [t;, t; + T, we have [|u*(t)] <
w1 ||z;|l + p2 and, due to Lemma 2, ||a*(¥)|| < killz;| + ko
Therefore, since ||d(t)||,, < A and due to the linearity of the
dynamics (1), we can pick J small enough, below a threshold §*
that is inversely proportional to ki and w1, and guarantee that
()l < G llz(+)ll + Ca. m

Lemma 4. Let the conditions of Lemmas 2-3 and Assump-
tions 1-3 hold. Then, for all i,5 € N, there exist constants
i—j, Bij,Yi—j, 0i—j > 0, so that, Vt € [t;, t; + T), the following
inequalities hold:

—Bi—j < {Hx
la* (&t

Proof. The proof is a direct consequence of Lemmas 2-3, Assumption
1 and the linearity of the dynamics (1). m

i—j ||| I Nl @& )l

t; ti

< Yiej gl + di—y.  (55)

While Lemmas 2-4 provide useful information regarding the de-
rived control signals, they do not investigate whether the closed-
loop trajectories will diverge to infinity after infinite time. In order
to rule out this scenario, we will need the following controllability
assumption, which is standard in the RHC literature [4], [14], [28].

Assumption 4. The terminal cost F'(z%) = Ha:d” pa 18 an input-to-
state stability control Lyapunov function for the dynamics (14), i.e.,
there exists ¢ : R™ — R" such that

%:(t))‘u:w(zd>< - Hﬂcd(t)HQd — HT/)(xd(t))’

o]+ '

Rd

O

HDd,A.
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The following theorem presents the main result of this subsection.

Theorem 4. Let Assumptions 1-4 hold, and the defending and
attacking control laws be given by (36) and (43). Then, there exists
a constant §* > 0 and symmetric matrices K**, K% > 0, such that
if KT > K% K% > K% and § < 6, then the trajectories of the
system state x(t) remain bounded, Yt = to

Proof. Given (13)-(20) at t = t;, j € N, we will denote the
corresponding decision functions or trajectories Vt € [t;, t; + T
with ¢(t; t;), where ¢ is any trajectory or function of ¢ € [¢;, t; +7T]
computed at ¢ = ;. Hence, let us denote the minimizing policy of
the optimization problem (13)-(20) computed at ¢ = t; as u*(¢;¢;),
the corresponding maximizing functions as

A (1) = {a® (t1), 05" (615), 4™ (61,), 4y (1545), i (1) |

the resulting optimal trajectory as z* (t t;), and the corresponding
optimal value of (13)-(20) as J¢(u*(t;t;), A*(t;t;); t;) = J** ().

Consider now the two first consecutive optimization problems
P4(t;) and Py(tj41) of the form (13)-(20), solved at the time instants
t; and tj;+q respectively, with j € N. For problem Py(t;) and
for t € [tj,t; + T, given that the past attack is selected equal
to the real past attack, i.e., al(t;t;) = ap(t) = a(2t; — t), and
the past disturbance is selected equal to the real past disturbance,
ie., di(t;t;) = dp(t) = d(2t; — t), then the initial condition is
constrained to be the true initial condition according to Assumption
3 and Lemma 1, ie., 2%(t;;t;) = xo. In addition, for problem
Py(t;) and for t € [tj,tj+1], given that the future attack and
disturbance signals are selected equal to the worst-case past attack
and disturbance signals of the problem Py(t;41), i.e., a®(t;t;) =
ag*(Qth — t;tj+1), and dd(t;tj) = dg*(Qtj+1 - t;tj+1), then
x4 (tj11:t;) = ™ (tjr1:t541). Now, note that since the future
attack is assumed to be stealthy, the output that will be generated
will always be compatible with the attack-free model (9). Therefore,
for this particular choice of a?(t;t;) and d”(t; t;), over t € [t;,tj11],
there exists an admissible signal di : [t;, tj41] — R™ with
||J‘;f(t)||g3 < A, Vt e [tj, tjr1], so that if one sets dp(t) = di(t),
Vit € [tj, tj4+1], the constraints of the optimization problem Pg(t;)
are satisfied Vt € [¢;,¢541].

Finally, since for such a choice of past input signals over
t € [tj,t; + T] and future signals over ¢ € [t;,t;4+1] we have
.Z‘d(tj_H;tj) = :Ifd*(tj+1;tj+1), then Vt € [tj+1,tj + T] the inputs
a’(t;ty) = a®™ (ttj41), d(t;t;) = d¥(t;t541) and dj (t;15) =
d* (t;t;41) satisfy the output compatibility constraints of problem
P4(t;) because they also satisfy the output compatibility constraints
of the problem Pgy(t;+1). Note that, owing to Fact 1, the choice of
u does not affect the undetectability constraints.

Define now the policies:

0 U*(t;t]‘)7 te [tj+17tj + T]7
w(t;tje1) = o
Qﬁb(x (t’ tj+1))7 te [t; + T"7 t]'+1 + 7—']7
dd(t't-) _ ag*(%j+1 —titjr1), tE€ [tj,ti41],
Y a™(titje1), t€[tjrr,t; +T1,
ag(t;ty) = ap(t), € [t t; + 17,
dl(t;t;) = dy* (25401 = titj) L€ [t L],
d™ (t;tje1), te[tjrr,t; + T,
da(t;ty) = dp(t), t € [ty t; + T,

dg(tt) _ gd( ) te [tjvtj‘Fl]a
Y dh (t t]Jrl) te [tj+1at' +T]

{6, a1, &6 ), Ayt 1), dit )}

A(t; t)
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where Z%(t;t;) is the trajectory of z? for Py(t;) by applying
w=u*(t;t;) and A = A(t;t;), Vt € [tj, t; + T], and Z%(t; ;1)
the trajectory of x? for Py(t;41) by applying u = @(t;t;41) and
A = A*(t;tj41), Vi € [tj+1, tj+1 + T]. Due to the preceding
discussion, A(t;t]‘) is feasible with respect to the constraints of
the optimization problem Py(t;), while @(¢;t;41) is feasible for
the optimization problem P;(t;41). Hence, due to saddle-point
optimality, the following hold

TH(ty) = T (t:5), At 1); 1), (56)
TP (1) < T @t tj41), A (Etj41); ti1)- (57)
Then, given (56)-(57) we have that,
T (ti41) — T (t5)
< Tt t410), A" (Bt )i tyn) =T (W' (8 8), At t5)5t5)
tjp1+T u
=] (e esten] ot = o o],
_‘ ’T t+1 —Hdd*(T't'_'.l)) —’dd*(T't-+1)‘
J Kd » Y] Dd,A P » Y] Dd',A
_ "dh*(T;tj+1)“Dd, )dT + Hfd(tj+1 + T tj+1)HFd
ti+T 4
-7 ([ o + e sl = @]
J
~d P . 3d P _ 7d ot
o a1 I RGP S CACEE) N
- Hd’;ﬁ(r;tj) DM)dT - Hid(tj +T3t) ’Fd. (58)
Note that, it holds that Z%(t;j11;t;) = x*(tj41;tj41). Since

the past disturbance input and attack for the optimization prob-
lem Pd(tj+1) are set equal to the worst-case ones, it also holds
that #(tj415tj41) = T (tj41;t541), and yields fd(t]ﬂ;tj) =

(tj+1,tj+1) Fmally, given t € [tjy1,t; + 1] we have a’(t;t;) =

F(titan), dUtt) = AP (), and Gt ) = ut (k).
thus owing to i‘d(tj+1;tj) = i‘d(tj+1;tj+1) we write fd(t;t]') =
#(t;tj+1), Vt € [tj+1,t; + T)]. Therefore, (58), after taking into
account Assumption 4 reduces to,

Fd* Fd* b1t T dx
T R A T N AT
t+T D4,A
tj+1+T 4 4
— as* (1:t; ‘ +)d*7';t- ‘ )dT
7 et ot st

_J:“ (Hﬁcd(r;t,-)

‘Qd + [ (75 85) [ ga — HJZ(T)HDCAA) N
(59)

i(r5t5)

ij+T
7 (Jen® s + 1Dl o) 0
’
. tj+T
| d7-+f llap ()| gea dr+ M,
Q4 t;

tit1

f

tj

where M1 = (T'+90) max lldasr]| pa_a- This maximum exists
dye[=A, A]™ ’

even if any entry of das takes the values +A [24]. Letting € > 0 be
any arbitrary constant, there exist two cases: a) (Case ||z;|| = €): Due
to Lemma 4, it holds that ||a,(t)|| < 01 ||z; H +0,, Vt e [1t77 t;+T1],
for some 01,02 > 0. On the other hand, SJ“ H:n Titj) HQd dr >

t||z;|* for some ¢ > 0, because Z%(t;; ;) = x;, and the evolution of
the trajectories of #%(+;¢;) is affected by u* and ajj(-, t;+1), whose
norm is bounded by a linear function of ||z;|| as shown in Lemma
4, and by d¢(-), whose infinity norm is bounded by A. In addition,
01,02 — 0 as Amin(K®) — o0. Therefore, if Amin(K®) and € are
picked sufficiently large, the right-hand side of (59) is negative; b) if
|lz;]| < e then the value of J%*(t;) is bounded by construction, by a
value dependent on e. Aggregating both cases and the requirements
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of Lemma 4, if K¢ > K%, K* > K*, and § < 6", then there
exists a constant .Ja; < o0, such that J%*(¢;) < Jar, ¥j € N.

Finally, consider the set A" (¢;¢;) := {0, a,(t),0,d,(t),0}, where
the future attack and disturbance are set equal to zero, and the past
attack and disturbance are set equal to the real ones. Denote as "
the resulting trajectory of =% in (14) if we apply u = u*(¢;t;) and
A = A"(t;t5) at t = ¢, Vj € N. Then, due to optimality, over the
interval [t;,t; + T'] we obtain, Vj € N,

t;+T

Jur = T () = TN (t5), AT (8 5); ) = f (I

tj

(1)l ga
+ 1w (758l ga— lap ()| ca— dp (T) | pa )T+ 12" (85 + T)l| pa

ti+T
> f (13" ()lge — lap(P)llga )dr — Mo,
t

J

(60)

where Mz = T'-maxg,e[-a, ajm ||da|| pa - Since the past attack
and disturbance were set equal to the actual ones, we have " (t;) =
x;j. Hence, using identical arguments as in the previous paragraph,
due to Lemma 4, if K¢ > K%, K* > K, and § < 6*, then from
the right part of (60) we derive J*(t;) = m1 ||z;||> — w2 for some
m1,m2 > 0, Vj € N. Thus, (60) gives ||z;]| < , VjeN,
which combined with Lemma 4 yields sup, ., [|=(t)|| <co. ]

Jp+m2
™

Remark 9. The proposed game-theoretic methodology for the de-
fender has some similarities with the methods of Chapter 5 in [29].
In particular, [29] also considers output-based game-theoretic control
techniques for systems under the effect of unknown deterministic
disturbances. However, different than [29], the optimal control prob-
lem of the defender presented here also considers attacks that are
constrained by an undetectability equation, and the initial condition
is not assumed to lie in a predefined compact set. In addition, [29]
does not study the receding horizon version of its game-theoretic
controller, nor provides closed-loop boundedness guarantees. O

V. SIMULATIONS

We consider a linearized version of the Aero-Data Model in
Research Environment (ADMIRE) benchmark aircraft [30], whose
state is initially at the origin. The disturbance signal is set equal to
d(t) = 0.02sin(27t)17, and its known upper bound is A =
The goal is to keep the full state vector of the aircraft regulated
around its nominal value despite the stealthy attacks and the additive
disturbance. The parameters of the receding horizon framework are

picked as: Q¢ = 2Is, RY = 0.1I;, K¢ = 10I;, D? = 2I,
F = 1015, Q* = Is, R* = 0.5, K* = 6I;, D* = 5], and
F* = I5. The optimization horizon is set equal to 7" = 0.1 [s],

while the control horizon is set equal to 6 = 0.005 [s].

We simulate the system for 8 seconds, with the defending and
attacking policies as in (36) and (43). To showcase the performance
deterioration that the stealthy attack can cause, we suppose that the
stealthy attack vanishes after the 4th second. The states, control
policies, and the predicted performance at each iteration are shown
in Figures 1-2. It can be seen that, although the performance cost is
worse while the undetectable attacker is compromising the system,
closed-loop boundedness is maintained.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered a disturbed system under the influence
of a defender and an attacker that hides under the uncertainty
created by an unknown disturbance, with information asymmetry. We
provided a secure RHC mechanism for the defender, that guarantees
the boundedness of the closed-loop system without knowledge of the
full system state. In addition, we characterized the optimal policy for
the attacker, which guarantees its undetectability.
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Fig. 1. Evolution of the states and the predicted cost when the system is
under attack for ¢ € [0, 4].
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Fig. 2. Evolution of the control policies when the system is under attack
for t € [0, 4].

Future work will extend the results to cases where the CPS is
under attack by multiple adversaries, and where the defender and the
attackers have bounded rationality.
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