
Towards High-Quality Battery Life for
Autonomous Mobile Robot Fleets

Akshar Shravan Chavan
Department of Computer Science

Wayne State University
Detroit, USA

gp6989@wayne.edu

Marco Brocanelli
Department of Computer Science

Wayne State University
Detroit, USA

brok@wayne.edu

Abstract—Autonomous Mobile Robots (AMRs) rely on
rechargeable batteries to execute several objective tasks during
navigation. Previous research has focused on minimizing task
downtime by coordinating task allocation and/or charge schedul-
ing across multiple AMRs. However, they do not jointly ensure
low task downtime and high-quality battery life.

In this paper, we present TCM, a Task allocation and Charging
Manager for AMR fleets. TCM allocates objective tasks to AMRs
and schedules their charging times at the available charging
stations for minimized task downtime and maximized AMR
batteries’ quality of life. We formulate the TCM problem as an
MINLP problem and propose a polynomial-time multi-period
TCM greedy algorithm that periodically adapts its decisions
for high robustness to energy modeling errors. We experimen-
tally show that, compared to the MINLP implementation in
Gurobi solver, the designed algorithm provides solutions with a
performance ratio of 1.15 at a fraction of the execution time.
Furthermore, compared to representative baselines that only
focus on task downtime, TCM achieves similar task allocation
results while providing much higher battery quality of life.

I. INTRODUCTION

Due to their relatively high return of investment and in-

tegration with Artificial Intelligence (AI) technologies, fleets

of battery-operated Autonomous Mobile Robots (AMRs) are

increasingly penetrating society for security patrol [1], [2],

precision farming [3], [4], environment exploration [5], and

home assistance [6]. Managing an AMR fleet leads to two

problems. First, AMRs must have coordinated access to shared

charging stations to minimize queuing time, which could

lead to task downtime. Second, in line with NSF’s objective

for sustainable computing [7], the batteries’ State of Charge

(SOC) must be controlled for high-quality battery life.

Several related studies have proposed task allocation [8]–

[11] or charging coordination [12]–[14] for an AMR fleet,

but none of them take care of battery quality of life. The

problem of controlling the battery lifespan in computing

systems has been studied in several scenarios such as data

centers and IoT devices [15]–[17]. In general, ensuring a

certain lifespan for batteries requires keeping the battery’s

SOC between two thresholds defined according to the specific

battery technology [18]. On the other hand, in this paper we

argue that, for the case of AMRs, ensuring long battery lifespan
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does not guarantee a high-quality battery life. While most

battery-operated computing devices (e.g., smartphones) can

be recharged without energy overheads, an AMR scheduled

for recharge needs to interrupt the execution of the useful
work (e.g., security patrol) and travel a certain distance to

reach a charging station. The locomotion, computational, and

sensing energy necessary for the AMR to reach the charging

station is not spent towards useful work, thus we consider

it to be wasted. To capture how much energy drawn from

an AMR battery during its lifetime is actually translated into

useful work, in line with the Power Usage Effectiveness (PUE)

metric used for data centers [19], we define the Energy-usage-
EFfectiveness (EEF). An EEF of 1 and 2 mean that 100% (i.e.,

ideal) and 50% of energy is spent in useful work, respectively.

Thus, for a given set of SOC thresholds used to obtain a

certain desired lifespan from the AMR batteries, it is desired

to coordinate task allocation and charge scheduling to ensure

low task downtime and high-quality battery life, i.e., desired

battery lifespan and EEF as close as possible to 1.

In this paper we propose TCM, an energy-aware Task and

Charging schedule Manager, that coordinates the allocation

of useful tasks to AMRs with the charging schedules to

minimize task downtime and provide high-quality battery life.

To improve coordination and robustness to energy modeling

errors, the TCM problem is defined as a multi-period problem

that periodically activates within the working period to (i)
fetch the current SOC of the AMRs, (ii) find a solution for

current and future periods, and (iii) communicate to the AMRs

the allocation/charging decision for the current period. The

specific contributions of this paper are as follows:

1) We introduce the concept of Energy Usage Effectiveness

(EEF) to measure how much energy drawn from an AMR

battery is spent towards useful task execution rather than

being wasted on frequent trips to the charging stations.

Low battery degradation and near-1 EEF lead to high-

quality battery life for AMRs.

2) We formulate the TCM problem as a Mixed Integer

Nonlinear Program (MINLP) to trade off between task

downtime and battery quality of life based on a weight

parameter (chosen by the fleet manager) that gives more

or less importance of the each of the two objectives.

3) The defined MINLP has exponential time complexity
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[20]. To find a solution within polynomial time, we design

a multi-period TCM algorithm that greedily trades off

between task downtime and battery quality of life.

4) We empirically show that our TCM algorithm has a

performance ratio of 1.15 compared to the MINLP im-

plementation in Gurobi at a fraction of execution time.

Compared to several representative baselines, it achieves

similar task allocation performance while ensuring up to

22.36% better EEF and 193% lower battery degradation.

The rest of the paper is organized as follows. Section II

describes the related work. Section III formulates the TCM

problem as an MINLP problem. Section IV describes our

greedy TCM algorithm. Section V shows our experimental

results and Section VI concludes the paper.

II. RELATED WORK
Several studies coordinate multiple robots by dynamically

allocating tasks without considering the problem of limited

energy consumption [21]–[25]. Thus, other solutions focus on

energy-efficient path planning for a single AMR [26]–[29],

energy-aware task allocation to multiple AMRs [8]–[11], [30],

and locomotion/network energy-minimization for robot sensor

networks [31]–[33]. Unfortunately, most of the above research

work has the following two main problems. First, they mainly

focus on the locomotion energy consumption without taking

into consideration the sensing and computing energy of objec-

tive and navigation tasks, which, as described in our previous

work [34], can account for a large portion of the AMR power

consumption. Second, they do not coordinate the AMRs for

autonomous recharging at charging stations. These issues may

result in unexpected downtime for the task execution due to

the limited number of charging stations available. In order to

handle the autonomous charging problem, some studies decide

when to charge a single AMR [35]–[38] while others consider

the charging coordination of multiple AMRs [12]–[14] with

a limited number of stations. To the best of our knowledge,
no existing solutions have proposed to study how to jointly
optimize the task allocation and the charging time of multiple
AMRs with the target of minimizing the tasks downtime and
ensuring high-quality battery life.

III. TCM PROBLEM FORMULATION

A. TCM Problem Overview
For simplicity, in this paper we consider a fleet of ho-

mogeneous AMRs. We assume that the end user only needs

to define a set of tasks to execute on the AMR fleet over

a desired working period (e.g., several hours). Specifically,

the task set is composed of navigation tasks and objective
tasks. Each navigation task is designed to follow a path in

the user environment and to concurrently execute a set of

objective tasks such as detection of hazardous conditions,

safety breaches, and so on. Each objective task is characterized

by (1) a certain amount of computational demand, (2) the

access to a certain number of sensors, and (3) a priority

level. Thus, each navigation task, due to the different path

and objective tasks, leads to a certain amount of locomotion,

computing, and sensing energy consumption. In addition, the

AMRs can recharge to any of the charging stations available.

In order to coordinate AMRs, the long working period is

divided into several short decision periods (e.g., 10 minutes

each). Thus, the TCM problem becomes a multi-period plan-
ning problem. However, coordinating multiple AMRs for task

allocation and recharge requires planning based on mathemati-

cal energy consumption models of the locomotion, computing,

and sensing hardware. These models may be affected by

modeling errors due to approximations and simplifications.

Accumulation of such errors over multiple periods can lead

to poor performance. TCM addresses this problem by making

planning decisions over multiple periods but it only commu-

nicates to the AMRs the planning decisions for the current

period. Then, at the beginning of each decision period, each

AMR reports the current battery SOC and, accordingly, TCM

adjusts its decisions for the remaining periods. This strategy,

as we will show in Section V-C, makes TCM highly robust to

modeling errors, thus minimizing the risk for unexpected task

downtime and battery life quality degradation.

B. TCM Problem Cost Function.
The TCM problem has two main objectives, i.e., minimize

task downtime and battery quality of life degradation:

min
X,Z

Downtime(X) + q ∗Degradation(X,Z) (1)

where X and Z are the 4D and 3D arrays of task allocation

and charge schedule decision variables, respectively. xk,i,h,j

is a binary element of X that is equal to 1 if in period k the

AMR i is assigned navigation task h and objective task j, 0
otherwise. zk,i,c is a binary element of Z that is equal to 1
if in period k the AMR i is assigned to charging station c, 0
otherwise. The weight q allows the end user to regulate the

importance of task downtime over battery life quality.

Downtime Cost. The downtime cost is defined as follows:

Downtime(X) =
∑
k∈T

∑
h∈H

∑
j∈J

(
γhj −

∑
i∈R

xk,i,h,j

)
pj (2)

where T , R, H, and J are the set of decision periods, AMRs,

navigation tasks, and objective tasks, respectively. γh,j is a

configurable binary element of the matrix Γ that is equal to 1

if the objective task j should be executed during navigation

task h, 0 otherwise (note that different navigation tasks may

execute the same objective tasks). pj ∈ [0.1, 1] is a fractional

weight indicating the priority of the objective task j.

Quality of Life Degradation Cost. In general, depending

on the specific battery type, the battery lifespan is highly

affected by the depth of discharge (DoD) and the maximum

energy stored in the battery at any time point [18]. Thus, we

assume that the user can leverage existing battery lifespan tools

(e.g., [39]) to define a minimum and a maximum threshold of

energy that allow the batteries to have a desired lifespan (e.g.,

8 years). However, although the lifespan of some batteries is

not affected by frequent charges, AMRs can waste a consid-

erable amount of energy to frequently navigate to a charging

station. Thus, both desired lifespan and minimal energy waste

(i.e., high-quality life) can be obtained by scheduling charging

cycles to start when the energy level of the AMR is close to
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the minimum energy threshold (i.e., EDOD) and stop close

to the selected maximum energy threshold (i.e., Emax). The

degradation cost can thus be defined as follows:

Degradation(X,Z) =
∑
k∈T

∑
i∈R

∑
c∈C

Dstart
k,i,c +Dstop

k,i,c (3)

⎧⎪⎪⎨
⎪⎪⎩

Dstart
k,i,c = (1− zk−1,i,c) zk,i,c

|ek−1,i−EDOD|
Ebat

Dstop
k,i,c = zk−1,i,c (1− zk,i,c)

|Emax−ek−1,i|
Ebat

(4)

where C is the set of charging stations, ek−1,i is an element of

the energy array E that indicates the energy level of AMR i at

the end of the k−1 decision period, and Ebat is the maximum

energy level that can be stored in the AMR batteries. The

start/stop of charging is determined in Equation 4 when the

decision variable z for an AMR changes from 0 to 1 (start

charging) or from 1 to 0 (stop charging) over two consecutive

decision periods (i.e., k − 1 vs. k). Thus, the quality of

life degradation cost is calculated based on the normalized

absolute difference between the AMR energy and the two

thresholds when the AMR starts/stops charging.

C. TCM Problem Constraints

The TCM problem includes six types of constraints.

(1) Limited resource capacity. Similar to our previous

work [40], the total number of instructions to execute the

assigned navigation and objective tasks during each decision

period must not exceed the computing capacity of each AMR:

∑
h∈H

⎡
⎣nk,i,h · rh +

∑
j∈J

xk,i,h,j · rj

⎤
⎦ ≤ Mmaxt ∀ k, i (5)

where nk,i,h = max
[
xk,i,h,1 . . . xk,i,h,|J |

]
indicates which

navigation task is allocated to AMR i in period k and is

equal to 1 only if at least one of the objective tasks j of

navigation task h is assigned to AMR i, i.e., allocating a

navigation task without any objective task would not make

sense. rh and rj are the total number of instructions executed

for navigation task h and objective task j during each decision

period, respectively. Mmax is the maximum Instructions Per

Second (IPS) for the computing resource of each AMR at

highest clock frequency and t is the duration of each decision

period. The average number of instructions of the tasks as well

as the AMR’s maximum IPS can be easily profiled in most

computing systems using performance event counters [41].

(2) Energy availability. To plan the task allocation and

charge schedule over multiple decision periods we need to

have a mathematical model that can estimate the energy

available in the battery of each AMR i at the end of each

decision period k, i.e., ek,i in Equation 4. Naturally, the energy

available is between 0 and the maximum battery capacity Ebat:

0 ≤ ek,i ≤ Ebat (6)

As we have demonstrated in our previous work [34], the power

consumption of AMRs are mostly due to computing, sensors,

and locomotion mechanism. Thus, ek,i can be estimated as:

ek,i = ek−1,i + echargedk,i − ecomp
k,i − esensk,i − elock,i − echangek,i

(7)

where, ek−1,i is the energy level at the end of the last

decision period, echargedk,i is the amount of energy recharged

in AMR i if it is recharged during period k, ecomp
k,i is the

computational energy consumption, esensk,i is the sensor data

acquisition energy consumption, elock,i is the locomotion energy

consumption, and echangek,i is the amount of energy spent when

the AMR changes navigation task, goes to recharge, or goes

back to execute tasks after recharge across two consecutive

decision periods. Specifically:

• The energy charged in AMR i at any of the charging

stations c in period k is simply calculated based on the

charging rate ν and decision period length t when the

AMR is scheduled for recharge, i.e., zk,i,c = 1:

echargedk,i =
∑
c∈C

zk,i,c · ν · t (8)

• The computational energy consumption can be estimated

using well known models [40], [42] based on the task

execution time and the third power of clock frequency,

i.e., αcomp∗Exec time∗f3, where αcomp is an estimated

parameter and f is the clock frequency. The execution

time of a set of tasks, similar to [40], can be easily

estimated based on the ratio of the total number of

instructions to execute for each allocated task and the

maximum CPU’s instructions per second Mmax. Thus:

ecomp
k,i = αcomp

∑
h∈H

[
nk,i,h · rh +

∑
j∈J

xk,i,h,j · rj
]

Mmax
f3

(9)

We conservatively assume AMRs always operate at the

highest clock frequency to maximize task performance.

• Each AMR has a set S of sensors (e.g., cameras and

lidar). In our previous work [34] we have observed that

it takes a non-negligible amount of energy to actually

acquire sensor data. Thus, given an average access rate

of each navigation and objective tasks to each sensor, we

estimate the total sensing energy consumption as follows:

esensk,i =
∑
l∈S

αsens
l

∑
h∈H

⎡
⎣nk,i,h · Sh,l +

∑
j∈J

Sj,l · xk,i,h,j

⎤
⎦

(10)

where αsens
l is an estimated parameter that measures the

average energy consumption per data acquisition from

sensor l ∈ S . Sh,l and Sj,l are the average number of

sensor data acquired by each navigation and objective

task during the decision period, respectively. Thus, αsens
l

is multiplied by the total sensor data accessed by the

allocated tasks during each decision period.

• The locomotion energy elock,i depends on the assigned

navigation path. Given that each path is different in terms
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of curves, slopes, and obstacles each navigation task h is

characterized by a measurable average locomotion energy

consumption αloc
h per period:

elock,i =
∑
h∈H

αloc
h · nk,i,h (11)

• Ideally, we would account for the exact AMR energy

consumption due to changes of navigation task and travel

to/from each specific charging station across consecutive

periods, which is wasted since no useful objective task is

being executed. However, doing so would highly increase

the problem complexity. Thus, we use the following sim-

plified model that considers average distances between

navigation paths and charging stations:

echangek,i = αchange
[
dcharge · f(zk,i,c) + dn2n · f(nk,i,c)

]
(12)

where αchange is the average energy per meter required

to navigate the AMR during changes in navigation and

charge assignment. We assume each AMR uses a default

navigation system for such cases that can be profiled

offline. dcharge and dn2n are the average distance of

the navigation paths’s centroids to all charging stations

and the average distance across the centroids of different

navigation paths, respectively. f(zk,i,c) and f(nk,i,c) are

two logic functions designed to be equal to 1 when there

is a change in charging status and navigation allocation,

respectively, 0 otherwise.

All the parameters αcomp, αsens
l , αloc

h , and αchange can be

estimated on each AMR using low-power energy sensors

on each component. The measured energy traces can be

periodically uploaded to the base station for periodic automatic

re-training, increased accuracy, and ease of modeling for the

user. Nonetheless, we handle the remaining energy modeling

errors, e.g., due to simplified Equation 12 model, by adapting

task allocation and charge schedule decisions at every decision

period based on measured energy readings from each AMR.

(3) Charging stations availability. The number of AMRs

charging is no more than the number of charging stations |C|:∑
i∈R

∑
c∈C

zk,i,c ≤ |C| ∀k (13)

(4) State consistency. Each AMR in the fleet can be in

three different states: charging, executing, and waiting. In the

charging state the AMR is charging at one of the charging

stations and cannot execute any tasks. In the executing state

the AMR is executing one of the navigation tasks and at least

one of the objective tasks. An AMR that is neither charging

nor executing any tasks is in the waiting state. As a result:∑
c∈C

zk,i,c +
∑
h∈H

nk,i,h ≤ 1 ∀ k, i (14)

(5) Task activity status. The end-user can indicate, for each

navigation task in H, which objective tasks in J to execute

by configuring the corresponding elements γh,j of the binary

matrix Γ. Each objective task j associated to navigation h ∈ H

Algorithm 1 TCM Framework
Input: Set of AMRs R, number of decision periods T , set of

navigation tasks H, set of objective tasks J , matrix of navigation
to objective task assignment Γ, and set of charging stations C

1: T ← {1, 2, ..., T} � Set of decision periods
2: X ←0 � Allocation decision (element xk,i,h,j)
3: Z ←0 � Charging decision (element zk,i,c)
4: E ← 0 � Energy level (element ek,i, column ek)
5: A ← 1 � ak,i = 1 if AMR available for allocation
6: W ← 0 � wk,i = 1 if AMR waiting for charge scheduling
7: while T �= ∅ do
8: kmin ← Minimum value in T
9: ekmin−1 ← Read Energy() � Read energy from AMRs

10: TCM()
11: Transmit(xkmin , zkmin ) � Broadcast kmin period decisions
12: T ← T \ {kmin}
13: Wait() � Wait for the end of the previous decision period

should be allocated to an AMR only if γh,j = 1:∑
i∈R

xk,i,h,j ≤ γhj ∀ k, h, j (15)

(6) Integrity of the decision variables. The elements of

decision arrays X and Z can only have binary values:

xk,i,h,j = {0, 1} ∀k, i, h, j
zk,i,c = {0, 1} ∀k, i, c (16)

D. TCM Problem Implementation: MINLP
The TCM problem defined in Sections III-B and III-C

is a Mixed Integer Nonlinear Program (MINLP) due to the

integer constraint given by Equation 16 and to the non-

linearities in Equation 3. Finding an optimal solution in such

problems generally requires exponential time complexity [20].

We implement the TCM problem in Gurobi solver to find a

near-optimal solution. However, solvers can still take a long

time for some MINLP problem instances. Thus, we design a

greedy algorithm that finds a solution in polynomial time.

IV. TCM FRAMEWORK

In this section, we describe the details of the TCM frame-
work, which periodically fetches the AMR’s SOC to adjust

the task allocation and charge scheduling decisions using the

multi-period polynomial-time TCM algorithm.

The pseudo-code of the proposed TCM Framework is

given in Algorithm 1. The inputs are the set of AMRs R,

the total number of decision periods T , the set of navigation

tasks H, the set of objective tasks J , the matrix Γ with

elements γh,j indicating which objective tasks j to execute

during each navigation task h, and the set of charging sta-

tions C. First, in Lines 1-6, the framework initializes some

important variables such as the set of decision periods T , the

task allocation array X with xk,i,h,j variables as elements

initialized to 0, the charge scheduling array Z with zk,i,c
variables as elements initialized to 0, the matrix of AMR

energy level E with elements ek,i all initialized to 0, the

matrix A with elements ak,i initialized to 1 (i.e., available)

to keep track of each AMR i availability for task allocation

during each period k, and the matrix W with elements wk,i

64



Algorithm 2 TCM
1: For each AMR charging in kmin − 1 or scheduled for recharge

in kmin, set ak,i = 0 ∀k ∈ T and set wk,i = 1 from the
most recent period k ≤ kmin when the Task Scheduler set
this AMR for recharge to the end of the working period. For the
remaining AMRs, set ak,i = 1 and wk,i = 0 ∀k ∈ T .

2: Set to 0 the elements of Z, X , E for all periods in T
3: Δi ← 0 ∀i ∈ R
4: stop ← False
5: Charge Scheduler()
6: while stop �= True do
7: DTh ← Downtime for navigation tasks h ∈ H
8: Sort downtime cost contribution in non-increasing order

of DTh. Let DTψ(1), DTψ(2), ..., DTψ(|H|) be the order.
9: if

∑
h∈H DTh > 0 then

10: for h = 1, ..., |H| do
11: Task Scheduler(ψ(h))
12: if

∑
i∈R Δi == |R| then

13: stop ← True

14: else
15: stop ← True

initialized to 0 (i.e., not waiting) to keep track of AMRs

waiting to complete recharge.

The algorithm then executes Lines 7-13 at the beginning of

each decision period of the working period. Specifically, the

framework reads the energy levels of AMRs at the end of the

last decision period kmin−1 and updates the column ekmin−1

(Lines 8-9). Then, it calls the TCM algorithm, which we will

explain in the next sections, to find a multi-period charging

and task allocation solution (Line 10). Finally, it transmits the

solution for the current period xkmin and zkmin to the AMRs,

removes the current period from the set T and waits for the

beginning of the next decision period (Lines 11-13).

A. Multi-period Polynomial-time TCM Algorithm

At every invocation, the TCM algorithm first coordinates

the charging schedule and then allocates tasks to the AMRs

over multiple periods. Algorithm 2 shows the pseudo-code of

the TCM algorithm. Modeling errors in the energy models may

lead each AMR to be at an energy level different from the one

estimated by the previous TCM invocation. Thus, in Lines 1-

4, the TCM algorithm resets some key variables as follows.

For AMRs that where charging in the last period kmin − 1 or

scheduled to recharge starting the current period kmin, TCM
assumes they are not yet available for allocation and are still

waiting for complete their recharge, i.e., ak,i = 0 for all

remaining periods and wk,i = 1 from the first period k ≤ kmin

the AMR was set to recharge to the end of the working

period, respectively. The other AMRs are assumed to be ready

for allocation, i.e., ak,i = 1, and not waiting for recharge,

i.e., wk,i = 0, from the current period to the end of the working

period (Line 1). All the other variables (e.g., Z, X , E) are set

to 0 for the remaining periods (Line 2). Finally, it sets the

variables Δi to 0 and stop to false, which indicate when

each AMR cannot be allocated any more tasks and when the

allocation loop in Lines 6-15 must be interrupted, respectively.

Algorithm 3 Charge Scheduler
1: Sort AMRs in non-increasing order of

∑T
k∈1 wk,i.

Let σ(1), ..., σ(|R|) be the order.
2: for i = 1, ..., |R| do
3: for c ∈ C do
4: for k ∈ T do
5: if AMR σ(i) is waiting to schedule recharge then
6: if station c is available for AMR σ(i) then
7: if Charge Cost Comp(k, σ(i)) then
8: Set zk,σ(i),c = 1 for AMRσ(i)

9: Update ek,σ(i) using Equation 7
10: else
11: Set ak̂,σ(i) = 1 ∀k̂ ∈ [k, |T |]
12: Set wk̂,σ(i) = 0 ∀k̂ ∈ [1, T ]
13: Jump to Line 2

14: else
15: if ∃ another charging station available then
16: Jump to Line 3

In order to properly coordinate all AMRs for task al-

location, TCM first determines the charging schedule for

the AMRs waiting to complete a recharge by executing

the Charge Scheduler algorithm (Line 5), which will

be described in details in the next section. When the

Charge Scheduler terminates, all AMRs are set to be

available for task allocation starting a specific period in the

remaining working period. Then, TCM coordinates task allo-

cation across AMRs (Lines 6-15). Specifically, it calculates the

current contribution of each navigation task h to the downtime

cost DTh using Equation 2. Then, it sorts the navigation tasks

in non-increasing order of downtime contribution (Lines 7-8).

If there are tasks to be allocated (Line 9), the Task Scheduler
algorithm is executed to allocate the objective tasks of each

navigation task h, starting from the one that has the highest

contribution to the downtime cost (Lines 10-11). The TCM
algorithm stops when all AMRs cannot be allocated anymore

tasks (Lines 12-13) or when there are no more tasks to be

allocated (Lines 14-15).

B. Charge Scheduler Algorithm
The pseudo-code of Charge Scheduler is given in Algo-

rithm 3. It executes to coordinate the charge schedule of the

waiting AMRs, i.e., wkmin,i = 1, with the target of making

them available for task allocation at some point in the future.

The algorithm first sorts the AMRs in non-increasing order

of cumulative wait time (Line 1) to prioritize the AMRs

waiting the longest time to complete a recharge. Then, starting

from the AMR with the highest charging priority, it finds

an available charging station. If the selected AMR was al-

ready charging before kmin, the scheduler selects the same

charging station. Otherwise, it finds the first period k ∈ T
when a charging station is available (Lines 3-6 and 14-

16). The core of the scheduler is in Lines 7-13. When a

charging station is selected for an AMR, the scheduler uses

the Charge Cost Comp() function in Line 7 to compare what

would be the total cost calculated using Equation 1 if (a) the

AMR would be recharged vs (b) the AMR would be made

available for task allocation. For simplicity, this comparison
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Algorithm 4 Task Scheduler
Input: selected navigation task h

1: for i ∈ R do
2: for k ∈ T do
3: if ak,i = 1 then
4: O ← Allocation Cost Comp(k, i, h)
5: if O �= ∅ then
6: Allocate temporary variables x̄k,i,h,j = 1,

āk,i = 0 for all j ∈ O
7: else
8: Set āk̂,i = 0 ∀k̂ ∈ T
9: Set w̄k̂,i = 1 ∀k̂ ∈ [k, |T |]

10: Jump to Line 11

11: k̃ ← argmaxk∈T ek,i
12: Slacki ← 1

e
k̃,i

∑
k∈T ak,i

13: Qi ← f(x̄, z) potential number of periods AMR i must wait
for an available charging station

14: U ← f(a, x) potential number of periods with downtime if
navigation h would be allocated to other available AMRs

15: if U > Qi then
16: Qi ← 0 � leaving task h to other AMRs may lead to

higher downtime despite some queue at
charging stations.

17: Sort AMRs in non-increasing order of Slack, then sort them in
non-decreasing order of Q. Let σ(1), ..., σ(|R|) be the order.

18: DT temp
h ← Current downtime of navigation task h

19: for i = 1, ..., |R| do
20: Assign the temporary decision made in Lines 1-10 for

AMR σ(i) to X , A, W
21: Δσ(i) ← 1
22: DTh ← New downtime of navigation task h
23: if DT temp

h �= DTh then
24: break

considers only the selected period k and the unallocated tasks

of the navigation with the highest downtime contribution. If

it is more convenient to recharge, the function returns a true
value (Line 7), the AMR is set for recharge (Line 8), and

the AMRs’ energy level at the end of period k is updated

according to Equations 7 to 12 (Line 9).

The algorithm then continues by evaluating the next deci-

sion periods until Charge Cost Comp() returns false, i.e., it

is more convenient to allocate tasks. At this point, the charge

scheduler sets this AMR available for task allocation in the

remaining periods, stops the recharge (Lines 11-12), selects

the next AMR in order of priority, and repeats the above steps.

C. Task Scheduler Algorithm

The pseudo-code of the Task Scheduler is given in Al-

gorithm 4. It takes as input the navigation task h selected

in Lines 7-11 of Algorithm 2. The Task Scheduler finds

not only which AMR should be allocated the objective tasks

of h, but also for how many decision periods this AMR

should execute those tasks for minimized task downtime and

maximized battery life quality. Specifically, similar to the

Charge Cost Comp() function of Algorithm 3, we define an

Allocation Cost Comp() function that compares what would

be the total cost of Equation 1 for the considered period if

(a) the AMR would be allocated objective tasks in order of

priority pj vs (b) the AMR would be recharged. Note, this

function considers the energy wasted to travel the average dis-

tance dcharge from/to the charging station through Equations

7 and 12. For simplicity, this function only looks at cost one

decision period and one AMR at a time, without evaluating the

potential downtime caused by queuing at charging stations.

In order to minimize downtime and queuing at charging sta-

tions, the Task Scheduler first temporarily allocates the ob-

jective tasks to each AMR (Lines 1-10). Specifically, for each

available AMR i and starting from the current period (Lines 2-

3), the algorithm uses the function Allocation Cost Comp()
(Line 4) to decide the temporary allocation of the unallocated

objective tasks j ∈ J . If allocating tasks to this AMR is cost

effective in this period, the function stores the indices of the

unallocated objective tasks that can be assigned to AMR i in

the set O. This temporary allocation is stored by setting the

temporary variables x̄k,i,h,j = 1 and āk,i = 0 for all j ∈ O
(Lines 5-6). When it becomes more convenient to recharge the

AMR than allocating tasks, the function returns an empty set

O and the AMR is set for recharge (Lines 7-10).

The algorithm then needs to select the best AMR that

minimizes downtime and queuing time by finalizing the best

temporary allocation. To do so, it first sorts the AMRs in non-

increasing order of Slack. Then, maintaining the slack order, it

sorts the AMRs in non-decreasing order of queuing Qi (Line

17). The Slack is calculated in Lines 11-12 for each AMR as

the ratio of the total AMR availability over the energy ek̃,i,

which is the energy level of AMR i in the first period k̃ when

the AMR can be allocated tasks. Sorting in non-increasing

order of Slack prioritizes the AMR with higher availability

for task allocation but also with lower energy level. Doing so

allows to maximize the probability that, when the low-energy

AMR reaches the charging point, a higher-energy AMR has

enough energy to take over the task execution without any

downtime. The value Qi is calculated in Line 13 as the number

of potential periods AMR i waits to get recharged due to

queuing at charging stations. The algorithm then calculates

the variable U in Line 14 to estimate the potential number of

periods with downtime if navigation h and its objective tasks

would be allocated to other available AMRs. If allocating the

tasks to other AMRs in the selected periods would lead to

a higher number of periods with downtime than the queuing

time introduced by AMR i (Line 15), Qi is set to zero to

prioritize AMR i for final allocation (Line 16).

To finalize the allocation decision the algorithm starts

from the highest priority AMR, stores the current downtime

contribution of task h (Line 18), and finalizes the temporary

allocation of the selected AMR (Line 20). Then, it flags the

AMR as unavailable for further allocations of other navigation

tasks by setting its variable Δi to 1 (Line 21). If the new

downtime contribution of task h is different from the one

calculated in Line 18, i.e., tasks of h have been allocated to

the AMR, then the algorithm breaks the loop and returns to

Algorithm 2 (Lines 22-24). Otherwise, i.e., the selected AMR

has been set for recharge without any allocation, it repeats

Lines 19-24 for the next AMR in the sorted order.
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D. TCM Complexity Analysis

We analyze TCM’s computational complexity considering

R as the number of AMRs, T as the number of decision

periods, H as the number of navigation tasks, J as the number

of objective tasks, C as the number of charging stations,

and S as the number of sensors on each AMR. Algorithm 4

executes O(R2TJ) times to allocate the objective tasks of

the selected navigation task. Algorithm 3 executes O(RCTS)
times for charge scheduling. Algorithm 2 executes TR(HJ +
C) times to re-initialize the fundamental variables and call

Algorithm 3 once. It performs task allocation H times. There-

fore, the total time complexity of TCM is O(R2THJ). Algo-

rithm 1 calls Algorithm 2 T times. Therefore, the computation

complexity of the TCM Framework is O(T 2R2HJ).

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup
We use our HydraOne autonomous mobile robot prototype

[43] to train the parameters of the models described in Section

III and ensure realistic results. It has an NVIDIA Jetson

AGX, Dual 250W hub motors, 156Wh Li-ion battery pack,

2 Intel RealSense cameras, a Slamtec RPLidar S1 lidar, and

an Arduino Mega 2560 to read the current sensors data.

We profiled the instruction count of a representative navi-

gation task based on HydraNet1 and a representative objective

task for object detection based on MobileNet-SSD [34]. To

account for the variability of instruction count across different

tasks, we then generate problem instances using two uniform

distributions that have mean values equal to the instruction

count measured with MobileNet-SSD for objective tasks (e.g.,

0.3 ∗ 106 measured, range 3 ∗ 103 to 0.5 ∗ 106) and HydraNet

for navigation tasks (e.g., 0.12∗106 measured, range 0.01∗104
to 0.3 ∗ 106).

We generate different problem instances with 1-8 AMRs,

1-6 charging stations, 4-10hrs working period with 10min

decision periods, 1-7 navigation tasks, and 5-7 objective tasks

per navigation task. We repeat each problem instance multiple

times with a distinct initial SOC and random objective task

priorities pj . The simulations are executed on an Intel Core

i7-8750H CPU at 2.20GHz and 24GB memory.

Performance Metrics. Task Allocation (TA) is the percentage

of allocated objective tasks in the working period, which is

directly related to the downtime cost in Equation 1.

In order to measure the battery quality of life degradation,

we define two metrics: Energy-usage-EFfectiveness (EEF) and

State of Charge Violation (SOCV ). EEF measures the quality

of battery utilization and is calculated as follows:

EEF =

∑
k∈T

∑
i∈R

Euseful
k,i + Ewasted

k,i∑
k∈T

∑
i∈R

Euseful
k,i

(17)

where Euseful
k,i is the energy utilized to execute a given

navigation and objective tasks by AMR i in time period k

1A Convolutional Neural Network (CNN) that gets as input a camera frame
and outputs the next linear and angular speed of the AMR.

and Ewasted
k,i is the energy utilized to go back/forth to the

charging station. In line with the PUE definition for data

centers efficiency [19], EEF is ≥ 1, with 1 being the best,

i.e., utilizing 100% of battery charge to perform useful tasks.

SOCV is the sum of violations of the battery SOC thresholds

in % by an AMR during the battery charge cycle. A violation

of these thresholds results in degrading the battery lifespan:

SOCV =
100

Ebat

∑
k∈T

∑
i∈R

[max((ek,i − Emax), 0)

+max((EDOD − ek,i), 0)
] (18)

where ek,i is the energy level of AMR i in period k, Ebat is

the max energy capacity, Emax and EDOD are the maximum

and minimum energy thresholds input by the user. In line with

Lithium-ion batteries [18], lifespan degrades below the user

desired duration when the energy level exceeds the indicated

thresholds. Thus, accordingly, SOCV increases only when the

energy level drops below EDOD or increases above Emax.

The closer SOCV is to zero, the closer the lifespan is to

the desired one. Here we do not consider other factors such

as temperature but we leave it as future work. Ideal battery

quality of life is achieved with EEF = 1 and SOCV = 0.
Baselines. We compare TCM with three representative base-

lines (1) Minimum Downtime (Min-DT), (2) Minimum

Downtime-Constrained (Min-DTC), and (3) MINLP. Min-
DT is a simple optimization model for task allocation and

charging schedule that maximizes only TA. We implement

this baseline in Gurobi solver by simply setting weight value

q = 0 in the model proposed in Section III-A. Min-DTC is an

optimization model that considers maximizing the task allo-

cation while ensuring that the energy level remains within the

minimum (EDOD) and maximum (Emax) battery threshold.

To implement this baseline we modify Min-DT by adding

such constrain in Gurobi. (3) MINLP is the TCM problem

implementation in Gurobi as described in Section III-D.

B. TCM Performance Results
Here, we compare TCM with the baselines mainly using

a high value of battery life quality weight q. Section V-B4

shows the results for other q values. Note, Min-DT and Min-
DTC only minimize downtime and are not influenced by q.

1) Detailed Performance Comparison: Figure 1 shows the

performance of the baselines and TCM on a problem instance

with 3 AMRs, 2 navigation tasks each one with 5 objective

tasks, 24 decision periods of 10min each, and 1 charging

station. Figure 1a shows the SOC variation and task allocation

of AMRs with Min-DT. It charges the AMRs to minimize

downtime without considering the effect of frequent charging

and energy threshold violations on the quality of battery life.

Same as Min-DTC and MINLP, it provides 100% TA but has

an EEF of 1.46, i.e., only 68% of the total energy drawn from

the battery is useful. In addition, it has a high SOCV of 259%,

which degrades the battery lifespan. For example, AMR-1

spends most of the time at an SOC below the minimum

threshold and frequently travels to charging stations. Figure 1b

shows the results for Min-DTC. It constrains the SOC between

67



(a) Min-DT (b) Min-DTC (c) MINLP (d) TCM
Fig. 1. Example comparison between the baselines (a) Min-DT, (b) Min-DTC, (c) MINLP, and (d) our proposed TCM algorithm in terms of battery SOC and
task allocation for a case study of 3 AMRs, 2 navigation tasks, 5 objective tasks, 1 charging station, and SOC threshold of 20% and 90% of battery capacity.

(a) (b) (c)

Fig. 2. (a) Task Allocation, (b) Energy Usage Effectiveness, and (c) per-run SoC threshold violation comparison for Min-DT, Min-DTC, MINLP, and TCM.

(a) (b)

Fig. 3. MINLP vs. TCM: (a) Average runtime and (b) total objective cost for
various problem instances.

the thresholds to preserve lifespan, but has a slightly higher

EEF of 1.5 due to the smaller SOC range, i.e., only 66%

of the total energy is consumed on performing useful tasks.

Figures 1c and 1d show the results of the proposed MINLP
and TCM. Both perform task allocation based on the trade-

off between task downtime and quality of battery life. Thus,

they both use the available energy to preserve lifespan while

starting/ending charging cycles near the SOC thresholds for

improved EEF. MINLP and TCM result in 100% and 98.33%

TA, respectively, and 1.19 and 1.16 EEF, respectively. This

means that MINLP and TCM improve the EEF by 20.67% and

22.66% compared to Min-DTC, respectively, while ensuring

similar TA performance.

Compared to TCM, MINLP finds a slightly better solution in

terms of task allocation at the cost of a slightly higher EEF.

The main reason for TCM to have a 1.67% lower TA than

MINLP is due to its greedy approach. For example, MINLP
schedules a recharge for AMR-1 in period 1 before its battery

SOC reaches EDOD, as shown in Figure 1c, causing the higher

EEF. However, this early recharge eliminates the wait time

in period 5, therefore reducing task downtime. TCM greedily

selects AMRs by sorting them first based on non-increasing

order of Slack and then in non-increasing order of queuing

time Q (see Algorithm 4). Thus, it first allocates navigation

task 0 to AMR-1 due to its higher Slack. For navigation task 1,

selecting AMR-0, which has the second-highest Slack, would

result in a downtime of two periods because of queuing at

the charging station. Thus, TCM allocates navigation task 1

to AMR-2 and avoids queuing-related downtime, as shown in

Figure 1d. The greedy approach of TCM leads sometimes to a

small downtime such as in period 6, where it allocates only 1

out of 5 objective tasks to AMR-0. On the other hand, MINLP

Fig. 4. Effect of the weight q in Equation 1 on downtime cost and battery
quality of life degradation cost using the proposed TCM algorithm. Case study
of 8 AMRs, 6 charging stations, 7 navigation tasks, each with 5 objective tasks.

takes 91s to find the solution in each period, while TCM only

takes 0.25s, i.e., 365 times faster than MINLP.

2) General Performance Comparison: Figure 2 shows the

performance comparison of the baselines and TCM for all the

problem instances described in Section V-A. Min-DT utilizes

all the available battery capacity to schedule tasks giving

an average TA of 84.12%, which is 13.52%, 14.73%, and

14.5% higher than Min-DTC, MINLP, and TCM, respectively.

However, utilizing the available battery capacity increases the

average SOCV , which is 194% compared to 0% for Min-DTC
and MINLP, and 1% for TCM, as shown in Figure 2c. Min-
DT has also an average EEF of 1.34 as shown in Figure 2b,

which is 16.77% lower than Min-DTC due to the larger energy

range. For a similar reason, MIN-DT shows 4.28% lower EEF

than MINLP, which, however, has a 0% SOCV . TCM has the

lowest EEF, which is 10.71% lower than MINLP, 13% lower

than MIN-DT and 22.36% lower than MIN-DTC.

These results show that MINLP and TCM perform a bal-

anced trade-off between TA, EEF, and SOCV , thus ensuring

high performance and high-quality battery life at same time.

3) MINLP vs. TCM Comparison Analysis: We study the

performance of MINLP and TCM by comparing their exe-

cution time and total objective cost for 7 different problem

instances ordered by complexity. As Figure 3a shows, when

the problem complexity increases, the average execution time

of MINLP increases exponentially reaching about 45min for

problem instance 4 (3 AMRs, 2 charging stations, 2 navigation

tasks, 5 objective tasks, and a working period of 4 hours). We

do not show the results for instances 5-7 due to their extremely

long execution times. Conversely, TCM takes polynomial time

to solve all the problem instances. For example, it only takes

0.015s for problem instance 4 while causing only an average
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(a) Under estimated error (b) Over estimated error (c) Fluctuating error

Fig. 5. Robustness to energy usage estimation errors of TCM-Static (top figures) and TCM (bottom figures).

(a) (b) (c)

Fig. 6. (a) Task Allocation, (b) Energy Usage Effectiveness, and (c) per-run
SoC threshold violation comparison for TCM-Static and TCM.

of 15% higher total objective cost than MINLP (Figure 3b),

which translates in an empirical performance ratio of 1.15.

These experiments prove the effectiveness of the designed

TCM greedy algorithm.

4) Task Allocation vs. Battery Quality of Life: Here, we

show the results for different values of weight q, which allows

the end-user to regulate the importance of task downtime over

battery life quality. For space reasons, we only show the results

for a large problem instance of 8 AMRs, 6 charging stations,

7 navigation tasks, each with 5 objective tasks. As Figure 4

shows, for a low q value the downtime cost (Equation 2) is

142 with a high degradation cost of 2.9 (Equation 3). The

downtime cost increases to 189 while the degradation cost

decreases to 0.6 for a high q value, which is mainly due to

a variation in SOCV from 83% to 5%. These results show

that TCM can flexibly provide solutions that give more or

less importance to minimizing task downtime compared to

preserving battery quality of life based on the weight q.

C. TCM Robustness to Modeling Errors
In this section, we evaluate the robustness of TCM to

the uncertainties of the real-world environment by comparing

the results with TCM-Static baseline, a version of TCM
that only finds the solution for the entire working period

once at the beginning of the working period without adapt-

ing to energy modeling errors. We measure the robustness

of TCM using three general cases: Under estimated error,

i.e., measured energy higher than estimated; Over estimated
error, i.e., measured energy lower than estimated; Fluctuating
error, i.e., measured energy fluctuates between underestimated

and overestimated error across decision periods. We apply a

random error in each period in the range [0, 60]% for the first

two cases and [-60, 60]% for the third case. Figure 5 shows

the SoC comparison of AMRs for a test case of 3 AMRs and

1 charging station in each of these three different case studies

using TCM-Static (top figures) and TCM (bottom figures).

Even after planning the task and charging schedules consid-

ering both objectives, as the top figures show, the AMRs for

TCM-Static violate the battery capacity thresholds providing

weak performance under uncertainties. The bottom figures

show the results of AMR SOC using TCM, which reads

the actual energy level from each AMR at the end of every

decision period and updates the decisions accordingly. This

strategy limits the effect of the error only to one period,

hence making TCM more robust to errors. In Figure 6, we

compare the results of TCM-Static and TCM over various

problem instances. The TA for TCM is 2.63% higher than

TCM-Static because TCM-Static may occasionally lead to

downtime due to uncertainties. For example, AMR-1 reaches

0% SOC in period 15 in the top Figure 5a, leading to

unexpected downtime. This results in an average SOCV of

136.66% for TCM-Static, which is 3422.16 times higher than

TCM. The EEF has less than 1% difference between TCM and

TCM-Static as TCM-Static follows the recharge schedule.

These results show that TCM is robust to energy modeling

errors, which are inevitable in real-life deployments.

VI. CONCLUSIONS

In this paper, we have presented TCM, an energy-aware

Task allocation and Charging schedule Manager for AMR

fleets that can flexibly tradeoff between task downtime and

battery quality of life according to end-user preferences. We

have experimentally showed that it has a performance ratio

of 1.15 at a fraction of the execution time compared to its

MINLP implementation in Gurobi. We have also compared

TCM with several representative baselines and showed that

it is robust to energy modeling errors, achieves similar task

allocation performance, and ensures up to 22.36% and 193%

lower EEF and battery lifespan degradation, respectively.

The current TCM model is a centralized approach. In the

future, we plan to implement a decentralized TCM model to

handle a large swarm of AMRs performing tasks over a larger

area with enroute charging stations.
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