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Abstract—The problem of multi-user commitment is one in
which multiple users first commit to individual messages with
a bookmaker and later reveal their messages. The ohjective of
the bookmaker is then to decide whether the revealed messages
correspond to the committed messages. We study a specific multi-
user commitment model in which the users and the bookmaker
have access to a noiseless channel, as well as a noisy multiple-
access channel whose inputs are controlled by the users and
whose output is observed by the bookmaker. When the users
are non-colluding and the channel is non-redundant, we fully
characterize the commitment capacity region. When the users are
colluding, we derive an achievable region and a tight converse for
the sum-rate. In both cases our proposed achievable commitment
schemes are constructive.

I. INTRODUCTION

Commitment without the need for a trusted third party can
be traced back to Blum's coin flipping problem [1]. More
generally, a two-party commitment problem involves a sender,
Alice, and a receiver, Bob, and operates in two phases. In the
first phase, called the commit phase, Alice sends information
to Bob to commit to a message M that must be concealed
from Bob. In the second phase, called the reveal phase,
Alice meveals a message M’ to Bob, who must determine
whether M" is the message that Alice committed to in the
commit phase. Additionally, the protocol must be binding in
the sense that, in the reveal phase, Alice cannot make Bob
believe that she committed to a message M' £ M. It is
well-known that information-theoretic concealment guarantees
cannot be achieved over noiseless communication channels.
However, when a noisy channel is available as resource, both
concealment and binding requirements can be obtained under
information-theoretic guarantees, i.e., when Alice and Bob are
not assumed to be computationally limited, for some class
noisy channels called non-redundant [2].

While most of the literature focuses on two-party commit-
ment, e.g., [2]-[9], we study here multi-user commitment.
Specifically, we consider a commitment setting between a
bookmaker and L users who want to commit to individual
messages. To this end, the L uvsers and the bookmaker have
access to a noiseless public communication channel and a
noisy discrete memoryless multiple-access channel with L
inputs. Each input of the multiple-access channel is controlled
by a distinct user and the bookmaker observes the output of the
channel. Similar to a two-party setting, the protocol consists
of a commit phase and a reveal phase. Here, the concealment
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requirement is that the bookmaker must not learn, in an
information-theoretic sense, information about any message
of any user after the commit phase. The protocol must also be
information-theoretically binding in the sense that, during the
reveal phase, a user cannot make the bookmaker believe that
it committed to another message than the one committed to in
the commit phase. In this study, we consider both the cases
of colluding and non-colluding users. The non-colluding users
case corresponds to a scenario in which the users do not trust
each other and do not want to exchange information with one
another. For instance, this would be the case when the users are
bidders that commit to messages sent to an auctioneer. Under a
non-redundancy condition on the multiple-access channel, we
derive the capacity region for the non-colluding users case,
and an achievable region and the sum-rate capacity for the
colluding users case. In both cases, our achievability scheme
is constructive and relies on distributing hashing with two-
universal hash functions [10] for the concealment guarantees.
The bindingness of our achievability scheme hinges on the
non-redundancy property of the multiple access channel akin
to the two-party commitment in [2]. The characterization of
the sum-rate capacity relies on the polymatroidal properties of
our achievability region.

The remainder of the paper is organized as follows. We
formally state the problem in Section II. We describe our main
results in Section III. Our achievability scheme and its analysis
are presented in Sections IV and V, respectively. Finally, our
converse result is presented in Section VL

Il. PROBLEM STATEMENT

Let L € * and define £ £ [1, L]. Let (X})1ec and Y be fi-
nite alphabets and define the cartesian product X £ KIEE A
Consider a multiple access channel W £ (), Py X XL
where X £ (X)) and X;, | € £, is defined over A). For
any rp € A, define Wy, : y = py x.(ylzc). Let P(XL)
be the set of probability distribution over X-. We assume that
throughout the multiple access channel W is non-redundant
as defined in [2], ie.,

Vre € X, Vpx, € P(Xc) st px,(zc) =0,
We, # Z pxc(Tp)We . (1)

T EXe

Next, we introduce two models of commitment. In Model 1
the transmitters are colluding, while in Model 2 they are not.
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A Model 1: Colluding transmitters
Definition 1. A ((2"F);c -, n) commitment scheme consists of

o For every | € L, a sequence a; € A; £ [1,2"%] that
Transmitter 1 € L wishes to commit to;

o A public noiseless communication channel between the
transmitters and the receiver;

« Local randomness S € R available at the transmitters;

« Local randomness §' € R' available at the receiver and
used in the interactive noiseless communication with all
L transmitters during the commit phase;

and aperates in two phases as follows.

1) Commit phase: Define ay 2 (a1)1cc. For channel use
i € [1,n], the transmitters send X ¢ s(ac, S, M{.,_,,, )
aver the channel and engage in ry rounds of noiseless
public communication with the receiver ie, for j €
[1,7:] the transmitters send M; 4(ac, S, M|, ;.. ) and
the receiver replies My (5", Miq1:4, YY) We denote the
collective noiseless communication between the transmit-
ters and the receiver by M. Define V £ (Y™ M, S").

2) Reveal phase: Transmitters reveal (az, S). The receiver
performs a test BV, arz, S) that returns 1 if the sequence
ag is accepted and 0 otherwise.

Definition 2. A rare-tuple By is achievable if there exists
a sequence of ((2"™)cc,n) commitment schemes such that
for any S € R, ag,a, € A such that ap # aly,

1-.]_>]I[.:.la P[B(V,ar,S) = 0] =0, (correciness)
lim I{Az; V) =0, (concealment)
— _
nliﬁﬁ P|8(V,ar, 5)=1=8(V,a, 5)| = 0. (bindingness)
The set aof all achievable rate-tuples is the capaciry regiomn

B. Model 2: Non-colluding transmitters
Definition 3. A ((2"%),. -, n) commitment scheme consists of

o For every | € L, a sequence a; € A; £ [1,2"%] that
Transmiter | € £ wants to commit to;

» A noiseless private channel between each wransmitter and
the receiver;

s Local randomness S; € Ry at Transminer | € L;

» Local randomness S| € R}, | € L, ar the receiver where
5] is only used in the interactive noiseless communication
with Transmitter | € L during the commit phase;

and aperates in two phases as follows.
1) Commit phase: For each | € L, for i € [1,n], Transmitter
I sends Xy 4(ai, S, M{y.,, 1, ,) over the channel and
engage in vy rounds of noiseless public communication
with the receiver, ie, for j € [1,r:) Transmitter |
sends My 5(ai, Si,M{ ., 1.,_,) and the receiver replies

M, ,(S] My 1015, Y7). We denote the collective noise-

less public communication berween Transmitter | € L

and the receiver by M, Define Vi £ (Y™ M;,S]) for

leLand Ve 2 (Wiee, ac 2 (a)iec.
2} Reveal phase: Transmitter | € £ reveals (a;, S;). For

each | € L, the receiver performs a test 5(Vi,a, 51),
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I € £, that return 1 if the sequence a; is accepted and 0
otherwise.

Definition 4. A rare-tuple (Ry)c is achievable if there exists
a sequence of ((2"™)c¢,n) commitment schemes such that
forany l€ L, 5; € Ry, ag,a;, € Ar such that ag # aly,

lim P[5 (Vi, a1, S;) = 0] = 0, (correctness)
ﬂlE:;ﬁI{AE;V,;} =0, (concealment)
lim P[5(Vi, a1, S1)=1=PFi(Vi, a}, S1)] = 0. (bindingness)

n—o0

The set of all achievable rate-tuples is the capacity region.

Note that since V' depends on Y™, which depends on all
user inputs to the channel, I(Ag;Ve) # 3o 1A Vi)

ITII. MAIN RESULTS

Our main results are a partial characterization of the capac-
ity region in the case of colluding transmitters (Theorem 1) and
a complete characterization of the capacity region in the case
of non-colluding transmitters (Theorem 2). In the following,
for any T C £, we wrile the sum-rate of the transmitiers in

T as Ry = 37 Ri.
Theorem 1. For the case of colluding transmitters,
s The following region is achievable
U {(Biec : By <H(X7IY),¥T C L}.
Px-EP(X)

« The sum-rate capacity is

max H(Xc|Y).

PxrePixe)
Theorem 2. Define the set of product input distributions
P(Xc) 2 {px. € P(Xc) : px. = [[ pxi}-
€L
For the case af non-colluding transmitters,
« The capacity region is
U  {(Ridiec: Ry < H(X7|Y),VT C L}.
Pxp €FUAL)
« The sum-rate capacity is
max H(X|Y).
Pxeerlixe)

The proof of the theorems are developed in the next
sections.

IV. ACHIEVABILITY SCHEME FOR THEOREMS 1 AND 2

The achievability proofs for the two theorems are similar,
differing only in the set of allowed input distributions to the
channel. To simultaneously capture both proofs, we define

Pl(Xe)
P(&c)

if the transmitters are non-colluding

B ¥ £
P(r) { if the transmitters are colluding



Fix Px: £ l.lﬁ{r't'ﬂ:l Define XY £ PX:PY|Xp- Consider XE
distributed according to p$"
Commit Phase: Transmitter ! € £ commits to a; as follows.

» Transmitter ! sends the sequence X' over the multiple
access channel W. The receiver observes Y.

s The receiver chooses a function &y : A7 — {0,1}™ at
random in a family of two-universal hash functions with
1 = 0, and sends ) to Transmitter [ over the noiseless
channel.

» Transmitter [ sends Gy(X[') to the receiver over the
noiseless channel. Let T; be the corresponding sequence
observed by the receiver.

+ Transmitter [ chooses a function F; : A} — {0,1}™
at random in a family of two-universal hash functions,
and sends F; and E; £ a; @ Fi(X]") over the noiseless
channel, where X £ X7*[(U, S)°.

Reveal Phase: Transmitter [ € L reveals a; as follows.

» Transmitter ! sends X" and a; to the receiver over the
noiseless channel.

+ The receiver tests that

(0 (XE:YF':' € 7?'(*?:!::?’]';

(i) T} = Gi(X7), vl e L;

(i) a; = Ey @ Fi(X]),Vl € L;

and outputs 1 if all conditions are satisfied, and 0 else.

V. ANALYSIS OF THE ACHIEVABILITY SCHEME
A. Definitions
The following notions of typicality will prove useful in the
proof. Let e > 0. For =} € A7, define
W,E{IEJ & {yﬂ ey": Yre,Yy,

in{{zﬁ,y}#zc,ﬁm} Wa( }Z {zr=1r4}

mn T
i=1 i=1

and We,(y) =0 — Zﬂ{ Ie; y};(fﬁnm}} ﬂ}_
i=1

ZE

Define also
?:.:n{qx;}"} 2 {{Ii,yn} = XE x Y : Yre,Vy,

Zﬂ{{Iﬁ,y}Z'{Iﬁ-hy‘j} —qx.v(rc,y)| < € and
i=1
=1

B. Correctness

When the parties are not cheating, standard typicality argu-
ments [11] show that my, . P[(XZ,Y™) € T (gx.v)] = 1
Consequently, part (i) of the receiver test passes, while part (ii)
and (iii) are automatically troe, so that the receiver estimates
ay with vanishing probability of error in the reveal phase.

C. Concealment
Define V'’ £ {S.C'.FL:XE[SE]:Y":' and V £ {VFB' Ef::l’
where S¢ £ (Sihiec, Fe £ (Filiee, Be £ (Eiiec,

X1[Sc] £ (X][Si))iec. Note that V' captures all the infor-
mation available to the receiver at the end of the reveal phase.
Also define Ke £ (Fi(X["))iee and ¥™ 2 Y[, 817
which represent the sequence of hashes used to protect the
committed strings by the transmitters and the channel obser-
vations potentially leaking information to the receiver about
the hashes, respectively. Then, we have

(A V)

Y IAc; Be) + I1(Ag; V'IE)

< NALE) + I{AE; V')

B
© (A Be) + I(AK V")

A Ep) + I(Kg; V') + I{Ag; V'IKe)
HAg; Ec) + I(Ke; V') + I(Ag; VIK )

HAgEe) + I(Kg; V')

A

ME

re — H(Ec|Ag) + (K V)

re — H(Kg) +1(Kg; V)
=re —H(Kc)+ I(Kg; FcY™)
+ (K e; ScXESeY ™ e SIFEY™)
Sre—H(Ke)+ I(Kp; FeY™)
+ I{FJ:F"KL;SLXE[Sﬁ]Yn[U:ELSI]}

H(Kg)+I(Kg; FeY™), 2)

where (a) holds by the chain rule and the definition of V', (b)
holds by the one-time pad lemma, () holds by independence
between A, and (V',K.), (d) holds with r £ Piec T
{e) holds by the definition of E, ( f) holds by independence
between (Fg, Y™, Kc) and (8¢, X2[Sc], Y " [U;e . Si])- Next,
we upper bound the right hand side of (2) using the version
of the leftover hash lemma in Lemma 1, and we lower bound
the entropies appearing in Lemma | using Lemma 2.

o
=

)
= Frr —

Lemma 1 (Distributed leftover hash lemma, e.g., [12,
Lemma 1]). Consider a sub-normalized non-negative function
px.z defined over X, . X x Z, where Xg £ (Xiiec
and, Z, X}, | € L, are finite alphabets. For | € L, let
Fy - {0,1}y™ — {0,1}", be uniformly chosen in a family
Fi of two-universal hash functions. For any T C L, define
rr & Yo7 Define also Fr £ (Fi)iee and Fe(Xp) £
(Fi(Xi1))icp- Then, for any qz defined over Z such that
supp(gz) C supp(pz). we have

Z gry— ::.'[.T-'x-rzhlz},

TCLTF

Vipr.(x ) F-2: PUCPUFPZ)

(3)

where py,_ and py;,. are the uniform distributions over [1,27¢]
and [1,1],c.\Fill. respectively, and for any T € L, T # 0,

Pxrz(TT,2)
Hm{PX'rZMz:’é_hg ::EIEE:;'{T TQZT
=™ csupp(gz )
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Lemma 2 ( [12, Lemma 2]). Let (X)) be L finite alphabets
and define for T C L, Xy £ X, _, X4 Consider the random
variables X £ (X[')iec and Z™ defined over XP x Z™ with
probability distribution qxzz~ £ [Ii—, ax.z. For any ¢ >
0, there exists a subnormalized non-negative finction Wxnzn
defined over X7 x Z™ such that V(gxpz~, wxpz=) < € and

¥T C L, Hoo(wxnzn|qzn) 2 nH(X7|Z) — néy(n),

where b7 (n) = (log(|¥r| + 3))y/ 2 (L +log(Z)).

Let e > 0 and define 7 £ n—|| ), Si|. By Lemma 2, there
exists a subnormalized non-negative function Wnyn such that
V(gxnyn, wgaypn) < € and

VT € L,Hoo(wgnpalgyn) 2 AH(X7|Y) — adr(a), (4)

where dr(7i) £ (log(l¥r| + 3))y/ 2(L + log(1)). Then, we
have by Lemma 1

V(gr  Fo¥ s PUCPUG7R)
(a)
""‘{a- V{QK:FL?“‘. wKLF_c?“:I + V{wKLFE?“!IPUEW,FW“}

b}
% e+ V(wg, g yn, PULPU G )
(]
% e+ V(wg, povm, PUcPUFWyn)

+ V(PUA:PUIW“BIPUA:PU}'W":I

(d)

< 26+ V(wg, F ¥n: PUCPU W)

(e) _ o lgs
< De + Z 21"5 Hm[wx%rnlqyn]
SCLS#D

1
(é % + Z 9rs—nH (XT[Y)+nsr(n)
SCL.S#D

where (a) and (c) hold by the triangle inequality, (b) and
(d) hold by the data processing inequality and because
V(gxayn,wxay=) £ & (e) holds by Lemma 1, (f) holds
by (4). We conclude that concealment holds with (r; )z such
that for any TCL limg e L;tr‘ £ H{XTW}

D. Achievable region and sum-rate
For any px, € P(X:), we have shown the achievability of
Ripxc) £ {(Ri)iec : Ry < H(XT|Y),¥T C L}.
Mext, define the set function
fox, 125 =R
T = H{XT|Y).

fpx . is normalized, non-decreasing, and submodular because
for i,V C L, we have

fox UUV) + fpx (UNV)

= H(Xu|Y) + H(Xpy|Y Xu) + H{ Xz |[Y)

= H(XylY) + H(Xy\p|Y Xu) + H(Xy[Y)

— H(XwvwulY Xunv)
= H(XylY) + H(Xy|Y)
= fox, U) + fpr (V)

where the inequality holds because conditioning reduces en-

tropy. Hence, by [13], the rate-tuple (fpx, ([I, L]} — fpx (1 +
1, L))}z is achievable and so is the sum-rate

R = max H(XY).

Px - eP(x;)
E. Bindingness
We will use the following lemma.

Lemma 3 (Adapted from [2]). Ler 4,0 = 0. Consider
tp,IF € A7 such that dg(z},I}) = on and a non-
redundant multiple access channel W such thar for any
br € A,

pra: € Pldc) st Px, (bc) =10,

V(“'rﬁu:'. Z PXL{I.I::IWIL) =4, (3)
TeEX,y
Then,
lim WEP (TR, (22)) = 0.

In the reveal phase, if the receiver observes =7, then, by
Lemma 3, a successful joint typicality test at the receiver
requires dp(zh,zf) = O(n"™), for some o« < 1. This
implies that Test (ii) at the receiver in the reveal phase can
only succeed with a probability at most 2°(™)2-"7_ which
vanishes to zero as n — oo.

V1. CONVERSE FOR THEOREMS 1 AND 2

We only prove the converse of Theorem 2. The proof, in
particular Lemma 5, relies on ideas developed in [2], [9]. The
converse proof for the sum-rate in Theorem 1 is similar. Note
that we do not obtain a full characterization of the capacity
region for the case of colluding users because Lemma 4 below
only holds for the case of non-colluding users.

Lemma 4. Consider the non-colluding transmitters case. For
1 € £, (A1, S) — (My, XF) — (Y™, S!) forms a Markov chain.

Proof Forl e L, i€ [L,n], j € [1,7], define M} 1.41-5 £
{M1,1:1,1:31Mf,1::,1:g:' and Hi,l:t £ *H-i,l:i,l:-r-.-* We have
I AS; Y™ S| M1 XT)
= 1A S; Y S| |IMy g1 My 1 XT)
= I{AISI;YHS;IHIII:R—IHI.|“.‘1:"“—1MI1“1T‘“Mi"ﬂ.‘f'“XP}
< IAS Y SIM] 4 v IMy 11 M 1r -1 M e, XT)

) _ _
¢ I(AS; Y™ S| My yn— 1My tor -1 My e XT)

< HAISIMy g Y S| IM - My1or -1 XTY)

(3] - _
= 1A S Y S| IM1pon—1Min 1:r -1 XT)

(6)

1)
{c) " n
= I{A;S;;Yﬂsglﬂlllzn—lxl )
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(i) II:A;S;;Yn_lsflﬂl,l:n—lxinj

< HAS(X ) Y™ 18] | My yon— 1 X1

(2 I{A;S;;Yﬂ_lsﬂﬂi,l:n—lxr_lj {E}

]
< I(A1S; S))

=0,
where (a) holds because M, . is a function of

(8!, My 1:n1:r., ¥Y™), () holds because M, » is a function

times the steps between (6) and (7), (d) holds because
Yo — {Hgltn_l?X“,Y“‘lj — (A3, 5;1), (e) holds because
{len is a function of {Ah SI:. *rlrrij,l:ﬂ—l,l:rn_ljr {fj holds ]:Efr
repeating n — 1 times the steps between (6) and (8). n

Lemma 5. For the non-colluding case, there exist

Ay(Ve, XT), 1 € L, such that
Jim PA(VE, XT) # Al =0l € L.

Proof. Let [ £ L£. We suppose that Transmitter [ behaves
honestly during the commit phase. Define for any a;, s,

flag, =) & EVnM.S;|A;=u.,s.=a. []1{3{}’“’ M, S{: ay, Si}]‘]:

9
Gla) 2 {st: fla, ) > 1 -1}, (10)
such that
P[G(a1)] = P{f(a, 5) > 1 1]
=1-P1 - flar, i) = 7]
{5) - Es,14,=aq, [1 — flay, SI:']
T
(®) i
=1- 'E'T 3 (1

where (a) holds by Markov's inequality, (b) holds because by
the correciness condition, for any a; and for n large enough,
we have ES,lA;:u,.f(ﬂi:Sl} =1-4.

Next, define for any =', my,

F(zl', mi|ay, 51)

2 EY“SE|M|=m. Xp=1] =5 []1 {.H'Dfn7mh 5{7 ajy, 51}]’]&

(12)
(13)

F(zf,my|a)) & max F(x}',mylay, s),
medi{m)

such that for any af, sj,
IEXFMI|A1=EI,5|=BIF|:X?5 MIIE’:?SI*}

@ Expa14,=a;,5=5

Eynsyimi=Mi Xp=xp 5i=s [L{BY ™, My, 5], 0] , 57 )}]
= Expigi—ar, si=a Ba X P = X7 Ar=ar, Si=1

Eyngr i, =M, Xp=Xp,5,=5, [L{BY ™, My, 51, a1, 57) }]

(&)
= Exr |Ar=a1,51=8 EMI Xp=X Ai=a1,5i=

Ey rsiiry=My X7 =X7 Si=sr, Ar=a [ LH{BY ™, My, Si, a7, 57) Y]

= ExpynsiMy|s,=s.4,=a, [1{BY™", My, Sp,af , s7)}]

(c)
< EY“SEM¢|51=31.AI=51 []1 {.Hﬂfn7Mh Sf? '11*751*}}]7 (14)

where (a) holds by (12), (b) hoolds because A; —
(M, X', 5)— (Y™, 5]) forms a Markov chain by Lemma 4,
(c) holds by marginalization over X*. Then,

Exp s 4,=a, F (X[, Mia;)

{a)
= Exransiama F (X, Milay)

> Y psia=a (sOEx a4 =ay, 5=, F (X], Mi|ar)
srEG(a)

]
2 Y psya—a(s0Expan) aimar Si—a F(XT, Milay, s1)
sEd{m)
(]
= Z Psi|Ai=a; (51)
=]
Eyn 51 0,15,=8y,4,=a, [L{BY™, My, Sf, a1, 51) }]
(d}
= Z P51|Al=ﬂxl:51}f{ﬂhsl}
sped(a)
(el
> Y Psga=a(s)(1-7)
sreGlar)

o
= (11— 1(1-17), (15)

where (a) holds by marginalization, () holds by (13), (c)
holds by (14), (d) holds by (9), (e) holds by (10), (f) holds
by (11). Next, define

F(af mlar) & max F(af, mylaf).
Ea

Then, for (af,s}) such that F(X" Mja) =
F(X[, Mi|af) = F(X{", Mi|af, sf), we have

Ex;‘MnA;:m [F(XT, M|ay)]

@ Ex g F (X7, Milaf, s})]

Y, Ar=a,Exry A=a, 5,=5,[F (XT', Mi|af, s7)]

D B, By ;01 5i= 50, Arar [1{BOY™, My, S, af, s)}]
(%) 5, (16)

where (a) holds by definition (a}, sf). (b) holds by marginal-
ization over S;, (c) holds by (14), (d) holds by the bindingness
condition.

Finally, define

ay(z],my) € arg max F(z', my|ar),
17}

and
Pla; (X7, Mi) # af]
= Ex gy ar=a, [L{81(XT", Mi) # ar}]
< Exnngya,=a, [F(XT, Mi|@) + 1 — F(X]', Mj|ay)]

TE—+a0

— (0,
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where the inequality holds because if a;(z]',7y) # a, then
F(z},mylay) < MAK ey F(a}',myla;) = F(x}',mylay),
so that 1{a(z},my) # a} < Flzf,myla) + 1 -
F(x,my|a;), and the limit holds by (15) and (16). ]
Finally, for U uniformly distributed over [1,n] and inde-
pendent of all other random variables, for any 7 C £, we have

n max H({X7|Y)

PxreFixc)

2 nH (X p|Yy)
(a)
z nH (X7 v|YulU)

mm
=Y H(X74Y)
i=1

(b =
z ) HX7V"Xi)

© m(xpY™)

S HOR VL)

— H(XPA7|VE) — H(A7|X2VE)

— H(A7|A7)
H(A7IVE) — ofn)

— H(A7) — I(Ag; V) — ofn)

Q)
2 H(X7AT|Ve)

)
2 H(AT) —o(n)
= nRy —o(n),

where (a), (b), and (d) hold because conditioning reduces
entropy, (c) holds by the chain rule, (e) holds with A+ £
{fi;j;g from Lemma 5 and the data processing inequality,
{ f) holds by Lemma 5, (g) holds by the concealment require-
ment
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