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Abstract—Theproblemof multi-usercommitmentisonein
which multipleusersirstcommittoindividual messageswith
abookmakerandlaterrevealtheirmessages.Theobjectiveof
thebookmakeristhentodecidewhethertherevealedmessages
correspondtothecommittedmessages.Westudyaspeciicmulti-
usercommitmentmodelinwhichtheusersandthebookmaker
haveaccesstoanoiselesschannel,aswellasanoisymultiple-
accesschannelwhoseinputsarecontrolledbytheusersand
whoseoutputisobservedbythebookmaker. Whentheusers
arenon-colludingandthechannelisnon-redundant,wefully
characterizethecommitmentcapacityregion.Whentheusersare
colluding,wederiveanachievableregionandatightconversefor
thesum-rate.Inbothcasesourproposedachievablecommitment
schemesareconstructive.

I.INTRODUCTION

Commitmentwithouttheneedforatrustedthirdpartycan
betracedbacktoBlum’scoinlippingproblem[1]. More
generally,atwo-partycommitmentprobleminvolvesasender,
Alice,andareceiver,Bob,andoperatesintwophases.Inthe
irstphase,calledthecommitphase,Alicesendsinformation
toBobtocommittoamessageM thatmustbeconcealed
fromBob.Inthesecondphase,calledtherevealphase,
AlicerevealsamessageM′toBob,whomustdetermine
whetherM′isthemessagethatAlicecommittedtointhe
commitphase.Additionally,theprotocolmustbebindingin
thesensethat,intherevealphase,AlicecannotmakeBob
believethatshecommittedtoamessageM′ ≠ M.Itis
well-knownthatinformation-theoreticconcealmentguarantees
cannotbeachievedovernoiselesscommunicationchannels.
However,whenanoisychannelisavailableasresource,both
concealmentandbindingrequirementscanbeobtainedunder
information-theoreticguarantees,i.e.,whenAliceandBobare
notassumedtobecomputationallylimited,forsomeclass
noisychannelscallednon-redundant[2].
Whilemostoftheliteraturefocusesontwo-partycommit-

ment,e.g.,[2]–[9],westudyhere multi-usercommitment.
Speciically,weconsideracommitmentsettingbetweena
bookmakerandLuserswhowanttocommittoindividual
messages.Tothisend,theLusersandthebookmakerhave
accesstoanoiselesspubliccommunicationchannelanda
noisydiscrete memoryless multiple-accesschannelwithL
inputs.Eachinputofthemultiple-accesschanneliscontrolled
byadistinctuserandthebookmakerobservestheoutputofthe
channel.Similartoatwo-partysetting,theprotocolconsists
ofacommitphaseandarevealphase.Here,theconcealment
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requirementisthatthebookmaker mustnotlearn,inan
information-theoreticsense,informationaboutanymessage
ofanyuserafterthecommitphase.Theprotocolmustalsobe
information-theoreticallybindinginthesensethat,duringthe
revealphase,ausercannotmakethebookmakerbelievethat
itcommittedtoanothermessagethantheonecommittedtoin
thecommitphase.Inthisstudy,weconsiderboththecases
ofcolludingandnon-colludingusers.Thenon-colludingusers
casecorrespondstoascenarioinwhichtheusersdonottrust
eachotheranddonotwanttoexchangeinformationwithone
another.Forinstance,thiswouldbethecasewhentheusersare
biddersthatcommittomessagessenttoanauctioneer.Undera
non-redundancyconditiononthemultiple-accesschannel,we
derivethecapacityregionforthenon-colludinguserscase,
andanachievableregionandthesum-ratecapacityforthe
colludinguserscase.Inbothcases,ourachievabilityscheme
isconstructiveandreliesondistributinghashingwithtwo-
universalhashfunctions[10]fortheconcealmentguarantees.
Thebindingnessofourachievabilityschemehingesonthe
non-redundancypropertyofthemultipleaccesschannelakin
tothetwo-partycommitmentin[2].Thecharacterizationof
thesum-ratecapacityreliesonthepolymatroidalpropertiesof
ourachievabilityregion.

Theremainderofthepaperisorganizedasfollows. We
formallystatetheprobleminSectionII.Wedescribeourmain
resultsinSectionIII.Ourachievabilityschemeanditsanalysis
arepresentedinSectionsIVandV,respectively.Finally,our
converseresultispresentedinSectionVI.

II.PROBLEMSTATEMENT

LetL∈N∗anddeineL≜ 1,L.Let(Xl)l∈LandYbei-
nitealphabetsanddeinethecartesianproductXL≜×l∈LXl.
ConsideramultipleaccesschannelW ≜ (Y,pY|XL,XL),

whereXL≜(Xl)l∈LandXl,l∈L,isdeinedoverXl.For
anyxL∈XL,deineWxL :y→ pY|XL(y|xL).LetP(XL)
bethesetofprobabilitydistributionoverXL.Weassumethat
throughoutthemultipleaccesschannelW isnon-redundant
asdeinedin[2],i.e.,

∀xL∈XL,∀pXL ∈P(XL)s.t.pXL(xL)=0,

WxL ≠
x′L∈XL

pXL(x
′
L)Wx′L.(1)

Next,weintroducetwomodelsofcommitment.InModel1
thetransmittersarecolluding,whileinModel2theyarenot.
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A. Model1:Colludingtransmitters

Deinition1.A((2nRl)l∈L,n)commitmentschemeconsistsof

• Foreveryl∈L,asequenceal∈Al≜ 1,2nRl that
Transmitterl∈Lwishestocommitto;

• Apublicnoiselesscommunicationchannelbetweenthe
transmittersandthereceiver;

• LocalrandomnessS∈Ravailableatthetransmitters;
• LocalrandomnessS′∈R′availableatthereceiverand
usedintheinteractivenoiselesscommunicationwithall
Ltransmittersduringthecommitphase;

andoperatesintwophasesasfollows.

1)Commitphase:DeineaL ≜(al)l∈L.Forchanneluse
i∈ 1,n,thetransmitterssendXL,i(aL,S,M

′
1:i−1,ri−1

)
overthechannelandengageinriroundsofnoiseless
publiccommunicationwiththereceiver,i.e.,forj∈
1,ri,thetransmitterssendMi,j(aL,S,M

′
1:i,1:j−1)and

thereceiverrepliesM′i,j(S
′,M1:i,1:j,Y

i).Wedenotethe
collectivenoiselesscommunicationbetweenthetransmit-
tersandthereceiverbyM.DeineV≜(Yn,M,S′).

2)Revealphase:Transmittersreveal(aL,S).Thereceiver
performsatestβ(V,aL,S)thatreturns1ifthesequence
aLisacceptedand0otherwise.

Deinition2.Arate-tuple(Rl)l∈Lisachievableifthereexists
asequenceof((2nRl)l∈L,n)commitmentschemessuchthat
foranỹS∈R,aL,a

′
L∈ALsuchthataL ≠a

′
L,

lim
n→∞

P[β(V,aL,S)=0]=0,(correctness)

lim
n→∞

I(AL;V)=0,(concealment)

lim
n→∞

P[β(V,aL,S)=1=β(V,a
′
L,̃S)]=0.(bindingness)

Thesetofallachievablerate-tuplesisthecapacityregion.

B. Model2:Non-colludingtransmitters

Deinition3.A((2nRl)l∈L,n)commitmentschemeconsistsof

• Foreveryl∈L,asequenceal∈Al≜ 1,2nRl that
Transmitterl∈Lwantstocommitto;

• Anoiselessprivatechannelbetweeneachtransmitterand
thereceiver;

• LocalrandomnessSl∈RlatTransmitterl∈L;
• LocalrandomnessS′l∈R

′
l,l∈L,atthereceiverwhere

S′lisonlyusedintheinteractivenoiselesscommunication
withTransmitterl∈Lduringthecommitphase;

andoperatesintwophasesasfollows.

1)Commitphase:Foreachl∈L,fori∈ 1,n,Transmitter
lsendsXl,i(al,Sl,M

′
l,1:i−1,ri−1

)overthechanneland
engageinriroundsofnoiselesspubliccommunication
withthereceiver,i.e.,forj∈ 1,ri,Transmitterl
sendsMl,i,j(al,Sl,M

′
l,1:i,1:j−1)andthereceiverreplies

M′l,i,j(S
′
l,Ml,1:i,1:j,Y

i).Wedenotethecollectivenoise-
lesspubliccommunicationbetweenTransmitterl∈L
andthereceiverbyMl.DeineVl≜(Y

n,Ml,S
′
l)for

l∈LandVL≜(Vl)l∈L,aL≜(al)l∈L.
2)Revealphase:Transmitterl∈Lreveals(al,Sl).For
eachl∈L,thereceiverperformsatestβl(Vl,al,Sl),

l∈L,thatreturn1ifthesequencealisacceptedand0
otherwise.

Deinition4.Arate-tuple(Rl)l∈Lisachievableifthereexists
asequenceof((2nRl)l∈L,n)commitmentschemessuchthat
foranyl∈L,̃Sl∈Rl,aL,a

′
L∈ALsuchthataL ≠a

′
L,

lim
n→∞

P[βl(Vl,al,Sl)=0]=0,(correctness)

lim
n→∞

I(AL;VL)=0,(concealment)

lim
n→∞

P[βl(Vl,al,Sl)=1=βl(Vl,a
′
l,̃Sl)]=0.(bindingness)

Thesetofallachievablerate-tuplesisthecapacityregion.

NotethatsinceVdependsonYn,whichdependsonall
userinputstothechannel,I(AL;VL)̸= l∈LI(Al;Vl).

III. MAINRESULTS

Ourmainresultsareapartialcharacterizationofthecapac-
ityregioninthecaseofcolludingtransmitters(Theorem1)and
acompletecharacterizationofthecapacityregioninthecase
ofnon-colludingtransmitters(Theorem2).Inthefollowing,
foranyT ⊆L,wewritethesum-rateofthetransmittersin
TasRT≜ l∈TRl.

Theorem1.Forthecaseofcolludingtransmitters,

• Thefollowingregionisachievable

pXL∈P(XL)

{(Rl)l∈L:RT⩽H(XT|Y),∀T ⊆L}.

• Thesum-ratecapacityis

max
pXL∈P(XL)

H(XL|Y).

Theorem2.Deinethesetofproductinputdistributions

PI(XL)≜{pXL ∈P(XL):pXL =
l∈L

pXl}.

Forthecaseofnon-colludingtransmitters,

• Thecapacityregionis

pXL∈P
I(XL)

{(Rl)l∈L:RT⩽H(XT|Y),∀T ⊆L}.

• Thesum-ratecapacityis

max
pXL∈PI(XL)

H(XL|Y).

Theproofofthetheoremsaredevelopedinthenext
sections.

IV.ACHIEVABILITYSCHEMEFORTHEOREMS1AND2

Theachievabilityproofsforthetwotheoremsaresimilar,
differingonlyinthesetofallowedinputdistributionstothe
channel.Tosimultaneouslycapturebothproofs,wedeine

P̄(XL)≜
PI(XL) ifthetransmittersarenon-colluding

P(XL) ifthetransmittersarecolluding
.
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FixpXL ∈P̄(XL).DeineqXLY≜pXLpY|XL.ConsiderX
n
L

distributedaccordingtop⊗nXL.
CommitPhase:Transmitterl∈Lcommitstoalasfollows.

• TransmitterlsendsthesequenceXnl overthemultiple
accesschannelW.ThereceiverobservesYn.

• ThereceiverchoosesafunctionGl:Xl→{0,1}
ηnat

randominafamilyoftwo-universalhashfunctionswith
η>0,andsendsGltoTransmitterloverthenoiseless
channel.

• TransmitterlsendsGl(X
n
l)tothereceiveroverthe

noiselesschannel.LetTlbethecorrespondingsequence
observedbythereceiver.

• TransmitterlchoosesafunctionFl:Xl→{0,1}
rl

atrandominafamilyoftwo-universalhashfunctions,
andsendsFlandEl≜al⊕Fl(̄X

n
l)overthenoiseless

channel,whereX̄nl≜X
n
l[(l∈LSl)

c].

RevealPhase:Transmitterl∈Lrevealsalasfollows.

• TransmitterlsendsXnl andaltothereceiveroverthe
noiselesschannel.

• Thereceiverteststhat

(i)(XnL,Y
n)∈Tnϵ(qXLY);

(ii)Tl=Gl(X
n
l),∀l∈L;

(iii)al=El⊕Fl(̄X
n
l),∀l∈L;

andoutputs1ifallconditionsaresatisied,and0else.

V.ANALYSISOFTHEACHIEVABILITYSCHEME

A.Deinitions

Thefollowingnotionsoftypicalitywillproveusefulinthe
proof.Letϵ>0.ForxnL∈X

n
L,deine

TnW,ϵ(x
n
L)≜{y

n∈Yn:∀xL,∀y,
n

i=1

1{(xL,y)=(xL,i,yi)}

n
−WxL(y)

n

i=1

1{xL=xL,i}

n
⩽ϵ

andWxL(y)=0 =⇒

n

i=1

1{(xL,y)=(xL,i,yi)}

n
=0 .

Deinealso

Tnϵ(qXLY)≜{(x
n
L,y

n)∈XnL×Y
n:∀xL,∀y,

n

i=1

1{(xL,y)=(xL,i,yi)}

n
−qXLY(xL,y)⩽ϵand

qXLY(xL,y)=0 =⇒
n

i=1

1{(xL,y)=(xL,i,yi)}

n
=0 .

B.Correctness

Whenthepartiesarenotcheating,standardtypicalityargu-
ments[11]showthatlimn→∞ P[(X

n
L,Y

n)∈Tnϵ(qXLY)]=1.
Consequently,part(i)ofthereceivertestpasses,whilepart(ii)
and(iii)areautomaticallytrue,sothatthereceiverestimates
aLwithvanishingprobabilityoferrorintherevealphase.

C.Concealment

DeineV′≜ (SL,FL,X
n
L[SL],Y

n)andV ≜ (V′,EL),
where SL ≜ (Sl)l∈L,FL ≜ (Fl)l∈L,EL ≜ (El)l∈L,

XnL[SL]≜(X
n
l[Sl])l∈L.NotethatVcapturesalltheinfor-

mationavailabletothereceiverattheendoftherevealphase.
AlsodeineKL≜(Fl(̄X

n
l))l∈LandȲ

n≜Yn[(l∈LSl)
c],

whichrepresentthesequenceofhashesusedtoprotectthe
committedstringsbythetransmittersandthechannelobser-
vationspotentiallyleakinginformationtothereceiverabout
thehashes,respectively.Then,wehave

I(AL;V)

(a)
=I(AL;EL)+I(AL;V

′|EL)

⩽I(AL;EL)+I(ALEL;V
′)

(b)
=I(AL;EL)+I(ALKL;V

′)

=I(AL;EL)+I(KL;V
′)+I(AL;V

′|KL)

⩽I(AL;EL)+I(KL;V
′)+I(AL;V

′KL)

(c)
=I(AL;EL)+I(KL;V

′)

(d)

⩽rL−H(EL|AL)+I(KL;V
′)

(e)
=rL−H(KL)+I(KL;V

′)

=rL−H(KL)+I(KL;FLȲ
n)

+I(KL;SLX
n
L[SL]Y

n[l∈LSl]|FLȲ
n)

⩽rL−H(KL)+I(KL;FLȲ
n)

+I(FLȲ
nKL;SLX

n
L[SL]Y

n[l∈LSl])

(f)
=rL−H(KL)+I(KL;FLȲ

n), (2)

where(a)holdsbythechainruleandthedeinitionofV,(b)
holdsbytheone-timepadlemma,(c)holdsbyindependence
betweenAL and(V

′,KL),(d)holdswithrL ≜ l∈Lrl,
(e)holdsbythedeinitionofEL,(f)holdsbyindependence
between(FL,̄Y

n,KL)and(SL,X
n
L[SL],Y

n[l∈LSl]).Next,
weupperboundtherighthandsideof(2)usingtheversion
oftheleftoverhashlemmainLemma1,andwelowerbound
theentropiesappearinginLemma1usingLemma2.

Lemma 1 (Distributedleftoverhashlemma,e.g.,[12,
Lemma1]).Considerasub-normalizednon-negativefunction
pXLZ deinedover×l∈LXl×Z,whereXL ≜ (Xl)l∈L
and,Z,Xl,l∈ L,areinitealphabets.Forl∈ L,let
Fl:{0,1}

nl−→{0,1}rl,beuniformlychoseninafamily
Floftwo-universalhashfunctions.ForanyT ⊆L,deine
rT ≜ i∈Tri.DeinealsoFL ≜(Fl)l∈L andFL(XL)≜
(Fl(Xl))l∈L.Then,foranyqZ deinedoverZ suchthat
supp(qZ)⊆supp(pZ),wehave

V(pFL(XL)FLZ,pUKpUFpZ)⩽
T⊆L,T̸=∅

2rT−H∞ (pXTZ|qZ),

(3)

wherepUK andpUF aretheuniformdistributionsover1,2
rL

and1, l∈L|Fl|,respectively,andforanyT ⊆L,T̸=∅,

H∞(pXTZ|qZ)≜−log max
xT∈XT

zn∈supp(qZ)

pXTZ(xT,z)

qZ(z)
.
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Lemma2([12,Lemma2]).Let(Xl)l∈LbeLinitealphabets
anddeineforT ⊆L,XT≜×l∈TXd.Considertherandom
variablesXnL≜(X

n
l)l∈LandZ

ndeinedoverXnL×Z
nwith

probabilitydistributionqXnLZn ≜
n
i=1qXLZ.Foranyϵ>

0,thereexistsasubnormalizednon-negativefunctionwXnLZn
deinedoverXnL×Z

nsuchthatV(qXnLZn,wXnLZn)⩽ϵand

∀T ⊆L,H∞(wXnTZn|qZn)⩾nH(XT|Z)−nδT(n),

whereδT(n)≜(log(|XT|+3))
2
n(L+log

1
ϵ).

Letϵ>0anddeinēn≜n−| l∈LSl|.ByLemma2,there
existsasubnormalizednon-negativefunctionwX̄nLȲnsuchthat
V(q̄XnLȲn,w̄XnLȲn)⩽ϵand

∀T ⊆L,H∞(wX̄nTȲn|q̄Yn)⩾n̄H(XT|Y)−n̄δT(̄n),(4)

whereδT(̄n)≜(log(|XT|+3))
2
n̄(L+log

1
ϵ).Then,we

havebyLemma1

V(qKLFLȲn,pUKpUFq̄Yn)

(a)

⩽V(qKLFLȲn,wKLFLȲn)+V(wKLFLȲn,pUKpUFq̄Yn)

(b)

⩽ϵ+V(wKLFLȲn,pUKpUFq̄Yn)

(c)

⩽ϵ+V(wKLFLȲn,pUKpUFw̄Yn)

+V(pUKpUFw̄Yn,pUKpUFq̄Yn)

(d)

⩽2ϵ+V(wKLFLȲn,pUKpUFw̄Yn)

(e)

⩽2ϵ+
S⊆L,S̸=∅

2
rS−H∞ (wX̄n

T
Ȳn|q̄Yn)

(f)

⩽2ϵ+
S⊆L,S̸=∅

2rS−n̄H(XT|Y)+̄nδT(̄n),

where(a)and(c)holdbythetriangleinequality,(b)and
(d)holdbythedataprocessinginequalityandbecause
V(q̄XnLȲn,w̄XnLȲn)⩽ϵ,(e)holdsbyLemma1,(f)holds
by(4).Weconcludethatconcealmentholdswith(rl)l∈Lsuch
thatforanyT ⊆L,limn→∞

rT
n ⩽H(XT|Y).

D.Achievableregionandsum-rate

ForanypXL ∈P̄(XL),wehaveshowntheachievabilityof

R(pXL)≜{(Rl)l∈L:RT⩽H(XT|Y),∀T ⊆L}.

Next,deinethesetfunction

fpXL :2
L→R

T→H(XT|Y).

fpXL isnormalized,non-decreasing,andsubmodularbecause
forU,V⊆L,wehave

fpXL(U∪V)+fpXL(U∩V)

=H(XU|Y)+H(XV\U|YXU)+H(XU∩V|Y)

=H(XU|Y)+H(XV\U|YXU)+H(XV|Y)

−H(XV\U|YXU∩V)

⩽H(XU|Y)+H(XV|Y)

=fpXL(U)+fpXL(V),

wheretheinequalityholdsbecauseconditioningreducesen-
tropy.Hence,by[13],therate-tuple(fpXL(l,L)−fpXL(l+
1,L))l∈Lisachievableandsoisthesum-rate

RL= max
pXL∈P̄(XL)

H(XL|Y).

E.Bindingness

Wewillusethefollowinglemma.

Lemma3 (Adaptedfrom[2]).Letδ,σ >0.Consider
xnL,̃x

n
L ∈ X

n
L suchthatdH(x

n
L,̃x

n
L)⩾ σnandanon-

redundant multipleaccesschannelW suchthatforany
bL∈XL,

∀pXL ∈P(XL)s.t.pXL(bL)=0,

V WbL,
xL∈XL

pXL(xL)WxL ⩾δ. (5)

Then,
lim
n→∞

W⊗nxnL
(TnW,ϵ(̃x

n
L))=0.

Intherevealphase,ifthereceiverobserves̃xnL,then,by
Lemma3,asuccessfuljointtypicalitytestatthereceiver
requiresdH(̃x

n
L,x

n
L)⩽ O(nα),forsomeα < 1.This

impliesthatTest(ii)atthereceiverintherevealphasecan
onlysucceedwithaprobabilityatmost2O(n

α)2−nη,which
vanishestozeroasn→∞.

VI.CONVERSEFORTHEOREMS1AND2

WeonlyprovetheconverseofTheorem2.Theproof,in
particularLemma5,reliesonideasdevelopedin[2],[9].The
converseproofforthesum-rateinTheorem1issimilar.Note
thatwedonotobtainafullcharacterizationofthecapacity
regionforthecaseofcolludingusersbecauseLemma4below
onlyholdsforthecaseofnon-colludingusers.

Lemma4.Considerthenon-colludingtransmitterscase.For
l∈L,(Al,Sl)−(Ml,X

n
l)−(Y

n,S′l)formsaMarkovchain.

Proof.Forl∈L,i∈ 1,n,j∈ 1,ri,deineM̄l,1:i,1:j≜
(Ml,1:i,1:j,M

′
l,1:i,1:j)andM̄l,1:i≜M̄l,1:i,1:ri.Wehave

I(AlSl;Y
nS′l|̄Ml,1:nX

n
l) (6)

=I(AlSl;Y
nS′l|̄Ml,1:n−1M̄l,n,1:rnX

n
l)

=I(AlSl;Y
nS′l|̄Ml,1:n−1M̄l,n,1:rn−1Ml,n,rnM

′
l,n,rnX

n
l)

⩽I(AlSl;Y
nS′lM

′
l,n,rn|̄Ml,1:n−1M̄l,n,1:rn−1Ml,n,rnX

n
l)

(a)
=I(AlSl;Y

nS′l|̄Ml,1:n−1M̄l,n,1:rn−1Ml,n,rnX
n
l)

⩽I(AlSlMl,n,rn;Y
nS′l|̄Ml,1:n−1M̄l,n,1:rn−1X

n
l)

(b)
=I(AlSl;Y

nS′l|̄Ml,1:n−1M̄l,n,1:rn−1X
n
l) (7)

(c)

⩽I(AlSl;Y
nS′l|̄Ml,1:n−1X

n
l)
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(d)
=I(AlSl;Y

n−1S′l|̄Ml,1:n−1X
n
l)

⩽I(AlSl(Xl)n;Y
n−1S′l|̄Ml,1:n−1X

n−1
l )

(e)
=I(AlSl;Y

n−1S′l|̄Ml,1:n−1X
n−1
l ) (8)

(f)

⩽I(AlSl;S
′
l)

=0,

where (a) holds because M′l,n,rn is afunction of
(S′l,Ml,1:n,1:rn,Y

n),(b)holdsbecauseMl,n,rn isafunction
of(Al,Sl,M

′
l,1:n,1:rn−1

),(c)holdsbyrepeatingrn−1
timesthestepsbetween(6)and(7),(d)holdsbecause
Yn−(̄Ml,1:n−1,X

n,Yn−1)−(Al,Sl),(e)holdsbecause
(Xl)nisafunctionof(Al,Sl,M

′
l,1:n−1,1:rn−1

),(f)holdsby
repeatingn−1timesthestepsbetween(6)and(8). ■

Lemma 5. For the non-colluding case, there exist
Âl(VL,X

n
l),l∈L,suchthat

lim
n→∞

P[̂Al(VL,X
n
l)̸=Al]=0,∀l∈L.

Proof.Letl∈L. WesupposethatTransmitterlbehaves
honestlyduringthecommitphase.Deineforanyal,sl,

f(al,sl)≜EYnMlS′l|Al=al,Sl=sl[1{β(Y
n,Ml,S

′
l,al,sl)}],

(9)

G(al)≜{sl:f(al,sl)>1−γ}, (10)

suchthat

P[G(al)]=P[f(al,Sl)>1−γ]

=1−P[1−f(al,Sl)⩾γ]

(a)

⩾1−
ESl|Al=al[1−f(al,Sl)]

γ
(b)

⩾1−δγ−1, (11)

where(a)holdsbyMarkov’sinequality,(b)holdsbecauseby
thecorrectnesscondition,foranyalandfornlargeenough,
wehaveESl|Al=alf(al,Sl)⩾1−δ.
Next,deineforanyxnl,ml,

F(xnl,ml|al,sl)

≜EYnS′l|Ml=ml,Xnl=xnl,Sl=sl[1{β(Y
n,ml,S

′
l,al,sl)}],

(12)

F(xnl,ml|al)≜ max
sl∈G(al)

F(xnl,ml|al,sl), (13)

suchthatforanya∗l,s
∗
l,

EXnlMl|Al=al,Sl=slF(X
n
l,Ml|a

∗
l,s
∗
l)

(a)
=EXnlMl|Al=al,Sl=sl

EYnS′l|Ml=Ml,Xnl=Xnl,Sl=sl[1{β(Y
n,Ml,S

′
l,a
∗
l,s
∗
l)}]

=EXnl|Al=al,Sl=slEMl|Xnl=Xnl,Al=al,Sl=sl

EYnS′l|Ml=Ml,Xnl=Xnl,Sl=sl[1{β(Y
n,Ml,S

′
l,a
∗
l,s
∗
l)}]

(b)
=EXnl|Al=al,Sl=slEMl|Xnl=Xnl,Al=al,Sl=sl

EYnS′l|Ml=Ml,Xnl=Xnl,Sl=sl,Al=al[1{β(Y
n,Ml,S

′
l,a
∗
l,s
∗
l)}]

=EXnlYnS′lMl|Sl=sl,Al=al[1{β(Y
n,Ml,S

′
l,a
∗
l,s
∗
l)}]

(c)
=EYnS′lMl|Sl=sl,Al=al[1{β(Y

n,Ml,S
′
l,a
∗
l,s
∗
l)}], (14)

where (a)holds by(12), (b)hoolds because Al−
(Ml,X

n
l,Sl)−(Y

n,S′l)formsaMarkovchainbyLemma4,
(c)holdsbymarginalizationoverXnl.Then,

EXnlMl|Al=alF(X
n
l,Ml|al)

(a)
=EXnlMlSl|Al=alF(X

n
l,Ml|al)

⩾
sl∈G(al)

pSl|Al=al(sl)EXnlMl|Al=al,Sl=slF(X
n
l,Ml|al)

(b)

⩾
sl∈G(al)

pSl|Al=al(sl)EXnlMl|Al=al,Sl=slF(X
n
l,Ml|al,sl)

(c)
=
sl∈G(al)

pSl|Al=al(sl)

EYnS′lMl|Sl=sl,Al=al[1{β(Y
n,Ml,S

′
l,al,sl)}]

(d)
=
sl∈G(al)

pSl|Al=al(sl)f(al,sl)

(e)
>
sl∈G(al)

pSl|Al=al(sl)(1−γ)

(f)

⩾(1−δγ−1)(1−γ), (15)

where(a)holdsbymarginalization,(b)holdsby(13),(c)
holdsby(14),(d)holdsby(9),(e)holdsby(10),(f)holds
by(11).Next,deine

F̄(xnl,ml|al)≜max
a∗l̸=al

F(xnl,ml|a
∗
l).

Then, for (a∗l,s
∗
l) such that F̄(Xnl,Ml|al) =

F(Xnl,Ml|a
∗
l)=F(X

n
l,Ml|a

∗
l,s
∗
l),wehave

EXnlMl|Al=al[̄F(X
n
l,Ml|al)]

(a)
=EXnlMl|Al=al[F(X

n
l,Ml|a

∗
l,s
∗
l)]

(b)
=ESl|Al=alEXnlMl|Al=al,Sl=Sl[F(X

n
l,Ml|a

∗
l,s
∗
l)]

(c)
=ESl|Al=alEYnS′lMl|Sl=Sl,Al=al[1{β(Y

n,Ml,S
′
l,a
∗
l,s
∗
l)}]

(d)

⩽δ, (16)

where(a)holdsbydeinition(a∗l,s
∗
l),(b)holdsbymarginal-

izationoverSl,(c)holdsby(14),(d)holdsbythebindingness
condition.
Finally,deine

âl(x
n
l,ml)∈argmax

al

F(xnl,ml|al),

and

P[̂al(X
n
l,Ml)̸=al]

=EXnlMl|Al=al[1{̂al(X
n
l,Ml)̸=al}]

⩽EXnlMl|Al=al[̄F(X
n
l,Ml|al)+1−F(X

n
l,Ml|al)]

n→∞
−−−−→0,
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wheretheinequalityholdsbecauseifâl(x
n
l,ml)̸=al,then

F(xnl,ml|al)⩽ maxa∗l̸=alF(x
n
l,ml|a

∗
l) =F̄(x

n
l,ml|al),

sothat1{̂al(x
n
l,ml) ≠ al} ⩽ F̄(xnl,ml|al)+1−

F(xnl,ml|al),andthelimitholdsby(15)and(16). ■

Finally,forUuniformlydistributedover 1,nandinde-
pendentofallotherrandomvariables,foranyT ⊆L,wehave

n max
pXL∈P̄(XL)

H(XT|Y)

⩾nH(XT,U|YU)

(a)

⩾nH(XT,U|YUU)

=
n

i=1

H(XT,i|Yi)

(b)

⩾
n

i=1

H(XT,i|Y
nXi−1T )

(c)
=H(XnT|Y

n)

(d)

⩾H(XnT|VL)

=H(XnTAT|VL)−H(AT|X
n
TVL)

(e)

⩾H(XnTAT|VL)−H(AT|̂AT)

(f)

⩾H(AT|VL)−o(n)

=H(AT)−I(AT;VL)−o(n)

(g)

⩾H(AT)−o(n)

=nRT−o(n),

where(a),(b),and(d)holdbecauseconditioningreduces
entropy,(c)holdsbythechainrule,(e)holdswithÂT ≜
(̂Al)l∈T fromLemma5andthedataprocessinginequality,
(f)holdsbyLemma5,(g)holdsbytheconcealmentrequire-
ment.
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