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Quantifying the Cost of Privately Storing Data
in Distributed Storage Systems

Rémi A. Chou

Abstract— Consider a user who wishes to store a file in multiple
servers such that at leasttservers are needed to reconstruct the
file, andzcolluding servers cannot learn any information about
the file. Unlike traditional secret-sharing models, where perfectly
secure channels are assumed to be available at no cost between
the user and each server, we assume that the user can only send
data to the servers via a public channel, and that the user and
each server share an individual secret key with lengthn.Fora
givenn, we determine the maximal length of the file that the
user can store, and thus quantify the necessary cost to store a
file of a certain length, in terms of the length of the secret keys
that the user needs to share with the servers. Additionally, for
this maximal file length, we determine (i) the optimal amount of
local randomness needed at the user, (ii) the optimal amount of
public communication from the user to the servers, and (iii) the
optimal amount of storage requirement at the servers.

Index Terms— Secret sharing, information-theoretic security,
secure distributed storage.

I. INTRODUCTION

CENTRALIZED data storage of sensitive information
could mean compromising the entirety of the data in the

case of a data breach. By contrast, a decentralized storage
strategy can offer resilience against data breaches and avoid
having a single point of entry for hackers. Well-known decen-
tralized strategies are able to ensure that if a file is stored inL
servers, then anyt≤Lservers that pool their information can
reconstruct the file, whereas anyt−1compromised servers
do not leak any information about the file in an information-
theoretic sense. For instance, secret sharing [2], [3] solves
this problem with the optimal storage size requirement at
each server. Specifically, to storeFbits overLservers, the
best possible storage strategy, that allows reconstruction of the
information fromt≤Lservers and is resilient against data
breaches att−1servers, requires storingLFbits over the
Lservers. In secret sharing models, the user who wishes to
store a file in the servers corresponds to the dealer, the file
corresponds to a secret, and the information stored at a given
server is called a share of the secret. Applications of secret
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sharing to secure distributed storage have been extensively
studied for a wide range of settings, e.g., [4]–[12]. Note that,
as motivated in [13]–[16], the servers could also correspond to
independent cloud storage providers, as it is often less costly
for businesses and organizations to outsource data storage but
cloud storage providers lack reliable security guarantees and
may be the victims of data breaches.
Since the user and the servers are not physically col-
located, a standard assumption in secret sharing models
[2], [3], [17]–[20] is the availability of individual and
information-theoretically secure channels between the user and
each server, that allow the user to securely communicate a
share of the secret to each server. In this paper, we propose
to quantify the cost associated with this assumption. Specifi-
cally, instead of assuming the availability at no cost of such
information-theoretically secure channels, we assume that the
user can communicate over a one-way public channel with
each server, and that the user and each server share a secret
key, which is a sequence ofnbits uniformly distributed over
{0,1}n. Then, for a givenn, we determine the maximal length
of the file that the user can store. Given this relationship
betweennand the maximal length of the file, one can thus
determine the necessary cost to store a file of a given length,
in terms of the length of the secret keys that the user needs
to share with the servers. Furthermore, we are also interested
in minimizing (i) the amount of additional resource locally
needed at the user, i.e., local randomness needed by the user
to form the shares that will be stored at the servers, (ii) the
amount of public communication between the user and the
servers, and (iii) the cost of file storage, i.e., the amount of
information that needs to be stored at the servers.
The most challenging part of this study is proving the

converse results on the maximal length of the file that the user
can store, the optimal amount of local randomness needed at
the user, and the optimal amount of public communication
between the user and the servers. Unlike in traditional secret-
sharing models, in our converse, we need to account for
the presence of shared secret keys, public communication
available to all parties, and the fact that the creation phase of
the shares and the secure communication phase of the shares
to the servers are allowed to be jointly designed in our model.
Note that these two phases areindependentin traditional
secret-sharing models, which only focus on the creation phase
of the shares since the secure communication phase of the
shares relies on the assumption that information-theoretically
secure channels are available at no cost. Finally, we establish
achievability results that match our converse results using
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Fig. 1. Traditional secret sharing settings rely on the assumption that
individual and information-theoretically secure channels between each server
and the user are available at no cost.

ramp secret sharing schemes [21], [22]. Specifically, we prove
the optimality of an achievability scheme that separates the
creation of the shares using ramp secret sharing schemes and
the secure communication of the shares to the servers via one-
time pads.
The remainder of the paper is organized as follows.

In Section II, we describe in an informal manner our setting
and the objectives of our study. This section also compares our
setting to traditional secret sharing settings and reviews some
known results. In Section III, we formally state the problem.
In Section IV, we present our main results. In Section V,
we extend our setting and results to a multi-user setting.
Finally, in Section VI, we provide concluding remarks.

II. PROBLEMMOTIVATION ANDCOMPARISONWITH
TRADITIONALSECRETSHARING

Consider one user who wishes to store a fileFinLservers,
indexed inL {1,...,L}, such that anytservers that
pool their information can reconstructFand anyzcolluding
servers cannot learn any information aboutF,wheretandz
are chosen in{1,...,L}and{1,...,t−1}, respectively.
In a traditional secret sharing setting, the user encodes the
fileFintoLshares(S1,...,SL)and transmits the shareSl
to Serverl∈Lvia individual secure channels (available at no
cost) between the user and each server. The setting is depicted
in Figure 1 and the requirements are formalized as

∀T ⊆ L,|T | ≥t=⇒ H(F|ST)=0(Recoverability),

∀U ⊆ L,|U| ≤z=⇒ I(F;SU)=0(Security),

wherewehavedefinedST (Sl)l∈T,∀T ⊆ L. In this setting,
the following questions arise.
1) What is the minimum size of an individual shareSl,
l∈L?

2) What is the minimum size of all the shares(Sl)l∈L
considered jointly?

3) What is the minimum amount of local randomness
needed at the encoder to obtain shares with minimum
size?

These questions have all been studied in the literature. It is
well known, e.g., [23], [24], that designing shares that sat-
isfy l∈LH(Sl)=

L
t−zH(F)is optimal, and the minimum

amount of local randomness needed to achieve this optimal

Fig. 2. In our setting, individual and information-theoretically secure chan-
nels between each server and the user are replaced by a public communication
channel and pairs of secret keys between the user and the servers. One of our
main objectives is to characterize the minimum key lengths needed for a given
file size.

bound is z
t−zH(F). Moreover, under the additional assump-

tion that

∀T ⊂ L,z <|T |<t =⇒ H(F|ST)=
t−|T|

t−z
H(F),

then [24] showed that, for individual shares, havingH(Sl)=
1
t−zH(F),l∈L, is optimal.
In this paper, we wish to quantify the cost associated with

the assumption that individual secure channels are available
between the user and each server. To this end, we replace
these individual secure channels by a public channel between
the user and the servers and assume that the user shares with
Serverl∈LakeyKlwith lengthn. The key lengthnaims
to quantify the aforementioned cost. LetMlbe the public
communication of the user to Serverl,M (Ml)l∈L be
the overall public communication, andSlbe the information
stored at Serverlafter the public communication happened.
Our setting is depicted in Figure 2 and the requirements are
formalized as

∀T ⊆ L,|T | ≥t=⇒ H(F|ST)=0(Recoverability),

∀U ⊆ L,|U| ≤z=⇒ I(F;M, KU)=0(Security),

wherewehavedefinedST (Sl)l∈T,KT (Kl)l∈T,
∀T ⊆ L. Note that the servers may only store a function of
the public communication. Additionally, the creation phase of
the shares and the secure communication phase of the shares
to the servers are allowed to be jointly designed, unlike in
traditional secret sharing, where the creation of the shares is
independent of their secure communication to the servers due
to the availability of secure channels. Note also that the public
communicationM now needs to be accounted for information
leakage about the fileFin the security constraint. In our study
we ask the following questions.
1) What is the maximal length for the fileFthat the user
can store for a given key lengthn? Let us denote this

maximal length byr
(F)
.

2) What is the minimal amount of local randomness needed
at the user to achiever

(F)
?
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3) For a givenl∈L, what is the minimal storage size

needed at Serverlfor the user to achiever
(F)
?Inother

words, what is the minimal size forSl?
4) For a givenl∈L, what is the minimal amount of public
communicationMlto Serverlneeded for the user to
achiever

(F)
?

5) What is the minimal amount of overall public commu-

nication(Ml)l∈Lneeded for the user to achiever
(F)
?

III. PROBLEMSTATEMENT

Notation: For anya, b∈N∗,define[[a, b]] [a, b]∩N.
For anyx∈R,define[x]+ max(0,x).ForagivensetS,
let2S denote the power set ofS. Finally, let denote the
Cartesian product.
ConsiderLservers indexed inL [[ 1,L]]and one user.

Assume that Serverl∈Land the user share a secret key
Kl∈K {0,1}n, which is a sequence ofnbits uniformly
distributed over{0,1}n.TheLkeys are assumed to be jointly
independent. For anyY ⊆L, we use the notationKY
(Ky)y∈Y.

Definition 1:A 2r
(F)

,2r
(R)

,2r
(M )
l

l∈L
,2r

(S)
l

l∈L

private file storage strategy consists of
• AfileFowned by the user, which is uniformly distributed

overF {0,1}r
(F)

and independent from the keysKL
(the superscript(F)stands for File);

• A sequence of local randomnessRowned by the user,

which is uniformly distributed overR {0,1}r
(R)

and
independent from all the other random variables (the
superscript(R)stands for Randomness);

• Lencoding functionshl:R×K×F → Ml,where

l∈L,andMl {0,1}r
(M )
l (the superscript(M)stands

for Message);

• Lservers with storage spacer
(S)
l bits for Serverl∈L

(the superscript(S)stands for Server);
• Lencoding functionsgl:Ml×K →Sl,wherel∈L,

andSl {0,1}r
(S)
l ;

• 2L decoding functions fA: l∈ASl→F, where
A⊆L;

and operates as follows:
1) The user publicly sends to Serverl∈Lthe message
Ml hl(R, Kl,F).ForY ⊆L,wedefineMY
(Ml)l∈Y. For convenience, we also writeM ML.

2) Serverl∈LstoresSl gl(Ml,Kl).
3) Any subset of serversA⊆Lcan computeF(A)
fA(SA), an estimate ofF,whereSA (Sl)l∈A.

The setting is depicted in Figure 2.
Definition 2:Fix t ∈ [[ 1,L]],z ∈ [[ 1,t− 1]].

Then, r(F) is (t, z)-achievable if there exists a

2r
(F)

,2r
(R)

,2r
(M )
l

l∈L
,2r

(S)
l

l∈L
private file storage

strategy such that

∀A ⊆ L,|A| ≥t=⇒ H(F|F(A)) = 0(Recoverability),

(1)

∀U ⊆ L,|U| ≤z=⇒ I(F;M, KU)=0(Security). (2)

The set of all achievable lengthsr(F)is denoted byCF(t, z).

(1) means that any subset of servers with size larger than or
equal totis able to perfectly recover the filesF, and (2) means
that any subset of servers with size smaller than or equal to
zis unable to learn any information about the file. Note that
(2) accounts for the fact that colluding servers have access to
the entire public communicationM.
Our main objective is to determine, under the constraints (1)

and (2), the maximal file length that the user can store in
the servers given that the secret keys shared with the servers
have lengthn. Next, another of our objectives is to determine
(i) the minimum amount of local randomness needed at the
user, (ii) the minimum storage requirement at the servers, and
(iii) the minimum amount of public communication from the
user to the servers that are needed to achieve the largest file
rate inCF(t, z). To this end, we introduce the following defi-
nition.
Definition 3:Fix t ∈ [[ 1,L]],z ∈ [[ 1,t−1]]. For

r(F) inCF(t, z),letQ(r
(F)) be the set of tuples

T r(R),(r
(M)
l )l∈L,(r

(S)
l )l∈L such that there exists a

2r
(F)

,2r
(R)

,2r
(M )
l

l∈L
,2r

(S)
l

l∈L
private file storage

strategy that(t, z)-achievesr(F). Then, define

r
(F)
(t, z) sup

r(F)∈CF(t,z)

r(F),

r
(M)
l, (t, z) inf

T∈Q(r
(F)
(t,z))

r
(M)
l ,l∈L,

r
(M)
Σ, (t, z) inf

T∈Q(r
(F)
(t,z))l∈L

r
(M)
l ,

r
(R)
(t, z) inf

T∈Q(r
(F)
(t,z))

r(R),

r
(S)
l, (t, z) inf

T∈Q(r
(F)
(t,z))

r
(S)
l ,l∈L.

r
(F)
(t, z)is the largest file size that the user can pri-

vately store under the constraints (1) and (2). Then,

r
(R)
(t, z),r

(M)
l, (t, z),r

(M)
Σ, (t, z),andr

(S)
l, (t, z),l∈L,are

the minimum amount of local randomness, the minimum
amount of public communication to Serverl, the mini-
mum amount of public communication to all the servers,
and the minimum storage size required at Serverl, respec-

tively, needed for the user to achiever
(F)
(t, z). Remark

that, a priori, it is unclear whether all these quantities
can be achieved simultaneously, i.e., whether there exists

a 2r
(F)(t,z),2r

(R)(t,z),2r
(M )
l,
(t,z)

l∈L
,2r

(S)
l,
(t,z)

l∈L
file

storage strategy that(t, z)-achievesr
(F)
(t, z).

IV. MAINRESULTS

In Section IV-A, we prove impossibility results. Specifically,
we first derive an upper bound on the maximum file length

r
(F)
(t, z). Then, assuming that the user stores a file of length

r
(F)
(t, z), we derive lower bounds on the minimum amount of

local randomnessr
(R)
(t, z)needed at the user, the minimum

amount of public communication needed to each individual

server from the user, i.e.,r
(M)
l, (t, z),l∈L, the minimum

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on November 09,2022 at 16:26:28 UTC from IEEE Xplore.  Restrictions apply. 



7488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

amount of public communication needed to all the servers

from the user, i.e.,r
(M)
Σ, (t, z), and the minimum storage size

needed at Serverl∈ L,i.e.,r
(S)
l, (t, z).InSectionIV-B,

we prove an achievability result that matches all the bounds
found in Section IV-A.

A. Impossibility Results

Theorem 1 (Converse on the File Length):Lett∈[[ 1,L]]
andz∈[[ 1,t−1]]. Then, we have

r
(F)
(t, z)≤n(t−z).

Proof: SetD=1in Appendix A.
Theorem 1 means that it is impossible for the user to

store a file of length larger thann(t−z)bits. The proof of
Theorem 1 is obtained by first upper bounding the file length
byI(KA;KL|KU)for anyA,U ⊆Lsuch that|A|= t,
|U|=z,andU⊂Ausing Definition 1 and the constraints (1)
and (2). Theorem 1 is then obtained from this upper bound
by leveraging the independence of the secret keys.
Theorem 2 (Converse on Storage Size Requirement at the

Servers):Lett∈[[ 1,L]]andz∈[[ 1,t−1]]. Then, we have

r
(S)
l, (t, z)≥n,∀l∈L.

Proof: SetD=1in Appendix B.
Theorem 2 means that Serverl∈Lneeds a storage capacity
of at leastnbits, and is obtained by considering the fact that,
at the beginning of the protocol, each server needs to store its
secret key.
Theorem 3 (Converse on the Total Amount of Public Com-

munication to the Servers):Lett∈[[ 1,L]]andz∈[[ 1,t−1]].
Then, we have

r
(M)
Σ, (t, z)≥

L

t−z
r
(F)
(t, z).

Proof: SetD=1in Appendix C.
Theorem 3 means that it is impossible for the user to

store a file of lengthr
(F)
(t, z)if the public communication

sum-length to the servers is smaller than L
t−zr

(F)
(t, z)bits.

The proof of Theorem 3 is obtained by first showing that for
T ⊆LandS⊆L\Tsuch that|T |=zand|S|=t−z,the
sum of the message sizes for the servers inSis lower bounded
byH(F). Then, Theorem 3 is obtained by a combinatorial
argument that consists in summing this bound over all possible
sets of serversSandTas above.
Theorem 4 (Converse on the Amount of Public Communica-

tion to an Individual Server):Lett∈[[ 1,L]]andz∈[[ 1,t−1]].
Consider the following condition

∀U,V⊆L,|U|=|V|=⇒ I(F;MU,KU)=I(F;MV,KV).

(3)

(3) indicates that any two sets of colluding servers that have
the same size have the same amount of information about the
fileF. If (3) holds, then we have

r
(M)
l, (t, z)≥

1

t−z
r
(F)
(t, z),∀l∈L.

Proof: SetD=1in Appendix D.

Note that (3) is always true for sets with cardinality smaller
than or equal tozby (2), and for sets with cardinality larger
than or equal totby (1). Note that the concept of leakage
symmetry also exists in the context of secret sharing under
the denomination uniform secret sharing [25].
Under the leakage symmetry condition (3), Theorem 4

means that it is impossible for the user to store a file of length

r
(F)
(t, z)if the public communication length to Serverl∈L

is smaller than 1
t−zr

(F)
(t, z)bits. Theorem 4 is obtained by

first proving a lower bound on individual public message size
that depends on the leakages associated with some sets of
servers, specifically, we prove that the public message size for
Serverl∈Lis lower bounded by

t−1
i=z[2αi+1−αi−αi+2]

+,
where fori∈LandS⊆Lsuch that|S|=i,wehavedefined
αi I(F;MS,KS)andαL+1 αL. Then, we perform
an optimization over all possible values of(αi)[[ 1,L+1]] to
minimize this bound and obtain Theorem 4.
Theorem 5 (Converse on the Amount of Required Local
Randomness at the Users):Lett∈[[ 1,L]]andz∈[[ 1,t−1]].
Then, we have

r
(R)
(t, z)≥

z

t−z
r
(F)
(t, z).

Proof: SetD=1in Appendix E.
Theorem 5 means that it is impossible for the user to

store a file of lengthr
(F)
(t, z)if the amount of its local

randomness is smaller than z
t−zr

(F)
(t, z)bits. The proof

of Theorem 5 is obtained by first proving the bound

l∈SH(Ml,Kl|MV,KV)≥H(F)+ l∈SH(Kl)forS⊆
L\(T∪V)such that|S|= t−zwithV ⊆Lsuch that
|V|<z andT ⊆L\Vsuch that|T |= z−|V|. Then,
by a combinatorial argument that consists in summing this
bound over all possible setsSandTas above, we obtain
Theorem 5.

B. Capacity Results

We first derive an achievability result with a private file
storage strategy that separates the creation of the shares, which
is done via ramp secret sharing [21], [22], and the secure
distribution of the shares, which is done via a one-time pad.
We will then compare the bounds achieved by this coding
strategy with the impossibility results of Section IV-A, to prove
their optimality.
Theorem 6:Lett∈[[ 1,L]]andz∈[[ 1,t−1]]. There exists

a 2r
(F)

,2r
(R)

,2r
(M )
l

l∈L
,2r

(S)
l

l∈L
private file storage

strategy that(t, z)-achievesr(F)such that

r(F)=n(t−z),

r(R)=nz,

r
(S)
l =n,∀l∈L,

r
(M)
l =n,∀l∈L.

Proof: SetD=1in Appendix F.
From Theorem 6 and the impossibility results of
Section IV-A, we obtain a characterization of the quantities
introduced in Definition 3 as follows.
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Theorem 7:Lett∈[[ 1,L]]andz∈[[ 1,t−1]].Wehave

r
(F)
(t, z)=n(t−z),

r
(R)
(t, z)=nz,

r
(S)
l, (t, z)=n,∀l∈L,

r
(M)
Σ, (t, z)=Ln,

(3)=⇒ r
(M)
l, (t, z)=n,∀l∈L.

Proof: SetD=1in Appendix G.
Note that from Theorem 6 and Theorem 7, we immediately

have Corollary 1, which states that the optimal quantities of
Definition 3 can be obtained simultaneously by a single private
file storage strategy.
Corollary 1:Lett∈[[ 1,L]]andz∈[[ 1,t−1]]. There exists

a 2r
(F)

,2r
(R)

,2r
(M )
l

l∈L
,2r

(S)
l

l∈L
private file storage

strategy that(t, z)-achievesr(F)such that

r(F)=r
(F)
(t, z),

r(R)=r
(R)
(t, z),

r
(S)
l =r

(S)
l, (t, z),∀l∈L,

l∈Lr
(M)
l =r

(M)
Σ, (t, z),

r
(M)
l =r

(M)
l, (t, z),∀l∈L,when (3) holds.

Results interpretation: Consider,t∈L,andz∈[[ 1,t−1]].
Assume that the user shares an individual key with lengthn
bits with each server. Then, the user can store a file of size
at mostn(t−z)bits such that any set of servers larger than
or equal totcan reconstruct the file, and any set of servers
smaller than or equal tozcannot learn anything about the
file. Moreover, if the user stores a file of lengthn(t−z)
bits, then the optimal storage capacity at each server isnbits,
the optimal amount of local randomness needed at the user is
n×zbits, and the optimal amount of public communication
from the user to all the servers isL×nbits. If one assumes
that the leakage about the file must be symmetric among the
servers, i.e., (3) holds, then the optimal amount of public
communication from the user to Serverl∈Lisnbits.
Note that Corollary 1 shows that there is a linear relationship

between the maximal length of the file that can be stored and
the three resources key length, local randomness, and public
communication. This relationship is represented in Figure 3.

V. EXTENSION TOMULTIPLEUSERS

In this section, we generalize the problem statement and
results of Sections III and IV, respectively, to the case where
D≥1users wish to store files in the servers.

A. Problem Statement

ConsiderLservers indexed byL [[ 1,L]]andD users
indexed byD [[ 1,D]]. Assume that Serverl∈Land User
d∈Dshare a secret keyKd,l∈Kd {0,1}nd,whichisa
sequence ofndbits uniformly distributed over{0,1}

nd.All
theD×Lkeys are assumed to be jointly independent. For any

Fig. 3. Linear relationship betweenthe maximal length of the file that
can be stored and the three resources key length, local randomness, and
public communication. For instance, fori∈N, storing a file ofi(t−z)
bits requiresi-bit keys,i×zbits of local randomness, andi×Lbits of
public communication.

X⊆D,Y⊆L,wedefineKX,Y (Kx,y)x∈X,y∈Y and, for
convenience, we also writeKd,Y K{d},Y for anyd∈D.

Definition 4:A 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,

2r
(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L
private file storage strategy

consists of
• D independent filesFd,d∈ D, where FileFd is
owned by Userdand is uniformly distributed over

Fd {0,1}r
(F)
d .Thefiles(Fd)d∈D are assumed inde-

pendent of the keysKD,L;
• D independent sequences of local randomnessRd,
d∈D, where SequenceRdisownedbyUserdand

is uniformly distributed overRd {0,1}r
(R)
d .The

sequences(Rd)d∈D are assumed independent of all the
other random variables;

• D×Lencoding functionshd,l:Rd×Kd×Fd→ Md,l,

whered∈D,l∈L,andMd,l {0,1}r
(M )
d,l ;

• Lservers with storage capacitiesr
(S)
l bits for Server

l∈L;
• L×Dencoding functionsgl,d:Md,l×Kd→Sl,d,where
l∈L,d∈D,andtheSl,dare such that d∈DSl,d=

{0,1}r
(S)
l ;

• 2L×D decoding functionsfA,d: l∈ASl,d→ Fd,
whereA⊆L,d∈D;

and operates as follows:
1) Userd∈Dpublicly sends to Serverl∈Lthe message
Md,l hd,l(Rd,Kd,l,Fd).ForX ⊆ D,Y ⊆ L,
we defineMX,Y (Md,l)d∈X,l∈Yand, for convenience,
we also writeMX MX,LandMd M{d},L,d∈D.

2) Serverl∈Lstores(Sl,d)d∈Dwhere ford∈D,Sl,d
gl,d(Md,l,Kd,l).

3) Any subset of serversA⊆Lcan computeFd(A)
fA,d(SA,d), an estimate ofFd,whered∈DandSA,d
(Sl,d)l∈A.

Definition 5:Let t (td)d∈D ∈ [[ 1,L]]D and
z (zd)d∈D ∈ d∈D[[ 1,td − 1]]. A length-tuple
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r
(F)
d

d∈D
is (t,z)-achievable if there exists a

2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,2r

(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L

private file storage strategy such that

∀d∈D,∀A ⊆ L,|A| ≥td =⇒ H(Fd|Fd(A)) = 0, (4)

∀d∈D,∀U ⊆ L,|U| ≤zd =⇒ I(FZd;MD,KD,U)=0,

(5)

where ford∈D,wehavedefinedZd {i∈D:zi≥zd}
andFZd (Fi)i∈Zd. The set of all achievable length-tuples
is denoted byCF(t,z).
(4) means that any subset of servers with size larger than or
equal totdis able to perfectly recover the fileFd,d∈D,and
(5) means that any subset of servers with size smaller than
or equal tozdis unable to learn any information about the
files{Fi:i∈D,zi≥zd}. Similar to the caseD =1in
Section III, we have the following counterpart to Definition 3.

Definition 6:Lett (td)d∈D ∈ [[ 1,L]]D andz

(zd)d∈D ∈ d∈D[[ 1,td−1]].Forr
(F) r

(F)
d

d∈D

inCF(t,z),letQ(r
(F))be the set of tuplesT

(r
(R)
d )d∈D,(r

(M)
d,l )d∈D,l∈L,(r

(S)
l )l∈L such that there exists

a 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,2r

(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L

private file storage strategy that(t,z)-achievesr(F). Then, for
anyd∈D, we define the following quantities:

r
(F)
d, (t,z) sup

r(F)∈CF(t,z)

r
(F)
d ,

r
(M)
d,l,(t,z) inf

T∈Q(r(F))

:r
(F)
d
=r

(F)
d,
(t,z)

r
(M)
d,l ,l∈L,

r
(M)
d,Σ,(t,z) inf

T∈Q(r(F))

:r
(F)
d =r

(F)
d, (t,z)

l∈L

r
(M)
d,l ,

r
(R)
d, (t,z) inf

T∈Q(r(F))

:r
(F)
d =r

(F)
d, (t,z)

r
(R)
d ,

r
(S)
d,l,(t,z) inf

T∈Q(r(F))

:r
(F)
d =r

(F)
d, (t,z)

r
(S)
l ,l∈L.

r
(F)
d, (t,z)is the largest file size that Userd∈Dcan privately

store under the constraints (4) and (5). Then,r
(R)
d, (t,z),

r
(M)
d,l,(t,z),r

(M)
d,Σ,(t,z),andr

(S)
d,l,(t,z),l∈ L,arethe

minimum amount of local randomness, the minimum amount
of public communication to Serverl, the minimum amount
of public communication to all the servers, and the minimum
storage size required at Serverl, respectively, needed for

Userdto obtainr
(F)
d, (t,z). A priori, it is unclear whether

it is possible to simultaneously obtain r
(F)
d, (t,z)

d∈D
,

i.e., whether r
(F)
d, (t,z)

d∈D
∈CF(t,z). We will show

that it is actually possible. We will then study whether

r
(R)
d, (t,z),r

(M)
d,l,(t,z),andr

(S)
d,l,(t,z),d∈D,l∈L, can be

simultaneously obtained in the achievability of

r
(F)
d, (t,z)

d∈D
with a single coding scheme.

B. Results

In the following theorem, we state impossibility results that
are counterpart to the results in Section IV-A for the case
D=1.
Theorem 8:Lett (td)d∈D ∈ [[ 1,L]]D andz
(zd)d∈D∈ d∈D[[ 1,td−1]]. Consider the following leakage
symmetry condition

∀d∈D,(∀U,V⊆L,

|U|=|V|=⇒ I(Fd;Md,U,Kd,U)=I(Fd;Md,V,Kd,V)).

(6)

Then, for anyd∈D,wehave

r
(F)
d, (t,z)≤nd(td−zd), (7)

r
(S)
d,l,(t,z)≥

d∈D

nd,∀l∈L, (8)

r
(M)
d,Σ,(t,z)≥

L

td−zd
r
(F)
d, (t,z), (9)

(6)=⇒ r
(M)
d,l,(t,z)≥

1

td−zd
r
(F)
d, (t,z),∀l∈L, (10)

r
(R)
d, (t,z)≥

zd
td−zd

r
(F)
d, (t,z). (11)

(7) is proved in Appendix A and means that it is impossible
for Userd∈Dto store a file of length larger thannd(td−zd)
bits. (8) is proved in Appendix B and means that Server
l∈Lneeds a storage capacity of at least d∈Dndbits.
(9) is proved in Appendix C and means that it is impossible

for Userd∈ Dto store a file of lengthr
(F)
d, (t,z)if the

public communication sum-length to the servers is smaller

than L
td−zd

r
(F)
d, (t,z)bits. (10) is proved in Appendix D and

means that, under the leakage symmetry condition (6), it is

impossible for Userd∈Dto store a file of lengthr
(F)
d, (t,z)

if the public communication length to Serverl∈Lis smaller

than 1
td−zd

r
(F)
d, (t,z)bits. (11) is proved in Appendix E and

means that it is impossible for Userd∈Dto store a file

of lengthr
(F)
d, (t,z)if the amount of its local randomness is

smaller than zd
td−zd

r
(F)
d, (t,z)bits.

We now give a counterpart to Theorem 6 for the case
D=1with the following achievability result.
Theorem 9:Let t (td)d∈D ∈ [[ 1,L]]D and
z (zd)d∈D ∈ d∈D[[ 1,td − 1]]. There exists a

2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,2r

(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L

private file storage strategy that(t,z)-achieves r
(F)
d

d∈D
such that, for anyd∈D,

r
(F)
d =nd(td−zd),

r
(R)
d =ndzd,

r
(S)
l = d∈Dnd,∀l∈L,

r
(M)
d,l =nd,∀l∈L.

Proof: See Appendix F.
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Then, similar to Theorem 7 and Corollary 1 for the case
D=1, we deduce the following results. Theorem 10 provides
a characterization of the quantities introduced in Definition 6,
and Corollary 2 shows that the optimal quantities of Defi-
nition 6 (defined for each individual user) can be obtained
simultaneously by a single private file storage strategy.
Theorem 10:Lett (td)d∈D ∈ [[ 1,L]]D andz
(zd)d∈D∈ d∈D[[ 1,td−1]].Foranyd∈D,wehave

r
(F)
d, (t,z)=nd(td−zd),

r
(R)
d, (t,z)=ndzd,

r
(S)
d,l,(t,z)= d∈Dnd,∀l∈L,

r
(M)
d,Σ,(t,z)=Lnd,

(6)=⇒ r
(M)
d,l,(t,z)=nd,∀l∈L.

Proof: See Appendix G.
Corollary 2:Let t (td)d∈D ∈ [[ 1,L]]D and
z (zd)d∈D ∈ d∈D[[ 1,td − 1]]. There exists

a 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,2r

(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L

private file storage strategy that(t,z)-achieves r
(F)
d

d∈D
such that, for anyd∈D,

r
(F)
d =r

(F)
d, (t,z),

r
(R)
d =r

(R)
d, (t,z),

r
(S)
l =r

(S)
d,l,(t,z),∀l∈L,

l∈Lr
(M)
d,l =r

(M)
d,Σ,(t,z),

r
(M)
d,l =r

(M)
d,l,(t,z),∀l∈L,when (6) holds.

VI. CONCLUDINGREMARKS

We considered the problem of storing a file in Lservers
such that anyt≤Lservers can reconstruct the file, and any
subset ofz<tcolluding servers cannot learn any information
about the file. Unlike solutionsthat rely on traditional secret
sharing models, we developed a new model that does not make
the assumption that individual and information-theoretically
secure channels between the user and each server are available
at no cost. Instead, we assume that the user can communicate
with the servers over a one-way public channel, and share
with each server a secret key with lengthn, which is meant
to quantify the cost of privately storing the file. For a given
secret-key lengthnand parameterstandz, we established the
maximal length of the file that the user can store. Additionally,
we determine in this case the minimum amount of local
randomness needed at the user, the minimum amount of public
communication between the user and the servers, and the
minimum amount of storage space required at the servers.
While our model allows a joint design of the creation phase of
the shares and the secure distribution phase of the shares, our
results prove the optimality of an achievability scheme that
separates the creation of the shares using ramp secret sharing
schemes and the secure distribution of the shares via one-time
pads. Finally, we discussed an extension of our results to a
multi-user setting.

At least two generalizations of the problem setting can
be considered and remain open. In the first generalization,
the user and the servers communicate over noisy, instead of
noiseless, channels; partial results have been obtained in [26]
for this setting and constructive coding schemes have been
proposed in [27], [28]. In the second generalization, the user
and the servers have access to arbitrarily correlated random
variables instead of independent and uniformly distributed
secret keys; partial results have been obtained in this direc-
tion in [29]–[32] and constructive coding schemes have been
proposed in [33].

APPENDIXA
PROOF OFEQUATION(7)

Consider an arbitrary 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,

2r
(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L
private file storage strategy

that(t,z)-achieves r
(F)
d

d∈D
. Fixd ∈ D. Define

{d}c D\{d}. In the following lemma, using Definition 4
and the reliability and security constraints (4) and (5) from

Definition 5, we first give an upper bound onr
(F)
d that only

depends on the secret keys.
Lemma 1:LetA,U⊆Lsuch that|A|=td,|U|=zd,and

U⊂A.Wehave

r
(F)
d ≤I(KD,A,K{d}c,L;Kd,L|KD,U).

Proof: We have

r
(F)
d

(a)
=H(Fd)

=H(Fd|MD,KD,U)+I(Fd;MD,KD,U)

(b)

≤H(Fd|MD,KD,U)+I(FZd;MD,KD,U)

(c)
=H(Fd|MD,KD,U)

=I(Fd(A);Fd|MD,KD,U)+H(Fd|MD,KD,U,Fd(A))

(d)

≤I(Fd(A);Fd|MD,KD,U)+H(Fd|Fd(A))

(e)
=I(Fd(A);Fd|MD,KD,U)

(f)

≤I(MD,KD,A;Fd|MD,KD,U)

(g)
=I(KD,A;Fd|MD,KD,U)

(h)

≤I(KD,A,M{d}c;Fd,Md|KD,U)

(i)

≤I(KD,A,F{d}c,K{d}c,L,R{d}c;Kd,L,Fd,Rd|KD,U)

(j)
=I(KD,A,F{d}c,K{d}c,L;Kd,L,Fd|KD,U)

+I(KD,A,F{d}c,K{d}c,L;Rd|KD,U,Kd,L,Fd)

+I(R{d}c;Kd,L,Fd,Rd|KD,U,KD,A,F{d}c,K{d}c,L)

(k)
=I(KD,A,F{d}c,K{d}c,L;Kd,L,Fd|KD,U)

(l)

≤I(KD,A,K{d}c,L;Kd,L|KD,U),

where (a)holds by uniformity of the files (Fd)d∈D,
(b)holds by the chain rule and non-negativity of the
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mutual information, (c)holds by (5) because|U|= zd,
(d)holds because conditioning reduces entropy,(e)holds
by (4) because|A|= td,(f)holds becauseFd(A)is a
function ofSA,d, which is itself a function of(MD,KD,A),
(g)holds because I(MD;Fd|MD,KD,U,KD,A) = 0,
(h)holds by the chain rule applied twice and non-negativity
of the mutual information,(i)holds becauseM{d}c is
a function of(F{d}c,K{d}c,L,R{d}c)(with the notation

FS (Fd)d∈S andRS (Rd)d∈S for anyS ⊆D), and
Mdis a function of(Fd,Kd,L,Rd),(j)holds by the chain
rule applied twice,(k)holds by independence between
R{d}c and (KD,A,F{d}c,K{d}c,L,Kd,L,Fd,Rd,KD,U)
and by independence between Rd and
(KD,A,F{d}c,K{d}c,L,Kd,L,Fd,KD,U), (l) holds by
applying twice the chain rule, independence betweenF{d}c
and (KD,A,K{d}c,L,Kd,L,Fd,KD,U), and independence
betweenFdand(KD,A,K{d}c,L,Kd,L,KD,U)similar to(j)
and(k).
Next, we simplify the upper bound of Lemma 1 using the

independence of the secret keys as follows.
Lemma 2:LetA,U⊆Lsuch that|A|=td,|U|=zd,and

U⊂A.Wehave

I(KD,A,K{d}c,L;Kd,L|KD,U)≤nd(td−zd).

Proof: We have

I(KD,A,K{d}c,L;Kd,L|KD,U)

=I(KD,A;Kd,L|KD,U)+I(K{d}c,L;Kd,L|KD,AKD,U)

(a)

≤I(KD,A;Kd,L|KD,U)

+I(K{d}c,L,K{d}c,A,K{d}c,U;Kd,L,Kd,A,Kd,U)

=I(KD,A;Kd,L|KD,U)+I(K{d}c,L;Kd,L)

(b)
=I(KD,A;Kd,L|KD,U)

(c)

≤I(KD,A,K{d}c,U;Kd,L|Kd,U)

=I(Kd,A;Kd,L|Kd,U)

+I(K{d}c,A,K{d}c,U;Kd,L|Kd,U,Kd,A)

≤I(Kd,A;Kd,L|Kd,U)

+I(K{d}c,A,K{d}c,U;Kd,L,Kd,U,Kd,A)

(d)
=I(Kd,A;Kd,L|Kd,U)

(e)
=H(Kd,A|Kd,U)

(f)
=H(Kd,A\U)

(g)
=nd(td−zd),

where (a)holds by the chain rule applied twice and
non-negativity of the mutual information,(b)holds by inde-
pendence between the keysK{d}c,L andKd,L,(c)holds by
the chain rule and non-negativity of the mutual information,
(d)holds by independence between(K{d}c,A,K{d}c,U)and
(Kd,L,Kd,U,Kd,A),(e)holds becauseA ⊆L,(f)holds
becauseU⊂A,(g)holds because the keysKd,l,l∈A\U,
are independent and each uniformly distributed over{0,1}nd

and|A\U|=td−zd.

Next, by combining Lemmas 1 and 2, we have

r
(F)
d ≤nd(td−zd). (12)

Finally, note that (12) is valid for any private file storage

strategy that(t,z)-achievesr
(F)
d

d∈D
∈CF(t,z), so, in par-

ticular, (12) is valid for a file storage strategy that(t,z)-

achieves r̃
(F)
d

d∈D
,where r̃

(F)
d

d∈D
∈CF(t,z)is such

that̃r
(F)
d =r

(F)
d, (t,z).

APPENDIXB
PROOF OFEQUATION(8)

Serverl∈Lmust store the keysKD,lat the beginning of
the protocol. Hence, for anyd∈D,l∈L,wemusthave

r
(S)
d,l,(t,z)≥|KD,l|

=
d∈D

|Kd,l|

=
d∈D

nd.

APPENDIXC
PROOF OFEQUATION(9)

Consider an arbitrary 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,

2r
(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L
private file storage strategy

that(t,z)-achieves r
(F)
d

d∈D
.Fixd∈D. In the following

lemma, using Definition 4 and the reliability and security
constraints (4) and (5) from Definition 5, we first give a lower
bound on the sum of the entropy of the message(Md,l)l∈S
for setsS⊂Lwith cardinality|S|=td−zd.
Lemma 3:ForT ⊆LandS⊆L\Tsuch that|T |=zd

and|S|=td−zd,wehave

l∈S

H(Md,l)≥H(Fd).

Proof: We have

l∈S

H(Md,l)+
l∈S

H(Kd,l)

(a)

≥
l∈S

H(Md,l|Kd,l)+
l∈S

H(Kd,l)

=
l∈S

H(Md,l,Kd,l)

(b)

≥H(Md,S,Kd,S)

(c)

≥H(Md,S,Kd,S|Md,T,Kd,T)

=I(Md,S,Kd,S;Fd|Md,T,Kd,T)

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

=H(Fd|Md,T,Kd,T)−H(Fd|Md,S,Kd,S,Md,T,Kd,T)

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

(d)

≥H(Fd|Md,T,Kd,T)−H(Fd|SS∪T,d)

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)
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(e)

≥H(Fd|Md,T,Kd,T)−H(Fd|Fd(S∪T))

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

=H(Fd)−I(Fd;Md,T,Kd,T)−H(Fd|Fd(S∪T))

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

(f)

≥H(Fd)−I(FZd;MD,KD,T)−H(Fd|Fd(S∪T))

+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

(g)
=H(Fd)+H(Md,S,Kd,S|Fd,Md,T,Kd,T)

(h)

≥H(Fd)+H(Md,S,Kd,S|Fd,Rd,Kd,T)

(i)

≥H(Fd)+H(Kd,S|Fd,Rd,Kd,T)

(j)
=H(Fd)+

l∈S

H(Kd,l),

where(a)and(c)hold because conditioning reduces entropy,
(b)holds by the chain rule and because conditioning reduces
entropy,(d)holds becauseSS,dis a function of(Md,S,Kd,S)
andST,dis a function of(Md,T,Kd,T),(e)holds because

Fd(S∪T)is a function ofSS∪T,d,(f)holds by the chain
rule and non-negativity of the mutual information,(g)holds
by (5) because|T |=zdand by (4) because|S ∪ T |=td,
(h)holds becauseMd,T is a function of(Fd,Rd,Kd,T),(i)
holds by the chain rule and non-negativity of the entropy,
(j)holds becauseKd,S is independent from(Fd,Rd,Kd,T)
(sinceS∩T = ∅) and because the keys(Kd,l)l∈S are
independent.
Next, by summing both sides of the equation of Lemma 3

over all possible setsT ⊆LandS⊆L\Tsuch that|T |=zd
and|S|=td−zd, we obtain a lower bound on the sum of the
entropy of all the message(Md,l)l∈L.

Lemma 4:We have

l∈L

H(Md,l)≥
L

td−zd
H(Fd).

Proof: We have

L

td−zd
H(Fd)

(a)
=

L

td−zd
Υd

T⊆L
|T |=zd

S⊆Tc

|S|=td−zd

H(Fd)

(b)

≤
L

td−zd
Υd

T⊆L
|T |=zd

S⊆Tc

|S|=td−zd

l∈S

H(Md,l)

(c)
=

L

td−zd
Υd

T⊆L
|T |=zd

L−zd−1

td−zd−1
l∈Tc

H(Md,l)

(d)
=

L

td−zd
Υd

L−zd−1

td−zd−1
T⊆L

|T |=L−zd
l∈T

H(Md,l)

(e)
=

L

td−zd
Υd

L−zd−1

td−zd−1

L−1

L−zd−1
l∈L

H(Md,l)

=
l∈L

H(Md,l),

where(a)holds withΥd
L
zd

−1 L−zd
td−zd

−1
,(b)holds

by Lemma 3, (c)holds because for any l ∈ Tc,
H(Md,l)appears exactly

L−zd−1
td−zd−1

times in the term

S⊆Tc

|S|=td−zd
l∈SH(Md,l)(note that this observation was

also made in [34, Lemma 3.2]),(d)holds by a change
of variables in the sums,(e)holds because for anyl∈
L,H(Md,l)appears exactly

L−1
L−zd−1

times in the term

T⊆L
|T |=L−zd

l∈TH(Md,l).

Finally, we have

L

td−zd
r
(F)
d

(a)
=

L

td−zd
H(Fd)

(b)

≤
l∈L

H(Md,l)

≤
l∈L

r
(M)
d,l , (13)

where(a)holds by uniformity ofFd,(b)holds by Lemma 4.
Since (13) is valid for any private file

storage strategy, (13) is also valid for a

2r̃
(F)
d

d∈D
,2r̃

(R)
d

d∈D
,2r̃

(M )
d,l,

d∈D,l∈L
,2r̃

(S)
l

l∈L

file storage strategy that(t,z)-achieves r̃
(F)
d

d∈D
,where

r̃
(F)
d

d∈D
∈CF(t,z)is such that̃r

(F)
d = r

(F)
d, (t,z)and

l∈Lr̃
(M)
d,l =r

(M)
d,Σ,(t,z).

APPENDIXD
PROOF OFEQUATION(10)

Consider an arbitrary 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,

2r
(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L
private file storage strategy

that(t,z)-achieves r
(F)
d

d∈D
. Assume that (6) holds.

Fixd∈ D,l∈ L. By exploiting the leakage symmetry
condition (6), we derive a first lower bound on the public
communication to a specific server in the following lemma.
Lemma 5:For i ∈ [[zd,td − 1]], defineVi
[[ 1,i]] ifl>i

[[ 1,i+1]]\{l} ifl≤i
andVtd Vtd−1∪{l}.Fori∈L,

andS⊆Lsuch that|S|=i,defineαi I(Fd;Md,S,Kd,S)
andαL+1 αL. Note thatαionly depends oniand not on the
specific elements ofSby (6). Note also thatαzd =0by (5)
andαtd=H(Fd)by (4). Then, we have

H(Md,l)≥

td−1

i=zd

[2αi+1−αi−αi+2]
+. (14)
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Proof: We have

H(Md,l)+H(Kd,l)

(a)

≥H(Md,l)+H(Kd,l|Md,l)

=H(Md,l,Kd,l)

(b)

≥H(Md,l,Kd,l|Md,Vzd,Kd,Vzd)

(c)
=H(Md,l,Kd,l|Md,Vzd,Kd,Vzd)

−H(Md,l,Kd,l|Md,Vtd,Kd,Vtd)

= td−1
i=zd
[H(Md,l,Kd,l|Md,Vi,Kd,Vi)

−H(Md,l,Kd,l|Md,Vi+1,Kd,Vi+1) (15)

(d)
= td−1

i=zd
[H(Md,l,Kd,l,Fd|Md,Vi,Kd,Vi)

−H(Fd|Md,Vi∪{l},Kd,Vi∪{l})

−H(Md,l,Kd,l,Fd|Md,Vi+1,Kd,Vi+1)

+H(Fd|Md,Vi+1∪{l},Kd,Vi+1∪{l})

(e)
= td−1

i=zd
[H(Fd|Md,Vi,Kd,Vi)

+H(Md,l,Kd,l|Fd,Md,Vi,Kd,Vi)

−H(Fd|Md,Vi∪{l},Kd,Vi∪{l})

−H(Fd|Md,Vi+1,Kd,Vi+1)

−H(Md,l,Kd,l|Fd,Md,Vi+1,Kd,Vi+1)

+H(Fd|Md,Vi+1∪{l},Kd,Vi+1∪{l})

= td−1
i=zd
[−I(Fd;Md,Vi,Kd,Vi)

+H(Md,l,Kd,l|Fd,Md,Vi,Kd,Vi)

+I(Fd;Md,Vi∪{l},Kd,Vi∪{l})

+I(Fd;Md,Vi+1,Kd,Vi+1)

−H(Md,l,Kd,l|Fd,Md,Vi+1,Kd,Vi+1)

−I(Fd;Md,Vi+1∪{l},Kd,Vi+1∪{l})

(f)
= td−1

i=zd
[2αi+1−αi−αi+2

+H(Md,l,Kd,l|Fd,Md,Vi,Kd,Vi)

−H(Md,l,Kd,l|Fd,Md,Vi+1,Kd,Vi+1)

(g)

≥[2αtd−αtd−1−αtd+1

+H(Md,l,Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)]

+ td−2
i=zd
[2αi+1−αi−αi+2]

(h)

≥[2αtd−αtd−1−αtd+1

+H(Md,l,Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)]
+

+ td−2
i=zd
[2αi+1−αi−αi+2]

+

(i)
=[αtd−αtd−1+H(Md,l,Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)]

+

+ td−2
i=zd
[2αi+1−αi−αi+2]

+

(j)
=[αtd−αtd−1+H(Md,l,Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)]

+ td−2
i=zd
[2αi+1−αi−αi+2]

+

(k)
=H(Md,l,Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)

+ td−1
i=zd
[2αi+1−αi−αi+2]

+

(l)

≥H(Kd,l|Fd,Md,Vtd−1,Kd,Vtd−1)

+ td−1
i=zd
[2αi+1−αi−αi+2]

+

(m)

≥ H(Kd,l|Fd,Rd,Kd,Vtd−1)+

td−1

i=zd

[2αi+1−αi−αi+2]
+

(n)
=H(Kd,l)+

td−1
i=zd
[2αi+1−αi−αi+2]

+,

where(a)and(b)hold because conditioning reduces entropy,
(c)holds becausel∈Vtd,(d)and(e)hold by the chain
rule,(f)holds by the definition ofαi,(g)holds because
for anyi∈[[zd,td−2]],H(Md,l,Kd,l|Fd,Md,Vi,Kd,Vi)≥
H(Md,l,Kd,l|Fd,Md,Vi+1,Kd,Vi+1) since conditioning
reduces entropy and Vi ⊂ Vi+1, and because
H(Md,l,Kd,l|Fd,Md,Vtd,Kd,Vtd) = 0sincel ∈ Vtd,
(h) holds because in (15), we observe that
H(Md,l,Kd,l|Md,Vi,Kd,Vi) − H(Md,l,Kd,l|Md,Vi+1,
Kd,Vi+1) ≥ 0since conditioning reduces entropy and
Vi ⊂ Vi+1,(i)holds becauseαtd+1 = αtd = H(Fd)
by (4), (j) holds because αtd ≥ αtd−1 by the
definition of αtd and αtd−1, (k) holds because
αtd−αtd−1=[2αtd−αtd−1−αtd+1]

+,(l)holds by the chain
rule and non-negativity of the entropy,(m)holds because
Md,Vtd−1 is a function of(Fd,Rd,Kd,Vtd−1),(n)holds by
independence betweenKd,l and(Fd,Rd,Kd,Vtd−1)since
{l}∩Vtd−1=∅.
Next, we remark that the lower bound of Lemma 5 is lower
bounded by

min
f∈F

td−zd

i=1

[2f(i+1)−f(i)−f(i+2)]+,

where the minimum is taken over the setFof all the functions
f:[[1,td−zd+2]]→ [0,H(Fd)]that are non-decreasing
(because, by construction,(αi)i∈[[ 1,L+1]] is a non-decreasing
sequence) and such thatf(1) =αzd =0,f(td−zd+2)=
f(td−zd+1) =αtd = H(Fd). In the following lemma,
we determine a lower bound for this optimization problem.
Lemma 6:For anyf∈F,wehave

td−zd

i=1

[2f(i+1)−f(i)−f(i+2)]+≥
H(Fd)

td−zd
. (16)

Proof:Letf∈Fand letf+ be the concave envelope of
fover[[ 1,td−zd+2]], i.e., fori∈[[ 1,td−zd+2]],f

+(i)
min{g(i):g≥f, gis concave}. Note thatf+(1) =f(1)and
f+(td−zd+2) =f(td−zd+2). Then, for anyi∈[[ 1,td−zd]]
such thatf(i+1)=f+(i+1),wehave

[2f(i+1)−f(i)−f(i+2)]+

≥2f(i+1)−f(i)−f(i+2)

(a)

≥2f(i+1)−f+(i)−f+(i+2)

(b)
=2f+(i+1)−f+(i)−f+(i+2), (17)

where(a)holds becausef+ ≥f,(b)holds becausef(i+
1) =f+(i+1). Moreover, for anyi∈[[ 1,td−zd]]such that
f(i+1)=f+(i+1),wehave

[2f(i+1)−f(i)−f(i+2)]+

≥0

=2f+(i+1)−f+(i)−f+(i+2), (18)
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where the last equality holds becausef+ is linear betweeni
andi+2, i.e.,f+(i+1)−f+(i)=f+(i+2)−f+(i+1).
Indeed, by contradiction, assume thatf+is not linear between
iandi+2, then, sincef+ is concave, we must have

f+(i+1)>
f+(i+2)+f+(i)

2
. (19)

Next, we have a contradiction by constructinghi, a concave
function such thatf≤hi<f

+, as follows:

hi:j→
f+(j) ifj=i+1

max f+(i+2)+f+(i)
2 ,f(i+1) ifj=i+1

.

We have f≤hi(sincef≤f
+), andhi<f

+ by (19) and
becausef+(i+1)>f(i+1)(sincef+≥fandf+(i+1)=
f(i+1)). Then, to show concavity ofhi, it is sufficient to
show thathΔi is non-increasing whereh

Δ
i is defined as

hΔi :[[1,td−zd+1]]→R

j→hi(j+1)−hi(j).

Forj∈[[ 1,i−2]]∪[[i+2,td−zd+1]],wehave

hΔi(j+1)≤h
Δ
i(j) (20)

by definition ofhΔi and concavity off
+. Then, we have

hΔi(i)
(a)
=hi(i+1)−hi(i)

(b)
=hi(i+1)−f

+(i)

(c)

≤f+(i+1)−f+(i)

(d)

≤f+(i)−f+(i−1)

(e)
=hi(i)−hi(i−1)

(f)
=hΔi(i−1),

where(a)and(f)hold by definition ofhΔi,(b)and(e)hold
by definition ofhi,(c)holds becausehi<f

+,(d)holds by
concavity off+. Then, we have

hΔi(i+1)
(a)
=hi(i+2)−hi(i+1)

(b)
=f+(i+2)−hi(i+1)

(c)

≤hi(i+1)−f
+(i)

(d)
=hi(i+1)−hi(i)

(e)
=hΔi(i), (21)

where(a)and(e)hold by definition ofhΔi,(b)and(d)hold by

definition ofhi,(c)holds because
f+(i+2)+f+(i)

2 ≤hi(i+1).

Then, we also have

hΔi(i+2)
(a)
=hi(i+3)−hi(i+2)

(b)
=f+(i+3)−f+(i+2)

(c)

≤f+(i+2)−f+(i+1)

(d)

≤f+(i+2)−hi(i+1)

(e)
=hi(i+2)−hi(i+1)

(f)
=hΔi(i+1), (22)

where(a)and(f)hold by definition ofhΔi,(b)and(e)
hold by definition ofhi,(c)holds by concavity off

+,(d)
holds becausehi<f

+. Hence, by (20), (21), and (22),hΔi is
non-increasing and we have thus proved (18) by contradiction.
Next, we have

td−zd

i=1

[2f(i+1)−f(i)−f(i+2)]+

(a)

≥

td−zd

i=1

[2f+(i+1)−f+(i)−f+(i+2)]

=

td−zd

i=1

[(f+(i+1)−f+(i))−(f+(i+2)−f+(i+ 1))]

=f+(2)−f+(1) +f+(td−zd+2)−f
+(td−zd+1)

(b)
=f+(2)

(c)

≥
H(Fd)

td−zd
,

where(a)holds by (17) and (18),(b)holds becausef+(td−
zd+2)=f

+(td−zd+1)=f(td−zd+1)=H(Fd)and
f+(1) = 0,(c)holds becausef+(2) =f+(2)−f+(1)≥
(f+(td−zd+1)−f

+(1))/(td−zd)by concavity off
+

and where we have used thatf+(td−zd+1)=H(Fd)and
f+(1) =f(1) = 0.
Next, by combining Lemmas 5 and 6, we have

r
(M)
d,l ≥H(Md,l)

(a)

≥H(Fd)
1

td−zd
(b)
=r

(F)
d

1

td−zd
, (23)

where(a)holds by (14) and (16), which is valid for any
f∈F,(b)holds by uniformity ofFd.
Finally, since (23) is valid for any private
file storage strategy, (23) is also valid for a

2r̃
(F)
d

d∈D
,2r̃

(R)
d

d∈D
,2r̃

(M )
d,l,

d∈D,l∈L
,2r̃

(S)
l

l∈L

file storage strategy that(t,z)-achieves r̃
(F)
d

d∈D
,where

r̃
(F)
d

d∈D
∈CF(t,z)is such that̃r

(F)
d = r

(F)
d, (t,z)and

r̃
(M)
d,l =r

(M)
d,l,(t,z).
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APPENDIXE
PROOF OFEQUATION(11)

Consider an arbitrary 2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,

2r
(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L
private file storage strategy

that(t,z)-achieves r
(F)
d

d∈D
.Fixd∈D.LetV⊆Lsuch

thatv |V|<zd.ForT ⊆L\VandS⊆L\(T∪V)such
that|T |=zd−vand|S|=td−zd. Using Definition 4
and the reliability and security constraints (4) and (5) from
Definition 5, we first derive the following lemma.

Lemma 7:We have

l∈S

H(Md,l,Kd,l|Md,V,Kd,V)≥H(Fd)+
l∈S

H(Kd,l).

(24)
Proof: We have

l∈S

H(Md,l,Kd,l|Md,V,Kd,V)

(a)

≥H(Md,S,Kd,S|Md,V,Kd,V)

(b)

≥H(Md,S,Kd,S|Md,V∪T,Kd,V∪T)

=I(Md,S,Kd,S;Fd|Md,V∪T,Kd,V∪T)

+H(Md,S,Kd,S|Fd,Md,V∪T,Kd,V∪T)

=H(Fd|Md,V∪T,Kd,V∪T)

−H(Fd|Md,V∪T ∪S,Kd,V∪T ∪S)

+H(Md,S,Kd,S|Fd,Md,V∪T,Kd,V∪T)

(c)

≥H(Fd|Md,V∪T,Kd,V∪T)−H(Fd|SV∪T ∪S,d)

+H(Md,S,Kd,S|Fd,Md,V∪T,Kd,V∪T)

(d)

≥H(Fd|Md,V∪T,Kd,V∪T)−H(Fd|Fd(V∪T ∪S))

+H(Md,S,Kd,S|Fd,Md,V∪T,Kd,V∪T)

(e)
=H(Fd)+H(Md,S,Kd,S|Fd,Md,V∪T,Kd,V∪T)

(f)

≥H(Fd)+H(Md,S,Kd,S|Fd,Rd,Kd,V∪T)

(g)

≥H(Fd)+H(Kd,S|Fd,Rd,Kd,V∪T)

(h)
=H(Fd)+H(Kd,S)

(i)
=H(Fd)+

l∈S

H(Kd,l),

where(a)holds by the chain rule and because conditioning
reduces entropy,(b)holds because conditioning reduces
entropy,(c)holds becauseSV∪T ∪S,d is a function of

(Md,V∪T,Kd,V∪T),(d)holds becauseFd(V∪T ∪S)is a
function ofSV∪T ∪S,d,(e)holds by (4) because|V∪T ∪S|=
tdand by (5) because|V ∪T |=zd,(f)holds becauseMd,V∪T
is a function of(Fd,Rd,Kd,V∪T),(g)holds by the chain rule
and non-negativity of entropy,(h)holds by independence

betweenKd,Sand(Fd,Rd,Kd,V∪T)becauseS∩(V∪T)=∅,
(i)holds by independence of the keys(Kd,l)l∈S.
Next, by summing both side of the equation of Lemma 7
over of all possible setsT ⊆L\VandS⊆L\(T∪V)such
that|T |=zd−vand|S|=td−zd, we obtain the following
lemma.
Lemma 8:Consider

l(V)∈arg max
l∈L\V

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)].

We have

1

td−zd
H(Fd)

≤H(Md,L,Kd,L|Fd,Md,V,Kd,V)

−H(Md,L,Kd,L|Fd,Md,V∪{l(V)},Kd,V∪{l(V)})−nd.

(25)
Proof: We have

1

td−zd
H(Fd)

(a)
=Ωd

T⊆L\V
|T |=zd−v

S⊆L\(T∪V)
|S|=td−zd

H(Fd)

(b)

≤Ωd
T⊆L\V
|T |=zd−v

S⊆L\(T∪V)
|S|=td−zd

l∈S

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

(c)
=Ωd

T⊆L\V
|T |=zd−v

L−zd−1

td−zd−1

×
l∈L\(T∪V)

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

(d)
=Ωd

L−zd−1

td−zd−1

×
T⊆L\V
|T |=L−zd

l∈T

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

(e)
=Ωd

L−zd−1

td−zd−1

L−v−1

L−zd−1

×
l∈L\V

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

=
1

L−v
l∈L\V

[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

(f)

≤ H(Md,l(V),Kd,l(V)|Md,V,Kd,V)−H(Kd,l(V))

=H(Md,l(V),Kd,l(V)|Md,V,Kd,V)−nd
(g)
=H(Md,l(V),Kd,l(V)|Fd,Md,V,Kd,V)−nd
(h)
=H(Md,L,Kd,L|Fd,Md,V,Kd,V)

−H(Md,L,Kd,L|Fd,Md,V∪{l(V)},Kd,V∪{l(V)})−nd,

where (a)holds withΩd
1

td−zd

L−v
zd−v

−1 L−zd
td−zd

−1
,

(b)holds by (24),(c)holds because for anyl∈L\(T∪V),
the term [H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]
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appears exactly L−zd−1
td−zd−1

times in the term

S⊆L\(T ∪V)
|S|=td−zd

l∈S[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]

(note that a similar argument is made in [34, Lemma 3.2]),(d)
holds by a change of variables in the sums,(e)holds because
for anyl∈ L\V,[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)]
appears exactly L−v−1

L−zd−1
times in the term T⊆L\V|T|=L−z

l∈T[H(Md,l,Kd,l|Md,V,Kd,V)−H(Kd,l)], (f) holds
by the definition of l(V), (g) holds because
I(Fd;Md,V∪{l(V)},Kd,V∪{l(V)}) = 0by (2) and since
|V ∪ {l(V)}| ≤zd,(h)holds by the chain rule.
Next, we apply multiple times Lemma 8 to obtain the

following lemma.
Lemma 9:DefineV0 ∅and fori∈[[ 1,zd]],Vi Vi−1∪
{l(Vi−1)}.Wehave

zd
td−zd

H(Fd)≤H(Md,L,Kd,L|Fd)

−H(Md,L,Kd,L|Fd,Md,Vzd,Kd,Vzd)−ndzd.Proof: We have

zd
td−zd

H(Fd)

= zd−1
i=0

1

td−zd
H(Fd)

≤ zd−1
i=0 [H(Md,L,Kd,L|Fd,Md,Vi,Kd,Vi)

−H(Md,L,Kd,L|Fd,Md,Vi+1,Kd,Vi+1)−nd]

=H(Md,L,Kd,L|Fd)

−H(Md,L,Kd,L|Fd,Md,Vzd,Kd,Vzd)−ndzd,

where the inequality holds by applyingzdtimes Equation (25)
and the definition ofVi,i∈[[ 0,zd]].
Finally, we simplify the upper bound of Lemma 9 as follows.
We have

zd
td−zd

r
(F)
d

(a)
=

zd
td−zd

H(Fd)

(b)

≤H(Md,L,Kd,L|Fd)

−H(Md,L,Kd,L|Fd,Md,Vzd,Kd,Vzd)−ndzd
(c)

≤H(Md,L,Kd,L|Fd)

−H(Kd,L|Fd,Md,Vzd,Kd,Vzd)−ndzd
(d)

≤H(Md,L,Kd,L|Fd)−H(Kd,L|Fd,Rd,Kd,Vzd)−ndzd

=H(Md,L,Kd,L|Fd)−H(Kd,Vczd
|Fd,Rd)−ndzd

(e)
=H(Md,L,Kd,L|Fd)−H(Kd,Vczd

)−ndzd

(f)
=H(Md,L,Kd,L|Fd)−ndL

(g)

≤H(Rd,Fd,Kd,L|Fd)−ndL

=H(Rd,Kd,L|Fd)−ndL

(h)
=H(Rd)+H(Kd,L)−ndL

(i)
=H(Rd)

(j)
=r

(R)
d , (26)

where(a)holds by uniformity ofFd,(b)holds by Lemma 9,
(c)holds by the chain rule and non-negativity of entropy,
(d)holds becauseMd,Vzd is a function of(Fd,Rd,Kd,Vzd),
(e)holds by independence betweenKd,Vczd

and(Fd,Rd),

(f)holds by the uniformity of the keys(Kd,l)l∈Vczd
,(g)holds

becauseMd,L,Kd,Lis a function of(Rd,Fd,Kd,L),(h)holds
by mutual independence betweenRd,Fd,andKd,L,(i)holds
by the uniformity of the keys(Kd,l)l∈L,(j)holds by unifor-
mity ofRd.
Since (26) is valid for any private file

storage strategy, (26) is also valid for a

2r̃
(F)
d

d∈D
,2r̃

(R)
d

d∈D
,2r̃

(M )
d,l,

d∈D,l∈L
,2r̃

(S)
l

l∈L

file storage strategy that(t,z)-achieves r̃
(F)
d

d∈D
,where

r̃
(F)
d

d∈D
∈CF(t,z)is such that̃r

(F)
d = r

(F)
d, (t,z)and

r̃
(R)
d =r

(R)
d, (t,z).

APPENDIXF
PROOF OFTHEOREM9

We first review the notion of ramp secret sharing [21], [22]
in Section F-A. We then present our achievability scheme and
its analysis in Section F-B.

A. Review of Ramp Secret Sharing

Definition 7 ( [21], [22]):Lett∈[[ 1,L]]andz∈[[ 1,t−1]].
A(t, z, L)-ramp secret sharing scheme consists of

• A secretSuniformly distributed over{0,1}ns;
• A stochastic encoder e :{0,1}ns ×{0,1}nr →
{0,1}nshL,(S, R)→ (Hl)l∈L, which takes as input the
secretSand a randomization sequenceR uniformly
distributed over{0,1}nr and independent ofS, and out-
putsLshares(Hl)l∈L of lengthnsh.ForanyS⊆L,
we defineHS (Hl)l∈S;

and satisfies the two conditions

max
T⊆L:|T |=t

H(S|HT)=0,(Recoverability) (27)

max
U⊆L:|U |≤z

I(S;HU)=0.(Security) (28)

Theorem 11 ( [21], [22]):Lett∈[[ 1,L]]andz∈[[ 1,t−1]].
For a fixed secret lengthns, there exists a(t, z, L)-ramp secret
sharing scheme such that the length of a sharenshand the
length of the randomization sequencenrsatisfy

nsh=
ns
t−z

, nr=
nsz

t−z
.

B. Achievability Scheme for Theorem 9

Coding scheme:Fixd∈Dand consider a fileFdsuch that
r
(F)
d =|Fd|=nd(td−zd). Then, Userdforms(Hl,d)l∈L
with a (td,zd,L)-ramp secret sharing scheme taken from
Theorem 11 applied toFd. By Theorem 11, forl∈L,the
length of a share is|Hl,d|=

|Fd|
td−zd

=nd, and the length of

the randomization sequence isnr=
|Fd|zd
td−zd

=ndzd. Hence,

since|Kd,l|=nd,l∈L,Userdcan formMd,l Hl,d⊕Kd,l
and publicly send it to Serverl,where⊕denotes bitwise
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modulo-two addition. Upon receivingMd,l,Serverlstores
Sl,d Kd,l⊕Md,l=Hl,d.
Resources needed:Ford∈D,l∈L, the length of the

randomization sequence at Userdisr
(R)
d =nr=ndzd,the

length of the public communication from Userdto Serverl

isr
(M)
d,l =|Md,l|=nd, and the storage needed at Serverlis

r
(S)
l = d∈D|Md,l|= d∈Dnd.
Analysis of recoverability:Ford∈D, consider an arbitrary

subsetA⊆Loftdservers that pool their information, they
then have access to(Sl,d)l∈A =(Hl,d)l∈A such that by
Theorem 11,H(Fd|(Hl,d)l∈A)=0since|A|=td.
Analysis of security:Ford∈D, consider an arbitrary subset

U⊆Lofzdcolluding servers. Then, we have

I(FZd;MD,KD,U)

(a)
=I(FZd;MZd,KZd,U)

+I(FZd;MZcd,KZcd,U|MZd,KZd,U)

(b)
=I(FZd;MZd,KZd,U)

(c)
=I(FZd\{d};MZd\{d},KZd\{d},U)

+I(FZd\{d};Md,Kd,U|MZd\{d},KZd\{d},U)

+I(Fd;MZd,KZd,U|FZd\{d})

(d)
=I(FZd\{d};MZd\{d},KZd\{d},U)

+I(Fd;MZd,KZd,U|FZd\{d})

≤I(FZd\{d};MZd\{d},KZd\{d},U)

+I(Fd;MZd,KZd,U,FZd\{d})

=I(FZd\{d};MZd\{d},KZd\{d},U)+I(Fd;Md,Kd,U)

+I(Fd;MZd\{d},KZd\{d},U,FZd\{d}|Md,Kd,U)

(e)
=I(FZd\{d};MZd\{d},KZd\{d},U)+I(Fd;Md,Kd,U)

(f)

≤
i∈Zd

I(Fi;Mi,Ki,U)

(g)
=
i∈Zd

I(Fi;HU,i,Mi,Uc,Ki,U)

=
i∈Zd

[I(Fi;HU,i)+I(Fi;Mi,Uc,Ki,U|HU,i)]

(h)
=
i∈Zd

I(Fi;Mi,Uc,Ki,U|HU,i)

=
i∈Zd

[I(Fi;Ki,U|HU,i)+I(Fi;Mi,Uc|HU,i,Ki,U)]

(j)
=
i∈Zd

I(Fi;Mi,Uc|HU,i,Ki,U)

≤
i∈Zd

I(Fi,HUc,i;Mi,Uc|HU,i,Ki,U)

=
i∈Zd

[H(Mi,Uc|HU,i,Ki,U)

−H(Mi,Uc|Fi,HUc,i,HU,i,Ki,U)]

≤
i∈Zd

[|Mi,Uc|−H(Mi,Uc|Fi,HUc,i,HU,i,Ki,U)]

(k)
=
i∈Zd

[|Mi,Uc|−H(Ki,Uc|Fi,HUc,i,HU,i,Ki,U)]

(l)
=
i∈Zd

[|Mi,Uc|−H(Ki,Uc)]

(m)
=0,

where (a) holds by the chain rule and Zcd
denotes the complement of Zd in D, (b) holds
because I(FZd;MZcd,KZcd,U|MZd,KZd,U) ≤ I(FZd,
MZd,KZd,U;MZcd,KZcd,U) = 0,(c)holds by the chain
rule applied twice,(d)holds because I(FZd\{d};Md,
Kd,U|MZd\{d},KZd\{d},U) ≤ I(FZd\{d},MZd\{d},
KZd\{d},U;Md,Kd,U)=0,(e)holds becauseI(Fd;MZd\{d},
KZd\{d},U,FZd\{d}|Md,Kd,U)≤I(Fd,Md,Kd,U;MZd\{d},
KZd\{d},U,FZd\{d}) = 0,(f) holds by iterating
the steps between(b) and (e),(g) holds because
Mi = (Mi,Uc,Mi,U) = (Mi,Uc,(Hl,i⊕ Ki,l)l∈U),
(h)holds becauseI(Fi;HU,i) =0by Theorem 11 and
since|U|= zd ≤ zifor anyi∈Zd,(j)holds because
I(Fi;Ki,U|HU,i)≤I(Fi,HU,i;Ki,U)=0,(k)holds because
Mi,Uc=(Hl,i⊕Ki,l)l∈Uc,(l)holds by independence between
Ki,Uc and(Fi,HUc,i,HU,i,Ki,U),(m)holds because by
uniformity ofKi,Uc,H(Ki,Uc)=|Ki,Uc|=|U

c|ni=|Mi,Uc|
for anyi∈Zd.

APPENDIXG
PROOF OFTHEOREM10

The achievability scheme presented in the proof of
Theorem 9 provides a

2r
(F)
d

d∈D
,2r

(R)
d

d∈D
,2r

(M )
d,l

d∈D,l∈L
,2r

(S)
l

l∈L

private file storage strategy that(t,z)-achieves r
(F)
d

d∈D
such that for anyd∈D

r
(F)
d =nd(td−zd), (29)

r
(R)
d =ndzd, (30)

r
(M)
d,l =nd,∀l∈L, (31)

l∈Lr
(M)
d,l =Lnd, (32)

r
(S)
l = d∈Dnd,∀l∈L. (33)

Next, by (29) and (7), we haver
(F)
d, (t,z) =nd(td−zd),

∀d ∈ D. By (30) and (11), we haver
(R)
d, (t,z) =

ndzd=
zd
td−zd

r
(F)
d, (t,z),∀d∈D. By (32) and (9), we have

r
(M)
d,Σ,(t,z)=Lnd=

L
td−zd

r
(F)
d, (t,z),∀d∈D. By (33) and

(8), we haver
(S)
d,l,(t,z)= d∈Dnd,∀d∈D,∀l∈L.Assume

that (6) holds, by (31) and (10), we haver
(M)
d,l,(t,z)=nd=

1
td−zd

r
(F)
d, (t,z),∀d∈D,∀l∈L.
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