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Quantifying the Cost of Privately Storing Data
in Distributed Storage Systems

Rémi A. Chou

Abstract— Consider a user who wishes to store a file in multiple
servers such that at least ¢ servers are needed to reconstruct the
file, and =z colluding servers cannot learn any information about
the file. Unlike traditional secret-sharing models, where perfectly
secure channels are assumed to be available at no cost between
the user and each server, we assume that the user can only send
data to the servers via a public channel, and that the vser and
each server share an individual secret key with length n. For a
given n, we determine the maximal length of the file that the
user can store, and thus quantify the necessary cost to store a
file of a certain length, in terms of the length of the secret keys
that the vser needs to share with the servers. Additionally, for
this maximal file length, we determine (i) the optimal amount of
local randomness needed at the uwser, (ii) the optimal amount of
public communication from the user to the servers, and (jii) the
optimal amount of storage requirement at the servers.

Index Terms—Secret sharing, information-theoretic security,
secure distributed storage.

I. INTRODUCTION

ENTRALIZED data storage of sensitive information

could mean compromising the entirety of the data in the
case of a data breach. By contrast, a decentralized storage
strategy can offer resilience against data breaches and avoid
having a single point of entry for hackers. Well-known decen-
tralized strategies are able to ensure that if a file is stored in L
servers, then any ¢ < L servers that pool their information can
reconstruct the file, whereas any ¢ — 1 compromised servers
do not leak any information about the file in an information-
theoretic sense. For instance, secret sharing [2], [3] solves
this problem with the optimal storage size requirement at
each server. Specifically, to store F' bits over L servers, the
best possible storage strategy, that allows reconstruction of the
information from ¢ < L servers and is resilient against data
breaches at ¢+ — 1 servers, requires storing LE bits over the
L servers. In secret sharing models, the user who wishes to
store a file in the servers corresponds to the dealer, the file
corresponds to a secret, and the information stored at a given
server is called a share of the secret. Applications of secret
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sharing to secure distributed storage have been extensively
studied for a wide range of settings, e.g., [4]-{12]. Note that,
as motivated in [13]-[16], the servers could also correspond to
independent cloud storage providers, as it is often less costly
for businesses and organizations to outsource data storage but
cloud storage providers lack reliable security guarantees and
may be the victims of data breaches.

Since the user and the servers are not physically col-
located, a standard assumption in secret sharing models
[2], [3], [17]-20] is the availability of individual and
information-theoretically secure channels between the user and
each server, that allow the user to securely communicate a
share of the secret to each server. In this paper, we propose
to guantify the cost associated with this assumption. Specifi-
cally, instead of assuming the availability at no cost of such
information-theoretically secure channels, we assume that the
user can communicate over a one-way public channel with
each server, and that the user and each server share a secret
key, which is a sequence of n bits uniformly distributed over
{0,1}". Then, for a given n, we determine the maximal length
of the file that the user can store. Given this relationship
between n and the maximal length of the file, one can thus
determine the necessary cost to store a file of a given length,
in terms of the length of the secret keys that the user needs
to share with the servers. Furthermore, we are also interested
in minimizing (i) the amount of additional resource locally
needed at the user, i.e., local randomness needed by the user
to form the shares that will be stored at the servers, (ii) the
amount of public communication between the user and the
servers, and (iii) the cost of file storage, i.e., the amount of
information that needs to be stored at the servers.

The most challenging part of this study is proving the
converse results on the maximal length of the file that the user
can store, the optimal amount of local randomness needed at
the user, and the optimal amount of public communication
between the user and the servers. Unlike in traditional secret-
sharing models, in our converse, we need to account for
the presence of shared secret keys, public communication
available to all parties, and the fact that the creation phase of
the shares and the secure communication phase of the shares
to the servers are allowed to be jointly designed in our model.
Note that these two phases are independeni in traditional
secret-sharing models, which only focus on the creation phase
of the shares since the secure communication phase of the
shares relies on the assumption that information-theoretically
secure channels are available at no cost. Finally, we establish
achievability results that match our converse results using
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Fig. 1. Traditional secret sharng settings rely on the assumption that
individual and information-theoretically secure channels between each server
and the user are available at no cost.

Server L

ramp secret sharing schemes [21], [22]. Specifically, we prove
the optimality of an achievability scheme that separates the
creation of the shares using ramp secret sharing schemes and
the secure communication of the shares to the servers via one-
time pads.

The remainder of the paper is organized as follows.
In Section II, we describe in an informal manner our setting
and the objectives of our study. This section also compares our
setting to traditional secret sharing settings and reviews some
known results. In Section III, we formally state the problem.
In Section IV, we present our main results. In Section V,
we extend our setting and results to a multi-user setting.
Finally, in Section VI, we provide concluding remarks.

II. PROBLEM MOTIVATION AND COMPARISON WITH
TRADITIONAL SECRET SHARING

Consider one user who wishes to store a file F in L servers,
indexed in £ £ {1,...,L}, such that any ¢ servers that
pool their information can reconstruct F' and any = colluding
servers cannot learn any information about ¥, where ¢ and =
are chosen in {1,...,L} and {1,...,¢ — 1}, respectively.

In a traditional secret sharing setting, the user encodes the
file F into L shares (Sy,...,5;) and transmits the share 5;
to Server [ € £ via individual secure channels (available at no
cost) between the user and each server. The setting is depicted
in Figure 1 and the requirements are formalized as

YT C L,|T| >t — H(F|Sr) = 0 (Recoverability),
VU C LU <z = I(F;Su) =0 (Security),

where we have defined St 2 (S )7, ¥T C L. In this setting,
the following questions arise.

1} What is the minimum size of an individual share S,
le?

2) What is the minimum size of all the shares (5;)cc
considered jointly?

3) What is the minimum amount of local randomness
needed at the encoder to obtain shares with minimum
size?

These questions have all been studied in the literature. It is
well known, e.g., [23], [24], that designing shares that sat-
isfy 3 .. H(S:) = tf—_zll'-l’{F] is optimal, and the minimum
amount of local randomness needed to achieve this optimal
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Fig. 2. In our setting, individual and information-theoretically secure chan-
nels between each server and the user are replaced by a public communication
channel and pairs of secret keys between the user and the servers. One of our
main ohjectives 1s to charactenze the minimum key lengths needed for a given
file size.

bound is - H(F). Moreover, under the additional assump-

t—

tion that

T CLz<|T| <t = H(F|ST)= :TTH{F]‘-
then [24] showed that, for individual shares, having H(5;) =
ﬁH{F], I € L, is optimal.

In this paper, we wish to quantify the cost associated with
the assumption that individual secure channels are available
between the user and each server. To this end, we replace
these individual secure channels by a public channel between
the user and the servers and assume that the user shares with
Server | £ £ a key K; with length n. The key length n aims
to quantify the aforementioned cost. Let M; be the public
communication of the user to Server I, M £ (Mj)cc be
the overall public communication, and 5; be the information
stored at Server | after the public communication happened.
Owr setting is depicted in Figure 2 and the requirements are
formalized as

WT CL|T| =t = H(F|S7) = 0 (Recoverability),
VU C LU =z = I(F; M, Ky) = 0 (Security),

where we have defined S+ 2 (Si)ier. K1 £ (KiieT,
WIT C L. Note that the servers may only store a function of
the public communication. Additionally, the creation phase of
the shares and the secure communication phase of the shares
to the servers are allowed to be jointly designed, unlike in
traditional secret sharing, where the creation of the shares is
independent of their secure communication to the servers due
to the availability of secure channels. Note also that the public
communication M now needs to be accounted for information
leakage about the file F' in the security constraint. In our study

we ask the following questions.
1) What is the maximal length for the file F that the user

can store for a given key length n? Let us denote this
maximal length by riF

2) What is the minimal amount of local randomness needed
at the user to achieve rE,F} 7
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3) For a given | € £, what is the minimal storage size
needed at Server [ for the user to achieve rE,F} 7 In other
words, what is the minimal size for 5;7

4) For a given [ € £, what is the minimal amount of public
communication M; to Server [ needed for the user to
achieve riF) ?

5) What is the minimal amount of overall public commu-
nication (M;);=r needed for the user to achieve r. {F) 9

II1. PROBLEM STATEMENT

Notation: For any a,b € N*, define [a.b] & [a,b] N H.
For any = € R, define [I]+ = max(0, =). For a given set &,
let 25 denote the power set of S. Finally, let X denote the
Cartesian product.

Consider L servers indexed in £ £ [1,L] and one user.
Assume that Server [ £ £ and the user share a secret key
K; € K £ {0,1}", which is a sequence of n bits uniformly
distributed over {0,1}". The L keys are assumed to be jointly
independent. For any ¥ C £, we use the notation Ky £
(Ky)yey-

ae L () rl=)

Definition 1: A (2 .2 (T )H (2 )M)
private file storage strategy consists of

« Afile F owned by the user, which is uniformly distributed
over F £ {0, 1}"{” and independent from the keys K,
(the superscript (F') stands for File);

« A sequence of local randomness I owned by the user,
which is uniformly distributed over R 2 {0,1}"" and
independent from all the other random variables (the
superscript (1) stands for Randomness);

« L encoding functions h; : R = K = F — M), where
le £, and M; 2 {0,1}7"" (the superscript (M) stands
for Message);

« L servers with storage space r:s: bits for Server l € £
(the superscript (5 stands for Server);

« L encoding functions g; : M; = K — &, where | € £,
and S; £ {0,1)717;

« 2¢  decoding functions
ACL;

and operates as follows:

1) The user publicly sends to Server [ € £ the message
M; & h(R,K;,F). For Y C L, we define My £
(Mj)icy. For cunvenience we also write M £ M.

2) Server | € L stores §; £ g (M, K;). N

3) Any subset of servers 4 C £ can CDII'IpI]lE F(A) £

_f_rq : ><IE_ASI — :F,. where

fa(54). an estimate of F', where S4 2 (S
The setting is depicted in Figure 2.
Definition 2: Fix ¢+ ¢ [L,L], = € [lL.t — 1].
Then, r'¥) is (t,z)-achievable if there exists a

FF) opR] (oplM) e .
2 (2 )IEL.. (2 1 )ieﬂ) private file storage
strategy such that
YACL,|A =t = H(F|F(A)) =0 (Recoverability),
(1
(2)
The set of all achievable lengths +'*) is denoted by Cr(t, z).

VU C L, |U| < z = I(F; M, Ky) = 0 (Security).

T4E7

(1) means that any subset of servers with size larger than or
equal to t is able to perfectly recover the files F', and (2) means
that any subset of servers with size smaller than or equal to
z is unable to learn any information about the file. Note that
{(2) accounts for the fact that colluding servers have access to
the entire public communication M.

Our main objective is to determine, under the constraints (1)
and (2), the maximal file length that the user can store in
the servers given that the secret keys shared with the servers
have length n. Next, another of our objectives is to determine
(i) the minimum amount of local randomness needed at the
user, (ii) the minimum storage requirement at the servers, and
(iii) the minimum amount of public communication from the
user to the servers that are needed to achieve the largest file
rate in Cp(t, z). To this end, we introduce the following defi-
nition.

Definition 3: Fix t € [1,L], = € [1,¢—1]. For
ri¥) in Cp(t,z), let Q(r'¥)) be the set of tuples
T & (T[R:I,{TEM}]ieﬂ_,{rES:IhEﬁ) such that there exists a

rF) oplR) (M) e .
(2 , 2 ..(2 1 ):e:: , (2 I )IEL) private file storage
strategy that (t, z)-achieves r'*). Then, define

tz) 2 sup 0,
riFlelp(tz)
)2 wf el

Te@(ri (t.z))
TR I )
' Te@(ri™ .20 11

R -
Otz i o,
TeQir. “(t,z))
22 wf P leL

Te@(ri (t.z))

rif)(t,z) is the largest file size that the user can pri-
vately store under I‘he constraints (1) and (2). Then,
rO(t,z), v (t,2), T8y (1, 2), and 13 (t,2), | € L, are
the minimum amount of local randomness, the minimum
amount of public communication to Server I, the mini-
mum amount of public communication to all the servers,
and the minimum storage size required at Server I, respec-
tively, needed for the user to achieve ripj{t,z]. Remark
that, a priori, it is unclear whether all these quantities
can be achieved simultaneously, i.e., whether there exists

a Er{_"’[t,zjjgrim{t,z} (Er,,”]{r,z.}) (Erﬁ}[t z.:l) )ﬁlﬂ
iE.ﬂ el

storage strategy that (¢, z)-achieves r,, {t z).

IV. MAIN RESULTS
In Section IV-A, we prove impossibility results. Specifically,
we first derive an upper bound on the maximum file length
[FJ{E z). Then, assuming that the user stores a file of length
riF (t, =), we deme lcrwer bounds on the minimum amount of

loca] randomness 'r* {t z) needed at the user, the minimum
amount of public cnmmumcalmn needed to each individual

server from the user, ie., riE . |tz), I € L, the minimum
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amount of public communication needed to all the servers
from the user, i.e., rglli}{t,z], and the minimum storage size
needed at Server [ € L, ie. r,, (t,z). In Section IV-B,
we prove an achievability result that matches all the bounds
found in Section IV-A.

A. Impossibility Results

Theorem 1 {Converse on the File Length): Let t € [1, L]
and z € [1,£ — 1]. Then, we have

rE,F:'{t.. z) < nft— z).
Progf: Set D) =1 in Appendix A. |
Theorem | means that it is impossible for the user to
store a file of length larger than n(t — =) bits. The proof of
Theorem 1 is obtained by first upper bounding the file length
by I(K 4; K- |Ky) for any A.l{ € L such that 4] = ¢,
|| = =, and If .4 using Definition | and the constraints (1)
and (2). Theorem 1 is then obtained from this upper bound
by leveraging the independence of the secret keys.
Theorem 2 (Converse on Storage Size Requirement at the
Servers): Let t € [1, L] and z € [1,¢ — 1]. Then, we have
ry (z) 2 n,Vl € L.

Progf: Set D) =1 in Appendix B. [ ]
Theorem 2 means that Server [ € £ needs a storage capacity
of at least n bits, and is obtained by considering the fact that,
at the beginning of the protocol, each server needs to store its
secret key.

Thearem 3 (Converse on the Total Amount of Public Com-
munication to the Servers): Let t € [1, L] and 2z € [1,¢ — 1].
Then, we have

L
i (£2) = mrimif: z).

Progf: Set D) =1 in Appendix C. |
Theorem 3 means that it is impossible for the user to
store a file of length riF:'{t,z] if the public communication
sum-length to the servers is smaller than %riﬂ{t,z] bits.

The proof of Theorem 3 is obtained by first showing that for
T CLand & C L\T such that |T| = z and |S§]| =t — =z, the
sum of the message sizes for the servers in & is lower bounded
by H(F'). Then, Theorem 3 is obtained by a combinatorial
argument that consists in summing this bound over all possible
sets of servers S and T as above.

Theorem 4 (Converse on the Amount of Public Communica-
tion to an Individual Server): Let t € [1, L] and z € [1,£—1].
Consider the following condition

WU VEL,U| = V| = T(F; My, Kuy)=I(F;My,Ky).
(3)

{3) indicates that any two sets of colluding servers that have

the same size have the same amount of information about the
file . If (3) holds, then we have

(M)
TI,*

Progf: Set ) =1 in Appendix D. |

(t2) > (65 e L.
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Note that (3) is always true for sets with cardinality smaller
than or equal to = by (2), and for sets with cardinality larger
than or equal to ¢ by (1). Note that the concept of leakage
symmeltry also exists in the context of secret sharing under
the denomination uniform secret sharing [25].

Under the leakage symmetry condition (3), Theorem 4
means that it is impossible for the user to store a file of length
rE,FJ{t, z) if the public communication length to Server [ € £
is smaller than ;_r\"’ (¢, z) bits. Theorem 4 is obtained by
first proving a lower bound on individual public message size
that depends on the leakages associated with some sets of
servers, specifically, we prove that the [iub]'}r: message size for
Server | € L is lower bounded by ¥} 20051 — e — e s0] T,
where for i € £ and & C £ such that |§| = 4, we have defined
¥y El I{F; Ms,Ks] and [+ 5% | = oy, T]'lﬂl'j, we pf:l'fﬂﬂl'l
an optimization over all possible values of (o) ryq) to
minimize this bound and obtain Theorem 4.

Theorem 5 (Converse on the Amount of Reguired Local
Randomness at the Users): Let t € [1,L] and 2 € [1,¢ — 1].
Then, we have

Tiﬂ}{t,z] > tirim{t,z].
—

Proof: Set D) =1 in Appendix E. [ |
Theorem 5 means that it is impossible for the user to
store a file of length rim{t..z} if the amount of its local
randomness is smaller than Ej—zrim{t.. z) bits. The proof
of Theorem 5 is obtained by first proving the bound
Yies H(My, Ki|My,Kv) 2 H(F) + . H(K)) for §
L\(T U V) such that |§| = t — =z with V C L such that
V| = z and T C LAV such that |T| = =z — |V|. Then,
by a combinatorial argument that consists in summing this
bound over all possible sets & and 7 as above, we obtain
Theorem 3.

B. Capacity Results

We first derive an achievability result with a private file
storage strategy that separates the creation of the shares, which
is done via ramp secret sharing [21], [22], and the secure
distribution of the shares, which is done via a one-time pad.
We will then compare the bounds achieved by this coding
strategy with the impossibility results of Section IV-A, to prove
their optimality.

Theorem 6: Let ¢ € [1,L] and =z € [1, — 1]. There exists

rlFl opiR) phM 5 .
a (2 LT (2 1 )IEL.. (2 1 )IEL) private file storage
strategy that (£, z)-achieves r**) such that

riF) — n(t —2),

rif) = nz,

i —nvleL,

M —n Wl eL.
Proaf: Set D =1 in Appendix F. |
From Theorem 6 and the impossibility results of

Section IV-A, we obtain a characterization of the guantities
introduced in Definition 3 as follows.
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Theorem 7: Let t € [1,L] and =z € [1,# — 1]. We have

[F:I

(t,z) =nl(t —z),
:'I[f z) = nz,
r}fhzf z)=nN¥l €L,
riy (t,2) = In,
3) — (ri* (£,z) = n,VI Eﬁ).

Progf: Set D) =1 in Appendix G. |
MNote that from Theorem 6 and Theorem 7, we immediately
have Corollary 1, which states that the optimal quantities of
Definition 3 can be obtained simultaneously by a single private
file storage strategy.
Corollary 1: Lett € [1,L] and z € [1,# — 1]. There exists

(2 (), ),

strategy that (¢, z)-achieves 'F) such that

private file storage

iFy _ [F}{t.z’},

n(t,2),
) =P (t,z), Ml € L,

[M
E:e:: )= Tz *}{t z),

rM) [M}{t z),¥l € £, when (3) holds.

Results interprelaunn. Consider, € £, and 2z € [1,£ — 1].
Assume that the user shares an individual key with length n
bits with each server. Then, the user can store a file of size
at most n(t — z) bits such that any set of servers larger than
or equal to ¢ can reconstruct the file, and any set of servers
smaller than or equal to = cannot learn anything about the
file. Moreover, if the user stores a file of length n(t — =)
bits, then the optimal storage capacity at each server is n bits,
the optimal amount of local randomness needed at the user is
n x z bits, and the optimal amount of public communication
from the user to all the servers is L x n bits. If one assumes
that the leakage about the file must be symmetric among the
servers, i.e., (3) holds, then the optimal amount of public
communication from the user to Server [ £ L is n bils.

MNote that Corollary 1 shows that there is a linear relationship
between the maximal length of the file that can be stored and
the three resources key length, local randomness, and public
communication. This relationship is represented in Figure 3.

-
AR _

V. EXTENSION TO MULTIPLE USERS

In this section, we generalize the problem statement and
results of Sections II1 and IV, respectively, to the case where
D = 1 users wish to store files in the servers.

A. Problem Statement

Consider L servers indexed by £ £ [1,L] and D users
indexed by D £ [1, D]. Assume that Server [ € £ and User
d € D share a secret key Kg; € Kg = {0,1}"«, which is a
sequence of ng bits uniformly distributed over {0,1}™. All
the D x I keys are assumed to be jointly independent. For any

T4E9

Four-dimensional space
(file length, key length, local randomness, public communication)

i 2(1,0,0,0), v£(0,1,z,L)

n[,[ z:] L .............................................................. ;'.'
o
- i
- ;
ift=2z) » » |
##“"
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Fig. 3. Lincar relationship between the maximal length of the file that

can be stored and the three resources key length, local randomness, and
public communication. For instance, for ¢ € M, storing a file of it — z)
bits requires i-bit keys, i % z bits of local randomness, and i % L bits of
public communication.

X g ID! .]“;I E ﬁ! we define KX.:}? 2 {KIJ.I]IEI,'UE}? ﬂ.ﬂdi for
convenience, we also write Ky £ K {a},y for any d € D.

Definition 4: A ((T{”)deﬂ’ (?"E‘ﬂ}) 4D’

,.{MJ ri®) .

(2 )dE’D rec! (2 )IEL) private file storage sirategy
consists of

« D independent files Fy, d = T, where File Fy is
owned by User d and is uniformly distributed over
Fa 2 {0,175 The files (Fy)sep are assumed inde-
pendent of the keys Kp r;

« D independent sequences of local randomness Ry,
d € D, where Sequence Hy is owned by User d and
is uniformly distributed over Ry 2 {0,1}7 . The
sequences (H;)g-p are assumed independent of all the
other random variables;

» D% L encoding functions kg : Ra = Ka = Fg — May,
where d € D, I € £, and Mg, 2 {0, 1}‘"5:“:”;

« L servers with storage capacities T: ) bits for Server
leL;

» Lx D encoding functions g g : Ma % Ka — & g, where
l €L, deD, and the § 4 are such that XaepSia =

(=)
{0,1}7 7

« 2L % D decoding functions fa 4
where ACL, deD,

and operates as follows:

1) User d E D publicly sends to Server [ € £ the message
M & hd:'[Rd Ko, Fy). For ¥ € D, Y C L
we define My y = {Md LdeXx IsV ami for convenience,
we also write My £ My r and Mg & My c.deD.

2) Server | € L stores (Spq)qep where ford € D, S 4 2
gral Mg, Kay). N

3) Any subset of servers A C £ can compute Fy(A) £
fa,d(S4.4), an estimate of Fz, whered € D and S4 4 2

: KieaSia — Fu,

(Std)ica-
Definition 5: Let t £ (tg)aep € [1,L]F and
Z £ (2a)aep € Xaep[lta — 1]. length-tuple

Authorized licensed use limited to: WICHITA STATE UNIWERSITY LIBRARIES. Downloaded on Movemnber 09,2022 at 18:26:28 UTC from IEEE Xplore. Resirictions apply.



7490

(rf?)dw is  (t,z)-achievable if there exists a

() ) () e (),

private file storage stratepy such that

Vd e D, (VACL,|A| = ta — H(FulFa(4) =0),

vd € D, (MUCL,IU| <20 — I(Fz,; Mp,Kpu) =0),
(3)

where for d € D, we have defined Z3 £ {i € D : z > 24}
and Fz, £ (Fy)icz,. The set of all achievable length-tuples
is denoted by Cr(t, z).

{4) means that any subset of servers with size larger than or
equal to t; is able to perfectly recover the file Fy, d € T, and
{3) means that any subset of servers with size smaller than
or equal to zz is unable to learn any information about the
files {F; : 1 € D,z > zg}. Similar to the case D = 1 in
Section 111, we have the following counterpart to Definition 3.

Definition 6: Let t £ (tg)gep € [L,L]” and z £
(z4)dep € Xde‘Dllg.td - 1] For r'Fl & (TIEIF))
in Cp(t,z), let Q(r'*) be the set of wmples T £

() (M) (=) .
({Td Jaep, (ra;  )aepiaec, (1 };E,.g) such that there exists

(O ier O aeo O ) sepsec ()
dE'D deD dEE",iEL el

private file storage strategy that (t, z)-achieves r'¥’. Then, for
any d € T, we define the following quantities:

del

{F){t ] sup rLF:',
FFIECH(t,2)
M) . M)
. t.z mf r Jdel,
.t 2) 2 Teorwy

:rff] =rf:1_} (t,=)

mnf
TeQ(riF)
m_,.u}“_ =)

M
o (t,z) 2

(1) (R}
Ty, (LE) = inf T
dl*{ ] ] TEQ{I‘{F}) H]
:rEII-‘]=,-E'_}|:t.,s}
Ej . Ej
i, (t,z) 2 Teé?f’{”) S leL.

:#P) =P (t,2)

r'[:;:'{t, z) is the largest file size that User d £ T can privately
store under the constraints {4) and (5). Tllf:n, rim{t z),
M M
raga(6,2), Ty, (t,2), and g}, (t,2). | € L, are the
minimum amount of local randomness, l]lf: minimum amount
of public communication to Server [, the minimum amount
of public communication to all the servers, and the minimum
storage size required at Server [, respectively, needed for
User d to obtain r"[ﬂ}{t,z]. A priori, it is unclear whether

it is possible to simultaneously obtain ( im{t z})d D’
E
i.e., whether (Td*'[t ]) £ Crit,z). We will show

that it is actually pocsmbfe We will then study whether
i (t,2), ry L (t,2), and r§3,(t,2), d € D, I € L, can be

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

simultaneously  obtained in  the  achievability of
(riij{t.. z})dep with a single coding scheme.
B. Results

In the following theorem, we state impossibility resulis that
are counterpart to the results in Section IV-A for the case
D=1

Theorem 8: Let t £ (tg)aep € [L,L]P and z £
(za)aep € Xaep|l,ta — 1]. Consider the following leakage
symmetry condition

vd €D, (WU, V C L,
| =|V| = I(Fas; Map, Kape) =1 (Fa; My v, Kay)) .

(6)
Then, for any d € D, we have

ra? (6,2) < nalta — za), (7
rira(t:2) =Y na Ve L, (®)

deT

L
rhw, (t,2) = — i) (t,2), (9

tg — 24

1
(6) = rip(t,2) > Hrﬁ'( z)LvWlel, (10)
oy (62) 2 ===} (t,2) (1

{T) is proved in Appendix A and means that it is impossible
for User d € T to store a file of length larger than ng(ts —za4)
bits. (8) is proved in Appendix B and means that Server
I € L needs a storage capacity of at least 3, png bils.
(9) is proved in Appendix C and means that it is impossible
for User d € D to store a file of length r\")(t, ) if the
public communication sum-length to the servers is smaller
than —£—r")(t,2) bits. (10) is proved in Appendix D and
means that, under the leakage symmetry condition (6), it is
impossible for User d £ T to store a file of length rﬂj (t,z)
if the publx: communication length to Server [ £ L is smaller
than 1 =74, *}{t z) bits. (11) is proved in Appendix E and
I'IIEEIIIS that it is impossible for User d € T to store a file
of length rLT (t,z) if the amount of its local randomness is
smaller than H“j—rw}{t z) bits.

We now give a counterpart to Theorem 6 for the case
I} =1 with the following achievability result.

Theorem 9: Let t £ (tg)aep € [1,L]P and
z 2 (za)gep € Xaep[l,ta — 1]. There exists a

((Erm)den (Tm])dezr (T{M])den,:ec (Erm)ieﬂ)

private file storage strategy that (t,z)-achieves (rLFJ)d D
such that, for any d € D, E

F
TEI ) nglty — z4),

il"[R::I =T
d = MdZd,
) = Yaepna VI € L,
roy = na,Vl € L.
Proaf: See Appendix F. |
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Then, similar to Theorem 7 and Corollary 1 for the case
I =1, we deduce the following results. Theorem 10 provides
a characterization of the quantities introduced in Definition 6,
and Corollary 2 shows that the optimal quantities of Defi-
nition 6 (defined for each individual user) can be obtained
simultaneously by a single private file storage strategy.

Theorem 10: Let t £ (tg)aep € [1,L]° and z £
(zd)acD € XdeD[l., tg — 1]. For any d € D, we have
ri (t,2) = nalta — za),
roy (t.2) = naza,
Tyt (t.2) =Y gepna, ¥l € L,
%, (t,7) = Lng,
(6) — (réﬂfil[t z) = ng, VI € E).
Progf: See Appendix G. [ ]
Corollary 2: Let t £ (tg)ager € [L,L]"

z 2 (za)aep € Xaep[l,ta — 1]. There exists

() ) ) e ) )

private file storage strategy that (t,z)-achieves (rEF ))d 5
such that, for any d € D, <

g =i (t2),
ry? = o (t.2),
i® =3 BV eL,
Yiee Téﬂf} =140, (t,2),
rM) 13 (¢ 7),V € £, when (6) holds.

V1. CONCLUDING REMARKS

We considered the problem of storing a file in L servers
such that any ¢ < I servers can reconstruct the file, and any
subset of = < ¢ colluding servers cannot learn any information
about the file. Unlike solutions that rely on traditional secret
sharing models, we developed a new model that does not make
the assumption that individual and information-theoretically
secure channels between the user and each server are available
at mo cost. Instead, we assume that the user can communicate
with the servers over a one-way public channel, and share
with each server a secret key with length », which is meant
to quantify the cost of privately storing the file. For a given
secret-key length » and parameters ¢ and =, we established the
maximal length of the file that the user can store. Additionally,
we determine in this case the minimum amount of local
randomness needed at the user, the minimum amount of public
communication between the user and the servers, and the
minimum amount of storage space required at the servers.
While our model allows a joint design of the creation phase of
the shares and the secure distribution phase of the shares, our
results prove the optimality of an achievability scheme that
separates the creation of the shares using ramp secret sharing
schemes and the secure distribution of the shares via one-time
pads. Finally, we discussed an extension of our results to a
multi-user setting.
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At least two generalizations of the problem setting can
be considered and remain open. In the first generalization,
the user and the servers communicate over noisy, instead of
noiseless, channels; partial results have been obtained in [26]
for this setting and constructive coding schemes have been
proposed in [27], [28]. In the second generalization, the user
and the servers have access to arbitrarily correlated random
variables instead of independent and uniformly distributed
secret keys; partial results have been obtained in this direc-
tion in [29]-{32] and constructive coding schemes have been

proposed in [33].

APPENDIX A
PROOE OF EQUATION (7)

Consider an  arbitrary ((T“])dep (griﬂﬁ)ﬁva

(2 {M])den,leﬁ‘ (ETEE])IEL) private file storage sirategy

that (t,=z)-achieves (rf})dep Fix d € 7D. Define

{d}* £ D\{d}. In the following lemma, using Definition 4
and the reliability and security constraints (4) and {5) from
Definition 5, we first give an upper bound on Td ) that only
depends on the secret keys.

Lemma I: Let A, l{ C L such that | 4| = £, |i{| = zg4, and
I < A We have

ry ) <I(Kp.a, Kaye.c; KaclKpu)-
Proaf: We have
{F‘}

© e

= H(Fy|Mp,Kpu) + I{Fa; Mp, Kpu)

(&)

< H(Fa|Mp, Kpu) + I(Fz,; Mp, Kp 1)

2 H(Fyg|Mp,Kp )

— I(Fy(A); Fa|Mp, Kpu) + H(Fs|Mp, Kpu, Fal A))

< 1(Fa(A); Fal Mo, Kp ) + H(Fa| Fal A))

© [(Fa(A); Fal Mp, Kp )

": I({Mp, Kp_g; Fa|Mp, Kpu)
D [(Kp a3 FalMp, Kp )
4 I{Kp_a: Myay=; Fa, Ma|Kp u)

(1)
< I{Kp_a, Fiaye, K{aje,c, R{ay: Ka,c, F, Ra| Kp 1)
@ I{Kp a, Flay=, Kyay=c; Ka,c, Fa|Kp )

+ KD A, Flay= Kyay= o5 Ra|Kpu, Ka o, Fa)

+ I(Ryq)=; Ka,c, Fa, Ra| KDy, KD Ay Flaye . Kyaye )

k
@ I{Kp s, Fiaye, Ky c; Ka o, Fa|Kp )

(£)
< I{Kp 4, Kjay=c; Kac|Kpu),

where (a) holds by uniformity of the files (Fy)g=p,
(b) holds by the chain rule and non-negativity of the
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mutual information, (c) holds by (5) because || = =zg,
(d) holds because conditioning reduces entropy, (e) holds
by (4) because |A| = tg (f) holds because Fy(A) is a
function of S 4 4. which is itself a function of (Mp, Kp_4).
(g) holds because I(Mp;FyMp,Kpu,Kpa) = 0.
(k) holds by the chain rule applied twice and non-negativity
of the mutual information, (i) holds because Mjg- is
a function of (Fig-, K Ld}: c:Byg)=) (with the notation
Fs £ (Fa)aes and Rs = (Ra)ses for any S C D), and

M; is a function of (Fy, K4, Ra), (j) holds by the chain
rule applied twice, (k) holds by independence between

Rigy- and (Kop_a, Fla)-, K{d)-.c, Ka,c,Fa, Ra, Kpu)
and by independence between Ry and
(Kp_as Flaye, K{ayec, Kac,Fa, Kpu), (I) holds by

applying twice the chain rule, independence between Fq-
and {KD.A‘. K{d}‘,.ﬂa Kd,ﬂ: Fd:a Kﬂ‘,“}!' and lﬂdﬂpﬂﬂdﬂﬂﬂﬂ
between Fd and {K‘D‘,_A:.K{d}=,£-.Kd,L:K‘D,H} similar to I:_‘,r:]l
and (k). [ |

Next, we simplify the upper bound of Lemma 1 using the
independence of the secret keys as follows.

Lemma 2: Let A,l{ C L such that |4| = tg, |I{| = 2z, and
I C A We have

I(Kp a: K gpe i Ka c|Kp ) < nalta — za).
Progf: We have

I(Kp 4 Kjay= ci Ka,c|Kpu)
= I{K'D,A; Kd,ﬂlKD,u‘} + I{K{d}c,.ﬁ Kd,ﬂ-lK'D,.,llK'D‘,u'}

(z}
< I{Kp a; Kac|Kpu)

+ HK aye o0 Kjaye as Kay= i Koo, Ka,a, Ka)
=I(Kp a; Kac|Kpu) + (K gy i Kac)
b
@ I(Kp_a; Kac|Kpyu)

E I(Kp,a: K gy 105 Ka c|Kau)
=K. Kac|Kau)

+ K (aye, 4, K (aye 03 Ka o | K, Ka_g)
< HKa a; Kac|Kap)

+ K aye 4. K qay=p0i Ka,o, Kagi, Ka 4)
d
@ I Kga: Kar|Kau)

@ H(Kg_4|Kaz)

L H(Kaaw)

D ng(ta — 2a),

where (a) holds by the chain rule applied twice and
non-negativity of the mutual information, (b) holds by inde-
pendence between the keys Kig}- £ and Ky ., (c) holds by
the chain rule and non-negativity of the mutual information,
(d) holds by independence between (K q}- 4, K {a}- 1) and
{Kd,ﬂ.l Kd#,Kd_rq}, {e} holds because 4 C L, {f} holds
because I{ C A, (g) holds because the keys Kg,. [ € A\U,
are independent and each uniformly distributed over {0, 1}™
and | ANY| = tg — z4. [ |
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Next, by combining Lemmas 1 and 2, we have
ry ) < malta — za). (12)

Finally, note that (12) is valid for any private file storage

) (F) .
strategy that (t, z)-achieves (rd o € Cp(t, z), so, in par-
ticular, (12} is valid for a file storage strategy that (t,z)-

achieves (T'[’F))d o where (rfj :')&ED £ Cp(t,z) is such
=
that 7y | = ry, (t,2).

APPENDIX B
PROOF OF EQUATION (8)

Server | £ £ must store the keys Kp; at the beginning of
the protocol. Hence, for any d € D, [ € £, we must have

g
rit.(t,2) > [Kp|

= Z K a,l

deD

=Y na.

deD

APPENDIX C
PROOF OF EQUATION (9)

Consider an  arbitrary ((2“"{“)IEI 5 (Er[ﬂ})ﬁv,
=

(g Ehf]) .(2‘";3]) private file storage strategy
deDlel’ leL

that (t,z)-achieves (r{ ) . Fix d £ 1. In the following
lemma, using Definition f and the reliability and security
constraints (4) and (5) from Definition 5, we first give a lower
bound on the sum of the entropy of the message (Mg i)ics
for sets & < £ with cardinality |S| = tg — za.

Lemma 3: For T C £ and § C £\7 such that |T| = z4
and |§| = t4 — z4, we have

> H(Mgy) > H(Fa).

s
Proaf: We have
S H(May)+ Y H(Kay)
=8 s
(2}
> Y H(Mag|Kag) + Y H(Kay)
=5 18
= H(Mgy,Kay)
les
(&)

> H(Mys, Ka5)

[g HMys, Kqs|MaT,KaT)

=I{Mas, Kas; Fa|MaT,KaT1)
+H(Mgs, Kgs|Fag Mag7, KaT)

= H(Fy|Myr1,Kar) — H(F3|Mys, Kys, My1,KaT)
+H(Mgs, Kgs|Fag Mag7, KaT)

(d)
> H(Fg|Ma7,Ka1) — H(F4|Ss0T )
+H(Mg s, Kas|Fy, Mg, Ka1)
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Y H(FaMur, Kax) - H(FFa(S UT))
+ H(Mgys, Kg5|Fa, Mg, Ka1)

— H(Fy) — I(Fag; Ma1, Ka 1) — H(Fa|Fa(SUT))
+ H(Mgys, Kg5|Fa, Mg 1, Ka1)

L H(Fy) - 1(F2,; Mp, Kp.x) - H(F|Fa(SUT))
+ H(Mgs, Kg s5|/Fa, Mg, Ka1)

L H(Fa) + H(My s, Kas|Fa,Ma1,Ka1)

2 H(Fy) + H(My s, K4 5|Fa, Ra, Ka1)

S H(Fa) + H(Kas|Fs, Re, Kar)

L H(F) + Y H(Kay),
les

where (a) and (c) hold because conditioning reduces entropy,
(b) holds by the chain rule and because conditioning reduces
entropy, (d) holds because Ss 4 is a function of (Mg s, Ka 5)
and St 4 is a function of (My7,Kg7). () holds because
f‘d{S UT) is a function of Ssur g (f) holds by the chain
rule and non-negativity of the mutual information, (g) holds
by (5) because |T| = z4 and by (4) because |S UT| = {4,
(k) holds because My is a function of (Fg, Rg, Ka1), (i)
holds by the chain rule and non-negativity of the entropy,
(7) holds because K4 s is independent from (Fg, R, Ka 1)
(since SN T = @) and because the keys (Kg;)ies are
independent. |

MNext, by summing both sides of the equation of Lemma 3
over all possible sets 7 C £ and & C £\T such that |T| = z4
and |§| = t4 — z4, we obtain a lower bound on the sum of the
entropy of all the message (M 1)icc.

Lemma 4: We have

L
D H(May) > H(Fy).
leL — Zd
Progf: We have
L
ta — z H(Fa)
[ﬂ}
Ta
td — Z4 Z Z H{Fd}
TCL sCTS
ITI=24 |8|=ta—2a
(&)
~t Ta Z Z ZH{M:H
4 TCL SCTE =S
ITI=24 |5|=ta—2a
ey L L —
= Td ( ) H{Md i}
tg — z4 'gﬁ. tg — zg — iEZT:
IT|=2a
@ _ L L—z3—1
C ta— z.:Td(td — g — 1) Z ZH{M::,:]
T’EE IET
IT|=L—
@ L L —zg— 1) ( L— )
- T H(M,
tg —zg d(td—zd—l L—z4— IEZ‘: { di:]'

7493
=) _H(May),
lel
where (a) holds with Ta 2 (2)7'(£73)7", (8) holds
by Lemma 3, (c) holds because for any I & T°,

H(Mgy;) appears exactly [L ““_1} times in the term

Y. scT= 2.es H(Mg,) (note that this observation was
|F]=ta
also mﬂiéd in [34, Lemma 3.2]), (d) holds by a change

of variables in the sums, (e} holds because for any [ £
L, H(My;) appears exactly (,“',) times in the term

> T P er H(May). u
|T|=L—za

Finally, we have

L (Fy (z) L
_ = —H(F,
fd—z‘drd tg — =g (Fa)
()
<Y H(May)
el
<38, (13)
lel

where (a) holds by uniformity of Fy, (b) holds by Lemma 4.
Since (13) is  wvalid for any private file
storage  strategy, (13) is also valid for a

()0 ) ) e (),

file storage strategy that (t,=z)-achieves ("'4{: })d . where
=
(—iFl)d P £ Cp(t,z) is such that 1r“7'J = rwj{t z) and

M
PtecT, Td ; T.E: E}*{ta z).

APPENDIX D
PrROOF OF EQUATION (10)

C ide bitr 21' ) Iﬂ})

e - ey (( deﬂ ( dE‘D:
,.{MJ (o) ]

(2 )depl,“ (2 )IEL) private file storage strategy

that (t,=z)-achieves ( riF) . Assume that (6) holds.

Fix d € D, 1 € L. By efelollmg the leakage symmetry
condition (6), we derive a first lower bound on the public

communication to a specific server in the following lemma.
Lemma 5: For i € [za,ta — 1], define V; £

[1.1] ifl =1 " .
{[l,t’ PN i< and Vy, =V, U{l}. Fori e L,
and S C L such that |S| = i, define o, 2 I{Fy: Mg s, Ka5)
and ay, 1 2 oy Note that o, only depends on i and not on the
specific elements of S by (6). Note also that o, = 0 by (5)
and cvy, = H({Fy) by (4). Then, we have

H(Mg,;) (14)

- 11::+2]+-

ta—1
= Z[2ﬂ1+1 — oy

1=z
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Progf: We have

H(Ma;) +H(Kay)

[E} H(Mga;) + H(Ka4|Ma,)

= H{Mg1, Ka1)

> H(Myy, KaglMay,, Kay,,)
< H(May, KaglMay. , Kay.,)

— H(May,, Kd.llMd,‘l-’gd Kaw,)
=S Tt H (M, Kag|May,, Kav,)
—H(May,Kai|May,,,, Kav,,,)]

d _
@ o) [H(Mag, Kag, FalMay,, Ka,)

—H (FalMy vy Kavoqy)
—H(Mg 1, Kap, Fa|Ma v, .. Kay. )
+H (FalMy v, uqys Ka v o }]
O St H(FalMay., Kap.)
+H(Ma, Ka|Fa, Ma v, Kav,)
—H(Fa|Mav.uqy, Kavoy)
—H(Fg|May,, ., Kav.,)
—H(Mg, Kgi|Fa, My v, Kay,,,)
+H (FalMy v, uqys Ka v o }]
= Z;“'Z: [—I(Fa; Mg v,, Kav;)
+H(Ma, Ka|Fa, Ma v, Kav,)
+I(Fa; Ma v.uqy, Kav.oqy)
+(Fy; My, ,, Kay,,,)
—H(Mg, Kgi|Fa, My v, Kay,,,)
—I(Fa; Mgy, uqy Koo )]

D) e

1
[211:+1 — Of — g4

+H{Md,h Kg|Fa, Ma v, Kav,)
_H{Md,h Kd,llpd: Md,'h’iude,ViH]]

(9]
= [Eﬂ:d — g1 T D41

+ H(May, Kag|Fa, May,,_,, Kay,, )|

+ Zﬁ;f[ﬂﬂﬁl — oy — auya)

(k)
= [Eﬂm — Oy —1 T Qg4

+ H(May, Kag|Fa, May, _,, Kay,, )"
e
e, — e, 1 + H(May, Kag|Fa, May,, 1, Kay,, .)]"
+ 3 e — o
loey — @ey—1 + H(May, Kai|lFa, Ma, 1 Kay,, )]
+ Zizﬂ[ﬂﬂsﬂ —ay — agya|t
© H(Myy, Koy Fa, May,, . Kav,, ,)
+ ZI{":;: [2ee 11 — o — auga]t

(
= H(Kq|Fa, Ma,, . Kav,, )

{}

— aupal*
[:I ]

(15)

+ Z:d—:: [2a51 — @y — asya]t
(m) !
{Kdile Rd Kd'h?*d 1}+ 2[2314.1 Eq_—ﬂ‘.;+g]+
I=zZa

H(Kg:)+ ZE‘I 1[2&“_1 —ay — ay4a|t,

where (a) and (b) hold because conditioning reduces entropy,
() holds because [ < Vi . (d) and (e} hold by the chain
rule, (f) holds by the definition of «,;, (g) holds because
for any i € [2q4,tq — 2], H(Ma, Kag|Fa, Moy, Kayv,) =

H{Md,l:Kd,iIFdfMd,v.-+1:Kd,'b-’.-+1} since CDDdiliDIliIlg
reduces entropy and W, Z Viy1. and because
H{Md,hKd,iIFdfMd,F.d:Kd,P‘d] = 0 since I £ V;d,
(h) holds becanse in (15), we observe that

H(Mg1, Kai|Ma v, Kav,) —  H(Ma;, Kqi|May,,,,

Kgv.,,) = 0 since conditioning reduces entropy and
v-g C p;+1, {'I-} holds because Q41 = g, = H{Fd}
by (4), (j) holds because a,, > @ ,-1 by the
definition of op, and oy, 3, (k) holds because

g, — g, —1 = [211;‘[ &I'd—l_ﬂtul+1] {E hﬂlds b}r the chain
rule and non-negativity of the entropy, (m) holds because
Mg v is a function of (Fy, Rg,Kqy,, ,). (n) holds by

tg—1
independence between Ky and (Fy, Ry, Kayv,, ,) since
{1}V =0 m
MNext, we remark that the lower bound of Lemma 5 is lower
bounded by
td—2d

mig 2 RFG+1) -~ 6~ G+ 2",

where the minimum is taken over the set J of all the functions
F i [lta —za + 2] — [0, H(F,)] that are non-decreasing
{(because, by construction, (oy)ie[1,2+1] 15 a non-decreasing
sequence) and such that f(1) =, =0, fitg — 24 +2) =
flta —za + 1) = ar, = H(Fy). In the following lemma,
we determine a lower bound for this optimization problem.
Lemma 6. For any f € F, we have
ty—Zg
Y R fE+1) - fE) - fGE+2] = {Fil' (16)
P’m&f Let f € F and let f* be the cum:ave emrelupe Df
fover [1,tg —za+2), ie., fori € [1,£g — 24 + 2], f¥(i)
min{g(i): g = f,gis concave}. Note that f+(1) = f(1) and
fr{ta—za+2) = f(ta—=zq+2). Then, for any i € [1,£3—=z4]
such that f{i +1) = f*(i + 1), we have

[2f(i+1) — f() — fFGE+2)F

22fE+1) - fl5) - fli+2)

— ) - fH(i+2)
2fF(i+1) - fHE) - fH(i+2), (7

where (a) holds because f+ > f, (b) holds because f(i +
1) = f*(i + 1). Moreover, for any i € [1,4 — z4] such that
fli+1)# fH{i + 1), we have

[2F(i+1) - f(i) - FE+2))F

=0

—2f*(i+1)

L[]
> 2f(i+1)
{ﬁ)

— ) - fH(i+2), (18)
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where the last equality holds because f* is linear between ¢ Then, we also have

and i + 2, ie, fHi+1)— fH(i) = fH(i+2) - fH{i +1).

Indeed, by contradiction, assume that f* is not linear between R (i + 2] ) hf{z +3) —hy(i+2)

i and i + 2, then, since f* is concave, we must have ®

FFE+3) - i+2)

fHi+2)+ 1)
3 .

ffi+1) > (19) < FHi+2) - FHi+1)

(d)
< fHi+2) - h(i+1)
© h(i42) — hy(i+1)

D pd i+ 1), 22)

Next, we have a contradiction by constructing h,, a concave
function such that f < h; < f%, as follows:

B 1) if j#i+1

: — + + . — . .

77 \max (LG £ 41)) ifj=i+1"  where (a) and (f) hold by definition of h2, (5) and (e)
hold by definition of hy, (c) holds by concavity of f*, (d)

& .

We have f < hi (Si.“.l:ﬂ f < f+:|1n and h-|_ - .f+ b}’ {]g) and hﬂlds_ bﬂcﬁu-sﬂ h{ < _f+. HE:I'H:E, h}r (Eﬂ}, (2:”, and {22),-.&.‘- 15

because fH(i+1) > f(i+1) (since f* > fand fH(i+1) £ non-increasing and we have thus proved (18) by contradiction.

f(i + 1)). Then, to show concavity of hy, it is sufficient to ~ 1Vexl, we have

show that h2 is non-increasing where h2* is defined as

SR G+ 1) - £6) - G+
hf‘:[[l,fd—zd+1]—>m E[ ]
i hy(j + 1) — hy(5). (a) *4—%a
SO > S RFGHD -0 - £+ 2)
For j € [1,i — 2] U [i +2,tq — 24 + 1], we have :,,, Z4
= Y (FFGE+D - FHE) - (FHE+2) - fFHE+ 1))
R (5 +1) < ki (5) (20) =1
=fH2) - )+ frta—za+2)— fHta—za+ 1)
by definition of h* and concavity of f*. Then, we have ® (2
© H(Fa)
B2 () 2 hy(i +1) — hai) = ta—za’
© k(i +1) - £7G) where (a) holds by (17) and (18), (b) holds because f+(tq —
_ . 2a+2) = fH(tg —za+ 1) = flta — za + 1) = H(F,) and
< 1) =140 £+(1) = G. (c) holds because £(2) — £+(2) = F4(1) >
{fij ffA) - fHEi-1 (f*(ta — 2za + 1) — fY(1))/(ta — za) by concavity of f+
and where we have used that f*(t; — zg + 1) = H(Fy) and
© hai) - hali — 1) FH(1) = f(1) =0. m
07] B A —1), Next, by combining Lemmas 5 and 6, we have

3 i) = H(Mqy)
where (a) and (f) hold by definition of k2, (b) and (e) hold

by definition of Ay, (c) holds because by < £+, (d) holds by S HE) L
concavity of f+. Then, we have tg — zd
®, @ _1 (23)
Td ty— zq’
EAG+1) Y hy(i +2) — he(i +1)
® oy ) where (a) holds by (14) and (16), which is valid for any
Fra+2)—ha(i+1) f € F, (b) holds by uniformity of Fj.
{ Roli 1) — £ Finally, since (23) is  wvalid for any private
@ (i+1) = f70) file storage strategy, (23) is also wvalid for a
= hy(i+1) — hy(i) ((2‘"[”) (gr‘“]) (2,55:‘:) (EF:E‘]) )
(=) . deD deD’ deD el leL
= hi(i), (21)

file storage strategy that (t,=z)-achieves (ff})d . where
=
~F F F

where (a) and (c) hold by definition of h:, (5) and (d) hold by (7") ,.p € Crlt,2) is such that 7" = ry7(t,2) and

definition of hy, (c) holds because I_@?if—u <h(i+1). 70 =00 (t,2).
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APPENDIX E
PrOOF OF EQUATION (11)

Consider an  arbitrary ((21"5:5']):@ (TER})deﬂ’

L] (=) .
Ta e Ly
(‘2 )‘EDJEL, (2! )iEﬂ) private file storage strategy
that (t, z)-achieves (r,ff?)ﬂt - Fixd e D.Let V C L such
£
that v £ |V| < 23. For T C £\V and S C £\(T U V) such
that |T| = z3 — v and |S§| = tg — z4. Using Definition 4

and the reliability and security constraints (4) and (3) from
Definition 5, we first derive the following lemma.

Lemma 7: We have

SN H(Mag, Kag|May,Kay) > H(Fg) + Y H(Kgy).
les =S

(24)
Progf: We have

> H(May, Kag|May, Kav)
1es

(a)
> H(Mgs,Kas|May, Kay)

(3? H(Mys,Kgs|Mgyur, Kavur)
= I(My s, Kg.s; Fg|Mgyur, Kgvor)
+ H(Ma s, Ka s|Fa, Mavor, Kavor)
= H(Fg|Ma vor, Kgvor)
— H(F3|Ma vutus, Kagworus)
+H(Mas, Ka s|Fa, Mavor, Kavor)

(e}
= H(Fg|lMayvor, Kayor) — H(Fa|SvuTus )
+ H(Mgy s, Ka s|Fg, Mavor, Kavor)

(d) —
> H(Fyg|Mgyor, Kagyor) — H(Fg|Fg(VUT U S))
+ H (Mg s, Ka s|Fg, Mavor, Kavor)

=, H(Fyg) + H(Mys, Kgq s5|Fa, Mg vor, Kayur)

3_" H(Fy) + H(My s, Kas|Fa, Ra, Kavor)

(g}
> H(Fy) + H(Ky4,s|Fa, Ra, Kg vur)

D H(Fy) + H(Kas)

QH(F)+ Y H(Kag),
IS

where (a) holds by the chain rule and because conditioning
reduces entropy, (b) holds because conditioning reduces
entropy, (c) holds because Syiorusag 15 a function of
{Md,H_JT:Kd,‘UL.IT}t {d} holds because fd{‘l? UTu S:]l is a
function of Sy Tus 4. (€) holds by (4) because |[VUT US| =
tg and by (5) because |VUT| = zq4, (f) holds because My o7
is a function of (Fy, R4, Ka v ). (g) holds by the chain rule
and non-negativity of entropy, (k) holds by independence

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

between Ky 5 and (Fg, Ra, Ky o7 ) because SN(VUT) =
(¢} holds by independence of the keys (K i)ics. |
Next, by summing both side of the equation of Lemma 7
over of all possible sets T C L\V and & C £\(T U V) such
that |7| = z3 — v and |S| = t3 — z4, we obtain the following
lemma.
Lemma 8; Consider

E*{V] £ Arg max [H{Md,h KdJlMd"p, Kd,‘h?]
leL\W
We have

1
o HED

< H(Myr, Kqrc|Fa, Mgy, Kay)
— H(Mgy ¢, Kq clFa, Mayuge ooy, Kayogeony) — na-
(25)

— H(Ka,)].

Proaf: We have

1
o HED

Ya, Y Y HF)

TCL\W SCLVTUV)
IT|=za—v |S|=tg—za

(B)

< ). )

TCOVW SCLN(TUW)
IT|=za—v |S|=ta—za

Z [H(Mg;, Kg1|May, Kav) — H(Ka))

1e5
'[‘-‘:l L—zg—1
fla Z (td " 1)
TCL\W
IT|=2a—v
x Y [H(May, Kag|May, Kay) — H(Kaz)]
le£\(TUV)

(d) 0 L—zg—1
tg —zg—1
x Y Y [H(Mag, Kag|May, Kay) — H(Ka,)]

TCLNV [T
[TI=L—z4

(e) L—zz—-1 L—-v-—1
_ﬂd(td—m—l)(fﬂ—m—l)
X Z [H(Mg,;1, Kg1|Mav, Kav) — H(Kay))

leLh\V

1
= L—uw Z [H{Md,h Kd,ilMdlv, Kd,'h"} — H{Kmﬂ]

1NV

(r}
< [H(Mg e vy Ka ooy | May, Kay) — H(Kg1.0)]

= H(Ma i.v), Kag. )| Ma,v, Kay) — nag
@ H(Mgy vy, Ka o) | Fa, Ma, v, Ka v) — na
h
W H(Mgy e, Ka c|Fa, May, Kav)
— H(Ma ¢, Ka clFa, Mg yvog-onys Kayoge o) — nas

where (a) holds with @ £ (k%) (k=)™
(b) holds by (24), (c) holds because for any I € £\ (T U V),
the term [H{Mglg,KdlilMdy,Kd,p} H{Kd1;}]
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appears  exactly %L za—1 times in the term

DoSCLN (T UV) Dles ﬁ{ﬁjdi,KdilMd v, Kay) —H(Kay;)|
|S|=ta—z

{note that a s;milar argument is made in [34, Lemma 3.2]), (d)

holds by a change of variables in the sums, (&) holds because

for any | € L\V, [H(May, Kqi|May, Kav)— H(Ka,)|

L—v-1 : H
appears exactly (;~"") times in the term 3 o\ yi7)=1—2

> et [H(Mag, Kag|Ma v, Kay) — H(Kay)), holds
by the definition of [*(V), (g) holds because
I(Fy; My vugieovyys Kavoqeryy)) = 0 by (2) and since
VU {I*(V)}] < za, (h) holds by the chain rule. m

Next, we apply multiple times Lemma & to obtain the
following lemma.

Lemma 9: Define Vg £ @ and for i € [1,z4], Vi 2
{I* (Vi—1)}. We have

Vo

H(Fy) < H(Mg ., Kqg.c|Fa)

td—z
H(Ma z, Ka.c|Fa,May.,, Kay.,) — naza.
Proof: We ha{ a,c, Kac|Fa, May, ;, Kay,,) — naza
H(Fy)
td—z

-y i H(F)
< Zz“_I[H M.: 1 Ka c|Fa, Mg v, Kqv;)
- H{Mdlﬁj Kd,E-lej Md,v,-+'|:| Kd,“’,‘.].l] - ﬂ'd]

= H(My r, Kq.c|Fa)

—H(Ma,c,Kac|Fa, May, ,Kay,, )— ndazd,
where the inequality holds by applying z; times Equation (25)
and the definition of Vi, i € [0, z4]. ]

Finally, we simplify the upper bound of Lemma 9 as follows.
We have

Zd [F:l
td — zd "
(2} 24

tg — =4
()
< H(My r, Kqr|Fs)

—H(Ma,c,Kac|Fa, May, ,Kav, ) — naza

H(Fy)

(e}
< H(Mgc,Kqa r|Fy)
—H(Kac|Fa, May, ,Kay,, ) — naza

()
< H(Mac,Karc|Fa) — H(Kgc|Fa, Ra, Kay,,) — naza
= H(Ma,c, Kq c|Fa) — H(Ka,v; |Fa, R

© H(My s, Kar|Fs)—

(f)
= H(Mg s, Kqr|Fs) — ngL

) — ngza

H{Ka,v: ) — naza

“_: H(Rg, Fy, Kg r|F3) — naL
= H(R4,Ka r|Fs) — nal

Y H(Ry) + H(Kar) - nalL

Y H(Ra)

Sl (26)

497

where (a) holds by uniformity of Fj, (b) holds by Lemma 9,
{c) holds by the chain rule and non-negativity of entropy,
(d) holds because My, is a function of (Fy, Ra, Kay, ).
(e) holds by independence between Kgy- and (Fg, Rg).
( f) holds by the uniformity of the keys (K d,;jxevg . (g) holds
because My ~, Kg r is a function of ( Ry, Fa, Kdl,;ﬁ, (k) holds
by mutual independence between R4, Fy, and Ky . (i) holds
by the uniformity of the keys (Kai)icc, (7) holds by unifor-

mity of ;.
Since (26) is  wvalid for any private file
storage  strategy, (26) is also valid for a

()0 ) ) e (),

file storage strategy that (t,=z)-achieves ("'4{: })d . where
=
o € Cr(t,2) is such that 7" — ri")(t,z) and

i 7B, 2)
APPENDIX F
ProoF OF THEOREM 9

We first review the notion of ramp secret sharing [21], [22]
in Section F-A. We then present our achievability scheme and
its analysis in Section F-B.

A. Review of Ramp Secret Sharing
Definition 7 ([21], [22]): Lett € [1,L] and = € [1,£—1].
A (t,z, L)-ramp secret sharing scheme consists of

« A secret S uniformly distributed over {0, 1}"-;

« A stochastic encoder e {0,1}" = {0,1}™ —
{0,1}"=+L (8, R) v (Hi)iec, which takes as input the
secret S and a randomization sequence B uniformly
distributed over {0, 1}"~ and independent of S, and out-
puts L shares (H;)j-r of length ng,. For any & C L,
we define Hs £ (H))ics:

and satisfies the two conditions

T;IE:"?%:;H (S|H7) =0, (Recoverability)  (27)
uC <z I{5; Hy) = 0. (Security) (28)

Theorem 11 ([21], [22]): Lett € [1, L] and =z € [1,£—1].
For a fixed secret length n,, there exists a (¢, =z, L}-ramp secret
sharing scheme such that the length of a share n.;, and the
length of the randomization sequence n, satisfy

Tg TgZ
My = ——

Tigh =

t—z' t—z

B. Achievability Scheme for Theorem 9

Coding scheme: Fix d € D and consider a file F; such that
i) — |F4| = na(ts — z4). Then, User d forms (Hyq)icr
with a (tg,zg, L)-ramp secret sharing scheme taken from
Theorem 11 applied to Fj. B}r 'Ihecm:m 11, for I € L, the
length of a share is |Hy 4| = = ng, and the length of

Ed— d

the randomization sequence is ny = % = ngzg. Hence,
since |K 4| = na, [ € L, User d can form My; £ H a5 Kay
and publicly send it to Server I, where & denotes bitwise
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modulo-two addition. Upon receiving Mg ;. Server [ stores
Sia2 Kag® Mgy =Hpa

Resources needed: For d € D, I € L, the length of the
randomization sequence at User d is !,_EIRJ = fy = Ngzg, the
length of the public communication from User d to Server [
is rLTJ = |Mga,;| = ng. and the storage needed at Server [ is
"'JI:[S} =} aep [Ma il =3 4ep na

Analysis of recoverability: For d € D, consider an arbitrary
subset .4 C £ of ¢; servers that pool their information, they
then have access to (Sja)ica = (Hiaglica such that by
Theorem 11, H{FdHHl.d}IEA} = ([ since |.."-|.| = 1.

Analysis of security: For d € D, consider an arbitrary subset
i C L of z4 colluding servers. Then, we have

I{Fz...i M’Da Kﬂ‘,“}

< I(Fz,;Mz,,Kz,u)

+I(Fz;; Mz, Kzz u|Mz,, Kz, u)
(B}

=I(Fz,; Mz, Kz, 1)

()
= I(Fz,\ () Mz (), Kza\(a) 1)

+1(Fz\(ay; Ma, Kapal Mz (ay, Kz, (ay 1)
+ 1 Fg; M=, Kz,.,ulpzd'\{d}]

(@)
= H{Fz\(ay; Mz,\(a), Kz (a0

+1(Fa; Mz, Kz, u|Fz, (a))

< I(Fzqays Mz ay, Kz (ay )
+1(Fa; Mz, Kz, 1, Fz\(a})

= I(Fz \qay; Mz \(a}, Kz qayu) + 1 (Fa; My, Ka )
+I(Fa; Mz gays K 2 (a1 Fza0 (ay | M Ka )

(e)
= I(Fzp qay; Mz qay, Kz qay 20) + 1(Fas Ma, Kayi)

(1)
= Z I(Fi; My, K p4)

€2,
@ S I(Fus Hugoo Moee, Koa)
162,
= Y U(Fi; Huy) + 1(Fi; My, Kou|Hu o)
€2,
h
[=:I Z I{FﬁMi,M‘,Ki.IulHuJ}
1EZa
= Z [I{Fﬁ Ky po|Hu o) + T{Fy; My i=|Hy 1, K’:‘u]]
 Lp A
[i} Z I{FI;Mi,HclHu,;,Kilu}
 Lp A
':—: Z I{FI:IHuﬂli;MI,IJ:IHu‘hK;#]
€2,
= Z [H{Mi.H‘IHH,hKi,u}
€2,

— H(M; 14=|Fy, Hye 1, Hug 1, Ky 10))

< Z [| My ge=| — H (M= |Fiy Huge 0y Hu 1, Ko )]
€2,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

ke
® ™ (1M 4e| — H(K e By, Huge g5 ot Kid)]

€2,

0]

= D [IMygee| = H(Kpee)]

1eZq

(m)

=,
where (a) holds by the chain rule and Zj
denotes the complement of Z; in D, (b} holds
because I{FZHFMZE:KE:,I»J"MZ&&KZJ#] E I{quﬁ

MZJ:K&.U;MZE:KZE.U} = 0, IIC:I holds b}" the chain
rule applied twice, (d) holds because I(Fz,q); Ma,
Kau|Mzp\ (ay, Kz, {apu) < I(Fzp\(ay, Mz,\{a},
K z;\(dy u; Ma, Kau) = 0, (e) holds because I'(Fa; Mz, (a),
Kz, yay s Feoqay | Ma, Ka ) < 1(Fa, My, Kag; Mz, qay,
sz\{d}.u‘- del'll{d}} = 0, {_f:]l holds b}" itf:[‘ﬂﬂl]g
the steps between (b) and (e), (g) holds because
My, = (M- Myu) = (Myy=,(Hi: @ Kii)icu).
(k) holds because I(Fi;Hy,) = 0 by Theorem 11 and
since |If| = zg < = for any i € Zy (j) holds because
I(Fy; Kypa|Hu g) < I(Fy, Hy 05 Ko) = 0, (k) holds because
M gi= = (Hi @K1 )1cu-. (1) holds by independence between
K‘l-,““ and {F;,Huc,;,Hu111K;#], {m] holds because h}r
uniformity of K ge, H (K<) = |Kque| = [Uelng = [Myze|
for any i € Z;.

APPENDIX G
PrOOF OF THEOREM 10

The achievability scheme presented in the proof of
Theorem 9 provides a

( (ETE'F] ) deD’ (TLR] ) deD (TET] )dE’D,IEE ! (21".[3’ ) iéﬂ)

private file storage strategy that (t,z)-achieves (r’E‘FJ)dED
such that for any d € T
(F)

rg = = ng(ts — za), (29)
i — ngeq, (30)
rf;:lf:' =ng, ¥l € L, (31)
SiecTay = Lna, (32)
1% =Y gepna, ¥l € L. (33)

Next, by (29) and (7), we have 7§ (t,2) = ng(ta — za),
¥d € D. By (30) and (11), we have r,(t,z) =
naza — 2iri")(t,2),¥d € D. By (32) and (9), we have
ro, (8,2) = Lng = 2=r{7)(t,2),vd € D. By (33) and
(8), we have ry, (t,2) = Yy.p na, ¥d € D,V € L. Assume
that (6) holds, by (31) and (10), we have r{; ) (t,2) = ng =
iy, (t,2),Yd € DVl € L.
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