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Abstract
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1 Introduction

1.1 Foreword

Finding a combinatorial interpretation is an everlasting problem in Combinatorics. Having com-
binatorial objects assigned to numbers brings them depth and structure, makes them alive, sheds
light on them, and allows them to be studied in a way that would not be possible otherwise. Once
combinatorial objects are found, they can be related to other objects via bijections, while the
numbers’ positivity and asymptotics can then be analyzed.

Historically, this approach was pioneered by J.J. Sylvester in his “constructive theory of par-
titions” [Syl82]. There, Sylvester was able to rederive a host of old partition identities and prove
many new ones by interpreting the coefficients on both sides as the numbers of certain Ferrers
shapes (now called Young diagrams), and relating two sides to each other. G.H. Hardy marveled
at such proofs, calling them “striking” and “unlike any other” [Har40], see also [Pak06].

Since the 1960s, this approach became a staple in Enumerative Combinatorics, reaching as far as
undergraduate textbooks [SW86], monographs [Loe11] and multimedia compendia [Vie16]. In Al-
gebraic Combinatorics, even one combinatorial interpretation can introduce revolutionary changes.
Notably, a Young tableau interpretation of the Littlewood–Richardson (LR-) coefficients cλµν was
discovered in [LR34]. These numbers describe the structure constants of the Schur functions mul-
tiplication [Mac95, Sta12]. Over the last few decades, this result led to an avalanche of devel-
opments, culminating with a complete resolution of the Horn problem [Kly98] (see also [Ful98]),
proof of the saturation conjecture [KT99], and polynomial time algorithms for the vanishing of the
LR–coefficients [BI13b, MNS12, Ike16].

When a combinatorial interpretation exists it is a modern wonder, a starting point of a combi-
natorial investigation. But what if none is known? Such examples in Enumerative Combinatorics
are too numerous to be listed, see e.g. [Pak18, §4]. In Algebraic Combinatorics, the following are
the top three “most wanted” combinatorial interpretations, all from Stanley’s list [Sta00]:

• Kronecker coefficients g(λ, µ, ν) which generalize LR–coefficients and give structure constants
of tensor products of Sn-modules. This celebrated problem goes back to Murnaghan [Mur38] and
plays a crucial role in Geometric Complexity Theory (GCT), see [Mul09]. See [BDO15, IMW17,
PP17, PPY19] and §9.4, for some recent combinatorial and complexity work on the subject.

• plethysm coefficients pλ(µ, ν) which describe decompositions of Schur functors of Sn-modules,
and is the main subject of GCT7 [Mul07], see also [BIP19, FI20, IP17]. They also appear in
connection to the Foulkes conjecture in Representation Theory, see [Bri93, CIM17, Lan15].

• Schubert coefficients c(u, v, w) which give structure constants of the product of Schubert poly-
nomials, defined by Lascoux and Schützenberger [LS82] in the context of cohomology of the Grass-
mannian, see [Mac91, Man01]. We refer to [Knu16, KZ20, MPP14] for examples of positive results.

In all three cases, there is a widespread belief that these coefficients must have a combinatorial
interpretation. A positive resolution of either problem would be a major breakthrough culminating
decades long study. In the context of GCT, Mulmuley conjectured [Mul09] that both Kronecker
and plethysm coefficients are in #P (see [Val79]), as a step towards proving that P 6= NP. Note
that all three functions are in GapP≥0 , suggesting commonality of the obstacles.

Now, what if the community is wrong, and these functions are not in #P? Such a possibility has
only been raised recently [Pak19, Spe11]. According to Popper’s philosophy, a belief needs to be
disprovable in order to be scientific [Pop62]. Until now there has been little effort towards proving
that some natural combinatorial functions are not in #P (see below). With this paper we initiate
a systematic study of this problem.
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We show that many natural combinatorial functions are not in #P under various complexity
assumptions. In a positive direction, we prove that many functions are in #P, some strikingly close
to those that are not.

1.2 Motivational examples of #P functions

Let GapP≥0 be the class of nonnegative functions in GapP := {f1 − f2 | f1, f2 ∈ #P}.1 More
generally, we consider the class PolynP :=

{
ϕ(f1, . . . , fk) | ϕ ∈ Q[x1, . . . , xk], fi ∈ #P

}
, and study

the class PolynP≥0 of nonnegative functions in PolynP. The place to start is to look for natural
integer functions in these classes and ask if they lie in #P. For the three functions as above
the problem remains open, but what is known in other cases? Consider the following motivating
examples:

(1) Let e : P → N be the number of linear extensions of P , where P = (X,≺) is a poset with
n elements. Recall that e(P ) ≥ 1, so e′(P ) := e(P ) − 1 ∈ GapP≥0. Now observe that e′ ∈ #P
simply because finding the lex-smallest linear extension L can be done in polynomial time (see
e.g. [CW95]), so e′(P ) counts linear extensions of P that are different from L. Note aside that
since e is #P-complete [BW91], then so is e′.

(2) Recall Sperner’s lemma which states that for every {1, 2, 3}-coloring χ of interior vertices in a
side-length n-triangle region ∆n of the plane whose sides are colored 1, 2 and 3, respectively, there
is a rainbow (123) triangle. We trust the reader is familiar with the setting, see e.g. [Pap94a] and
[MM11, §6.7]. Here n is given in binary and χ is given by a polynomial size circuit. Denote by
t(χ) the number of rainbow triangles, so that t(χ)− 1 ∈ GapP≥0.

Since the typical proof of Sperner’s lemma involves tracing down the path of non-rainbow
triangles until a rainbow triangle is reached, it may come as a surprise that t(χ)− 1 ∈ #P. Indeed,
simply observe that t(χ)− 1 = 2t−(χ), where t±(χ) denotes the number of rainbow triangles with
positive/negative orientation. This follows from t(χ) = t+(χ) + t−(χ) and t+(χ) − t−(χ) = 1
equations, see e.g. [Pak03, §8].

(3) Let G be a simple graph with at least one edge, and let f(G) be the number of proper 3-
colorings of G. Then f(G)/6 is an integer valued function in PolynP≥0 by taking into account
permutations of colors. Of the six possible 3-colorings corresponding to a given 3-coloring one can
easily choose the lex-smallest, implying that f(G)/6 ∈ #P.2 Such solution is not always possible in
other problems, see §1.3(4), and algorithmic approaches to equivalence problems have been studied
in [BG83, BG84, FG11].

(4) Let δ(k,G) := mk(G)2 − mk−1(G)mk+1(G), where mk(G) is the number of k-matchings
in graph G. The function δ ∈ GapP by definition. By the celebrated result of Heilmann and
Lieb [HL72], the sequence m1(G),m2(G), . . . is log-concave, implying that δ ∈ GapP≥0 . This result
is a starting point of many combinatorial investigations [God93], including notably the “interlacing
families” series [MSS13]. While all signs point to δ being “difficult to handle”, it was observed
in [Pak19] that a beautiful proof in [Kra96] easily implies that δ ∈ #P.

(5) Recall Fermat’s little theorem: For every prime p and a ∈ N, we have:

ap ≡ a (mod p).

1The closure GapP = #P−#P of #P under subtraction was introduced in [FFK94] and indep. in [Gup95].
2It is important to emphasize that while f(G) is #P-complete, it is completely irrelevant to the conclusion.

Crucially, the lex-smallest test is in P in both this and the previous example. In non–#P examples of this kind, the
lex-smallest test is NP-hard (see below).
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This is one of the most basic and most celebrated results in Number Theory, see e.g. [IR82, §3.4],
and is the starting point of the Miller–Rabin primality test, see e.g. [MM11, §10.8.2]. The theorem
can be rephrased as: for all a ∈ N, we have

ϕ(a) := 1
p(ap − a) ∈ N.

It is readily converted into a PolynP function by substituting a← N(φ) as follows:

1
p

(
N(φ)p − N(φ)

)
∈ ϕ(#P) ⊆ PolynP,

where N(φ) is the number of satisfying assignments of a Boolean formula φ. It was shown by
Peterson [Pet72] (see also [Gol56]) that this function is actually in #P (see Proposition 7.3.1), by
giving a combinatorial interpretation for ϕ(a), and in this way reproving Fermat’s little theorem. In
other words, we have ϕ(#P) ⊆ #P, i.e., the class #P is closed under the Frobenius map ϕ. At the
heart of the proof of Proposition 7.3.1 is a polynomial-time algorithm for identifying lex-smallest
elements as in §1.2(3), but here in a Z/pZ orbit.

(6) Consider the following inequality by Grimmett [Gri76]:

τ(G) ≤ 1

n

(
2m

n− 1

)n−1

for the number of spanning trees τ(G) in a simple graph G = (V,E) with |V | = n vertices and
|E| = m edges. One can turn this into a GapP≥0 function as follows:

f(G) := (2m)n−1 − n(n− 1)n−1τ(G).

On the other hand, given that the inequality holds, the claim f ∈ #P is trivial since τ ∈ FP.
Indeed, since f(G) can be computed in polynomial time by the matrix-tree theorem, we conclude
that f(G) counts the set of n-bit binary strings from 0 to f(G)− 1.3 4 This is why it is important
in the examples above that our functions are not obviously in FP (e.g., being #P-hard is a good
indication), since otherwise the problem becomes trivial.

1.3 Motivational non-examples

It may come as a surprise that the non-example comes from the simplest of the inequalities.

(1) Cauchy–Schwartz inequality:

a2 + b2 ≥ 2ab where a, b ∈ R. (1.3.1)

Now take a, b to be counting functions. Formally, for two Boolean formulas φ and ψ, let

h(φ, ψ) := N(φ)2 + N(ψ)2 − 2N(φ)N(ψ) =
(
N(φ) − N(ψ)

)2
. (1.3.2)

By definition, the function h ∈ GapP≥0 . Note, however, that if h ∈ #P, then we get a polytime
witness for N(φ) 6= N(ψ). This is unlikely, as it would imply the collapse of polynomial hierarchy

3Combinatorialists would argue that a combinatorial interpretation should explain why the inequality holds in the
first place. In fact, there are several schools of thought on this issue (see a discussion in [Pak18, §4]). We believe that
the computational complexity approach is both the least restrictive and the most formal way to address this.

4In the context of GCT, motivated by the work on LR–coefficients, Mulmuley asks if Kronecker and plethysm
coefficients count the number of integer points in a polytope defined by the inequalities with polynomial descrip-
tion [Mul09]. We do not work with this narrower notion in this paper. See, however, [KM18].
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to the second level: PH = Σp
2 (see Proposition 2.3.1). Colloquially, this says that under the

natural complexity assumption PH 6= Σp
2, the Cauchy–Schwartz inequality (1.3.1) does not have a

combinatorial interpretation in full generality.

(2) The Hadamard inequality for real d× d matrices states:

det

a11 · · · a1d
...

. . .
...

ad1 · · · add


2

≤
d∏
i=1

(
a2
i1 + . . . + a2

id

)
. (1.3.3)

Geometrically, it says that the volume of a parallelepiped in Rd is at most the product of its basis
edge lengths, with equality when these edges are orthogonal. Note that standard proofs of (1.3.3)
involve the eigenvalues of A = (aij), see e.g. [HLP52, §2.13] and [BB61, §2.11], suggesting that
translation into combinatorial language would be difficult.

Substitute all aij ← N(φij) in (1.3.3), where φij are Boolean formulas. Denote by Hd the
resulting counting function written in the style of (1.3.2), i.e, Hd is the difference of the right-hand
side and the left-hand side of (1.3.3). It is easy to see that H2 ∈ #P, see §2.1. For d ≥ 3, we
prove that Hd /∈ #P under an assumption that we call the univariate binomial basis conjecture
(Conjecture 4.4.2). This is a general conjecture about the structure of #P. Formally, we show the
existence of an oracle A ⊆ {0, 1}∗ with H3(

#   »

#PA) 6⊆ #PA, see Theorem 7.2.1.

(3) For a simple graph G on n vertices, denote by d(G) = (d1, . . . , dn) the degree sequence.
Consider the following natural inequality:

P[G is planar ] ≤ P[G is planar |d(G) 6 c ] , (1.3.4)

where c = (c1, . . . , cn) is a given sequence, the inequality d(G) 6 c is coordinate-wise: di ≤ ci for
all 1 ≤ i ≤ n, and where the probability is over uniform random graphs on [n] = {1, . . . , n}. This
says that being planar correlates with having small degrees.5

We can convert (1.3.4) it into a GapP≥0 function as follows:

%(c) := 2(n2) #
{

planar graphs G on [n] with d(G) 6 c
}
−

− #
{

planar graphs on [n]
}
· #
{

graphs G on [n] with d(G) 6 c
}
.

This inequality is a simple special case of the Kleitman inequality [Kle66], which is a corollary of
the Ahlswede–Daykin inequality [AD78] (Theorem 7.4.1). In Proposition 2.5.1, we show that the
polynomial inequality implied by the Ahlswede–Daykin inequality is not in #P, again under the
univariate binomial basis conjecture.

(4) Recall the following Smith’s theorem [Tut46]. Let e = (v, w) be an edge in a cubic graph G.
Then the number Ne(G) of Hamiltonian cycles in G containing e is always even. Denote f(G, e) :=
Ne(G)/2 and observe that f ∈ PolynP≥0. Is f ∈ #P? We don’t know. This seems unlikely and
remains out of reach with existing technology. But let us discuss the context behind this problem.

Tutte’s original proof in [Tut46] uses a double counting argument. The Price–Thomason algo-
rithm for finding another Hamiltonian cycle in a cubic graph [Pri77, Tho78] gives a more direct

5Note aside that the number of labeled planar graphs on n vertices can be computed in time polynomial in n
using Tutte’s generating function formulas [Tut63], see also [Noy14, Sch15]. On the other hand, the number of labeled
graphs with a given upper bound on the degrees is likely not in FP, cf. [Wor18].
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combinatorial proof of Smith’s theorem and implies that this search problem is in PPA, the class de-
fined by the polynomial parity argument. In fact, AnotherHamiltonianCycle is a motivational
problem for PPA, while Sperner, see §1.2(2), is a motivational problem for PPAD [Pap94a]6.

Note that the Price–Thomason algorithm partitions the set of all Hamiltonian cycles into pairs,
but this pairing algorithm is known to require an exponential number of steps in the worst case, see
[Cam01, Kra99]. A polynomial-time algorithm instead would allow us to search for Hamiltonian
cycles and only count the ones that are lexicographically smaller than their pairing partner, which
would show that Ne(G)/2 ∈ #P, and (AllOtherHamiltonianCyclesThroughEdge− 1)/2 ∈
#P. Note that such a pairing algorithm (not for the symmetric group S2, but for S3) is the reason
why f(G)/6 ∈ #P in §1.2(3).

We study the basic search problem Leaf7 that is used to define PPA, and that arises directly
from Sperner by a parsimonious reduction from the PPAD-complete problem SourceOrSink
and removing the edge directions. We show that for the corresponding counting problem we have
an oracle separation that shows AllLeavesA/2 /∈ #PA. In fact, for the counting version of Leaf,
where we are given one leaf and count all others, we show that LeafA − 1 /∈ #PA. This has to
be contrasted to Sperner, where the membership Sperner− 1 ∈ #P relativizes, i.e., holds with
respect to all oracles. The oracle instances are significantly more complicated as for the Hadamard
problem, see §1.3(2).

(5) We have seen that Sperner(χ)− 1 = 2t−(χ), hence (Sperner− 1)/2 ∈ #P. It is easy to see
that the reverse inclusion holds: The counting class #PPAD(Sperner) defined by the Sperner
problem contains 2#P + 1, or, in other words, #P = (#PPAD(Sperner) − 1)/2. For the other
classes in TFNP we similarly get

#P =
(
#PPAD(Sperner) − 1

)
/2

= #PPADS(Sink) − 1

= #CLS(EitherSolution(Sperner,Iter)) − 1

and these equalities relativize. But for the more complex classes we get oracle separations:
(#PPA(Leaf)− 1)/2, #PPP(Pigeon)− 1 and #PLS(Iter)− 1 strictly contain #P with respect
to an oracle.

But this does not give the complete picture, since non-parsimonious reductions between com-
plete problems give different counting classes. For example if instead of leaves in a graph we
count the nodes that are adjacent to leaves (which we call preleaves), then this does not change
the complexity of the search problem, but it changes the counting class from #PPA(Leaf) to the
class #PPA(Preleaf) (note that the functions in #PPA(Leaf) always attain odd values, while
the functions in #PPA(Preleaf) do not have this restriction). The underlying argument is the
chessplayer algorithm, see e.g. [Pap90, BCE+98], which results in non-parsimonious reductions,
which then give rise to a complexity class inclusion diagram where we have an oracle with respect
to which we have a strict inclusion of #P in all the classes #PPAD− 1, #PPADS− 1, #CLS− 1,
#PPA− 1, #PPP− 1 and #PLS− 1. The full class inclusion diagram of our results can be found
in Figure 1. The definitions of the classes and problems can be found in §8.1.

6Several versions of Sperner on non-orientable manifolds are PPA-complete [Gri01, DEF+21], as well as e.g. the
problems Consensus-Halving/Necklace Splitting [FRG18, FRH+20, DFHM22], and integer factoring (assuming the
GRH) [Jeř16]. Main PPAD-complete problems include Nash equilibrium [DGP09, CD09] and hairy ball [GH21].

7Search problems are often of the type AnotherSolution, but the name does not suggest that. Leaf for example
could reasonably be called AnotherLeaf. We adapt the search problem notation and drop the Another prefix and
mean the corresponding problem of counting all but the given leaf. The problem of counting all leaves when we are
not given one is called AllLeaves. Since all our problems are counting problems, we drop the customary # in front
of the problem name, also to avoid having two # in the class names, see §3.2.
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These problems are syntactically guaranteed to be nonnegative, but in contrast to the
Hadamard problem (for example), here the oracle separations are much more delicate, as we
have to fool the Turing machine while producing instances of the correct cardinality (which is eas-
ier if the problem is a polynomial evaluated at arbitrary #P functions). To overpass these obstacles,
we introduce the notion of a set-instantiator in Definition 6.1.3. We will also treat cases where we
have a nonnegativity guarantee, but no further information about the reason. This requires extra
care, see Propositions 2.3.3 and 7.5.5.

2 Definitions, notations and first steps

We start in §2.2 with the concept of polynomial closure properties of #P. We then prove some
simple separations in §2.3 and §2.4, as a warmup before our main results in the next section.

2.1 Basic notation

Let N = {0, 1, 2, . . .}, Q+ = {x ∈ Q, x ≥ 0}. For i ∈ N and x ∈ R, we write(
x

i

)
=

1

i!
x(x− 1) · · · (x− i+ 1).

In particular,
(
i
0

)
=
(
i
i

)
= 1. We think of

(
x
i

)
as a rational polynomial of degree i. Note that for

0 ≤ x < i, x ∈ N, we have
(
x
i

)
= 0. For a vector (a1, . . . , an) ∈ Rn, we use both #»a and a to

denote this vector.
We are assuming the reader is familiar with basic complexity theory and standard complexity

classes: P, NP, UP, PH, FP, #P, GapP, PPA and PPAD. We refer to [AB09, MM11, Pap94b]
for the definitions and standard results, and to [Aar16, Wig19] for further background.

2.2 Closure properties

We say that a map ϕ : Nk → Q is integer-valued if it only attains integer values. Similarly, map ϕ
is nonnegative, write ϕ > 0, if it only attains nonnegative values.

We say that ϕ is a closure property of #P, if for all f1, . . . , fk ∈ #P we have ϕ(f1, . . . , fk) ∈ #P.
More concisely, we also write:

ϕ
( #   »

#P
)
⊆ #P.

This is a generalization of the notation GapP = #P−#P from [FFK94].8 Let S ⊆ Nk be a fixed
subset. We say that ϕ is a closure property of #P restricted to S (or on S), if for all f1, . . . , fk ∈ #P
which satisfy

(
f1(w), . . . , fk(w)

)
∈ S for all w ∈ {0, 1}∗, we have ϕ(f1, . . . , fk) ∈ #P.

Note that we evaluate these #P functions on the same input. For example, in the notation
of §1.2(2), the map ϕ(t−, t+) := t(χ) = t− + t− is restricted to S = {(t−, t+) | t+ − t− = 1}.
Similarly, in the notation of §1.2(3), we have S = 6N.

We write the restriction to S as a subscript, usually denoted
#   »

#P∈S , but the property “∈ S”
is sometimes notationally replaced by other properties such as “≥1” (in which case S = N≥1)

8When defining
#   »

#P, two different definitions are equivalent (in the same way as for GapP). First, one can define
#   »

#P via k many nondeterministic polynomial time Turing machines and consider the k-vector of their number of
accepting paths as the output. Alternatively, one can define it via one nondeterministic polynomial time Turing
machine that has k many different states of acceptance and one reject state (these states of acceptance are usually
labeled with +1 and −1 in GapP). This is a complexity class of multi-output functions, as, for example, considered
in [Val76].
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or “even” (in which case S = 2N). For example, in notation of §1.2(1), we have e(P ) ∈ #P≥1.
Similarly, in the notation of §1.3(4), we have Ne(G) ∈ #Peven. This allows us to write statements
such as

#P≥1 + 1 ⊆ #P , and #PAeven/2 6⊆ #PA

for the oracle A separation. More generally, in the multivariate case we write

ϕ
( #   »

#P∈S
)
⊆ #P

for the closure property of #P restricted to S. [HR00] study the univariate case and call such a
restriction a counting property. These univariate restrictions also play a role in [CGH+89] and are
the main focus of [GW87]. The most famous example is probably UP = #P∈{0,1} (if one identifies
languages with their characteristic functions, which we do), see [Val76, GS88, Ko85, HT03]. In some
contexts it is natural to consider a promise version of UP, see [VV85], but that is different from
what we consider here. To make connections to TFNP more visible, we define #TFNP := #P≥1.

Let ϕ,ψ ∈ Q[x1, . . . , xk] be rational polynomials. We write ϕ ># ψ if

ϕ(f1, . . . , fk) − ψ(f1, . . . , fk) ∈ #P for all f1, . . . , fk ∈ #P,

or, equivalently, (ϕ− ψ)(
#   »

#P) ⊆ #P. For example, x2 + 3x ># 0. Less obviously, x2 ># x, since
x2 − x = 2

(
x
2

)
which counts unordered pairs (i, j), where 1 ≤ i < j ≤ x. For the Hadamard

inequality (1.3.3), we easily have H2 ># 0, since

det

(
a b
c d

)2

= (ad − bc)2 = a2d2 − 2abcd + b2c2

6# a2c2 + a2d2 + b2c2 + b2d2 = (a2 + b2)(c2 + d2).

We emphasize again that over the reals this is not a valid proof of the Hadamard inequality for
2 × 2 matrices since the 2abcd term can be negative. The inequality H2(a, b, c, d) ≥ 0 over the
reals follows from the Cauchy–Schwartz inequality in this case.

2.3 Complete squares

As in the introduction, we have GapP = #P − #P = {f1−f2 | f1, f2 ∈ #P}. We use the notation
[C = 0] to denote the class of languages L ⊆ {0, 1}∗ for which there exists a function f ∈ C with:
w ∈ L if and only if f(w) = 0. For example, [#P = 0] = coNP and [GapP = 0] = C=P. The
following proposition about k-th powers of GapP functions is well known:

2.3.1 Proposition. If GapPk ⊆ #P for some even k, then PH = Σp
2 .

Proof. Recall that PH ⊆ NPC=P, which can be found for example in [Tar91], [Gre93] and [Cur16],
which follows from Toda’s PH ⊆ P#P theorem (see [Toda91, KVVY93, For97, For09]) as follows:

PH = NPPH ⊆ NPP#P
= NP#P = NPGapP =9 NPC=P. We now observe:

PH ⊆ NPC=P = NP[GapP=0] = NP[GapPk=0] ⊆ NP[#P=0] = NPcoNP = Σp
2.

2.3.2 Corollary (Cauchy–Schwartz inequality). a2 + b2 6># 2ab unless PH = Σp
2 .

9NPGapP ⊆ NPC=P holds because instead of calling the oracle for a function g ∈ GapP we can nondeterministically
guess its return value i = g(w) and call the C=P oracle [g − i = 0] on the input w to check for correctness (continue
the computation if the guess was correct; reject the computation if the guess was wrong).
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This innocent looking corollary has immediate negative consequences on the existence of combi-
natorial proofs for inequalities (in the sense of combinatorial interpretations of the difference of both
sides of the inequality), for example the Cauchy inequality or the Alexandrov–Fenchel inequality,
see §7.1 for the details.

Given the success in our matching polynomial example §1.2(4), one can ask if this example is
generalizable to other log-concave properties. Formally, is it true that g2 ># f h when functions
(f, g, h) are restricted to S =

{
(f, g, h) ∈ N3 | g2 − fh ≥ 0

}
? We give a negative answer to this

question, suggesting that many log-concavity results and open problems (see §9.1) are unlikely to
have a direct combinatorial proof.

2.3.3 Proposition (Log-concavity). Let ϕ(f, g, h) := g2 − fh, and let S := {(f, g, h) ∈ N3 |
g2 − fh ≥ 0}. Then ϕ

(
#P×3
∈S
)
6⊆ #P unless PH = Σp

2.

Proof. Let f := 1, g := (x + y) and h := 4xy. Observe that g2 − fh = (x − y)2 ≥ 0 for all
x, y ∈ R. The resulting complete square allows us to use Corollary 2.3.2 and prove the result. We
now formalize this approach in the notation above.

Let #»γ : N2 → N3 defined by (x, y) 7→
(
1, (x + y), 4xy

)
. Then #»γ

(
#P×2

)
⊆ #P×3

∈S . Note that
on the left-hand side we have no index anymore, as the image is guaranteed to lie in S. If we
have ϕ

(
#P×3
∈S
)
⊆ #P, then it follows ϕ

(
#»γ
(
#P×2

))
⊆ #P. But we have ϕ

(
#»γ
(
#P×2

))
= GapP2.

We conclude: if ϕ
(
#P×3
∈S
)
⊆ #P then GapP2 ⊆ #P. Hence, by Proposition 2.3.1, we have

PH = Σp
2.

2.4 Non-monotone closure properties

A map ϕ : Nk → Q is called monotone if ϕ(a1, . . . , ak) ≤ ϕ(a′1, . . . , a
′
k) for all integer a1 ≤ a′1, . . . ,

ak ≤ a′k. For example, polynomials x/2, x− 1 and x+ y are monotone, but x2 − 2x and (x− y)2

are not.

2.4.1 Proposition (Non-monotone closure properties). Fix k ≥ 1. If ϕ : Nk → N is a non-
monotone closure property of #P, then UP = coUP.

Proof. Let ϕ be a k-variate non-monotone closure property of #P. Then there exists #»c ∈ Nk and
i ∈ [k] with ϕ( #»c ) > ϕ( #»c + #»ei), where #»ei is the i-th standard basis vector. Let D := ϕ( #»c ), and
let d := ϕ

(
#»c + #»ei

)
. Note that

ψ : f 7→
(
ϕ(f · #»ei + #»c )

D

)
is a univariate closure property of #P.

Now let f ∈ UP = #P∈{0,1} be arbitrary. Let β = f(w) for an arbitrary w ∈ {0, 1}∗. We have
β = 0 if and only if β · #»ei +

#»c = #»c , and if and only if ϕ(β · #»ei +
#»c ) = D. Similarly, we have β = 1 if

and only if β · #»ei+
#»c = #»c + #»ei, and if and only if ϕ(β · #»ei+

#»c ) = d. Therefore, ψ(β) = 1−β. Hence,
we have seen that ψ(f) = 1− f and that ψ(f) ∈ UP. It follows that f ∈ 1− UP = coUP.

A similar use of binomial coefficients can also be found in [BG92]. Curiously, x(x − 1)2 ># 0
since x(x− 1)2 = 6

(
x
3

)
+ 2
(
x
2

)
, yet by Proposition 2.4.1 we have:

2.4.2 Corollary. (x− 1)2 6># 0 unless UP = coUP.

Note that a2 + b2 > ab holds over N, and is halfway between a2 + b2 > 2ab and a2 + b2 > 0. So
one can ask if a2 + b2 ># ab. Observe that ϕ(a, b) := a2 − ab + b2 is non-monotone: ϕ(0, 2) = 4
and ϕ(1, 2) = 3. Proposition 2.4.1 then gives:
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2.4.3 Corollary. a2 + b2 6># ab unless UP = coUP.

Recall the Motzkin polynomial M(x, y) := x2y4 + x4y2 − 3x2y2 + 1. It follows from the AM-
GM inequality applied to positive terms, that M(x, y) ≥ 0 for all x, y ∈ R. On the other hand,
this polynomial is famously not a sum of squares, and is a fundamental example in Semidefinite
Optimization, see e.g. [Ble13, Mar08]. Now, observe that M(x, y) is not monotone: M(0, 1) = 1
and M(1, 1) = 0. Proposition 2.4.1 then gives:

2.4.4 Corollary. M(x, y) 6># 0 unless UP = coUP.

2.5 The binomial basis theorem

In this section we recall a classical result, describing all relativizing polynomial closure properties
of #P and GapP. Note that we considered only non-monotone examples in §2.3 and §2.4, while
many natural polynomials are monotone. Clearly, every polynomial with integer coefficients is a
closure property of GapP, but might not be a closure property of #P. If all coefficients of ϕ are
nonnegative integers, then ϕ is clearly a closure property of #P, but we have seen that there are
more, e.g. 1

2x
2 − 1

2x =
(
x
2

)
># 0.

The main tool to shed light onto these issues is the binomial basis for the polynomial ring
Q[x1, . . . , xk], which is given by the polynomials βa ∈ Q[x1, . . . , xk], a = (a1, . . . , ak) ∈ Nk, via

βa(x1, . . . , xk) :=

(
x1

a1

)
· · ·
(
xk
ak

)
.

Every polynomial has a unique expression of finite support in this basis. The univariate version
is well-known under the name of classical numerical polynomials. The study of the multivariate
version goes back to Nagell [Nag19]. This basis explains the behavior we observe, as stated in the
following fundamental theorem, for which the proof is split up into the #P part, see [HVW95,
Thm. 3.13], and the GapP part, see [Bei97, Thm. 6] (see also the bibliographic notes in [HO02,
§5.6]). The GapP part can be obtained as a direct consequence of the algebraic properties of the
binomial basis, see §4.2. We will reprove the #P part as a direct corollary of our much more general
Diagonalization Theorem 6.2.1.

Theorem (Binomial basis theorem, Thm. 4.3.2). The following four properties for a multivariate
polynomial ϕ over Q are equivalent:
• ϕ is a closure property of GapP • ϕ is a relativizing closure property of GapP
• ϕ is integer-valued • the expression of ϕ over the binomial basis has only

integer coefficients.
Moreover, the following are equivalent:
• ϕ is a closure property of GapP≥0 • ϕ is a relativizing closure property of GapP≥0

• ϕ is integer-valued and attains
only nonnegative integers

• the expression of ϕ over the binomial basis has inte-
ger coefficients and ϕ attains only nonnegative integers
if evaluated at integer points in the nonnegative cone.

Moreover, the following are equivalent:

• ϕ is a relativizing closure property of #P,

• the expression of ϕ over the binomial basis has only nonnegative integer coefficients.
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Note that even though #P and GapP≥0 have different relativizing closure properties, this does not
unconditionally separate these two classes. Note also that the theorem implies that all polynomial
closure properties of GapP and GapP≥0 relativize. We conjecture that this is true for #P as well,

which is Conjecture 4.4.1. Proving this, however, would imply #P 6= #PNP (and hence P 6= NP),
even just for the univariate ϕ =

(
x−1

2

)
, see Theorem 4.4.3. We get the following sequence of

implications:

P = NP =⇒ #P = #PNP Thm. 4.4.3
=⇒

(
#P− 1

2

)
⊆ #P

Prop. 2.4.1
=⇒ UP = coUP.

We call polynomials ϕ whose expression over the binomial basis has only nonnegative integer
coefficients binomial-good, all others are called binomial-bad.

The fact that Hd in §1.3(2) is binomial-bad gives us the described separation, see Proposi-
tion 7.2.1. One famous instance of a binomial-good polynomial is the Frobenius map from §1.2(5).
There, binomial-goodness can be interpreted as a combinatorial proof of Fermat’s little theorem,
see Proposition 7.3.1 and its proof by Peterson.

Theorem 4.3.2 is proved in [HVW95, Thm. 3.13] together with [Bei97, Thm. 6], which is in fact
an extension of an argument of [CGH+89, Thm 3.1.1] and [OH93, p. 310] about the weakness of #P
machines in the presence of oracles. We prove it as a corollary of our Diagonalization Theorem 6.2.1
(see §3.1), which greatly extends Theorem 4.3.2.

2.5 (a) The Ahlswede–Daykin inequality

More advanced problems, where the set S is given as a semialgebraic set, are also possible, for
example for the Ahlswede–Daykin inequality, see §1.2(3) and §7.4.

2.5.1 Proposition (Ahlswede–Daykin inequality). Let

S :=

{(
α0, α1, β0, β1, γ0, γ1, δ0, δ1, h1, h2, h3, h4

)
∈ N12

∣∣∣∣∣ α0β0 + h1 = γ0δ0 , α0β1 + h2 = γ0δ1

α1β0 + h3 = γ0δ1 , α1β1 + h4 = γ1δ1

}

and let
ϕ :=

(
γ0 + γ1

)(
δ0 + δ1

)
−
(
α0 + α1

)(
β0 + β1

)
.

Then, under the Univariate Binomial Basis Conjecture 4.4.2, we have ϕ(
#   »

#P∈S) 6⊆ #P.

Proof. Define #»γ : N→ N12 via γ(x) =
(
1, 1, x, x, x, 1, 1, x, 0, 2

(
x
2

)
, 2
(
x
2

)
, 0
)
. Then #»γ (#P) ⊆ #P×12

∈S
. Note that on the left-hand side we have no index anymore, as the image is guaranteed to lie
in S. Assume for the sake of contradiction that we have an inclusion ϕ(#P×12

∈S ) ⊆ #P. Then it
follows that we have an inclusion ϕ

(
#»γ (#P)

)
⊆ #P. Conjecture 4.4.2 implies that this inclusion

relativizes. Therefore, by Theorem 4.3.2 the univariate polynomial ϕ ◦ #»γ is binomial-good. But
we have ϕ

(
#»γ (f)

)
= f2 − 2f + 1 = 2

(
f
2

)
− f + 1, which is binomial-bad, a contradiction.

3 Main results

In this section we state our main results. It §3.1 we state the Diagonalization Theorem and we give
Karamata’s inequality as an involved example for its application. In §3.2 we lift these techniques
to handle TFNP and its subclasses. We obtain several oracle separations from #P in this way, see
Figure 1.
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3.1 The diagonalization theorem

In Proposition 2.5.1 the set S lies on an affine algebraic variety, and the proof goes by embedding
a curve given by binomial-good polynomials. This is a way of finding separations, but it remains
unclear if such curves always exist or how we can find them. In general, if S lies on an affine variety
Z with vanishing ideal I, then we know that if there exists a polynomial ξ ∈ I such that ϕ + ξ is
binomial-good, then ϕ is a polynomial closure property of #P on S. This is exactly the insight that
gives Sperner− 1 ∈ #P, where all instances lie on the variety {(t+, t−) ∈ N2 : t+ − t− − 1 = 0}.

The reverse is true in the important case of graph varieties (all our examples fall in this category),
as we show in the following Diagonalization Theorem. Formally, assume that there exist ` ∈
{0, . . . , k}, and polynomial maps ζb : Q` → Q, where b ∈ {` + 1, . . . , k}, such that Z is the image(
f1, . . . , f`, ζ`+1(f1, . . . , f`), . . . , ζk(f1, . . . , f`)

)
. In this case the vanishing ideal I is generated by the

ζb − fb, see §5.3. We call a coset ϕ + I binomial-good, if it contains a binomial-good polynomial,
otherwise ϕ+ I is binomial-bad.

Theorem (Diagonalization Theorem, informal version, see Thm 6.2.1). Fix k and 0 ≤ ` ≤ k.
Let ϕ ∈ Q[f1, . . . , fk]. Fix functions ζb ∈ Q[f1, . . . , f`]. Set I to be the ideal generated by the
ζb(f1, . . . , f`) − fb, where ` + 1 ≤ b ≤ k. Fix a function Multiplicities : 2{0,1}

∗ → Nk and let
#»
t ∈ S. For A =

⋃
j≥0Aj, Aj ⊆ {0, 1}j, Ãj being the set of length j − 1 suffixes of the strings

in Aj that start with 1, define

pA(w) := ϕ(Multiplicities(Ã|w|)) if A|w|(0
|w|) = 1, and pA(w) := ϕ(

#»
t ) otherwise.

Assume further technical conditions, e.g., the existence of set-instantiators for Multiplicities. If
ϕ+ I is binomial-bad, then there exists A ⊆ {0, 1}∗, such that for every nondeterministic polytime
Turing machine M there exists j, such that pA(0j) 6= #accMA(0j); and whenever A(0j) = 1, we
have Multiplicities(Ãj) ∈ S.

The Diagonalization Theorem 6.2.1 is the technical heart of this paper. It is stated in high
generality, and we apply it to a large set of examples of very different flavor, such as for example
the Hadamard inequality or #PPA− 1. Its proof relies on the Witness Theorem 5.4.1, whose proof
uses methods from several areas of mathematics including algebraic geometry and Ramsey theory.

As an illustration we now apply the Diagonalization Theorem to Karamata’s inequality, see §7.5
for the full details. In the Karamata setting we are given fi, gi ∈ #P, 1 ≤ i ≤ n, such that the
following functions hi, 1 ≤ i < n, are also all in #P :

hi := f1 + . . . + fi − g1 − . . . − gi,

and we are also guaranteed that

f1 + . . . + fn − g1 − . . . − gn = 0. (3.1.1)

This assumption is called majorization, see §7.5. Moreover, the functions

di := fi − fi+1 and ei := gi − gi+1 (3.1.2)

are also in #P for all 1 ≤ i < n. Let Z ⊆ Q5n−3 denote the variety of points that satisfy
the constraints (3.1.1) and (3.1.2), and let S = Z ∩ N5n−3. Let γ ∈ GapP≥0 be any monotone
integer-valued convex function. Define the Karamata function as

Kn,γ(
#»

f , #»g ) :=

n∑
i=1

γ(fi) −
n∑
i=1

γ(gi).
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Clearly Kn,γ(
#   »

#P∈S) ⊆ GapP. In fact, even Kn,γ(
#        »

GapP) ⊆ GapP. Karamata’s inequality implies

that the answer is always nonnegative for inputs from S. Hence, Kn,γ(
#   »

#P∈S) ⊆ GapP≥0. For which

γ do we have Kn,γ(
#   »

#P∈S) ⊆ #P?

• For affine linear γ we clearly have Kn,γ = 0 ∈ #P.

• For γ(t) = t2, we have K2,γ(f1, f2, g1, g2) = (d1 + e1)h1 on S. This can be seen by plugging in
d1 = f1 − f2, e1 = g1 − g2, and g2 = f1 + f2 − g1. Clearly (d1 + e1)h1 ∈ #P. This has several
proofs, for example instead of (d1 + e1)h1 we could have taken 2h1 + 2e1h1 + 4

(
h1
2

)
with the

same argument.

• For γ(t) = t2, we have K3,γ(f1, f2, f3, g1, g2, g3) = (d1 + e1)h1 + (d2 + e2)h2 ∈ #P on S.

• For γ(t) =
(
t
2

)
, we have K2,γ(f1, f2, g1, g2) = (e1 + 1)h1 + 2

(
h1
2

)
∈ #P on S.

• For γ(t) =
(
t
2

)
, we observe that for the double we have 2K3,γ(

#   »

#P∈S) ⊆ #P via the observation
that 2K3,(t2)

= K3,t2 on S (the affine linear parts cancel out).

All inclusions Kn,γ ⊆ #P in this section so far relativize. The next proposition shows that the
doubling we just used was in fact necessary, because otherwise we obtain an oracle separation.

Proposition (see Proposition 7.5.5). There exists A ⊆ {0, 1}∗ such that K3,(t2)
( #   »

#PA∈S
)
6⊆ #PA.

Proof sketch. We use the Diagonalization Theorem 6.2.1. We have 5n − 3 = 12, so S = Z ∩ N12.
We fix an arbitrary order of the 12 variables:

(
f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2

)
. The variety

Z is then given as the kernel of the linear map given by the following left matrix:
1 −1 0 0 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
1 0 0 −1 0 0 0 0 0 0 −1 0
1 1 0 −1 −1 0 0 0 0 0 0 −1
1 1 1 −1 −1 −1 0 0 0 0 0 0

  


1 0 0 0 0 −1 0 0 −1 −1 −1 0
0 1 0 0 0 −1 0 0 0 −1 1 −1
0 0 1 0 0 −1 0 0 0 0 0 1
0 0 0 1 0 −1 0 0 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 −1 0 −2 1
0 0 0 0 0 0 0 1 0 −1 1 −2


To obtain the necessary parametrization ζ of Z, we convert it to row echelon form (the fact that the
entries are integer is convenient, but not necessary for our techniques to apply), which is the right
matrix. We set ` = 5, k = 12. Permuting the order of the columns to (6, 9, 10, 11, 12, 1, 2, 3, 4, 5, 7, 8),
we obtain affine linear functions ζ8, . . . , ζ12, each ζb depends linearly on the first 5 variables. We
set Multiplicities = OccurrenceMulti12, which is the function defined as follows: on input
w ∈ {0, 1}∗ we split w into 12 parts of roughly the same size, and the output is the vector that
specifies how many 1s are in the first part, how many 1s are in the second part, and so on. We set

ϕ
(
f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2

)
:= f2

1 + f2
2 + f2

3 − g2
1 − g2

2 − g2
3 .

After verifying the technical assumptions, to apply the theorem it remains to show that ϕ + I
is binomial-bad. Since all ζb are affine linear, this claim boils down to checking that polyhedron
Pϕ,ζ does not have integer points. We formalize and generalize this implication in the Polyhedron
Theorem 5.5.2. Here we have a polyhedron in Q91 given by 21 linear equations intersected with
the nonnegative orthant. We use a computer to set up the polyhedron. Indeed, it contains the
half-integer point that shows that 2K3,(t2)

(
#   »

#P∈S) ⊆ #P, but it does not contain an integer point,

which gives A such that ϕ(pA) /∈ #PA, but ϕ(pA) ∈ K3,(t2)
(

#   »

#PA∈S).
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The Polyhedron Theorem 5.5.2 is also what we use for studying counting classes from TFNP
(see §3.2), but the corresponding polyhedra there are very simple, see e.g. Theorem 8.3.1 and
Theorem 8.9.1. The polyhedron for Sperner for example has the integer point (2, 0) to represent
that ϕ = 2t− + 0t+ on the variety. The technical difficulty in those cases is not the polyhedron,
but the existence of set-instantiators. If we just study closure properties of #P, then trivial set-
instantiators can be used.

3.2 Counting classes and TFNP

In this section define the counting classes for which we claimed in (4) in §1.3 that many of them
coincide with #P, while others are strictly stronger w.r.t. an oracle. In order to do so, we attach
oracles to the syntactic subclasses of TFNP.10

Consider for example the relation rLonely. This is for PPA, as the other classes are handled
analogously. Let (C, x) ∈ rLonely if and only if

x 6= 0 ∧
(
C ′(x) = x ∨ C ′(C ′(x)) 6= x

)
,

where C is the description of a polynomially-sized multi-output Boolean circuit that describes the
partner function on an exponentially large graph, and C ′ is the syntactic modification to C that
ensures that C ′(0) = 0.

Now, let rPPA be the set of polynomially balanced relations R for which a pair (α, β) of
polytime computable maps exists with (C, β(x)) ∈ R if and only if (α(C), x) ∈ rLonely. These
are the relations that correspond to search problems in PPA. Let rP denote the set of polynomially
balanced relations that can be evaluated in polynomial time. By definition, rPPA ⊆ rP.

For a language A ⊆ {0, 1}∗ we define analogously (C, x) ∈ rLonelyA if and only if
(
C(x) = x

∨ C(C(x)) 6= x
)
, but now we allow the circuit C to have arbitrary arity oracle gates that query

the oracle A. Let rPPAA be the set of polynomially balanced relations R for which a pair (α, β) of
polynomial-time computable maps exists with (C, β(x)) ∈ R if and only if (α(C), x) ∈ rLonelyA.
Note here that the only difference is that α(C) can have oracle gates. Let rPA denote the set of
polynomially balanced relations that can be evaluated in polynomial time with access to A. By
definition, we have rPPAA ⊆ rPA.11

We define the corresponding counting class #PPAA via

f ∈ #PPAA ⇐⇒ ∃R ∈ rPPAA : f(w) =
∑

y∈{0,1}∗ R(w, y).

Recall that
f ∈ #PA ⇐⇒ ∃R ∈ rPA : f(w) =

∑
y∈{0,1}∗ R(w, y).

Hence, clearly #PPAA ⊆ #PA, and in fact #PPAA ⊆ #PA≥1 for all languages A.12 13

For the study of whether or not a problem is in #P we need the finer viewpoint that is obtained
when insisting on (α, β) being a parsimonious reduction, i.e.,

(
(C, β(x)) ∈ R and (C, β(y)) ∈ R

)
implies x = y. Since not all PPA-complete problems are equivalent to each other via parsimonious
reductions, this gives rise to different counting complexity classes, depending on the PPA-complete

10We consider CLS, PLS, PPAD, PPADS, PPA, and PPP here, see e.g. [GP17]. The instances are exponentially large
(di)graphs given succinctly by circuits or lists of circuits. For the sake of simplicity, we will assume in this discussion
that finite lists of circuits are merged into a single circuit with additional input bits.

11We use the r-prefix to avoid notational issues similar to the ones discussed in [HV95, BS01]. We do not claim to
have found a particularly good notation, but a suggestive one.

12In fact, #P≥1 can be thought of as the counting analogue of TFNP, i.e., it is reasonable to define #TFNP := #P≥1.
13We choose this approach, which is different from the type-2 complexity approach in [BCE+98, BM04], because

we want to compare our counting classes to #PA.
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#P = (#PPAD(SourceOrSink)− 1)/2 (Cla. 8.2.1)

= #PPAD(SourceOrPresink)− 1 (Cla. 8.2.2)

= #COUNTALL-PPAD(SourceOrSink)/2 (Cla. 8.2.3)

= #PPADS(Sink)− 1 (Cla. 8.2.10)

= #PPADS(Presink)− 1 (Cla. 8.2.11)

= #CLS(EitherSolution(SourceOrSink,Iter))− 1 (Cla. 8.2.18)

= #CLS(EitherSolution(SourceOrPresink,Iter))− 1 (Cla. 8.2.19)

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1

#PLS(Iter)− 1

#PPAD(SourceOrExcess(2,1))− 1

#PPA(Preleaf)− 1(#PPA(Leaf)− 1)/2

#PPADS(Excess(2,1))− 1

#PPP(Pigeon)− 1

#COUNTALL-PPA(Leaf)/2

#COUNTGAP(BipartiteUnbalance)

! Thm. 8.3.1

Cla. 8.2.17

Cla. 8.2.17

Cla. 8.2.6

Cla. 8.2.15Cla. 8.2.7
Cla. 8.2.13

! Thm. 8.7.1

! Pro. 8.9.2

All equalities with #P are
shown via relativizing parsi-
monious reductions. A solid
arrow represents a relativizing
parsimonious reduction. An
arrow with a ! represents
a relativizing parsimonious re-
duction where there is an ora-
cle separation in the other di-
rection.

Figure 1: The relativizing equalities and inclusions; and the oracle separations.

problem. We write #PPA(P) to indicate that we mean the counting class defined by problem
P under parsimonious reductions.14 For example, observe that all functions in #PPA(Lonely)
output odd integers on every input, while the class #PPA contains more functions than that (as
we will see when discussing Preleaf). In fact, for that reason it makes sense to study the class
(#PPA(Lonely) + 1)/2 and (#PPA(Lonely)− 1)/2 and ask if they are subsets of #P.

Aside from the classical problems we study slightly adjusted problems that are not equivalent
via parsimonious reductions (see the detailed list in §8.1). Each class is defined via parsimonious
reductions to a complete problem. The naming prefixes #COUNTALL-PPA and #COUNTGAP
are essentially flavor. By definition we have #PPA(P) ⊆ #PPA for all search problems P ∈ PPA,
and analogously for all other search problems. The relativizing inclusions and oracle separations
that we find are depicted in Figure 1. All equalities with #P are shown via relativizing parsimo-
nious reductions and they are proved in §8.2. A solid arrow represents a relativizing parsimonious
reduction. An arrow with a ! represents a relativizing parsimonious reduction where there is an
oracle separation in the other direction. This means that all classes that are above #P in the figure
strictly contain #P (with respect to an oracle).

We find a surprisingly large number of counting problem classes that, if adjusted properly
with “−1” and “/2” are equal to #P. This includes the canonical counting versions of PPAD,
PPADS and CLS. Only after making slight changes to the problems via non-parsimonious polytime
equivalences (similar to the chessplayer algorithm, see e.g. [Pap90, BCE+98]), we obtain that the
non-parsimonious counting classes strictly contain #P, which puts the new problems outside of #P.

We identify two main “reasons” (i.e., oracle separations), one for “−1” (the decrementation
separation, see §8.3), and one for “/2” (the halving separation, see §8.7). There are two versions
of #PPA at the top of the diagram, one for each of the two reasons, and they are not easily
comparable.15 It is also noteworthy that we know of no counting version of PPA, PLS or PPP that
equals #P.16

14Note that the prefix PPA is actually superfluous in this case, but we keep it for clarity.
15It is not even clear if #PPA(Leaf) − 1 is contained in (#PPA(Leaf) − 1)/2. One would want to just double a

Leaf instance, but that will end up creating 2 leaves too many. In other words, the class #PPA(Leaf)− 1 seems to
not be closed under the operation of scaling a function by 2.

16Note that since PTFNP (see [GP18]) contains CLS, the decrementation separation also shows #PTFNPA − 1 6⊆
#PA.
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Since the polynomials x − 1, x
2 , and x−1

2 are monotone, the tool to prove the separations is
the Diagonalization Theorem 6.2.1. The main difference from all separations so far is that now
the instances are much more involved. In the halving separation we have to “hide” the partner
vertex from the #P machine, and in the decrementation separation we have to “hide” which of the
solutions is connected to the zero vertex. This is especially difficult for #PLS(Iter)−1 (and hence
for #CLS−1).17 We formalize our approach in the definition of a set-instantiator in Definition 6.1.3
and the necessary set-instantiators are created in Section 8.

Even though we are mainly interested in membership and non-membership in #P, with only a
little extra work our techniques directly give us another oracle separation

#COUNTALL-PPA(Leaf)A/2 ( #COUNTGAP(BipartiteUnbalance)A .

This is because after doubling we have #COUNTALL-PPA(Leaf)A ⊆ #PA, while still

#PA ( 2#COUNTGAP(BipartiteUnbalance)A

(see Proposition 8.9.2).

3.3 Structure of the paper

Section 4 gives a high-level introduction of the proof ideas that lead to oracle separations and the
binomial basis theorem, which is a first step towards our Diagonalization Theorem 6.2.1. Section 5
proves the Witness Theorem 5.4.1, which is a generalization of the naive oracle separation proof
approach to all nontrivial graph varieties. It is a key ingredient of the Diagonalization Theorem,
which is introduced in Section 6, which uses the notation of set-instantiators, a formal way to treat
not only the closure properties of #P, but syntactic subclasses of TFNP.

Section 7 uses the theory that we developed in the earlier chapters to handle the details of the
Cauchy inequality, the Alexandrov–Fenchel inequality, the Hadamard inequality, Fermat’s little
theorem (in #P), the Ahlswede–Daykin inequality, and the Karamata inequality. Section 8 estab-
lishes all necessary set-instantiators and proves all oracle separations from Figure 1. We conclude
with final remarks and open problems in Section 9.

4 The binomial basis

4.1 Oracle separations and the binomial basis: An informal high-level view

(1) Fooling polytime Turing machines with oracles. The initial idea is classical. Consider
the following problem ConnectedComponents. A problem instance is similar to an instance to
the PPA-complete problem Sink, i.e., we have an exponentially large undirected graph whose nodes
have degree at most two, but in the ConnectedComponents problem we are not guaranteed a
sink at node zero. The graph is given as a pair of two circuits C1 and C2; an edge from x to y
is present in G if and only if

(
(C1(x) = y or C2(x) = y) and (C1(y) = x or C2(y) = x)

)
. The

function ConnectedComponents counts the number of connected components in G, ignoring
isolated nodes.

We can quickly see that if we replace the circuits with black boxes (i.e., oracles), then this
problem is not in #P. Assume there exists a nondeterministic Turing machine M for which the
number of accepting paths #accM (G) = ConnectedComponents(G) for all G. Let G be an

17Notably, PLS is also missing from the oracle separations in [BCE+98].
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instance with 2 connected components of superpolynomial size each. Then M has 2 accepting
paths, but every path can only access a polynomial number of oracle positions. Therefore we can
take two edges {u, v} and {x, y} of G that lie in different connected components and that are not
queried by M , we remove them, and replace them with the two edges {u, x}, {v, y} to obtain a
graph G′ with only 1 connected component. But since the two accepting paths of M do not query
the oracle at these positions, M will have at least two accepting paths on the instance G′, which is
a contradiction.

(2) Combinatorial Diagonalization. This simple idea described above can be used in more
sophisticated ways, see [CGH+89, Thm 3.1.1]. We take the counting problem CircuitSat in
which we are given a Boolean circuit and the number of accepting paths is supposed to be the
number of inputs for which the circuit outputs True. Clearly CircuitSat ∈ #P. We modify the
problem by defining a function ϕ : N→ N with ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 1, and the other values
are not relevant. Replace the circuit with an oracle, so instead of counting input strings for which
the circuit outputs True, we now search for strings for which the oracle query returns 1. We now
argue that ϕ(CircuitSat) /∈ #P with respect to that oracle (if the oracle is chosen correctly).

To see this, assume the existence of a nondeterministic Turing machine M with #accM (C) =
ϕ(CircuitSat(C)). If a computation path of M does not query any 1 at any oracle position, then
it cannot accept. Indeed, if it does accept, then we can change the oracle to all zeros to obtain a
contradiction. If there is exactly one oracle position with a 1 (say, at position a), then M must
have exactly one accepting path and that path queries the oracle at a. Now, if we change the
oracle by setting it to zero at a and to 1 at b, where b was not queried by the accepting path of
M before, then we get another accepting path. Let us call this accepting path τ . What happens
if we take the oracle that has a 1 at position a and a 1 at position b at the same time? If τ does
not query the oracle at position a, then both accepting paths will accept on this instance, which is
a contradiction, because ϕ(2) = 1 < 2. The key point is that this happens with high probability if
the positions are chosen uniformly at random.

(3) The binomial basis. The binomial basis theorem classifies completely the set of polynomials
ϕ for which this argument works. If we pick a polynomial ϕ in the discussion above, it could have
been ϕ(f) = 1

6f
3−f2+ 11

6 f for example. This is a monotone function whose values are nonnegative
integers, so we have no immediate way rule out membership in #P. The key insight that relates
this polynomial to what we observed is when we write it in its binomial basis, the basis of the
vector space of polynomials that is spanned by the binomial coefficients: ϕ(f) = f−

(
f
2

)
+
(
f
3

)
. The

problematic issue is the negative coefficient −1 for
(
f
2

)
. This −1 is exactly the amount by which we

overshoot with our number of accepting paths when the oracle has two 1s. We call a polynomial
binomial-good if all its coefficients in the binomial basis are nonnegative integers, otherwise it is
binomial-bad.

This idea of univariate polynomial closure properties of #P generalizes to the multivariate case,
i.e., for ϕ a multivariate polynomial. Here we again have a (multivariate) binomial basis, and say
that a multivariate polynomial is binomial-good if all its coefficients in this basis are nonnegative
integers.

(4) The multivariate binomial basis. The multivariate case is of high interest when studying
inequalities in combinatorics, but it is also already important when studying concrete instantia-
tions such as #PPAD − 1. For a SourceOrSink instance (which is parsimoniously equivalent to
Sperner) we want to count the number number of nonzero sources f plus the number of sinks g
minus 1, i.e. ϕ(f, g) = f + g − 1. We know that in the SourceOrSink problem, for all in-
stances we have f − g + 1 = 0. This makes it possible to calculate f + g − 1 = 2f , which implies
#PPAD(SourceOrSink) − 1 ⊆ #P. It is useful to think of the two functions f + g − 1 and 2f
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as being the same function in the quotient ring Q[f, g]/〈f − g + 1〉. This ring is known as the
coordinate ring Q[Z] of the affine variety Z = {(f, g) | f − g + 1 = 0}.

We will employ this viewpoint in Section 5 to prove the Witness Theorem 5.4.1, which says
that in many situations our notion of “binomial-good on an affine variety” is consistent with our
intuition. The main challenge in proving this theorem is that some nonnegative integer points on
the variety Z might actually not correspond to a problem instance. For SourceOrSink they
all do, but for example for Iter we have Z = Q and there is no instance with 0 solutions; or
for AllLeaves we also have Z = Q, but there is no instance with an odd number of solutions.
The saving grace is that in all our cases the variety Z is a graph variety and hence we can study
asymptotic behavior via using a variant of Ramsey’s theorem.

The case SourceOrSink is a hyperplane, i.e., given by a single equation, but in general we
have more equations, for example for #CLS(EitherSolution(SourceOrExcess(2,1),Iter)),
or when treating Karamata’s inequality in §7.5. In the case where all constraints are affine linear
(and ϕ is arbitrary) we can rephrase the definition of binomial-goodnes of ϕ on a graph variety given
by functions ζ as follows: ϕ is binomial-good on the graph variety if and only if the polyhedron
Pϕ,ζ contains an integer point (see the Polyhedron Theorem 5.5.2). These integer points correspond
directly to #P algorithms, for example for #PPAD(SourceOrSink)− 1 there is an integer point
(2, 0) to represent that ϕ = 2f + 0g on the variety.

(5) Set-instantiators. To make these ideas work for actual problem instances such as
SourceOrSink or Iter instead of just for oracles for which we count the 1s, we introduce the
notion of a set-instantiator and we construct the set-instantiators for all relevant cases. Intuitively,
a set-instantiator mimics the behavior of the oracle idea presented above. For the existence of
a set-instantiator one defines how to set up random instances of specified cardinalities that sit
nicely in each other so that the Turing machine M is fooled and behaves in the same way as for a
CircuitSat instance. This becomes very challenging when the problem does not allow permuting
the instance around, which is the case for Iter, where the problem is always directed in a fixed
direction. The #PLS(Iter) case is the most challenging (which carries over to #CLS), and we use
a refined treatment.

4.2 The binomial basis and integer-valued functions

This section covers some basic properties about the binomial basis. Fix k. Let S ⊆ Nk and let
D := { #»

b ∈ Nk | ∃ #»a 6
#»

b : #»a ∈ S} denote the downwards closure of S. It is instructive to think of
D = Nk, although we will need it in greater generality in Section 5, where we work with functions
that are not defined on all of Nk.

We are interested in functions D → N and functions Zk → Z, and also in function S6 → N.
We focus on D → N first. This set of functions lies in the Q-vector space of all functions D → Q.
For

#»

b ∈ D we define the binomial function β #»
b : D → Q via

β #»
b (x1, . . . , xk) :=

(
x1

b1

)
· · ·
(
xk
bk

)
=

(
#»x
#»

b

)
.

The binomial basis is defined as the set of all binomial functions {β #»
b |

#»

b ∈ D}. Recall that a
function D → Q or Zk → Q is integer-valued if it only attains integer values.

4.2.1 Proposition (cf. [Nag19]). Every function ϕ : D → Q can be expressed as a (possibly
infinite) Q-linear combination of elements from the binomial basis. This expression is unique. The
function ϕ is integer-valued if and only if its coefficients in the binomial basis are all integer.
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If we only consider polynomials ϕ, then this result is classical and slightly easier to prove. The
following is a variation on the original argument by Nagell [Nag19] (see also [Nar95, p. 13]).

Proof. We first show uniqueness. We assume for the sake of contradiction that a function has two
distinct expressions in the binomial basis. Then the difference of them is a nontrivial expression of
the zero function:

0 =
∑

#»
b ∈Nk

c #»
b β #»

b , where cI ∈ Q and not all c #»
b are zero. (†)

Let m ∈ N denote the smallest number for which c #»
b 6= 0, | #»b | = m. Every β #»

b has a unique

monomial of largest total degree, which is x
#»
b := xb11 · · ·x

bk
k of degree | #»b |. Moreover,

if β #»a (x1, . . . , xk) 6= 0 , then #»x > #»a . (∗)

Therefore (†) induces a nontrivial linear combination of 0 in the homogeneous degree m part:

0 =
∑

#»
b ∈D, | #»b |=m

c #»
b

b1! · · · bk!
x

#»
b , where c #»

b ∈ Q and not all c #»
b are zero.

Note that this is a finite linear combination. But the monomials x
#»
b are linearly independent

functions on D, so all c #»
b = 0, which is a contradiction. Hence the uniqueness is proved.

It remains to show that every function ϕ : D → Q can be expressed over the binomial basis
(not necessarily with finite support). The coefficients c #»

b for expressing ϕ over the binomial basis
are constructed using the following recursive property. We set

c0,...,0 := ϕ(0, . . . , 0) and c #»
b := ϕ(

#»

b ) −
∑

#»a6
#»
b , #»a 6= #»

b

c #»a β #»a (
#»

b ) (4.2.2)

This defines all c #»
b . We have ϕ =

∑
#»
b ∈Nk c #»

b β #»
b , because β #»

b (
#»

b ) = 1, and (∗) implies that

β #»a (
#»

b ) = 0 for all other #»a over which is not summed.
Since the β #»

b are integer-valued functions we have that if the coefficients in the binomial basis
are integers, then the function is integer-valued. By construction in the proof above (see how c #»

b
is defined) this works in the other direction as well: if ϕ is integer-valued, then the coefficients in
the binomial basis are all integer.

For D = Nk, we call polynomials ϕ whose expression over the binomial basis has only nonneg-
ative integer coefficients binomial-good, all others are called binomial-bad. For D ⊆ Nk we call ϕ
D-good if the coefficients over the binomial basis are nonnegative integers; otherwise ϕ is D-bad.

We remark that Proposition 4.2.1 generalizes from D = Nk to functions Zk → Q as follows,
with basically the same proof. For

#»

b ∈ Nk, we define the function β̃ #»
b : Zk → Q via

β̃ #»
b (x1, . . . , xk) :=

(
x1 − bb1c

b1

)
· · ·
(
xk − bbkc

bk

)
.

The shifted binomial basis is defined as the set of all binomial functions
{
β̃ #»
b :

#»

b ∈ Nk
}

.

4.2.3 Proposition. Every function ϕ : Zk → Q can be expressed as a (possibly infinite) Q-linear
combination of elements from the shifted binomial basis. This expression is unique. The function ϕ
is integer-valued if and only if its coefficients in the shifted binomial basis are all integer.
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For polynomials it does not matter which of the two bases we use, so we use the simpler
(unshifted) one. We remark that if ϕ is a multivariate polynomial (nonnegative or not) of degree d,
then its expression over the binomial basis has finite support. This just follows from the fact that
the set of all β #»

b with | #»b | ≤ d is linearly independent, and hence (by counting the dimension) is a
basis of the space of polynomials of degree ≤ d.

4.3 The binomial basis theorem

We start with the following general definition formalizing and generalizing definitions in §2.2.

4.3.1 Definition. A function ϕ : Nk → N is a closure property of #P if the following holds: if
f1, . . . , fk ∈ #P, then the function ϕ(f1, . . . , fk) defined via[

ϕ(f1, . . . , fk)
]
(x1, . . . , xk) := ϕ

(
f1(x1), . . . , fk(xk)

)
is in #P. In other words, ϕ

( #   »

#P
)
⊆ #P. We analogously define closure properties of #PA for any

language A as follows.
We say that a closure property ϕ of #P relativizes if for every language A the function ϕ is a

closure property of #PA. A function ϕ : Zk → Z is a closure property of GapP if ϕ
( #        »

GapP
)
⊆ GapP.

We say that a closure property ϕ of GapP relativizes if for every language A the function ϕ is a
closure property of GapPA.

4.3.2 Theorem (Binomial basis theorem, see [HVW95, Thm. 3.13] and [Bei97, Thm. 6], stated
above in §2.5).
The following properties for a multivariate polynomial ϕ are equivalent:

• ϕ is a relativizing closure property of GapP,

• ϕ is a closure property of GapP,

• ϕ is integer-valued,

• the expression of ϕ over the binomial basis has only integer coefficients.

Moreover, the following are equivalent:

• ϕ is a relativizing closure property of GapP≥0 ,

• ϕ is a closure property of GapP≥0 ,

• ϕ is integer-valued and attains only nonnegative integers,

• the expression of ϕ over the binomial basis has integer coefficients and ϕ attains only non-
negative integers if evaluated at integer points in the nonnegative cone.

Moreover, the following are equivalent:

• ϕ is a relativizing closure property of #P,

• the expression of ϕ over the binomial basis has only nonnegative integer coefficients.
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Proof. If ϕ is a closure property of GapP, then clearly ϕ is integer-valued. If ϕ is integer-valued,
then its expression over the binomial basis has finite support and all coefficients are integers by
Proposition 4.2.1. In [FFK94], see closure property 5, they present the proof that GapPA is closed
under taking binomial coefficients, addition, and product. Thus, every integer-valued ϕ whose its
expression over the binomial basis has finite support, and all coefficients are integers is a relativizing
closure property of GapP. Clearly, every relativizing closure property of GapP is a closure property
of GapP, which shows the equivalence of the first four items. The same argument (with the obvious
minimal modifications) shows the equivalence of the second four items.

If the expression of ϕ over the binomial basis has finite support and all coefficients are non-
negative integers, then ϕ is a relativizing polynomial closure property of #P, because the #P
closure proofs for addition, multiplication, and taking binomial coefficients relativize. It remains
to show the converse. This is more technical and is a simple application of the much more general
Diagonalization Theorem 6.2.1, and hence we postpone the proof to Theorem 6.7.1.

4.4 The binomial basis conjecture

Note that if the polynomial closure properties of #P all relativize, then Theorem 4.3.2 gives a
complete classification of all polynomial closure properties of #P: Those ϕ whose expression over
the binomial basis only nonnegative integers as coefficients. We conjecture that this is indeed the
correct classification:

4.4.1 Conjecture (Binomial basis conjecture). The polynomial closure properties of #P all rela-
tivize.

Note that Theorem 4.3.2 says that Conjecture 4.4.1 is true if we replace #P by GapP or
by GapP≥0. Note also that Conjecture 4.4.1 is equivalent to saying that the polynomial closure
properties of #P are exactly the binomial-good polynomials. Sometimes it is sufficient to use the
weaker univariate version of the binomial basis conjecture:

4.4.2 Conjecture (Univariate binomial basis conjecture). The univariate polynomial closure prop-
erties of #P all relativize.

We do not know if these two conjectures are equivalent. Even the univariate version of the
binomial basis conjecture implies P 6= NP and will therefore be very difficult to prove.

4.4.3 Theorem. Conjecture 4.4.2 implies #P 6= #PNP (and hence, in particular, P 6= NP).

Proof. This is similar to the idea in [OH93, Thm 3.12]. We claim that if #P = #PNP, then(
x−1

2

)
= 1

2x
2 − 3

2x+ 1 =
(
x
0

)
−
(
x
1

)
+
(
x
2

)
is a polynomial closure property of #P. This is shown as

follows.
Given a function f ∈ #P we construct the following #PNP machine: call the NP oracle to see

if there is at least one witness. If not, accept. Otherwise, count pairs of distinct witnesses that
are both not the smallest witness (an NP oracle call is used to see if there is a smaller witness).
The resulting function g is in #PNP. By construction, if f(w) = 0, then g(w) = 1. Moreover, if

f(w) > 0, then g(w) =
(
f(w)−1

2

)
. Since

(
0−1

2

)
= (−1)(−2)

2 = 1, it follows that g =
(
f−1

2

)
.
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5 #P on affine varieties: The witness theorem

In this section we prove the Witness Theorem 5.4.1, which is the crucial theorem for dealing with
different sets S, in particular if S is a subset of an affine algebraic variety, such as for example for
#PPAD(SourceOrSink), or if S has holes such as for #PPA(Leaf).

5.1 Notation for the witness theorem

Denote JdK := {0, 1, 2, . . . , d}, which is not to be confused with [d] = {1, 2, . . . , d}. Fix k. As
before, we write

#»

f := (f1, . . . , fk) for vectors of length k. Let O := Nk be the set of integer points
in the nonnegative orthant. As before, for

#»

f , #»g ∈ O, we write #»g 6
#»

f if and only if ga ≤ fa for
all 1 ≤ a ≤ k. For #»g 6

#»

f , we write ( #»

f
#»g

)
:=

k∏
a=1

(
fa
ga

)
.

Let S ⊆ O, and let ϕ ∈ Q[
#»

f ]. We want to determine whether or not ϕ is a relativizing
multivariate closure property of #P under the guarantee that the cardinalities of the instances
only come from the set S. We will see that under certain assumptions on the Zariski closure of S,
this only depends on ϕ and the Zariski closure of S. In fact, in many cases this can be characterized
to exactly be the case when ϕ+ I contains a binomial-good polynomial, where I is the vanishing
ideal of the set S.

Let I = I(S) :=
{
ϕ ∈ Q[

#»

f ] : ϕ(S) = {0}
}

be the vanishing ideal of S. Let Z = S
Zar

be the

Zariski closure, i.e., Z =
{ #»

f ∈ Qk
∣∣ ∀ϕ ∈ I(S) : ϕ(

#»

f ) = 0
}

.

5.1.1 Remark. The Zariski closure over Q is the same as the Zariski closure over C intersected
with Qk.18 We will work entirely over Q and all polynomials have coefficients from Q.

5.2 Functions that grow slowly

We will need to make an asymptotic growth behavior analysis, hence we define the vector space of
functions that grow slower than ϕ on S:

Q[Z]≤(ϕ,S) :=
{
ψ + I ∈ Q[Z]

∣∣ ∃α ∈ Q ∀ #»g ∈ S :
∣∣[ψ + I]( #»g )

∣∣ ≤ α
∣∣[ϕ+ I]( #»g )

∣∣ },
where |a| denotes the absolute value of a ∈ Q. Note that this is a linear subspace of Q[Z]. For some
applications we are particularly interested in the case where dimQ[Z]≤(ϕ,S) <∞, for a fixed S and
for all ϕ, while for others we also have a fixed ϕ. Clearly, if S is finite, then Q[Z] itself is finite
dimensional, and hence dimQ[Z]≤(ϕ,S) <∞.

5.2.1 Example. We will mostly study the cases where dimQ[Z]≤(ϕ,S) <∞, but the cases where
dimQ[Z]≤(ϕ,S) = ∞ are also interesting, as the following examples show. Fix k = 2. Consider
S = {(x, y) ∈ O | y = 2x}, I = 0 and Z = Q2. For ϕ = y − x, we have the infinite dimensional
linear subspace 〈1, x, x2, x3, . . .〉 ⊆ Q[Z]≤(ϕ,S). In fact, y−x = 1+

(
x
2

)
+
(
x
3

)
+
(
x
4

)
+ . . ., so y−x has

only nonnegative integers in its binomial basis expansion. For ϕ = y−2x, we have the same infinite
dimensional linear subspace, but y − 2x is not monotone. Indeed, for x = 0 we have y − 2x = 1,
while for x = 1 we have y − 2x = 0. Thus if y − 2x is a closure property of #P on S, then
UP = coUP by Proposition 2.4.1.

18See, e.g., the proof in math.stackexchange.com/questions/279243.
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We write suppb for the support in the binomial basis. The next claim shows that in many
situations removing a finite amount of points from S does not change whether the dimension of
dimQ[Z]≤(ϕ,S) is finite or not.

5.2.2 Claim. If S′ ⊆ S with S r S′ < ∞ and S = S′ = Z, then for all ϕ ∈ Q[Z] we have
dimQ[Z]≤(ϕ,S) <∞ if and only if dimQ[Z]≤(ϕ,S′) <∞.

Proof. Clearly dimQ[Z]≤(ϕ,S) ≤ dimQ[Z]≤(ϕ,S′), which proves one direction. It suffices to treat
the case |S r S′| = 1. Let S r S′ = { #»e }. We make a case distinction based on whether or not
ϕ( #»e ) = 0.

If ϕ( #»e ) 6= 0, then consider any arbitrary ψ + I ∈ Q[Z]≤(ϕ,S′). We will see that ψ + I ∈
Q[Z]≤(ϕ,S). Let α be such that ∀ #»g ∈ S′ :

∣∣[ψ + I]( #»g )
∣∣ ≤ α

∣∣[ϕ + I]( #»g )
∣∣. Similarly, let α′ :=

max
{
α, |ψ( #»e )|/|ϕ( #»e )|

}
. It follows that ∀ #»g ∈ S :

∣∣[ψ + I]( #»g )
∣∣ ≤ α′

∣∣[ϕ + I]( #»g )
∣∣, hence ψ + I ∈

Q[Z]≤(ϕ,S).
If ϕ( #»e ) = 0, then we have Q[Z]≤(ϕ,S) =

{
ψ ∈ Q[Z]≤(ϕ,S′) | ψ( #»e ) = 0

}
. Since ψ( #»e ) = 0 is a

homogeneous linear constraint, the dimension when imposing the constraint either stays the same
or goes down by 1.

Let ξ #»e :=
( #»
f
#»e

)
∈ Q

[ #»

f
]

denote the binomial basis function to the exponent vector #»e ∈ O. A
function ξ #»e is called small if

∀ #»

f ∈ S : ξ #»e (
#»

f ) 6 ϕ(
#»

f ).

Otherwise, we call ξ #»e large. Since functions in I vanish on S, we see that ξ #»e is small if and only
if every element of ξ #»e + I is small. In this case we say that ξ #»e + I is a small element of Q[Z].

5.2.3 Claim. Fix ϕ ∈ Q[Z]. Suppose ψ ∈ Q[
#»

f ] is binomial-good and ψ + I /∈ Q[Z]≤(ϕ,S) . Then
there exists #»g ∈ S and #»e ∈ suppb(ψ) with ξ #»e ( #»g ) > ϕ( #»g ).

Proof. Decompose ψ over the binomial basis obtaining nonnegative integer coefficients. Set α to
the sum of these coefficients. By definition, there exists #»g ∈ S with ψ( #»g ) > αϕ( #»g ). By the
pigeonhole principle there exists #»e with ξ #»e ( #»g ) > ϕ( #»g ).

5.3 Graph varieties

In this section we study an important class of varieties for which dimQ[Z]≤(ϕ,S) < ∞. We write
#»v ∈ Q`. For 1 ≤ b ≤ `, we let fb := vb. Given functions ζb ∈ Q[ #»v ] and ` + 1 ≤ b ≤ k, we
define eqb := ζb(

#»v ) − fb ∈ Q[
#»

f ]. We call each fb with 1 ≤ b ≤ `, a parameter and each fb with
` + 1 ≤ b ≤ k a non-parameter. Note that for parameters we have fb = vb (and we use these
symbols interchangeably), while for non-parameters there does not exist a vb. Let

Z :=
{ #»

f ∈ Qk
∣∣ eq`+1(

#»

f ) = . . . = eqk(
#»

f ) = 0
}

Let τ : Q` → Z be defined via τ(v1, . . . , v`) :=
(
v1, . . . , v`, ζ`+1( #»v ), . . . , ζk(

#»v )
)
. Clearly, map τ

is bijective, where the inverse function is the projection to the first ` coordinates. Let τ∗ be the
pullback algebra homomorphism τ∗ : Q[

#»

f ] → Q[ #»v ] defined as τ∗(ϕ) := ϕ ◦ τ , that replaces each
occurrence of each non-parameter fb by the polynomial ζb(

#»v ) in the parameters. Let I ⊆ Q[
#»

f ] be
the ideal generated by eq`+1, . . . , eqk . We start by establishing some well-known basic facts about
graph varieties.

5.3.1 Claim. We have: τ∗(η) ∈ η + I and I = ker τ∗.
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Proof. First, observe that I ⊆ ker τ∗. Indeed, the kernel of every ring homomorphism is always an
ideal, so we only have to check this for the generators of I. But clearly eqb ∈ ker τ∗.

Now let η ∈ ker τ∗. Consider η as a polynomial in the non-parameters, i.e., as an element of the
ring

(
Q[ #»v ]

)[
f`+1, . . . , fk

]
. Since τ∗ is replacing non-parameters by polynomials in parameters only,

we can consider the application of τ∗ as a process of iteratively substituting (in any order) a single
variable in a monomial of η. This decreases this monomial’s degree, so this process terminates.

Let τ∗j be step j in this process of evaluating τ∗. If at step j the variable fb, b > `, occurs in
the monomial q with a strictly positive power, then we can write

τ∗j (q) = τ∗j
( q
fb
fb
)

= q
fb
ζb(

#»v ) .

But we also see that
q + q

fb

(
ζb(

#»v ) − fb
)︸ ︷︷ ︸

∈I

= q
fb
ζb(

#»v ) .

This implies that τ∗j (q) ∈ q + I.
Iterating this process, in every step only elements of I are added. Hence τ∗(η) ∈ η + I. Since

we assumed that η ∈ ker τ∗ it follows that 0 ∈ η + I and hence η ∈ I.

5.3.2 Claim. I = I(Z).

Proof. Let η be a multivariate polynomial in k variables. The direction I ⊆ I(Z) is clear: if η ∈ I,
then η vanishes on Z, because all eqb vanish on Z.

Now let η vanish on Z. We show that η ∈ I. Set η′ := τ∗(η) and observe that η′ ∈ η + I by
Claim 5.3.1. Since η vanishes on Z and since I ⊆ I(Z), we have that η′ vanishes on Z. But since
η′ only uses parameter variables, η′ vanishes identically on Q`. By multivariate interpolation on Q`

we have η′ = 0, hence 0 = η′ ∈ η + I, and therefore η ∈ I.

In other words, we get the short exact sequence

0 → I → Q[
#»

f ]
τ∗→ Q[ #»v ] → 0.

Since Q[Z] = Q[
#»

f ]/I, it follows Q[Z] ' Q[ #»v ] with the isomorphism induced by τ∗, and its inverse
given by ψ 7→ ψ + I.

5.3.3 Claim. Let S lie Zariski-dense in Z, and let S′ := τ−1(S). Then S′ lies Zariski-dense in Q`.

Proof. Assume that a function ψ ∈ Q[ #»v ] vanishes on S′. Then ψ also vanishes on S. This means
that ψ ∈ I. But ψ only uses parameter variables, hence ψ = 0.

We now study asymptotic growth behavior in the parameter space. For S′ = τ−1(S) and
ϕ′ = τ∗(ϕ) we define

Q[ #»v ]≤(ϕ′,S′) :=
{
ψ ∈ Q[ #»v ]

∣∣ ∃α ∈ Q ∀ #»g ∈ S′ : |ψ( #»g )| ≤ α|ϕ′( #»g )|
}
.

5.3.4 Claim. Let ϕ′ = τ∗(ϕ) and let S′ = τ−1(S). The isomorphism Q[Z] ' Q[ #»v ] induces an
isomorphism of linear subspaces Q[Z]≤(ϕ,S) ' Q[ #»v ]≤(ϕ′,S′) .
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Proof. Let ψ + I ∈ Q[Z]≤(ϕ,S). Let α ∈ Q be such that for all #»g ∈ S we have:∣∣[ψ + I]( #»g )
∣∣ ≤ α

∣∣[ϕ+ I]( #»g )
∣∣.

Note that
[ψ + I]( #»g ) = ψ( #»g ) = ψ

(
τ
(
τ−1( #»g )

))
=
[
τ∗(ψ)

](
τ−1( #»g )

)
.

Therefore, for all #»g ∈ S, we have∣∣[τ∗(ψ)
](
τ−1( #»g )

)∣∣ ≤ α
∣∣[τ∗(ϕ)

](
τ−1( #»g )

)∣∣.
In other words, for all #»g ∈ S, we have∣∣[ψ′](τ−1( #»g )

)∣∣ ≤ α
∣∣[ϕ′](τ−1( #»g )

)∣∣,
Since S′ = τ−1(S), it follows that |ψ′( #»g )| ≤ α|ϕ′( #»g )| for all #»g ∈ S′. The argument also works in
the other direction, because τ(S′) = S.

Let O+ := Q`
+. Note that we do not require integrality of the points in O+. We define the cone

CS′ of rays in O+ with infinitely many elements of S′, i.e. CS′ :=
{

#»v ∈ O+

∣∣ |S′ ∩ Q #»v | = ∞
}

.
Even though S′ ⊆ Q` is Zariski-dense, it can be that CS′ = ∅, for example if ` = 2 and S′ =
{ #»v ∈ O+ | v2 ≥ v2

1}. Nevertheless, in many important cases, we have CS′ is Zariski-dense in Q`.

5.3.5 Claim. If CS′ is Zariski-dense in Q`, then dimQ[Z]≤(ϕ,S) <∞.

Proof. Let rϕ′ := max
{
| #»e | : #»e ∈ suppb(ϕ′)

}
. Consider ψ′ ∈ Q[ #»v ] with coefficients c #»e . Define

E :=
{ #»

f ∈ suppb(ψ′)
∣∣ rϕ′ < | #»f |}, and suppose E 6= ∅.

Let rE := max
{
| #»e | : #»e ∈ E

}
. By assumption, we have rE > rϕ′ . Denote Emax :=

{
#»e ∈ E :

rE = | #»e |
}
. Consider a polynomial

p(v1, . . . , v`) :=
∑

#»e ∈Emax

c #»e v
e1
1 · · · v

e`
` ,

and define the hypersurface H = V(p) ⊆ Q`. By definition, all c #»e are nonzero and there is at least
one summand, so H is indeed a hypersurface. Since CS′ is Zariski-dense in Q`, we conclude that
CS′ does not lie in any hypersurface. Hence, it follows that there exists #»v H ∈ CS′ rH.

Observe that

|ψ′(t #»v ε)| =

∣∣∣∣∣ ∑
#»e ∈Emax

c #»e v
e1
H,1 · · · v

e`
H,`

∣∣∣∣∣ t| #»e | + lower order terms in t

=

∣∣∣∣∣ ∑
#»e ∈Emax

c #»e v
e1
H,1 · · · v

e`
H,`

∣∣∣∣∣︸ ︷︷ ︸
6=0, because #»vH /∈ H

trE + o(trE ),

where the lower order terms are bounded by∣∣ϕ′(t #»v H)
∣∣ = O

(
t|

#»
f ϕ′ |
)

= o(trE ).

Since there are infinitely many elements of S′ along this ray, we have ψ′ /∈ Q[ #»v ]≤(ϕ′,S′). Hence, a
necessary criterion for ψ′ ∈ Q[ #»v ]≤(ϕ′,S′) is suppb(ψ′) ⊆

{
#»e ∈ O+ : rϕ′ ≥ | #»e |

}
, which is a finite

set. Hence dimQ[ #»v ]≤(ϕ′,S′) <∞. The proof is finished using Claim 5.3.4.
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Recall that Z :=
{ #»

f ∈ Qk : eq`+1(
#»

f ) = . . . = eqk(
#»

f ) = 0
}

, where eqb := ζb(
#»v )− fb.

5.3.6 Claim. We assume that Z contains at least one integer point. Let S := O∩Z. Furthermore,
we assume that for all ` + 1 ≤ b ≤ k, the polynomial ζb is not constant. Let ζhom

b ∈ Q[ #»v ] be the
top nonzero homogeneous part of ζb, for all ` + 1 ≤ b ≤ k. Suppose there exists a point #»v ∈ O+

that satisfies the strict inequalities

ζhom
b ( #»v ) > 0 for all `+ 1 ≤ b ≤ k. (∗)

Then CS′ lies Zariski-dense in Q`
(
and hence dimQ[Z]≤(ϕ,S) <∞ by Claim 5.3.5

)
.

We remark that if all ζb have an integer as their constant coefficient (for example, if all ζb
are homogeneous degree ≥ 1 polynomials), then an integer point in Z is obtained by setting all
parameters to zero.

Proof of Claim 5.3.6. Let η be the least common multiple of the denominators of the coefficients
of all ζb. Consider the stretched polynomial ηζb, which has integer coefficients. For all #»v ∈ Z`, we
have ηζb(

#»v ) ≡ 0 (mod η) if and only if ζb(
#»v ) ∈ Z. Hence, we can work in the ring Z/ηZ. Then,

for every integer direction vector #»z ∈ Z` we have ζb(
#»v ) ∈ Z if and only if ζb(

#»v + η #»z ) ∈ Z.
By assumption, Z contains an integer point

#»

f for all #»y = τ−1(
#»

f ) and for all direction
vectors #»z ∈ Z`. Therefore, ζb(

#»y + η #»z ) ∈ Z for all ` + 1 ≤ b ≤ k. Here we think of the set
#»y + ηZ` =

{
#»y + η #»z : #»z ∈ Z`

}
, where #»y ∈ τ−1(Z), as an affine shift of the axis parallel

orthogonal grid with side length η and offset vector #»y . Let us prove that

if ζb(
#»v ) ∈ Z for all `+ 1 ≤ b ≤ k, then for infinitely many s ∈ N,

we have ζb(s
#»v ) ∈ Z for all `+ 1 ≤ b ≤ k.

(†)

The proof of (†) is similar to those when studying periodic orbits on a `-dimensional rectangular
block billiard table torus with side lengths η (see e.g. [Roz19, Tab05]), and goes as follows. We
have ζb(

#»v ) ∈ Z, if and only if ηζb(
#»v ) ≡ 0 (mod η). We work over Z/ηZ. Since the sequence

s #»v ∈ (Z/ηZ)` is periodic with period length at most η`, it follows that the sequence of vectors(
ηζb(s

#»v ) mod η, `+ 1 ≤ b ≤ k
)
∈ (Z/ηZ)k−` is periodic of length at most η`. This proves (†).

Let >Q denote the Euclidean closure, and > Zar the Zariski closure. Let Bε =
{

#»u : | #»u | < ε
}

be the open ball with radius ε > 0. Since the strict inequalities (∗) are open conditions, there exists
ε ∈ Q>0 such that each element in #»v +Bε satisfies the strict inequalities (∗). We now prove

( #»v +Bε) ∩O+ ⊆ CS′
Q

(‡)

This implies ( #»v +Bε)∩O+ ⊆ CS′
Zar

. Since Bε is full-dimensional and since each of its affine shifts

with center in O+ has a full-dimensional orthant in O+, it follows that ( #»v +Bε) ∩O+
Zar

= Q`.

Hence Q` = ( #»v +Bε) ∩O+
Zar ⊆ CS′

Zar ⊆ Q`. This implies that the subset relationships are

actually all equalities, so in particular CS′
Zar

= Q`.
It remains to show (‡). Let #»w ∈ ( #»v + Bε) ∩ O+ be arbitrary, in particular, suppose #»w

satisfies (∗). For all e ∈ Q>0 we now construct #»w ′′ ∈ CS′ with distance to #»w at most e. This
proves (‡).

Let Bb :=
{

#»u ∈ Q` : ζhom
b ( #»u ) = 0

}
. Each Bb is a closed set, so if a point is not in Bb, then it

has a strictly positive distance to Bb. Let ∆( #»w) be the minimum of the distances from #»w to Bb.
By the intercept theorem we have ∆(t #»w) = t∆( #»w).
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Since #»w satisfies (∗), we can find t large enough such that ∆(t #»w) > ηk and ηk/t < e. Let #»w ′

be a point in #»y + η ·Z` that is closest to #»w. By (†), there are infinitely many nonnegative integer
scalars s ∈ N such that

ζb(s
#»w ′) ∈ Z for all `+ 1 ≤ b ≤ k.

Since ∆( #»w ′) > 0, we have #»w ′ also satisfies (∗). Moreover, the distance between #»w ′/t and #»w is less
than e (again, by the intercept theorem). Let #»w ′′ := #»w ′/t. Then:

• #»w ′′ satisfies (∗),

• the distance between #»w ′′ and #»w is less than e, and

• there are infinitely many nonnegative integer scalars s ∈ N such that

ζb(s
#»w ′′) ∈ Z for all `+ 1 ≤ b ≤ k.

It remains to prove that #»w ′′ ∈ CS′ . For this, it suffices to show that for all large enough s we have

ζb(s
#»w ′′) > 0 for all `+ 1 ≤ b ≤ k. (~)

This can be seen as follows. Since

ζhom
b (s #»w ′′) > 0 for all `+ 1 ≤ b ≤ k,

it follows that
ζb(s

#»w ′′) = sdeg ζd ζhom
b ( #»w ′′)︸ ︷︷ ︸

>0

+ o
(
sdeg ζd

)
.

Hence, for all large enough s we have (~), as desired.

5.4 The witness theorem

Let S6 := { #»

f ∈ O | ∃ #»g 6
#»

f : #»g ∈ S} denote the downwards closure of S. Recall from Section 4
that for D ⊆ O, a function Ψ : D → N is called D-good if all its coefficients in the binomial
basis are nonnegative integers. Recall that a multivariate polynomial is called binomial-good if all
coefficients in its binomial basis expansion are nonnegative integers, i.e., it is O-good. Otherwise we
call the polynomial binomial-bad. A coset of polynomials (for example ϕ+I) is called binomial-good
if at least one of its representatives is binomial-good, otherwise it is called binomial-bad.

5.4.1 Theorem (The witness theorem). Let S ⊆ O, let I = I(S) be the vanishing ideal, and
denote Q[Z] := Q[

#»

f ]/I. Fix ϕ ∈ Q[
#»

f ], and suppose that dimQ[Z]≤(ϕ,S) < ∞. For an integer

∆ ∈ N, denote D = D(∆, S) := J∆Kk ∩S6 . Then there exists ∆ ∈ N, such that for every binomial-
bad coset (ϕ+ I) and a D-good function Ψ : D → N, there exists

#»

f ∈ S ∩D with Ψ(
#»

f ) 6= ϕ(
#»

f ).

Proof. A function in Q[Z] is completely specified by its evaluations at all points in S, which can
be seen as follows. Let γ, γ′ ∈ Q[

#»

f ], such that γ|S = γ′|S . Then (γ − γ′)|S = 0 which implies
(γ−γ′)|Z = 0. Therefore, γ−γ′ ∈ I, and γ+I = γ′+I, i.e., we have equality as functions in Q[Z].
We conclude:

the evaluation map eval : Q[Z] → QS is injective. (5.4.2)

To simplify the notation, denote V := Q[Z]≤(ϕ,S). By (5.4.2), the restriction eval|V : V → QS

is injective. Let r denote the rank of the linear map eval|V , and note that the injectivity implies
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that |S| ≥ r. We now construct a set S′ ⊆ S. We start with the empty set and iteratively enlarge
it point by point from S in such a way that the rank of the evaluation map eval|V : V → QS′

increases at each step by 1, up to rank r. This gives a set S′ ⊆ S of r points such that the map
evalV,S′ : V → QS′ is injective. This means:

an element in V is completely specified by its evaluations at S′. (5.4.3)

Let d be the smallest d ≥ δ such that S′ ⊆ JdKk. For each ξe that is large (see above), let
ωe ∈ S be a point with

ξe(ωe) > ϕ(ωe). (5.4.4)

Let ∆ be such that for all large e ∈ JdKk we have ωe ∈ J∆Kk.
We are now ready to prove the result. Note that we have not considered Ψ so far. Since Ψ is

D-good, we can enlarge the domain of definition of Ψ to the whole J∆Kk in a way such that Ψ is
J∆Kk-good. Let Ψ∆ denote the unique polynomial with multidegree ≤ (∆, . . . ,∆), and which is
binomial-good.

Let Ψ̃ be the polynomial that arises from Ψ∆ by setting all coefficients in the binomial basis
whose multidegree is not 6 (d, . . . , d) to zero. Clearly Ψ̃ is also binomial-good. Moreover, for the
restrictions to JdKk, we have Ψ|JdKk = Ψ̃|JdKk . On the other hand, on J∆Kk we have Ψ|J∆Kk ≥ Ψ̃|J∆Kk

because Ψ is binomial-good.
Suppose ϕ|S′ 6= Ψ̃|S′ . This gives the desired

#»

f , because S′ ⊆ JdKk ⊆ J∆Kk and Ψ|JdKk = Ψ̃|JdKk .
Thus we can consider only the case when

ϕ|S′ = Ψ̃|S′ .

Assume for the sake of contradiction that Ψ̃ + I ∈ V . Then, by (5.4.3), we have ϕ + I = Ψ̃ + I.
This is a contradiction to ϕ+ I being binomial-bad and Ψ̃ + I being binomial-good. Hence we are
left to consider the case that

Ψ̃ + I /∈ V.

Since Ψ̃ is binomial-good, Claim 5.2.3 gives #»e ∈ suppb(Ψ̃) with ξ #»e large. Moreover, since Ψ̃ is
binomial-good, all coefficients in the binomial expansion are nonnegative. Hence Ψ̃ ≥ ξe on O. In
particular, we have: [

Ψ̃ + I
]
( #»ω e) ≥ ξe(

#»ω e)
(5.4.4)
> ϕ( #»ω e).

Since Ψ|J∆Kk ≥ Ψ̃|J∆Kk , we found the desired
#»

f := #»ω e. This completes the proof.

5.5 Integer points in the polyhedron P(ϕ, ζ)

In the Witness Theorem 5.4.1 we need to have a binomial-bad ϕ + I. In this section we discuss
the important case of having only affine linear constraints. We use it for many of the cases in this
paper.

Formally, given an ideal I generated by ζb − fb with b > `, such that ζb are affine linear in
f1, . . . , f`, and given a polynomial ϕ, the task in this section is to determine whether or not ϕ+ I
is binomial-good. We will see that this is the case if and only if the polyhedron P(ϕ, ζ) contains
an integer point, see below.

Let Z be the vanishing set of I, and let ZZ denote its integer points. We work under the
assumption that C ′τ−1(ZZ) lies Zarsiki-dense in Q`, which is for example guaranteed if all ζb have
only integer coefficients.
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First, note that we can express ϕ in the parameters by plugging in ζb for each fb, b > `. We
call the resulting polynomial ϕ′ = τ∗(ϕ). Let δ be the degree of ϕ′. Recall that O := Nk. Denote

Oδ :=
{

#»e ∈ O : | #»e | ≤ δ
}

. Take all k variables fb and consider the binomial basis elements
( #»
f
#»e

)
with #»e ∈ Oδ . Each #»e gets a variable x #»e , and we define

q :=
∑

#»e ∈Oδ

τ∗

(( #»

f
#»e

))
· x #»e .

Note here that τ∗ is only affine linear, so the degree does not increase.

By expressing τ∗
(( #»

f
#»e

))
over the binomial basis in #»v , we assign to each #»e ∈ Oδ a coefficient

vector w #»e ∈ QN`δ , where N`δ :=
{

#»v ∈ N` : | #»v | ≤ δ
}

. Note that if #»e is contained in N`, then y #»e

has a single 1 at position #»e and the rest are zeros. We also express ϕ′ over the binomial basis and
get coefficients ϕ′#»v , for all #»v ∈ N`δ .

We search for a nonnegative integer assignment to the x #»e ∈ N such that

ϕ′ =
∑

#»e ∈Oδ

x #»e w #»e .

Note that the degree restriction #»e ∈ Oδ is not completely obvious and we will talk about it in
Claim 5.5.3. We conclude:

ϕ′#»v =
∑

#»e ∈Oδ

x #»e (w #»e ) #»v for all #»v ∈ N`δ , (5.5.1)

where the index #»v means taking the coefficient of #»v in the binomial basis.
Now, the question of the existence of such a vector x of nonnegative integers is the question of

an integer point in the polyhedron P(ϕ, ζ) defined by the equations (5.5.1) and the nonnegativity
constraints on all variables. The following theorem states this in the simplified situation when ζb
have only integer coefficients, while in general we only need that τ−1(ZZ) is Zarsiki-dense in Q`,
where ZZ are the integer points in Z.

5.5.2 Theorem (The polyhedron theorem). Let I be an ideal generated by the ζb− fb, ` < b ≤ k,
such that all ζb are affine linear in f1, . . . , f`, with integer coefficients. Fix a polynomial ϕ. Then
ϕ+ I is binomial-good if and only if there exists an integer point in the polyhedron P(ϕ, ζ).

Proof. The existence of a nonnegative integer point x #»e that satisfies (5.5.1) implies that ϕ+ I is
binomial-good by definition. For the reverse, if ϕ + I is binomial-good, then there exist finitely
many nonnegative integers x #»e with ϕ′ =

∑
#»e x #»e w #»e . The following Claim 5.5.3 implies that here

we can indeed assume that #»e ∈ Oδ in this sum, which finishes the proof.

5.5.3 Claim. Let x #»e > 0 for some #»e ∈ Nk with | #»e | > δ. Moreover, assume that all x #»e ≥ 0 and
that x #»e > 0 for only finitely many #»e . Then ϕ′ 6=

∑
#»e x #»e w #»e .

Proof. We define the vector space of functions that grow slowly:

Q[ #»v ]≤ϕ′ :=
{
ψ ∈ Q[ #»v ]

∣∣ ∃α ∈ Q ∀ #»g ∈ O+ : |ψ( #»g )| ≤ α|ϕ′( #»g )|
}
.

Clearly ϕ′ ∈ Q[ #»v ]≤ϕ′ . Since all functions τ∗(ξ #»
f ) are eventually nonnegative forever on any ray

Q≥0
#»v with #»v ∈ CS′ , it suffices to prove that τ∗(ξ #»e ) /∈ Q[ #»v ]≤ϕ′ .
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Since | #»e | > δ, we have deg ξ #»e > degϕ′. Since τ∗ replaces variables by affine linear non-constant
polynomials, and since ξ #»e has a single monomial of highest degree, we have deg

(
τ∗(ξ #»e )

)
=

deg(ξ #»e ).
Since CS′ is dense in Q` , we can choose #»v ∈ O+ that is strictly positive in each component.

We have
ϕ′(t #»v ) = Θ

(
tdeg(ϕ′)

)
,

whereas
ξ′#»e (t #»v ) = Θ

(
tdeg(ξ #»e )

)
= ω

(
tdeg(ϕ′)

)
.

This implies the result.

6 The diagonalization theorem

In this section we use set-instantiators, the Witness Theorem 5.4.1 and a multivariate version of
Ramsey’s hypergraph theorem to prove the Diagonalization Theorem 6.2.1. The Diagonalization
Theorem is our only method of proving oracle separations from #P when the polynomial ϕ is
monotone, such as for example f − 1, f/2 or (f − 1)/2.

For a subset B ⊆ {0, 1}j , we write B̃ ⊆ {0, 1}j−1 do denote the set of suffixes of all strings
that start with 1. For a subset B ⊆ {0, 1}j−1, we write {1}� B ⊆ {0, 1}j to denote the union of
{0j} with the set of strings that start with 1 and continue with a string from B.

6.1 Set-instantiators

We want to consider computation paths of nondeterministic Turing machines, but the actual com-
putational device we are arguing about is a nondeterministic Turing machine with oracle access to
an oracle that is defined up to strings of length < j, and where the oracle answers with 0 for all
oracle queries of length > j. We capture this in the following definition.

6.1.1 Definition. A computation path τ of a nondeterministic Turing machine on some input is
defined as the sequence of its nondeterministic choice bits and the answers to its length j oracle
queries (both types of bits appear in the same list, ordered chronologically). Formally, it is an
element of {0, 1}∗.

The same Turing machine can yield the same computation path on different inputs (for example,
when not the whole input is read) or when having access to different oracles, because the oracles
can differ in positions that are not queried. We are especially interested in the case where the input
is 0j and the oracles differ in exactly the set Aj ⊆ {0, 1}j of length j strings.

Given a nondeterministic Turing machine M and an oracle A<j :=
⋃
j′<j Aj′ where Aj′ ⊆

{0, 1}j′ , and give a subset B ⊆ {0, 1}j−1, we are interested in the number of accepting paths of M
when given oracle access to A<j ∪ ({1}�B), where A<j is fixed. We define

hBM (w) := #acc
MA<j∪({1}�B) (w). (6.1.2)

It is instructive to think of A<j and M as together forming a computational device that has oracle
access to some subset B ⊆ {0, 1}j−1.

For
#»

b ∈ Nk, we write B(
#»

b ) := B([b1])× · · ·×B([bk]), where B([a]) is the set of all subsets of
[a] = {1, . . . , a}. For #»s ,

#»
t ∈ B(

#»

b ), we write #»s ⊆ #»
t if sa ⊆ ta for all 1 ≤ a ≤ k. For an element

#»s ∈ B(
#»

b ), we write | #»s | :=
(
|s1|, . . . , |sk|

)
.
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6.1.3 Definition (Set-instantiator against (M, j,A<j , S,
#»

b )). Let M be a nondeterministic Turing
machine, let j ∈ N, and let A<j ⊆ {0, 1}∗ be a language that contains only strings of length < j.

Let S ⊆ Nk be a set and let
#»

b ∈ Nk. We set B(
#»

b )S :=
{

#»s ∈ B(
#»

b ) : | #»s | ∈ S
}

.

Let > be a symbolic top element above B(
#»

b ), i.e. #»s ( > for all #»s ∈ B(
#»

b ). A set-instantiator
SI is a pair of
◦ an instantiation function instSI : B(

#»

b )S → {0, 1}[2
j ] , and

◦ a perception function percSI : {0, 1}∗ → B(
#»

b ) ∪ {>},

such that the following property holds for all #»s ∈ B(
#»

b )S :

• τ ∈ {0, 1}∗ is an accepting path for the computation h
instSI( #»s )
M (0j) if and only if percSI(τ) ⊆ #»s .

The intuition is that a computation path queries the oracle and sees the existence of several
objects (k different types of objects), and then decides to accept or not based solely on the set of
objects perceived, independent of whether or not there are actually other unqueried objects in the
oracle. The Turing machine might even know that there must be other objects for some syntactic
reason and can take that information into account.

For example, in Sperner we have k = 2, and we consider rainbow triangles of positive/negative
orientation. We know that t+ − t− − 1 = 0, so if we see t+ ≥ 3 and t− ≥ 3, then we know that
there must be at least one rainbow triangle of positive orientation that we have not seen. Note that
if an accepting path τ sees an object in the oracle and then we change the oracle, then running the
same computation we will at some point get a different oracle answer, and hence τ will not be a
computation path of this (input, oracle) combination.

Formally, in the above definition we think of accepting paths as having a perception from B(
#»

b ),
while computation paths that never accept on any of the instantiations are given perception >.
Note also that from the definition it is immediately clear that from a set-instantiator with a set S,
we get a set-instantiator with the same parameters for every subset of S.

We usually do not mention A<j in the context of set-instantiators, as it has no effect on the
construction of set-instantiators, and is also understood from the context. When discussing poly-
nomial closure properties of #P, set-instantiators almost trivially exist (see §6.6), but for counting
classes coming from TFNP this is not obvious. We create the necessary set-instantiators in §8.4,
§8.5, §8.6, §8.8, and §8.10.

6.2 Diagonalization theorem statement

Our main tool for constructing oracles that separate from #P is the following Theorem 6.2.1, which
depends on the parameters ϕ, ζ, S, Multiplicities, and

#»
t . In most situations

#»
t ∈ S can be

arbitrary, so
#»
t is often not specified. To use the theorem well, Multiplicities should map into S.

For A<j ∈ {0, 1}<j , we say that a nondeterministic oracle Turing machine M answers
consistently for (j, A<j ,Multiplicities), if for every B ⊆ {0, 1}j−1 we must have the num-

ber #acc
A<j∪({1}�B)
M (w) is the same for all B that have the same Multiplicities(B), for all

w ∈ {0, 1}∗. In other words, we must have:

#acc
A<j∪({1}�B)
M (w) = #acc

A<j∪({1}�C)
M (w)

for all C ∈ {0, 1}j−1 with Multiplicities(B) = Multiplicities(C).

6.2.1 Theorem (Diagonalization Theorem). Fix 0 ≤ ` ≤ k and let O := Nk. We write
#»

f =
(f1, . . . , fk) and #»v = (v1, . . . , v`). Fix ϕ ∈ Q[

#»

f ]. Let ζb ∈ Q[ #»v ] be non-constant functions and
set I to be the ideal generated by the ζb(

#»v )− fb, where `+ 1 ≤ b ≤ k.
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Define Z := { #»

f ∈ Qk | eq`+1(
#»

f ) = . . . = eqk(
#»

f ) = 0}, where eqb := ζb(
#»v ) − fb. Denote

T := O ∩ Z and let S ⊆ T . Consider a map τ : Q` → Z defined as

τ(v1, . . . , v`) :=
(
v1, . . . , v`, ζ`+1( #»v ), . . . , ζk(

#»v )
)
.

Set C ′S :=
{

#»v ∈ Q`
≥0 : |τ−1(S) ∩Q #»v | =∞

}
. Assume that

(1) Z contains at least one integer point,

(2) C ′S
Zar

= C ′T
Zar

, and
(3) there exists a point #»v ∈ Q`

≥0 that satisfies strict inequalities

ζhom
b ( #»v ) > 0 for all `+ 1 ≤ b ≤ k,

where ζhom
b ∈ Q[ #»v ] is the top nonzero homogeneous part of ζb.

Fix a set of multivariate functions Multiplicities : B
(
{0, 1}j−1

)
→ O. Assume that for

every nondeterministic polynomial-time Turing machine M and for every
#»

f , there exist in-
finitely many j ∈ N, such that for every A<j ∈ {0, 1}<j, either M does not answer consis-

tently for
(
j, Aj ,Multiplicities

)
or there is a set-instantiator SI against

(
M, j,A<j , S,

#»

f
)

with

Multiplicities
(
instSI(

#»s )
)

= | #»s | for all #»s ∈ B(
#»

f )S.

Fix any
#»
t ∈ S. For A ⊆ {0, 1}∗, we write:

A =
⋃
j≥0

Aj , where Aj ⊆ {0, 1}j .

Define

pA(w) :=

{
ϕ
(
Multiplicities

(
Ã|w|

))
if A|w|(0

|w|) = 1

ϕ(
#»
t ) otherwise,

where Ãj is the set of length j − 1 suffixes of the strings in Aj that start with a 1.
Finally, suppose ϕ + I is binomial-bad. Then there exists an oracle A ⊆ {0, 1}∗ such that

for every nondeterministic polynomial-time Turing machine M there exists j such that pA(0j) 6=
#accMA(0j) and whenever A(0j) = 1, then Aj = {1} � instSI(

#»s ) for some #»s and one of the SI
above.

Note that the technical conditions (1), (2), and (3) are very easy to check in most situations.
They exist to prevent degenerate cases. The rest of this section is devoted to the proof of Theo-
rem 6.2.1.

6.3 Proof setup

In the beginning, we follow the diagonalization framework from Theorem 3.1.1(b) in [CGH+89], to
construct an oracle A ⊆ {0, 1}∗ such that the function pA has the desired properties. The actual
implementation of this strategy gets quite technical in some instances: we invoke the Witness
Theorem 5.4.1 and use a generalization of Ramsey’s theorem.

The computational complexity of the function Multiplicities will not play any role here, but
may play a role when invoking the theorem, where it is usually solved by a k-tuple of #P machines.
In fact, Multiplicities is usually evaluated on length 2j−1 instances. With the standard iden-
tification B({0, 1}j−1) ' {0, 1}2j−1

a subset B ⊆ {0, 1}j−1 can be interpreted as a length 2j−1

instance of the Multiplicities problem.
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We construct A :=
⋃
j∈NAj as the union of sets Aj ⊆ {0, 1}j , where we will define Aj iteratively

for larger and larger j. Once we define Aj , all Aj′ with j′ < j will not be changed again. All those
Aj′ with j′ < j and that have not been defined up to that point, are set to ∅.

We enumerate the set of nondeterministic polynomial-time Turing machines that have oracle
access. Note that this enumeration is independent of the specific oracle. Let Mi denote the i-th
machine. For a specific oracle A, we denote the corresponding counting function by HA

i ∈ #PA.
We proceed by diagonalizing over i, so assume that even though A is not fully specified, we have
enough information to know that HA

i′ 6= pA for all i′ < i. We show that HA
i 6= pA by defining

further details of A, i.e., defining Aj for larger j.
Let j be the smallest integer such that Aj has not been already defined, and such that j is

large enough for all upcoming claims (the upcoming constructions do not depend on the exact value
of j, but just require j to be large). We now define Aj in this case as follows.

Let A<j :=
⋃
j′<j Aj′ . If there exist B ⊆ {0, 1}j with

H
A<j∪B
i (0j) 6= pA<j∪B(0j),

then define Aj := B. Also define Aj′ := ∅ for all j < j′ ≤ j′′, where j′′ is the longest length of

an oracle query made by the computation H
A<j∪B
i (0j). In this case we have HA

i′ 6= ϕ(f) for all
i′ ≤ i, which was the goal.

For treating the other case, it is sufficient to analyze the case where for all B ⊆ {0, 1}j such
that 0j ∈ B. Here we have:

H
A<j∪B
i (0j) = pA<j∪B(0j) = ϕ

(
Multiplicities(B̃)

)
(6.3.1)

and find a contradiction as follows.
Equation (6.3.1) implies that the number of accepting paths in the computation H

A<j∪B
i (0j)

only depends on the value Multiplicities(B̃) and not on B̃ itself. Hence, Mi answers con-
sistently for (j, A<j ,Multiplicities). We will need this property mainly for the existence of a
set-instantiator for #PLS(Iter), see §8.4.

The case (6.3.1) is then brought to a contradiction in §6.5 via instances generated by set-
instantiators, see (6.5.6). We write

hBi (0j) := H
A<j∪({1}�B)
i

to simplify the notation, which is also a simplification of the notation h
{1}�B
Mi

(0j) from (6.1.2).

6.4 A Ramsey-type theorem

The following Ramsey-type result is used in the next section to construct set-instantiators. We
need the following definitions, some of which we recall from the previous sections.

Fix the dimension k and the number of colors c. Let #»m = (m1, . . . ,mk) ∈ Nk and #»n =
(n1, . . . , nk) ∈ Nk. We write #»m 6 #»n if mi ≤ ni for all 1 ≤ i ≤ k. Recall that [n] = {1, . . . , n}.

Let X1, . . . , Xk be an ordered list of finite or countably infinite sets, and write
#»

X =
(X1, . . . , Xk). Denote | #»X| :=

(
|X1|, . . . , |Xk|

)
. For #»a ∈ Nk we say that

#»

X is an #»a -list if | #»X| = #»a .

Denote
#»

Y ⊆ #»

X when we have Yi ⊆ Xi for all 1 ≤ i ≤ k. We say that
#»

Y is a subset-list of
#»

X
in this case, and denote by L (

#»

X) :=
{ #»

Z :
#»

Z ⊆ #»

X
}

the set of subset-lists of
#»

X. A subset-list that
is also an #»a -list is called an #»a -subset-list.

A c-coloring of
#»

X is a map L (
#»

X)→ [c]. We say that
#»

X is #»m–monochromatic if for all #»a 6 #»m,
all #»a -subset-lists

#»

Y ⊆ #»

X have the same color.

35



6.4.1 Theorem (multipartite hypergraph Ramsey theorem). Fix k ≥ 1. For every #»n , #»m ∈ Nk
and every integer c ≥ 1, there exists a natural number R = R( #»n, #»m, c), such that for every c-
coloring of a list

#»

X = (X1, . . . , Xk) of finite sets of size |Xi| ≥ R, there is a #»m–monochromatic
subset-list

#»

Y ⊆ #»

X with | #»Y | > #»n .

Since we do not need the explicit quantitative bounds, the proof below is based on the approach
in [GPS12], rather than a more standard argument in Ramsey theory, see e.g. [GRS90, Nes95]. We
give it here for the sake of completeness and because it is not covered by the (usual) hypergraph
Ramsey theorem.

Proof. Given k countably infinite sets X1, . . . , Xk , and let all subset-lists of cardinality 6 #»m be
colored with [c]. We first prove:

(♦) there is an infinite #»m–monochromatic subset list
#»

Y ⊆ #»

X. Here
#»

Y = (Y1, . . . , Yk), such that
Yi ⊆ Xi are infinite, for all 1 ≤ i ≤ k.

Fix #»a 6 #»m. If we can prove that there are infinite subsets Y1 ⊆ X1, . . . , Yk ⊆ Xk for which
all #»a -subset-lists are monochromatic, then we can iterate this argument on

#»

Y for a another vector
#»a ′ 6 #»m, and so on, until we treated all #»a 6 #»m.

We proceed by induction. We assume by induction that for each
#»

b 6 #»a ,
#»

b 6= #»a , we have
a subset-list of infinite subsets such that each

#»

b -subset is monochromatic. We choose q ∈ [k]
with aq 6= 0. Let

#»

b := (a1, . . . , aq−1, 0, aq+1, . . . , ak). Take any way of enumerating the set of all
#»

b -subset-lists. Note that every
#»

b -subset-list can be extended to an #»a -subset-list in infinitely many
ways. Each of these extensions has a color.

For the first
#»

b -subset-list we choose an infinite monochromatic subset in the set of all extensions
(which exists by the usual hypergraph Ramsey theorem). We attach the color of this subset to
the

#»

b -subset-list and call it its infcolor. Now delete all vertices in coordinate q that are not in
this monochromatic set and proceed with the next

#»

b -subset-list. We iterate this, and in this way
attach an infcolor to each

#»

b -subset-list. By induction we can choose a subset-list of infinite subsets
in which all

#»

b -subset-lists are monochromatic w.r.t. infcolor. In the resulting subset-list of infinite
subsets, all #»a -subset-lists have the same color. This completes the proof of (♦).

We now prove the existence of the lower bound R( #»n, #»m, c) as in the theorem. Assume that
there exists no such bound. Then for each z ∈ N we find a coloring colz of the subset-lists of [z]k

such that [z]k contains no cardinality #»m subset-list in which for all #»a 6 #»m all #»a -subset-lists are
monochromatic.

We enumerate the set of all subset-lists of Nk that are an #»a -subset-list for some #»a 6 #»m. We
assign a color to the first of this list so that the color agrees with the color choice of infinitely many
colz (note that not all colz might assign a color to this element, but infinitely many do). Now
assign a color to the second of the list so that it agrees with the color choice of infinitely many colz
that already agree with the color of the first element. We proceed in this manner and obtain a
coloring of all #»a -subset-lists, #»a 6 #»m, of Nk. By construction, no cardinality #»m subset-list has for
all #»a 6 #»m that all #»a -subset-lists are monochromatic. This is a contradiction to (♦), as desired.

6.5 Set-instantiators via Ramsey’s theorem

We can now finish the proof of the Diagonalization Theorem 6.2.1 that we started in §6.3. Recall
that we invoke the Witness Theorem 5.4.1 with our S and ϕ to obtain a ∆ ∈ N as in the theorem.

Denote ∆×k := (∆, . . . ,∆) ∈ Nk. Let λ ≥ ∆ be large enough for Theorem 6.4.1 to hold (note
that this also implies that j is large). Let SI := (SI)λ×k be the set-instantiator with

#»

b = λ×k,
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with M = Mi, j and A<j being as before, and with S is intersected with JλK×k. From now on
we have S ← S ∩ JλKk. Recall that B

(
λ×k

)
= B([λ])× . . .×B([λ]), k times.

6.5.1 Definition (Filling the definitional holes with “perception or below”). For
#»
t ∈ B(λ×k) we

define Φ(
#»
t ) as the number of τ ∈ {0, 1}∗ that satisfy percSI(τ) ⊆ #»

t .

We observe that for
#»
t ∈ B(λ×k)S we have Φ(

#»
t ) = h

instSI(
#»
t )

i (0j). So this definition fills

the holes in the domain of definition of the function
#»
t 7→ h

instSI(
#»
t )

i (0j) that is only defined on
B(λ×k)S ⊆ B(λ×k). Note that

Φ(
#»
t ) =

∣∣{ τ ∈ {0, 1}∗ : percSI(τ) ⊆ #»
t
}∣∣, (6.5.2)

so in particular the function Φ is monotonic.
By Definition 6.1.3, for every

#»
t ∈ B(λ×k) with | #»t | ∈ S6 , we find #»s ∈ B(λ×k)S such that

#»
t ⊆ #»s Take an #»s for which | #»s | is lexicographically smallest. Define Ω(

#»
t ) := ϕ(| #»s |). Note that

by the definition of a set-instantiator, Ω(
#»
t ) is the same number for all

#»
t that have the same | #»t |,

so Ω
(
| #»t |
)

:= Ω(
#»
t ) is well-defined.

If Φ(
#»
t ) > Ω(

#»
t ), then also Φ( #»s ) > Ω(

#»
t ) by monotonicity. Hence h

instSI( #»s )
i (0j) > ϕ(| #»s |). By

Definition 6.1.3, we have Multiplicities(instSI(
#»s )) = | #»s | It now follows that h

instSI( #»s )
i (0j) >

ϕ(Multiplicities(instSI(
#»s ))). This allows us to define Aj := (instSI(

#»s ))′ and get a contradiction
to (6.3.1).

It remains to treat the case when this is impossible. Therefore, from now on we assume that for
all

#»
t with | #»t | ∈ S6 we have Φ(

#»
t ) ≤ Ω(

#»
t ) = ϕ

(
| #»s |
)
. We are not interested in

#»
t /∈ S6. Define

c := 1 + max
{

Ω(
#»

f ) :
#»

f ∈ J∆Kk ∩ S6
}

.

6.5.3 Proposition. Let Φ be a function defined on the set B([λ])k such that Φ(
#»
t ) ∈ {0, . . . , c−1}

for all
#»
t with | #»t | ∈ J∆Kk. Then, there exists Λ = Λ(∆, c) ∈ N, such that for all λ ≥ Λ there exist

subsets Q1, . . . , Qk ⊆ [λ] with |Q1| = . . . = |Qk| = ∆, with the property:

| #»s | = | #»t | ∈ S6 for some #»s ,
#»
t ∈ #»

Q =⇒ Φ( #»s ) = Φ(
#»
t ).

Proof. We assign to each element #»s ∈ B([λ])k with | #»s | ∈ J∆Kk the color Φ( #»s ) for all | #»s | ∈ S6.
Otherwise, assign the color 0. Let Λ := R

(
∆×k,∆×k, c

)
and use Theorem 6.4.1 to find the desired

subsets Q1, . . . , Qk.

From Proposition 6.5.3, we can readily construct a new set-instantiator SI with
#»

b = ∆×k as
follows (this is similar to restricting to a subset of S and renaming the elements).

Take a bijection βa : Qa → [∆] for all a ∈ [k]. This induces a bijection

#»

β : B(Q1) × . . . × B(Qk) −→ B
(
[∆]
)
× . . . × B

(
[∆]
)
,

which we use for identification of the sets. We set instSI(
#»s ) := instSI(

#»

β−1( #»s )). Define

percSI(τ) :=
#»

β
(
percSI(τ)

)
if

#»

β
(
percSI(τ)

)
∈ B

(
[∆]
)k ∪ {>},

and let percSI(τ) := > otherwise. With S ← S ∩ J∆Kk, it is easy to check that SI is a set-
instantiator.

By analogy to (6.5.2), define

Φ(
#»
t ) :=

∣∣{τ ∈ {0, 1}∗ : percSI(τ) ⊆ #»
t
}∣∣ =

∑
#»s ⊆ #»

t

∣∣{τ ∈ {0, 1}∗ : percSI(τ) = #»s
}∣∣. (6.5.4)
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Since Φ(
#»
t ) depends only on | #»t | for all | #»t | ∈ S6, by induction we see that the number∣∣{τ ∈ {0, 1}∗ : percSI(τ) = #»s

}∣∣
also depends only on | #»s |. Denote this number by c #»g , where #»g := | #»s | ∈ S6 , and set Ψ(

#»

f ) := Φ(
#»
t )

for
#»

f = | #»t |. This means that (6.5.4) simplifies:

Ψ(
#»

f ) =
∑

#»g 6
#»
f

( #»

f
#»g

)
c #»g . (6.5.5)

The function Ψ(
#»

f ) is defined on S6 ∩ J∆Kk and is S6 ∩ J∆Kk-good, which is a requirement
for the second part of the Witness Theorem 5.4.1 (we already used it to obtain ∆). We invoke the
second part of the Witness Theorem 5.4.1 to find a point

#»

f ∈ S ∩ J∆Kk with Ψ(
#»

f ) 6= ϕ(
#»

f ). We
take #»s ∈ (B([∆])k)S with | #»s | = #»

f , and observe

h
instSI(β−1( #»s ))

i (0j) = h
instSI( #»s )

i (0j) = Ψ(
#»

f ) 6= ϕ(
#»

f ). (6.5.6)

On the other hand, recall that Multiplicities(instSI(
#»
t )) = | #»t |, and that by Definition 6.1.3, we

have | #»t | = |β(
#»
t )|. Hence, for #»s = β(

#»
t ) we have:

h
instSI(β−1( #»s ))

i (0j) 6= ϕ
(
Multiplicities

(
instSI

(
β−1( #»s )

)))
.

Finally, define Aj =
(
instSI

(
β−1( #»s )

))′
to obtain the desired contradiction to (6.3.1). This com-

pletes the proof of Theorem 6.2.1.

6.6 A set-instantiator for OccurrenceMulti

Let OccurrenceMultik : {0, 1}∗ → Nk be the function defined as follows. On input w ∈ {0, 1}∗
we split w into k parts of roughly the same size, and the output is the vector that specifies how
many 1’s are in the first part, how many 1’s are in the second part, and so on. We omit the index k
when it is clear from the context.

6.6.1 Theorem. Let M be a given a polynomial time nondeterministic Turing machine. Fix k.
For every

#»

b ∈ Nk there exists a threshold j0 ∈ N, such that for every j ≥ j0 and every
A<j ∈ {0, 1}<j there exists a set-instantiator SI against (M, j,A<j , S ⊆ Nk, #»

b ), such that
OccurrenceMultik(instSI(

#»s )) = | #»s |.

The rest of this section is devoted to proving this theorem for S = Nk, which immediately
proves it for all subsets. We will first define a creator whose creations will be the instantiations in
the end, but the creator is not limited to a single creation for each set. We will then define the
set-instantiator from the creator by picking for every subset #»s with | #»s | ∈ Nk just any one of its
creations for #»s .

6.6 (a) Creations

Having 2j−1 many bits available, we can encode in a standard way a list of k subsets ψ =
(ψ1, . . . , ψk), where ψa ⊆ [2j−2]. We ignore any extra bits that are not needed for this encod-
ing. Let n := j − 2. For a (c, x) ∈ [k] × [2n] we write ψ(c, x) := 1 if x ∈ ψc, and ψ(c, x) := 0
otherwise. We say that (c, x) is a hit if ψ(c, x) = 1, otherwise it is a miss.
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Let hitvec(ψ) := {(c, x) : ψ(c, x) = 1}. Let hit(ψc) ⊆ [2n] denote the set of x ∈ [2n] with
ψ(c, x) = 1. For a vector #»a ∈ Nk, a list ψ is called an #»a -creation if |hit(ψc)| = ac for all 1 ≤ c ≤ k.
Let #»a -creations denote the set of all #»a -creations. Finally, let

a−-creations :=
⋃

16 #»v6 #»a

#»v -creations

These will be used extensively in Section 8.

6.6 (b) Lucky creators

In this section we introduce the concept of a creator. A creator is a slightly less restrictive version
of a set-instantiator. For each blueprint a creator outputs a creation, where a blueprint is slightly
more general than the set #»s for a set-instantiator, but serves the same purpose.

For a set X, let
(
X
c

)
ordered

denote the set of cardinality c ordered subsets of X (i.e., length c lists

of pairwise distinct objects of X). For
#»

b ∈ Nk, a
#»

b -creator ξ is a length k list hitmatrix(ξ). The

c-th entry of this list is a length bc list of distinct entries from [2n], i.e., an element from
([2n]
bc

)
ordered

. We can (and will) think of hitmatrix(ξ) as a set of points in [k]× [2n].
Given a

#»

b -creator ξ and an
#»

L ∈ B(
#»

b ), we obtain an | #»L|-creation ξ #»
L by setting

ξ #»
L (c, hitmatrix(ξ)c,d) = 1 for all d ∈ Lc, and ξ #»

L (c, x) = 0 otherwise.

6.6.2 Definition. We call ξ ∈ b-creators lucky if for all
#»

L ∈ B(
#»

b ), all accepting paths of the

computation h
ξ #»
L
i (0j) do not access the oracle at any point in hitmatrix(ξ) r hitvec(ξ #»

L ).

In a sense, this says that the accepting paths do not access the oracle at positions where lonely
nodes are not, but could potentially be.

Suppose for all j ≥ 1, we have a probability distribution Dj and an event ej , which satisfy
limj→∞ PrDj [ej ] = 1. Then we say that ej happens with high probability (w.h.p.) in Dj . Given
a finite number of events ej that each happen with high probability in Dj , by the union bound
all these events happen simultaneously with high probability in Dj . Let UX denote the uniform
distribution on a finite set X.

6.6.3 Claim. If ξ is sampled from Ub-creators , then ξ is lucky w.h.p.

Proof. We observe that for a fixed L ∈ B(
#»

b ), we have that the
#»

L-creation ξL is uniformly dis-
tributed from

#»

L-creations. We show that for a fixed
#»

L ∈ B(
#»

b ) we have that ξ is lucky w.h.p.
Since there are only constantly many

#»

L, the claim immediately follows from the union bound.
Hence, for the rest of the proof fix

#»

L. We have that ξ #»
L is uniformly distributed. For l :=

∑k
a=1 |La|,

the probability of an oracle access picking one of these positions is ≤ kl
2n−l . By Bernoulli’s inequality,

we have (
1− kl

2n − l

)ti(j)
≥ 1 − klti(j)

2n − l
.

Since k and l are fixed and since n and j are polynomially related, this proves the claim.

6.6 (c) Defining the set-instantiator

For a #»a -creation ψ and a computation path τ ∈ {0, 1}∗ of a computation hψi (0j), let perception(τ) ⊆
hit(ψ) denote the set of accessed oracle positions that are hits.
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Let ξ be a lucky
#»

b -creator. We interpret the set hitmatrix(ξ) as a bijection bij : B(
#»

b ) →
hitmatrix(ξ). Let S = Nk. We set

instSI(
#»s ) := ξ #»s ,

and for τ ∈ {0, 1}∗ we set

percSI(τ) =

{
bij−1(perception(τ)) if τ is an accepting path of the computation h

instSI(
#»
b )

i (0j),

> otherwise.

The rest of this section is devoted to proving that SI satisfies the requirements of Definition 6.1.3,
which then proves Theorem 6.6.1, because clearly OccurrenceMulti(instSI(

#»s )) = | #»s |. Formally:

6.6.4 Proposition. For all #»s ∈ B(
#»

b )S: τ ∈ {0, 1}∗ is an accepting path for the computation
hinstSI( #»s )(0j) if and only if percSI(τ) ⊆ #»s .

Proof. Since τ is an accepting path of hinstSI( #»s )(0j), and since ξ is lucky, we conclude that

τ is also an accepting path of the computation hinstSI(
#»
b )(0j). This implies that percSI(τ) =

bij−1(perception(τ)). Clearly perception(τ) ⊆ bij( #»s ), since otherwise τ would not even be a
computational path of hinstSI( #»s )(0j) because of its oracle answers when querying lonely nodes
in perception(τ) r bij( #»s ). We conclude: percSI(τ) ⊆ #»s .

The argument above is reversible. Indeed, let percSI(τ) ⊆ #»s , so in particular percSI(τ) 6= >.

Then τ is an accepting path of the computation hinstSI(
#»
b )(0j). Since τ is an accepting path of

hinstSI(
#»
b )(0j), and since ξ is lucky, we conclude that τ is also an accepting path of the computation

hinstSI( #»s )(0j).

6.7 Binomial-good polynomials and relativizing closure properties of #P

We now draw an important corollary from the Diagonalization Theorem 6.2.1 in a simple subcase
that allows us to completely characterize the relativizing multivariate polynomial closure properties
of #P.

6.7.1 Theorem. The relativizing multivariate polynomial closure properties of #P are exactly the
binomial-good polynomials.

Proof. Let ϕ be binomial-bad. We prove that there exists A ⊆ {0, 1}∗ such that ϕ(
#   »

#PA) 6⊆ #PA.
We use a very simple instantiation of the Diagonalization Theorem 6.2.1 as follows.

Let k be the arity of ϕ, and let ` = k. We have no functions ζb in this case. The ideal
I = 〈0〉. Let S = T = O. Then C ′S = Qk

≥0. The assumptions of the Diagonalization Theorem

are readily verified: (1)
#»
0 ∈ Z, (2) S = T , (3) there are no inequalities. We set

#»
t =

#»
0 and set

Multiplicities = OccurrenceMultik (for which we have set-instantiators from Theorem 6.6.1).
Since ϕ + I = ϕ + 〈0〉 is binomial-bad, there exists A such that for every M , there is j with

pA(0j) 6= #accMA(0j). The proof is finished by observing that pA ∈ ϕ(
#   »

#PA), which can be seen as
follows. There exists a list of oracle Turing machines that on input w first query A at 0|w|. Then,
if 0|w| /∈ A, accept with multiplicities

#»
t ; if 0|w| ∈ A, then the machines run OccurrenceMulti

on Ãj .
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7 Applications to classical problems

In this section we first continue the approach in §2.3 to apply Proposition 2.3.1 to complete squares.
We then apply the Diagonalization Theorem 6.2.1 and its corollary, Theorem 6.7.1, in several
settings.

7.1 Complete squares

The Cauchy inequality is the basic inequality which goes into the definition of the scalar product
in Rn. It is the starting point in [HLP52, Eq. (1.1.1)]:(

x1y1 + . . . + xnyn
)2 ≤ (x2

1 + . . . + x2
n

)(
y2

1 + . . . + y2
n

)
(7.1.1)

Geometrically, the inequality says that cosine of every angle in Rn is at most 1. It is a special case
of the Hölder inequality for the Lp-norm when p = 2, see e.g. [BB61, §17].

7.1.2 Proposition (Cauchy inequality). Denote by Cn = Cn(x1, . . . , xn, y1, . . . , yn) the counting
function given by (7.1.1), i.e., the difference of the right-hand side and the left-hand side of the
inequality. For n ≥ 2, we have Cn 6># 0 unless PH = Σp

2 .

Proof. Take n = 2. We have

C2 =
(
x2

1 + x2
2

)(
y2

1 + y2
2

)
−
(
x1y1 + x2y2

)2
= x2

1y
2
2 + x2

2y
2
1 − 2x1y1x2y2 ≥ 0.

When y1 = y2 = 1, this is equivalent to (x1−x2)2 > 0, and the result follows from Corollary 2.3.2.
For n > 2, let x3 = . . . = xn = y3 = . . . = yn = 0.

The Minkowski inequality is another basic inequality, see e.g. [BB61, §21]:

n∏
i=1

(
xni + yni

)
≥

[
n∏
i=1

xi +
n∏
i=1

yi

]n
(7.1.3)

This inequality is a special case of the Brunn–Minkowski inequality (for bricks in Rn), which is
foundational in the theory of geometric inequalities, see e.g. [BZ88, §8]

7.1.4 Corollary (Minkowski inequality). Denote by Mn = Mn(x1, . . . , xn, y1, . . . , yn) the counting
function given by (7.1.3), i.e., the difference of the left-hand side and the right-hand side of the
inequality. For n = 2, we have M2 6># 0 unless PH = Σp

2 .

Proof. Note that M2(x1, x2, y1, y2) = C2(x1, y1, x2, y2).

The Alexandrov–Fenchel inequality (for mixed volumes) is a deep inequality in convex geometry
independently proved by Alexandrov (1938) and Fenchel (1936), see e.g. [BZ88, §20] and [Sch14,
§7.3]. We refer to [SvH19] for a notable recent proof and its popular exposition in [CP22]. A
special case of the inequality for bricks is especially notable as it led to a complete resolution of
the long open van der Waerden conjecture [vL81, vL82], which in turn led to further combinatorial
inequalities, see e.g. [Alon03, Gur08, Sta81].
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7.1.5 Theorem (Alexandrov–Fenchel inequality for bricks). Let n ≥ 2 and let xi, yi, zij ≥ 0, for
all 1 ≤ i, j ≤ n. Then:

per


x1 y1 z13 . . . z1n
x2 y2 z23 . . . z2n
...

...
...

. . .
...

xn yn zn3 . . . znn


2

≥ per


x1 x1 z13 . . . z1n
x2 x2 z23 . . . z2n
...

...
...

. . .
...

xn xn zn3 . . . znn

 per


y1 y1 z13 . . . z1n
y2 y2 z23 . . . z2n
...

...
...

. . .
...

yn yn zn3 . . . znn

 .

7.1.6 Proposition. Denote by AFn the polynomial in k = n2 variables given in Theorem 7.1.5
by subtracting the right-hand side from the left-hand side of the inequality. For n ≥ 2, we have
AFn 6># 0 unless PH = Σp

2 .

Proof. Take n = 2, y1 = y2 = 1. Then the AF2 inequality becomes:

per

(
x1 1
x2 1

)2

= (x1 + x2)2 > per

(
x1 x1

x2 x2

)
per

(
1 1
1 1

)
= 4x1x2 .

This is equivalent to (x1 − x2)2 > 0, and the result follows from Corollary 2.3.2.

7.2 Hadamard inequality

Recall the Hadamard inequality (1.3.3) discussed in the introduction. This inequality was proved
by Hadamard (1893) and is crucial is the study of positive definite matrices, see e.g. [HJ13, §7.8].
Denote by Hd = Hd

(
x11, x12, . . . , xdd

)
the nonnegative polynomial in k = d2 variables given

by (1.3.3). The following result is deduced from our Theorem 6.7.1.

7.2.1 Proposition (Hadamard inequality). For d ≥ 3, if Hd ># 0, then there is an oracle A

such that H3(
#   »

#PA) 6⊆ #PA.

Proof. Observe that

H3

x (
x
3

)
0

0 1 1
1 0 1

 = 1
12 x

6 − 1
2 x

5 + 3
4 x

4 + 8
3 x

2

= 3

(
x

1

)
+ 6

(
x

2

)
− 3

(
x

3

)
+ 28

(
x

4

)
+ 90

(
x

5

)
+ 60

(
x

6

)
.

Since the coefficient of
(
x
3

)
is negative, by Theorem 6.7.1 this is not a univariate relativizing closure

property of #P. Therefore, since 0, 1, x, and
(
x
3

)
are univariate relativizing closure properties of

#P, it follows that H3 is not a relativizing closure property of #P.

Note that if the (univariate) binomial basis conjecture (Conjecture 4.4.2) is true, then this is
not a closure property of #P, and we could conclude that H3(

#   »

#P) 6⊆ #P.

7.2.2 Remark. One might think that plugging in arbitrary binomial coefficients in the Hadamard-
matrix is a valid strategy, but this does not work as the following random choice illustrates:

H3


(
x
4

) (
x
7

) (
x
12

)(
x
6

) (
x
3

) (
x
2

)(
x
8

) (
x
11

) (
x
5

)


is indeed a relativizing closure property of #P.
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7.3 Fermat’s little theorem

As we mentioned in the introduction, Fermat’s little theorem states that p |ap−1−1 for all integers a,
p - a, and prime p. Fermat stated this result in 1640 without proof, and the first published proof
was given by Euler in 1736. According to Dickson, “this is one of the fundamental theorems of
the theory of numbers” [Dic52, p. V]. Note, see e.g. in [CC16], that Fermat’s little theorem can be
rephrased to say that the polynomial 1

p(xp − x) is integer valued.

7.3.1 Proposition (Fermat’s little theorem is in #P). If f ∈ #P and p is prime, then

1
p(fp − f) ∈ #P.

We include a variation on Peterson’s original proof [Pet72] for completeness.

Proof. Consider sequences (a1, . . . , ap) of integers 1 ≤ ai ≤ f and partition them into orbits under
the natural cyclic action of Z/pZ. Since p is prime, these orbits have either 1 or p elements. There
are exactly p orbits with one elements, where a1 = . . . = ap. The remaining orbits of size p have
a total of fp − f elements. Since p is fixed, the lex-smallest orbit representative can be found in
polytime.

This proof can be rephrased to show that the polynomial 1
p(xp − x) is binomial-good. For

example, for p = 5, we have:

1

5

(
x5 − x

)
= 24

(
x

5

)
+ 48

(
x

4

)
+ 30

(
x

3

)
+ 6

(
x

2

)
.

7.3.2 Remark. Peterson also discovered a similar proof of Wilson’s theorem [Pet72], see
also [Car14, p. 50]. Stanley’s elegant proof of the Lucas congruences is also combinatorial and
in the same spirit [Sta12, Exc. 1.15(c)]. Let us also mention Kummer’s congruences for the Cata-
lan numbers, which can be proved via group action on binary trees, see e.g. [DS06, KPP94]. We
refer to [Ges84] for a survey of combinatorial congruences, and to [RS80, Sag85] for the general
group action approach. See also [AZ17] for conjectures on whether there are combinatorial proofs
of various binomial congruences.

Finally, note that some congruences have combinatorial proofs for highly nontrivial reasons.
Recall the Ramanujan’s congruence 5|p(5n−1) for the number of integer partitions (see e.g. [Har40,
§6.4]). This congruence was famously interpreted by Dyson [Dys44], by dividing partitions of
(5n − 1) according to its rank (first row minus first column) modulo 5. It remains open to find
a direct bijective proof of this equal division, see [Pak06, §2.5.6]. We refer to [AG88, GKS90] for
some remarkable generalizations of this approach.

7.4 Ahlswede–Daykin inequality

Let A ⊆ 2[n] and ζ : 2[n] → R. Denote

ζ(A) :=
∑
A∈A

ζ(A).

For A,B ⊆ 2[n], denote

A∪B :=
{
A ∪B : A ∈ A, B ∈ B

}
, A∩B :=

{
A ∩B : A ∈ A, B ∈ B

}
.

43



7.4.1 Theorem (Ahlswede–Daykin inequality [AS16]). Let α, β, γ, δ : 2[n] → R+ be such that

α(A)β(B) ≤ γ(A ∩B) δ(A ∪B) , ∀A, B ∈ 2[n]. (7.4.2)

Then
α(A)β(B) ≤ γ

(
A∩B

)
δ
(
A∪B

)
, ∀A, B ⊆ 2[n]. (7.4.3)

This inequality is classical, and is an advanced generalization of the Kleitman inequality, see
below. In its most general form it is usually stated for general lattices, not just the Boolean lattice.
Among its many applications, let us single out the FKG inequality [AS16, §6.2] and the XYZ
inequality [AS16, §6.4], see also §9.2.

Let n = 1, and let A = B = {0, 1}. Operations ∩ and ∪ are replaced with min and max in
this case. Let αi, βi, γi, δi, i ∈ {0, 1}, be #P functions satisfying (7.4.2). This is guaranteed by
taking functions h1, h2, h3, h4 ∈ #P, such that

α0β0 + h1 = γ0δ0, α0β1 + h2 = γ0δ1, α1β0 + h3 = γ0δ1, α1β1 + h4 = γ1δ1

Let ADn be the function defined by (7.4.3). Then we have:

AD1 = (γ0 + γ1)(δ0 + δ1) − (α0 + α1)(β0 + β1).

Now Proposition 2.5.1 gives the oracle separation for this inequality.

7.5 Karamata inequality

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn be nonincreasing sequences of real numbers. We say
that x majorizes y , write x D y , if

x1 + . . . + xi ≥ y1 + . . . + yi for all 1 ≤ i < n, and

x1 + . . . + xn = y1 + . . . + yn .

In combinatorial context, this is also called the dominance order, and appears throughout the area,
see e.g. [Bru06, Mac95, Sta12]. See also [Bar07] for a recent connection to the problem of counting
contingency tables.

7.5.1 Theorem (Karamata inequality). Let x,y ∈ Rn, such that x D y. Then, for every convex
function F : Rn → R, we have F (x) ≥ F (y).

This result is classical, see e.g. [HLP52, §3.17] and [BB61, §28, §30]. Analytically, the inequality
can be used to derive Jensen’s inequality, which in turn implies the AM-GM inequality. See [BP21,
PPS20] for some recent applications of the Karamata inequality to combinatorial problems on linear
extensions and Young tableaux, respectively. See also [MOA11] for a modern proof, numerous
generalizations and further references.

We now convert the Karamata inequality into a counting function problem. Suppose we are
given fi, gi ∈ #P, 1 ≤ i ≤ n, such that the following functions hi, 1 ≤ i < n, are also all in #P:

hi := f1 + . . . + fi − g1 − . . . − gi (7.5.2)

and we are also guaranteed that

f1 + . . . + fn − g1 − . . .− gn = 0. (7.5.3)
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Moreover, the functions
di := fi − fi+1 and ei := gi − gi+1 (7.5.4)

are also in #P for all 1 ≤ i < n. Let Z ⊆ Q5n−3 denote the variety of points that satisfy the
constraints (7.5.3) and (7.5.4). Let γ ∈ GapP≥0 be any convex function.

Define the Karamata function as

Kn,γ(
#»

f , #»g ) :=

n∑
i=1

γ(fi) −
n∑
i=1

γ(gi).

Clearly Kn,γ(
#   »

#P) ⊆ GapP. Karamata’s inequality implies that the answer is always nonnegative for
inputs from Z. This is a semantic guarantee, i.e., we have no information as to why the guarantee
holds. This is analogous to #P≥1, but in contrast to problems in Section 8.

We write
#   »

#P∈Z for a tuple of #P functions whose function values always lie on Z. Hence,
Kn,γ(

#   »

#P∈Z) ⊆ GapP≥0 . Consider the following examples of n, γ for which Kn,γ(
#   »

#P∈Z) ⊆ #P :

• For affine linear γ, we clearly have Kn,γ = 0 ∈ #P.

• For γ(t) = t2, we have K2,γ(f1, f2, g1, g2) = (d1 + e1)h1 as a function on Z. This can be seen
by plugging in d1 = f1−f2, e1 = g1−g2, and g2 = f1+f2−g1. Clearly (d1+e1)h1 ∈ #P. This
has several proofs, for example instead of (d1 +e1)h1 we could have taken 2h1 +2e1h1 +4

(
h1
2

)
with the same argument.

• For γ(t) = t2, we have K3,γ(f1, f2, f3, g1, g2, g3) = (d1 + e1)h1 + (d2 + e2)h2 ∈ #P on Z.

• For γ(t) =
(
t
2

)
, we have K2,γ(f1, f2, g1, g2) = (e1 + 1)h1 + 2

(
h1
2

)
∈ #P on Z.

• For γ(t) =
(
t
2

)
, we observe that for the double we have 2K3,γ ∈ #P via the observation that

2K3,(t2)
= K3,t2 on Z (the affine linear parts cancel out).

All inclusions Kn,γ ⊆ #P in this section so far relativize. The next proposition shows that the
doubling we just used was in fact necessary, because otherwise obtain an oracle separation.

7.5.5 Proposition. There exists a language A ⊆ {0, 1}∗ such that K3,(t2)
(

#   »

#PA∈Z) 6⊆ #PA.

Proof. We use the Diagonalization Theorem 6.2.1. We have 5n − 3 = 12, so in the nota-
tion of the theorem, we set S = Z ∩ N12. We fix an arbitrary order of the 12 variables:
(f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2). The variety Z is then given as the kernel of the linear
map given by the following matrix:

1 −1 0 0 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
1 0 0 −1 0 0 0 0 0 0 −1 0
1 1 0 −1 −1 0 0 0 0 0 0 −1
1 1 1 −1 −1 −1 0 0 0 0 0 0


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We convert it to row echelon form:

1 0 0 0 0 −1 0 0 −1 −1 −1 0
0 1 0 0 0 −1 0 0 0 −1 1 −1
0 0 1 0 0 −1 0 0 0 0 0 1
0 0 0 1 0 −1 0 0 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 −1 0 −2 1
0 0 0 0 0 0 0 1 0 −1 1 −2


We set ` = 5, k = 12. Permuting the order of the columns to (6, 9, 10, 11, 12, 1, 2, 3, 4, 5, 7, 8), we
obtain affine linear functions ζ8, . . . , ζ12, where each ζb depends linearly on the first 5 variables,
which we call (v1, . . . , v`) := (g3, e1, e2, h1, h2). We verify the assumptions of the Diagonalization
Theorem 6.2.1:

1. Since all constraints are homogeneous, we have zero is an integer point: 0 ∈ Z.

2. All ζ have integer coefficients and all constraints are homogeneous, so the fact that C ′S lies
Zariski-dense in Q5 follows from the next point and having a small open ball that contains #»v .

3. The point #»v = (g3 = 2, e1 = 2, e2 = 1, h1 = 1, h2 = 1) satisfies all ζb(
#»v ) > 0. Here #»v is the

point corresponding to the case
#»

f = (6, 3, 1) and #»g = (5, 3, 2).

We set Multiplicities = OccurrenceMulti12 and use the set-instantiators from Theorem 6.6.1.
We fix

#»
t ∈ S, and set

ϕ(f1, f2, f3, g1, g2, g3, d1, d2, e1, e2, h1, h2) := f2
1 + f2

2 + f2
3 − g2

1 − g2
2 − g2

3 .

We now show that ϕ + I is binomial-bad. We use the Polyhedron Theorem 5.5.2, since all our
constraints are affine linear. Since dim[Q12]≤2 =

(
14
2

)
= 91 and dim[Q5]≤2 =

(
7
2

)
= 21, this

is a polyhedron in Q91 with 21 linear equations intersected with the nonnegative orthant. We
use a computer to set up the polyhedron. Indeed, it contains the half-integer point that shows
that 2K3,(t2)

∈ #P, but it does not contain an integer point, which gives a function pA with

ϕ(pA) /∈ #PA.
It remains to show that ϕ(pA) ∈ K3,(t2)

( #   »

#PA∈Z
)
. This can be seen by the existence of the list

of oracle Turing machines that on input w first query A at 0|A|. Then, if 0|w| /∈ A accept with
multiplicities

#»
t ; if 0|w| ∈ A, then the machines run OccurrenceMulti on Ãj . The fact that

the output vector is in Z is guaranteed by the fact that if 0|w| ∈ A, then Ãj is generated by the
set-instantiator, which only generates instances from S.

7.5.6 Remark. One can ask if the assumptions underlying Proposition 7.5.5 are reasonable, e.g.
whether there is a natural combinatorial problem where we have hi ∈ #P for all functions defined
in (7.5.2). For an example of this, we refer to above mentioned result in [PPS20], where the
majorization is proved by a direct injection. In the case of Young diagrams, the “shuffling in the
plane” proof in [PPS20, §4] is based on the wall-equivalence, see e.g. [Mat10, §23].

We should warn the reader that some applications of the Karamata inequality can in fact be
in #P. For example, the hook inequality for the number of increasing trees is proved in [PPS20, §2]
via the Karamata inequality, but is a special case of the Björner–Wachs inequality (Theorem 9.2.1)
known to be in #P.
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8 TFNP and #P

8.1 Definitions and background

Recall the classical inclusion diagram of search complexity classes:

PPA PPP PLS

PPADS

PPAD

CLS = PPAD∩PLS

When going to the counting analogs minus 1, as explained in §3.2, one gets the same picture
(the right-hand side of the tree in Figure 1), but care must be taken with the complete problems,
since for several of the classical problems in CLS, PPAD, and PPADS the counting version minus 1
actually lies in #P.

We study the following classical problems and slightly adjusted problems that are not parsimo-
niously equivalent. We assume that the reader is familiar with how to encode an exponential graph
or digraph via successor or predecessor/successor circuits, see [GW83, MP91].

• The PPAD-complete problem SourceOrSink, which is parsimoniously equivalent to
Sperner, see [CD09]. We are given two circuits Csucc and Cpred that describe a directed
graph in which there is an edge from x to y if and only if Csucc(x) = y and Cpred(y) = x.
We syntactically ensure that the indegree of the 0 vertex is 0 and its outdegree is 1.
We search for sources or sinks, i.e., nonzero vertices of (indegree,outdegree) = (0, 1) or
(indegree,outdegree) = (1, 0).

• The PPAD-complete problem SourceOrPresink (see Claim 8.2.4). The setup is the same
as for SourceOrSink, but we count sources and presinks, where a presink is a vertex that is
adjacent to a sink. Note that the two-vertex graph with a single source and sink only counts
once, as it has only one node that is a source or a presink (it is actually both a source and a
presink).

• The PPAD-complete problem SourceOrExcess(2,1) (see Claim 8.2.5). We are given three
circuits Csucc and Cpred1

and Cpred2
that describe a directed graph in which there is an edge

from x to y if and only if Csucc(x) = y and
(
Cpred1

(y) = x ∨ Cpred2
(y) = x

)
. This results in a

digraph with indegrees from {0, 1, 2} and outdegrees from {0, 1}. As for SourceOrSink we
syntactically ensure that the indegree of the 0 vertex is 0 and its outdegree is 1. We search for
sources or excess vertices, i.e., nonzero vertices where the indegree differs from the outdegree.
It is crucial here that these digraphs can have double sinks, i.e., vertices with indegree 0 and
outdegree 2, that we only count once.

• Instead of being given a source, we can also count AllSourcesOrSinks. This is mainly in-
teresting, because the number is always even, so we can ask if AllSourcesOrSinks/2 ∈ #P
(which it is, but for the undirected analog we have an oracle separation from #P, see Theo-
rem 8.7.1). We call the corresponding counting class #COUNTALL-PPAD(SourceOrSink).
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• The PPADS-complete problem Sink. The setup is the same as for SourceOrSink, but we
only count sinks.

• The PPADS-complete problem Presink (see Claim 8.2.8). The setup is the same as for Sink,
but we only count presinks, which are vertices that are adjacent to sinks.

• The PPADS-complete problem Excess(2,1) (see Claim 8.2.9). The setup is the same as for
SourceOrExcess(2,1), but we only count nodes with indegree greater than outdegree.

• The PPA-complete problem Leaf, which is parsimoniously equivalent to Lonely and Even
and Odd, see [BCE+98]. We are given two circuits C1 and C2 that describe a graph in which
an edge between x and y is present if and only if(

C1(x) = y ∨ C2(x) = y
)
∧
(
C1(y) = x ∨ C2(y) = x

)
.

We syntactically ensure that the degree of the 0 vertex is 1. We search for leaves, i.e., nonzero
vertices of degree 1.

• The hardness of
(
Leaf − 1

)
/2 actually comes from the hardness of the easier problem

(AllLeaves)/2. In the problem AllLeaves the setup is the same as for Leaf, but we
have no syntactic guarantee about the zero vertex. The number of solutions is always even,
and it can be zero. We call the corresponding counting class #COUNTALL-PPA(Leaf).

• The PPA-complete problem Preleaf (see Claim 8.2.12), which has the same setup as Leaf,
but we search for vertices that are adjacent to leaves. Note that the line graph with 3 vertices
has 2 leaves, but only 1 preleaf.

• A slightly adjusted PPP-complete version of the problem Pigeon (see Claim 8.2.14), where
we are given a circuit C and search for vertices x with C(x) = 0, or for pairs of vertices (x, y)
with C(x) = C(y) and C(C(x)) 6= 0. This version gives a cleaner counting problem.

• The classical PLS-complete problem Iter which is parsimoniously equivalent to LocalOpt
(see e.g. [FGHS21]), where we are given a circuit C that has the syntactically ensured guar-
antee that C(x) ≥ x and C(0) > 0 and C(C(0)) > C(0); and we search for presinks, i.e., for
vertices x such that C(x) 6= x and C(C(x)) = x.19 It is important to note that Iter differs
significantly from the other problems: its instances cannot be freely permuted. This makes
the construction of a set-instantiator in §8.4 quite different from the other set-instantiator
constructions.

• A slightly adjusted version of the CLS-complete problem

EitherSolution(SourceOrSink,Iter)

(see Claim 8.2.16), where in the counting version we are given a pair of a SourceOrSink
and an Iter instance and count each solution to either of them, with a slight adjustment:
If the SourceOrSink instance has a source or sink at the last possible position, then we
say that the instance contains the last option. If the Iter instance has a presink at the last
possible position (i.e., the second to last vertex), then we say that the instance contains the
last option. Note that we can efficiently check if either instance contains the last option. If

19Note that if given only a successor circuit, it is difficult to check if a vertex is a sink, so we count presinks instead.
Also note that allowing 0 to be a presink would also have been an option.
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both instances contain the last option, then we count these two solutions only once. This
adjustment is to ensure that it is possible to have a single solution. Otherwise the counting
version would be in #P≥2 .20

• The analogous CLS-complete problem EitherSolution(SourceOrPresink,Iter) (see
Claim 8.2.16).

• The analogous CLS-complete problem EitherSolution(SourceOrExcess(2,1),Iter)
(ibid.)

• The problem BipartiteUnbalance has no associated search problem. It is the following
problem in GapP≥0. Let G = (V,E) be a bipartite graph with two parts given by V = V−tV+.
We say that G is unbalanced if for every (uv) ∈ E, u ∈ V−, v ∈ V+, we have deg(u) ≥ deg(v).
An instance of the problem is given by a list of polynomially many circuits C1, . . . , Cn such
that an edge between u ∈ V− and v ∈ V+ exists if and only if Ci(u) = v for some i, and
Cj(v) = u for some j. We syntactically ensure that deg(u) ≥ deg(v) locally by adding
vertices from V− whenever deg(u) < maxv∈N(u) deg(v), where N(u) is the neighborhood
of u: In this case we add maxv∈N(u)−deg(u) many vertices in V− to the graph and connect
them to u, but do not connect them to any other vertex. Proposition 8.2.20 below shows that
|V+| − |V−| ≥ 0. The problem BipartiteUnbalance is the counting problem with value
|V+| − |V−|. We study this problem in §8.9, cf. Open Problem 9.2(3).

8.2 Simple completeness results, equalities to #P, and simple inclusions

All results in this section are fairly straightforward. They appear here to avoid any oversights,
because Figure 1 suggests that #P is strictly contained in classes that differ only slightly in terms
of definition.

8.2 (a) #PPAD

8.2.1 Claim. (#PPAD(SourceOrSink)− 1)/2 = #P via relativizing parsimonious reductions.

Proof. We first note that (#PPAD(SourceOrSink) − 1)/2 ⊆ #P, because we can just count
the nonzero sources, which gives us the correct number. For the other direction, we use that
CircuitSatA is #PA-complete. If we are given a Boolean single-output circuit C (with oracle
gates) that has c many x for which C(x) is true, then we can simply construct a SourceOrSink
instance with the zero vertex immediately going into a sink, the rest of the vertices all being self-
loops with one exception: for every position 2x for which C(x) is true we add a source-sink edge
from 2x to 2x+ 1. We end up with an instance of value 2c+ 1, as desired.

8.2.2 Claim. #PPAD(SourceOrPresink)− 1 = #P via relativizing parsimonious reductions.

Proof. We have s nonzero sources, t presinks, and a nodes that are both, which we call amal-
gamations. We count s + t + a − 1 = 2s + a, i.e., we count the nonzero sources twice and the
amalgamations once. The second direction is the same construction as for Claim 8.2.1, but here
the instance ends up with value c+ 1 instead of 2c+ 1, because the source is also a presink.

20[GHJ+22] give a combinatorial version of CLS, which was pointed out to us by M. Göös after this paper was
written.
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8.2.3 Claim. #COUNTALL-PPAD(SourceOrSink)/2 = #P via relativizing parsimonious reduc-
tions.

Proof. To see the containment in #P, we just count only the sources (or only the sinks). The
second direction is the same construction as in Claim 8.2.2, just without the source-sink pair for
the zero vertex.

8.2.4 Claim. SourceOrPresink is PPAD-complete.

Proof. This follows directly from the fact that if we find a sink, then it is easy to find a presink,
and vice versa, and the fact that SourceOrSink is PPAD-complete.

8.2.5 Claim. SourceOrExcess(2,1) is PPAD-complete.

Proof. Clearly, every SourceOrSink instance is a SourceOrExcess(2,1) instance. Given a
SourceOrExcess(2,1) instance, we replace every double sink with two sinks, and every inde-
gree 2, outdegree 1 vertex with a sink and an indegree 1, outdegree 1 vertex. Note that we replaced
only excess vertices and added 1 or 2 sinks each time. Since the construction was local, a solution to
this SourceOrSink instance can be converted back into a solution of the SourceOrExcess(2,1)
instance.

8.2.6 Claim.

#PPAD(SourceOrExcess(2,1))− 1 ⊆ #PPADS(Excess(2,1))− 1

via relativizing parsimonious reductions.

Proof. Given a SourceOrExcess(2,1) instance we create an Excess(2,1) instance of the same
value by adding a (source,sink) pair that is not connected to the rest of the instance, for every
source vertex in the input.

8.2.7 Claim.

#PPAD(SourceOrExcess(2,1))− 1 ⊆ #PPA(Preleaf)− 1

via relativizing parsimonious reductions.

Proof. Given a SourceOrExcess(2,1) instance, we make local graph replacements with gadgets,
making sure that no vertex that connects to another gadget is a leaf, so that we know exactly
which vertices of a gadget are preleaves. Since the indegree is an element from {0, 1, 2} and
the outdegree is an element from {0, 1}, there are 2 · 3 = 6 possible vertex types in the input
SourceOrExcess(2,1) instance.

The transformation table below shows the gadgets that are used to replace the parts in the
SourceOrExcess(2,1) instance. Here the sources and excess nodes are marked gray on the left-
hand side, preleaves are marked gray on the right-hand side. The proof follows from the fact that in
each row the number of gray vertices on the left equals the number of gray vertices on the right.
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8.2 (b) #PPADS

8.2.8 Claim. Presink is PPADS-complete.

Proof. This follows directly from the fact that if we find a sink, then it is easy to find a presink,
and vice versa.

8.2.9 Claim. Excess(2,1) is PPADS-complete.

Proof. Clearly, every Sink instance is a Excess(2,1) instance. Given an Excess(2,1) instance,
we replace every double sink with two sinks, and every indegree 2, outdegree 1 vertex with a sink
and an indegree 1, outdegree 1 vertex. Note that we replaced only excess vertices and for each
replacement we locally added 1 or 2 sinks. Hence, a solution to this Sink instance can be converted
back into a solution for the Excess(2,1) instance.

8.2.10 Claim. #PPADS(Sink)− 1 = #P via relativizing parsimonious reductions.

Proof. To see the containment in #P, we just count only the nonzero sources. The second direction
is the same construction as in Claim 8.2.2.

8.2.11 Claim. #PPADS(Presink)− 1 = #P via relativizing parsimonious reductions.

Proof. This is the same proof as for Claim 8.2.10.
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8.2 (c) #PPA

8.2.12 Claim. Preleaf is PPA-complete.

Proof. This follows directly from the fact that if we find a leaf, then we can readily find a preleaf,
and vice versa.

8.2.13 Claim. #COUNTALL-PPA(Leaf)/2 ⊆ (#PPA(Leaf)−1)/2 via relativizing parsimonious
reductions.

Proof. Given a AllLeaves instance G we create a Leaf instance G′ as follows. We add a zero leaf
vertex and pair it with another newly created leaf, so AllLeaves(G) + 1 = Leaf(G′). Therefore,
if AllLeaves(G)/2 = k, then (Leaf(G′)− 1)/2 = (AllLeaves(G) + 1− 1)/2 = k, which finishes
the proof.

8.2 (d) #PPP

We recall the slightly different definition of the classical Pigeon problem: In our case, if C(x) =
C(y) and C(C(x)) = 0, then we do not count this as a solution. However, in this case z = C(x)
obviously is a solution, because C(z) = 0.

8.2.14 Claim. Pigeon is PPP-complete.

Proof. For the sake of this proof, let ClPigeon denote the classical pigeon search problem and
Pigeon our problem with the slight modification. Given a Pigeon instance. If we find a solution to
the Pigeon instance, then this is also a solution for the same instance interpreted as a ClPigeon
instance. If we find a solution to a ClPigeon problem, then this is also a solution for the same
instance interpreted as a Pigeon instance, with one exception: If the solution pair (v, w) satisfies
ϕ(v) = ϕ(w) = x and ϕ(x) = 0. But in this case we immediately find that x is a solution for
Pigeon.

8.2.15 Claim. #PPADS(Excess(2,1)) − 1 ⊆ #PPP(Pigeon) − 1 via relativizing parsimonious
reductions.

Proof. Given an Excess(2,1) instance with edges (v, w) ∈ {0, 1}n × {0, 1}n, we design a Pigeon
instance, which is a map ϕ : {0, 1}n → {0, 1}n. If the outdegree of w is 1, say (w, v) is an edge,
then we set ϕ(w) = v. If the outdegree of w is 0, we set ϕ(w) = w, with one exception: for every
double sink w we set ϕ(w) = 0. This table explains in which cases the output Pigeon instance
has witnesses to count:

(indegree, outdegree) of w witnesses in ϕ
(0,0) no witnesses, ϕ(w) = w
(1,0) yes, ϕ(v) = ϕ(w) = w

(2,0)
yes, ϕ(w) = 0. Note that we do not count the pair (v, v′) with
ϕ(v) = ϕ(v′) = w here, because ϕ(w) = 0.

(0,1) no
(1,1) no

(2,1)
yes, one witness: Either we have ϕ(v) = ϕ(v′) = w and ϕ(w) 6= 0,
or we have ϕ(w) = 0.

We observe that we have one witness in exactly the excess cases, and no witnesses otherwise.
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8.2 (e) #CLS

The counting problems EitherSolution(∗,Iter) have the technicality that if both component
instances contain the last option, then this witness is only counted once. In particular, this is used
to show Claim 8.2.17 below. This has no effect on the CLS-completeness of the search problem.
For the oracle separation in Theorem 8.3.1 this also plays no role.

8.2.16 Claim. The search problems to the counting problems

EitherSolution(SourceOrSink,Iter),

EitherSolution(SourceOrPresink,Iter), and

EitherSolution(SourceOrExcess(2,1),Iter)

are all CLS-complete.

Proof. The search problems are in fact the same as the classical CLS-complete problems. Only
the counting versions are different, as in some situations 2 solutions are counted together as 1
solution.

8.2.17 Claim.

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1

⊆ #PLS(Iter)− 1 ∩ #PPAD(SourceOrExcess(2,1))− 1

via relativizing parsimonious reductions.

Proof. We first prove that

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1 ⊆ #PLS(Iter)− 1.

Given an EitherSolution(SourceOrExcess(2,1),Iter) instance, we construct an Iter in-
stance of the same value. This new instance consists of two parts.

We copy the input Iter instance into the first part of the output Iter instance. Then for every
source or excess vertex in the input SourceOrExcess instance we construct a (source,sink) pair
that consists of a single edge in the second part of the output Iter instance, with one exception:
if both the SourceOrExcess input and the Iter input contain the last option, then we do not
create the last (source,sink) pair. The value of the resulting instance is the sum of the two values
of the input instances in the case where not both use the last option, and is 1 less otherwise. That
is exactly the correct amount, by definition of EitherSolution(SourceOrExcess(2,1),Iter).

The proof for

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1

⊆ #PPAD(SourceOrExcess(2,1))− 1

is only slightly more tricky. Given an EitherSolution(SourceOrExcess(2,1),Iter) instance,
we construct a SourceOrExcess(2,1) instance of the same value. This new instance consists of
two parts, where we have the zero vertex in the second part.

We copy the input SourceOrExcess(2,1) instance into the first part of the output
SourceOrExcess(2,1) instance. Then we create the second part as a long line starting from
the zero vertex and pointing from x to x+ 2 leaving 1 loop in between, until the last vertex maps
to the source of the original zero source of the instance that is embedded into the first part. Then
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for every presink in the input Iter instance at position x, we construct a source in the second part
at x+ 1 pointing at x. This makes x an excess vertex.

We have one exception to this rule: If both the SourceOrExcess input and the Iter input
contain the last option, then then we do not create the last excess vertex. The value of the
resulting instance is the sum of the two values of the input instances in the case where not both
use the last option, and is 1 less otherwise. That is exactly the correct amount, by definition of
EitherSolution(SourceOrExcess(2,1),Iter).

8.2.18 Claim. #CLS(EitherSolution(SourceOrSink,Iter))− 1 = #P via relativizing par-
simonious reductions.

Proof. We first prove the inclusion #P ⊆ #CLS(..)−1. Given a CircuitSat instance, we create a
EitherSolution(SourceOrSink,Iter) instance with one more solution: the SourceOrSink
part of our output instance points from the zero vertex to the last vertex, hence using the last
option. The Iter part of our output instance points from the zero vertex to the vertex before
the last vertex and from there to the last vertex, hence also using the last option. Now, we
add (source,sink) pairs to the Iter part at all position where the CircuitSat instance yields
True. This gives a EitherSolution(SourceOrSink,Iter) instance of value 1 more than the
CircuitSat instance.

We now show the opposite inclusion #CLS(..)− 1 ⊆ #P. The proof is similar as for Sperner.
The #P machine first checks if both parts use the last option. If yes, then not two, but only
one of the nondeterministic computation paths accepts. The rest of the computation counts all
SourceOrSink nonzero sources twice and all Iter presinks once.

8.2.19 Claim. #CLS(EitherSolution(SourceOrPresink,Iter)) − 1 = #P via relativizing
parsimonious reductions.

Proof. The inclusion #P ⊆ #CLS(..) − 1 is the same as in Claim 8.2.18, but in the
SourceOrPresink part instead of directly pointing to the last vertex we create the edge from the
zero vertex to the second to last vertex and then an edge to the last vertex, with the same effect.

The proof of the opposite inclusion #CLS(..) − 1 ⊆ #P is only slightly more subtle than for
Claim 8.2.18, because a SourceOrPresink instance can have vertices that are both source and
presink, which we call amalgamations. The #P machine first checks if both parts use the last option.
If yes, then not two, but only one of the nondeterministic computation paths accepts. The rest
of the computation counts all SourceOrPresink nonzero sources twice, all SourceOrPresink
amalgamations, and all Iter presinks once.

8.2 (f) BipartiteUnbalance

Recall the setting of this problem. Let G = (V,E) be a bipartite graph with two parts given by
V = V− t V+. We say that G is unbalanced if for every (uv) ∈ E, u ∈ V− and v ∈ V+, we have
deg(u) ≥ deg(v).

8.2.20 Proposition. Let G = (V,E), V = V− t V+ , be an unbalanced bipartite graph as above.
Then |V+| ≥ |V−|.
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Proof. The proof is one line:

|V+| =
∑
v∈V+

1 =
∑
v∈V+

∑
(u,v)∈E

1

deg(v)
=

∑
(u,v)∈E

1

deg(v)
≥

≥
∑

(u,v)∈E

1

deg(u)
=

∑
u∈V−

∑
(u,w)∈E

1

deg(u)
=

∑
u∈V−

1 = |V−| ,

where the only inequality is by the unbalanced condition.

This first insight shows that BipartiteUnbalance ∈ GapP≥0. We study this problem further
in §8.9.

8.3 The decrementation separation

In this section we prove the following technical result:

8.3.1 Theorem. We have #P ⊆ #CLS(EitherSol(SourceOrSink(2,1),Iter))− 1 via a par-
simonious relativizing reduction. Moreover, there exists a language A ⊆ {0, 1}∗ with respect to
which #CLS(EitherSol(SourceOrSink(2,1),Iter))A − 1 6⊆ #PA.

Proof. The inclusion #PA ⊆ #CLS(..)A − 1 is of the same level of difficulty as similar inclusions
in §8.2. Given a CircuitSat instance, we construct an instance of #CLS(..) as follows. The
SourceOrSink(2,1) instance jumps directly from the zero vertex to the last vertex. The Iter
instance also does that. Now wherever the CircuitSat circuit yields true, we add a (source,sink)
pair on the Iter side. We obtain an instance of value f + 1, where the +1 comes from the two
last options that are counted together as 1. We are done, because (f + 1)− 1 = f .

For the other direction we use the Diagonalization Theorem 6.2.1 and the set-instantiator for
Multi(NZSource,Excess,Iter), see Theorem 8.6.1, with

k = 3 , S =
{ #»

f ∈ Nk : 2f2 = f1 + 1, f2 ≥ 1, f3 ≥ 1
}
.

We switch the positions 1 and 3 to get the set-instantiator for Multi(Iter,Excess,NZSource)
with

k = 3 , S =
{ #»

f ∈ Nk : 2f2 − 1 = f3, f2 ≥ 1, f1 ≥ 1
}
.

We set ` = 2 and ζ3(v1, v2) = 2v2 − 1, so that I = 〈2v2 − 1− f3〉 and

Z =
{ #»

f ∈ Q3 : 2f2 − 1− f3 = 0
}
.

We choose any
#»
t ∈ S such that C⊥ exists with Multi(Iter,Excess,NZSource)(C⊥) =

#»
t ,

and C⊥ does not use both last options. Now we verify the preconditions of the Diagonalization
Theorem 6.2.1:

1. Z contains the integer point (0, 0,−1).

2. We prove that C ′S lies Zariski-dense in Q2 by giving infinitely many distinct rays from the
origin that lie in C ′S . This proves the claim, because we are in a 2-dimensional situation.
In fact, for every (1, f2), f2 ∈ N≥1, the corresponding ray {(α, αf2) : α ∈ Q≥0} is in C ′S ,
because (α, αf2, 2αf2 − 1) ∈ S for all α ∈ N≥1.

3. #»v = (0, 1) satisfies 2v2 > 0.
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We fix Multiplicities = Multi(Iter,Excess,NZSource) for which we know for every M the
existence of a set-instantiator against M . We set ϕ(f1, f2, f3) = f1 + f2 + f3 − 1. We verify that
ϕ + I = f1 + f2 + f3 − 1 + 〈2f2 − 1 − f3〉 is binomial-bad. This is proved using the Polyhedron
Theorem 5.5.2.

In the notation of the Polyhedron Theorem 5.5.2, we have ϕ′ = f1 + 3f2 − 2 and δ = 1, so
Oδ has only 3 elements. Hence the polyhedron P(ϕ, ζ) will be defined using 3 equations. Let
(1, v1, v2) be the order of basis vectors of basis vectors of Q[ #»v ]≤1. We express the 4 polynomials
y #»e over this basis, and obtain coefficient vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1, 0, 2).

Now, the polyhedron given by

x0 −x3 = −2
x1 = 1

x2 +2x3 = 3
x0, x1, x2, x3 ≥ 0

has no integer points. Hence ϕ+ I is binomial-bad by the Polyhedron Theorem 5.5.2.21

From the Diagonalization Theorem 6.2.1 it follows that for every Turing machine M , we have
pA(0j) 6= #accMA(0j), and hence pA /∈ #PA. It remains to show that

pA ∈ #CLS(EitherSolution(SourceOrExcess(2,1),Iter))A − 1.

Let C⊥ be an input to Multi(Iter,Excess,NZSource) (i.e., a circuit, see footnote 10) that
yields output

#»
t . Let ` be the number of inputs of the circuit C⊥. Let νj(w) = True if and

only if the string w has only zeros at positions j + 1, j + 2, . . . Finally, let Cj be an input to

Multi(Iter,Excess,NZSource)A that describes the (j−1)-input circuit that consists of a single
arity j oracle gate that takes a constant 1 into its first input, takes all inputs into its remaining
j − 1 inputs, and forwards its output directly to the circuit output.

We construct a circuit α(x) := D|x| with max{`, |x|} many inputs and with oracle gates as

follows (w ∈ {0, 1}max{`,|x|}):

Dj(w) :=
(

(A(0|w|+1) = 0) and ν`(w) and C⊥(w1, . . . , w`)
)

and
(

(A(0|w|+1) = 1) and ν|x|(w) and C|x|+1(w1, . . . , w|x|)
)

We define the polynomially balanced relation R via R(w, y) if and only if

rEitherSolution(SourceOrExcess(2,1),Iter)(α(w), y).

We set β to be the identity function. By definition, R ∈ rCLS. The following function is thus in
#CLS:∑

y∈{0,1}∗
R(x, y) =

∑
y∈{0,1}∗

rEitherSolution(SourceOrExcess(2,1),Iter)(α(x), y)

which equals (because the set-instantiator does not create instances that use the last option){
Iter(D|x|) + Excess(D|x|) + NZSource(D|x|) if A(0|x|+1) = 1

t1 + t2 + t3 otherwise

which equals pA(w) + 1. This finishes the proof.

21In fact, even the LP relaxation is empty in this case, so every positive integer multiple of the problem
EitherSolution(SourceOrExcess(2,1),Iter) can also be separated from #P via an oracle. This is not always the
case, and we use this property to separate two classes that are outside of #P (w.r.t. an oracle), see Proposition 8.9.2.
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8.4 A set-instantiator for #PLS(Iter)

The set-instantiator in this section is the most complicated we create. The problem is that instances
cannot be permuted arbitrarily, so one has to view [2j ] as a [2j/2] × [2j/2] square, and permute
within the rows. But that does not immediately give a way to mask from the #P machine which
presink belongs to the zero source, a property which crucially must be achieved.

8.4.1 Theorem. For every b ∈ N, there exists a threshold j0 ∈ N, such that for every j ≥ j0,
every A<j ∈ {0, 1}<j and every polynomial time Turing machine M that answers consistently
for (j, A<j , Iter), there exists a set-instantiator SI against (M, j,A<j , S = N≥1, b), such that
Iter(instSI(s)) = |s| for all s with |s| ∈ S.

Intuitively, this says that for all our purposes #PLS behaves exactly as #P≥1. The rest of this
section is devoted to proving this theorem. We will first define a creator whose creations will be
the instantiations in the end, but the creator is not limited to a single creation for each set. We
will then define the set-instantiator from the creator by picking for every subset #»s just any one of
its creations for #»s .

8.4 (a) Creations

Having 2j−1 many bits available, we can encode in a standard way a function [2j
′
] → [2j

′
], where

j′ and j are polynomially related. We ignore any extra bits that are not needed for this encoding.
We think of [2j

′
] arranged as a square, so set n := blog2(

√
2j′)c and interpret 2n as the number

of rows, i.e., assume we have a polynomial time computable injective map [2n]× [2n] → [2j
′
]. We

ignore numbers in [2j
′
] that are outside this square (i.e., outside the image of this injective map).

We sometimes call elements of [2n]× [2n] nodes, as is usual for Iter instances.
The function ψ is given by the j-th layer Aj of the oracle j, so can say that a computation

“queries ψ” when we mean it queries Aj . We will use these interchangeably. For every x =
(x1, x2) ∈ [2n] × [2n], let row(x) = x1. Let toprows := [1, 2n−1] (the upper half of the rows),
presinkrow := 2n − 1 (one from the very bottom), and let sinkrow := 2n (at the very bottom). All
our instances will have all sinks in row sinkrow and all presinks in row presinkrow.

A map ψ : [2n]× [2n]→ [2n]× [2n] is called row-layered if ψ(x) > x implies that row(ψ(x)) =
row(x) + 1. A point x ∈ [2n]× [2n] with ψ(x) = x is called a fixed point. A point x ∈ [2n]× [2n]
for which ∃y ∈ [2n] r {x} : ψ(y) = x is called a sink. A fixed point that is not a sink is called
a singleton. A point y ∈ [2n] × [2n] for which ψ(y) is a sink is called a presink. Note that when
given oracle access to ψ it is easy to check if a specific y is a presink, but it is not easy to check if
a specific x is a sink (because it is hard to distinguish it from a singleton).

A path part in ψ is a set of vertices v1, . . . , vq such that ψ(vi) = vi+1, ψ(vq) 6= vq and
ψ(ψ(vq)) = ψ(vq). The node v1 is called the source. By definition, the node vq is a presink and
each path part has exactly one presink. ψ(vq) is called the sink. We consider the presink to be
part of the path part, while we consider the sink to not be part of the path part. It is clear that a
single vertex with a loop is not a path part. A path is a path part that is maximal with respect to
inclusion.

A map ψ : [2n]× [2n]→ [2n]× [2n] is called a set-of-paths if every node x has no predecessor or
exactly one predecessor in ψ, i.e., we partition [2n] × [2n] into a disjoint union of paths and sinks
and singletons. A set-of-paths is called rooted if one of its sources is at position (1, 1). This path
is called the main path. All other paths are called non-main paths.

For a ≥ 1, a rooted set-of-paths is called an a-creation if it consists of exactly a many paths,
and the rows of the sources of all non-main paths are in row presinkrow, and all paths have their
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sink in row sinkrow in the same column as their presink (in particular, those paths consist only
of a single edge). Let a-creations denote the set of all a-creations. Finally, let a−-creations :=⋃

1≤c≤a c -creations.

8.4 (b) The unaccessed row η

Fix b ∈ N. From this point on, η will depend on b, but b will remain constant. Let ti(j) be a
polynomial in j, defined as the upper bound on the number of computation steps that M makes
on inputs of length j (this is independent of to which oracle M has access). Since M answers
consistently, for every ψ ∈ b−-creations with Iter(ψ) = a, there exist exactly ϕ(a) many accepting

computation paths for the computation hψi (0j). Each of these paths queries the oracle ψ at most

ϕ(a)ti(j) many positions. Thus, together they access at most an ϕ(a)ti(j)

2j/2
fraction of toprows.

From above, for a uniformly random η ∈ toprows and any ψ ∈ b−-creations, we have w.h.p.
that no accepting computation path accesses row η. This holds for every ψ ∈ b−-creations, so it
also holds when sampling ψ from any distribution E on b−-creations: When sampling (η, ψ) from

Utoprows × E, then w.h.p. none of the accepting paths of hψi (0j) accesses row η. This can be seen,
for example, by first sampling ψ ∈ E, and then sampling η ∈ Utoprows independently. Therefore,
using the union bound, for every finite set of distributions E1, . . . , Eb on b−-creations, there exists
ηE ∈ toprows, such that for all 1 ≤ a ≤ b we have:

when sampling ψ from Ea, we have w.h.p. that

no accepting path of hψi (0j) accesses row ηE .
(8.4.2)

For the rest of this proof, we fix

η = η(U1-creations , ... ,Ub-creations) .

We remark that it is an important technical difficulty when constructing set-instantiators that the
sampling process of the b−-creations must be independent of η.

8.4 (c) Lucky creators

In this section we introduce the concept of a creator. A creator is a slightly less restrictive version
of a set-instantiator. For each blueprint a creator outputs a creation, where a blueprint is slightly
more general than the set #»s for a set-instantiator, but serves the same purpose.

A layered path part with source (1, 1) to a presink in row η− 1 is called a head. A layered path
part with source row = presink row = η is called a fork (just one edge). A layered path part with
source row η+1 to a presink in row presinkrow−1 is called a tail. A layered path part x with source
row = presink row = presinkrow, where column(x) = column(ψ(x)) is called a sink part (just one
edge). Recall that by definition an a-creation consists of 1 head, 1 fork, 1 tail, a many sink parts,
and is uniquely defined by these. If the sink of a path part equals the source of another path part,
then their union is another path part. For every tail there is a unique way to take a union with a
sink part, which is by adding an edge that stays in the same column.

For b ≥ 1 a b-creator ξ is a 3-tuple (head(ξ), tails(ξ), presinks(ξ)), where head(ξ) is a head,
tails(ξ) is a cardinality b ordered set of tails whose nodes are pairwise disjoint, and presinks(ξ) is
a cardinality b ordered set of sink parts, so that the tails line up properly with the corresponding
sink parts: adding an edge that stays in the same column to a tail is the same as taking the union
with the sink part corresponding to the tail. Let b-creators denote the set of all b-creators. Instead
of writing “presink of ξ” we sometimes write ξ-presink. Analogously for tails.

58



Given a b-creator ξ and o′ ∈ s′ ⊆ [b], we define the |s′|-creation ξs′,o′ via removing all tails
but keeping the tail that connects to the presink presinks(ξ)o′ , and removing all presinks outside of
{presinks(ξ)a | a ∈ s′}, defining the function φ that has exactly those path parts, and then setting
φ(x) = y for the fork x and the source of the tail y. Clearly ξs′,o′ is an |s′|-creation.

Given a b-creator ξ, define ξo′ := ξ[b],o′ . Clearly ξo′ is a b-creation.

8.4.3 Definition. We call ξ ∈ b-creators lucky if for all subsets L ⊆ [b], |L| ≥ 1, and all o ∈ L,

all accepting paths of the computation h
ξL,o
i (0j)

(i) do not access the oracle in row η,

(ii) do not access the oracle in any ξ-presink besides the presinks that correspond to indices in L
(they do not have to access all L-presinks), and

(iii) do not access the oracle in any tails besides the tail tailso.

Informally, this says that the accepting paths do not access the oracle at positions where presinks
and tails are not, but could potentially be.

8.4.4 Claim. Let ξ be sampled from Ub-creators. Then ξ is lucky w.h.p.

Proof. We describe a way of sampling from Ub-creators. Let heads be the set of all heads, let tails be
the set of all tails, and let

tail-b-tuples =
{

#»q ∈ tailsb : all q1, . . . , qb have pairwise disjoint nodes and sinks
}
.

We first sample (h, ~q) from Uheads × Utail-b-tuples. Choosing the matching presinks, this process
samples a random variable crea(h, #»q ) ∈ b-creators according to Ub-creators. We observe that for
fixed L ⊆ [b] and o ∈ L, and ξ := crea(h, #»q ), the |L|-creation ξL,o is uniformly distributed from
|L|-creations.

We show that for a fixed L ⊆ [b], |L| ≥ 1, and o ∈ L we have that (h, ~q)L,o satisfies all three
properties of Definition 8.4.3 with high probability. Since there are only 2b − 1 many possible sets
L, since there are only b many possible values for o, and since b is fixed, the claim then immediately
follows from the union bound. Hence, for the rest of this proof we fix L ⊆ [b] and o ∈ L. In this
fixed case we will also use the union bound.

Property (i). Since (h, ~q)L,o is distributed as U|L|-creations, (8.4.2) proves (i) in Definition 8.4.3 with
high probability.

Properties (ii) and (iii). For a fixed ψ ∈ a-creations, if we draw (h, ~q) from Uheads × Utail-b-tuples

under the assumption that crea(h, #»q )L,o = ψ, then we see that the tails ql, l /∈ L, are uniformly
distributed (and hence this also holds for the corresponding presinks). Moreover, by definition, each
(tail,presink) pair only contains at most 1 node in each row. Hence each oracle query accesses such
a tail or presink with probability < b

2n−ti(j) ≤
b

2n−1 . Here ti(j) is subtracted in the denominator,
because that many positions could have been queried already and there is no reasone to query the
oracle twice at the same position). By Bernoulli’s inequality we have(

1 − b

2n−1

)ti(j)
≥ 1 − b · ti(j)

2n−1
.

This proves the property (ii) and (iii).

Since each property (i)–(iii) is satisfied with high probability, the union bound gives that they
are simultaneously satisfied with high probability. This finishes the argument for fixed L and o.
According to the previous discussion about the union bound the overall claim is proved.
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The following lemma handles the technical difficulty of the tails.

8.4.5 Lemma. Let ξ be lucky, let b ≥ 1, and suppose τ is an accepting path of h
ξs,o
i (0j) for every

o ∈ s ⊆ [b]. Then τ does not query any of the b many tails of ξ.

Proof. Let there be c many accepting paths of the computation h
ξs,o
i (0j), let τ be one of those

accepting paths, and w.l.o.g. assume that τ queries the tail q1. Let ψ be obtained from the instance
ξs,o by removing tail q1 and adding tail q2. Clearly ψ is also a c-creation. Hence, since ξ is lucky,
and since τ queries q1, we conclude that τ does not query q2 (Definition 8.4.3).

Since M answers consistently, there are c many accepting paths for the computation hψi (0j).
Since ψ is a c-creation and ξ is lucky, these accepting paths do not query q1. Therefore, if we
add q1 into the instance (so that now both q1 and q2 are present), all these a many paths are still
accepting paths, and τ is also accepting (and is obviously different from all these a many paths).
Thus there are now at least a+1 many accepting paths for this instance, which must have (because
M answers consistently) exactly a many accepting paths. This is a contradiction.

8.4 (d) Defining the set-instantiator

For an a-creation ψ and a computation path τ ∈ {0, 1}∗ of a computation hψi (0j), let perception(τ)
⊆ presinks(ψ) denote the set of oracle positions with presinks that get accessed by τ .

Let ξ be a lucky b-creator. We interpret the list presinks(ξ) as a bijection bij : [b]→ presinks(ξ).
Let S = N≥1. For every #»s ∈ B(

#»

b )S , we choose a o #»s ∈ presinks(ξbij( #»s )). Set

instSI(
#»s ) := ξbij( #»s ),o #»s

and for τ ∈ {0, 1}∗ set

percSI(τ) :=

{
bij−1(perception(τ)) if τ is an accepting path of the computation h

instSI(
#»
b )

i (0j)

> otherwise.

The rest of this section is devoted to proving that SI satisfies the requirements of Defini-
tion 6.1.3, which then proves Theorem 8.4.1, because clearly Iter(instSI(

#»s )) = | #»s |. Formally, we
prove the following result.

8.4.6 Proposition. For all #»s ∈ B(
#»

b )S we have: τ ∈ {0, 1}∗ is an accepting path for the
computation hinstSI( #»s )(0j) if and only if percSI(τ) ⊆ #»s .

Proof. Since τ is an accepting path of hinstSI( #»s )(0j), since ξ is lucky, and since τ does not query any

tail (Lemma 8.4.5), we conclude that τ is also an accepting path of the computation hinstSI(
#»
b )(0j).

This implies that percSI(τ) = bij−1(perception(τ)). Clearly perception(τ) ⊆ bij( #»s ), because other-
wise τ would not even be a computational path of hinstSI( #»s )(0j) because of its oracle answers when
querying presinks in perception(τ) r bij( #»s ). We conclude: percSI(τ) ⊆ #»s .

The argument is reversible: let percSI(τ) ⊆ #»s , so in particular percSI(τ) 6= >. Then τ is an

accepting path of the computation hinstSI(
#»
b )(0j). Since τ is an accepting path of hinstSI(

#»
b )(0j),

since ξ is lucky, and since τ does not query any tail (Lemma 8.4.5), we conclude that τ is also an
accepting path of the computation hinstSI( #»s )(0j).
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8.5 A set-instantiator for #PPAD(SourceOrExcess(2,1))

Let Sline := {(f1, f2) : 2f2−f1−1 = 0}. Think of f1 as the number of sources, and f2 as the number
of double sinks. Let Multi(NZSource,Excess) be the bivariate counting problem of counting
sources and counting excess nodes in a SourceOrExcess(2,1) instance. This set S = Sline will
be sufficient for our set-instantiator.22

8.5.1 Theorem. Fix a polynomial time nondeterministic Turing machine M . Then, for every
#»

b ∈ N2, there exists a threshold j0 ∈ N, such that for every j ≥ j0 and every A<j ∈ {0, 1}<j, there

exists a set-instantiator SI against (M, j,A<j , S = Sline,
#»

b ), which satisfies:

Multi(NZSource,Excess)(instSI(
#»s )) = | #»s | for all #»s with | #»s | ∈ S.

The rest of this section is devoted to proving this theorem. We will first define a creator whose
creations will be the instantiations in the end, but the creator is not limited to a single creation for
each set. We will then define the set-instantiator from the creator, by picking for every subset #»s
with | #»s | ∈ S, just any one of its creations for #»s .

8.5 (a) Creations

Having 2j−1 many bits available, we can encode in a standard way a tuple of two predecessor
functions ψpred1

: [2n] → [2n], ψpred2
: [2n] → [2n], and a successor function ψsucc : [2n] → [2n],

such that n and j are polynomially related. We ignore any extra bits that are not needed for this
encoding.

We interpret ψ =
(
ψpred1

, ψpred2
, ψsucc

)
as a directed graph (with some additional information,

because the map from the set of function triples to the set of digraphs is not injective). Here an
edge from x ∈ [2n] to y ∈ [2n] is present if and only if ψsucc(x) = y, and either ψpred1

(y) = x or
ψpred2

(y) = x. Each node in the resulting graph has indegree ≤ 2 and outdegree ≤ 1.
A node whose indegree exceeds its outdegree is called an excessive node. A node with indegree 0

and outdegree 1 is called a source. A node with indegree 2 and outdegree 0 is called a double sink.
We assume that it the encoding is made in a way that the 0 node is always at source. A source
that is not the 0 node is called a nonzero source.

Let nzsource(ψ) denote the set of nonzero sources. Let dsink(ψ) denote the set of double sinks.
For #»a ∈ S, ψ is called an #»a -creation if |nzsource(ψ)| = a1 and |dsink(ψ)| = a1. Let a-creations
denote the set of all a-creations. Let a−-creations :=

⋃
1≤c≤a c -creations.

8.5 (b) Lucky creators

In this section we introduce the concept of a creator. A creator is a slightly less restrictive version
of a set-instantiator. For each blueprint a creator outputs a creation, where a blueprint is slightly
more general than the set #»s for a set-instantiator, but serves the same purpose.

For two disjoint sets X and Y , let
(
X
2

)
ordered

× Y denote the set of triples, where the first and
second element are distinct elements from X, and the third element is from Y . We say that two
triples are disjoint if they share no common element. Let T (X,Y, c) denote the set c-tuples of
pairwise disjoint triples.

For
#»

b ∈ S, a
#»

b -creator ξ is a triple consisting of:

1. a length b1 ordered list nzsources(ξ) ⊆ [2n],

22Larger S are possible, but not necessary for our purposes, because already we have that f1 +f2−1+〈2f2−f1−1〉
is binomial-bad, as can be seen via the Polyhedron Theorem 5.5.2.
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2. a length b2 ordered list dsinks(ξ) ⊆ [2n] of even numbers, and

3. a map straight(ξ) : [2n] → [2n] such that all nodes have indegree at most 2, the 0 node is
a source, the set of all other sources is exactly nzsources(ξ), the set of all double sinks is
exactly 2dsinks(ξ), the set of all loops is exactly 2dsinks(ξ) + 1, all other nodes hat indegree
= outdegree = 1, straight(ξ)(x) 6= x + 1 for x even, straight(ξ)(x + 1) 6= x for x even, and
pred2(x) = x for all nodes that are not double sinks.

This means that each double sink comes with a loop at the next position, and no node maps to its
paired neighbor.

Given a
#»

b -creator ξ and an
#»

L ∈ T
(
[b1] × {1}, [b2] × {2}, c

)
, we obtain a (b2 − c)-creation

ψ : [2n]→ [2n] by performing the following step for each triple (x1, x2, y) ∈ #»

L : set

ψsucc

(
dsinks(ξ)y

)
:= nzsources(ξ)x1 , ψsucc

(
pred1(dsinks(ξ)y)

)
:= dsinks(ξ)y + 1,

and ψsucc

(
dsinks(ξ)y + 1

)
:= nzsources(ξ)x2 .

In other words, remove the double sink and the loop and redirect the two paths to the two sources.

8.5.2 Definition. We call ξ ∈ b-creators lucky if for all c and for all
#»

L ∈ T
(
[b1]×{1}, [b2]×{2}, c

)
,

all accepting paths of the computation h
ξ #»
L
i (0j) do not access the oracle at any point in nzsources(ξ)r

nzsource(ξ #»
L ), nor any point in dsinks(ξ)rdsink(ξ #»

L ), nor any point in (dsinks(ξ)+1)r(dsink(ξ #»
L )+1)

or any directly adjacent nodes.

This says that the accepting paths do not access the oracle at positions where sources or double
sinks (or their loops) are not, but could potentially be.

8.5.3 Claim. Let ξ be sampled from Ub-creators . Then ξ is lucky w.h.p.

Proof. It is crucial to observe that for a fixed
#»

L ∈ T
(
[b1] × {1}, [b2] × {2}, c

)
, we have that

the
#»

L-creation ξ #»
L is uniformly distributed from (L2 − c)-creations. We show that for a fixed

#»

L ∈ T
(
[b1]× {1}, [b2]× {2}, c

)
, we have ξ is lucky w.h.p. Since there are only constantly many

#»

L,

the claim immediately follows from the union bound. Thus, for the rest of the proof, we fix
#»

L.
We have that ξ #»

L is uniformly distributed. The, the probability of an oracle access picking one

of the forbidden positions is ≤ 8(L1+L2)
2n−1 ≤ 1

2n−2 . By Bernoulli’s inequality we have (1− 1
2n−2 )ti(j) ≥

1− ti(j)
2n−2 . Since n and j are polynomially related, this proves the claim.

8.5 (c) Defining the set-instantiator

For a #»a -creation ψ and a computation path τ ∈ {0, 1}∗ of a computation hψi (0j), let
perception1(τ) ⊆ nzsource(ψ) denote the set of accessed oracle positions that are nonzero sources or
adjacent. Let perception2(τ) ⊆ dsink(ψ) denote the set of accessed oracle positions that are double
sinks or adjacent (if the loop is accessed, this counts as an access of the double sink).

Let ξ be a lucky
#»

b -creator. We interpret the list nzsources(ξ) as a bijection bij1 : B(b1) →
nzsources(ξ). Similarly, we interpret the list dsinks(ξ) as a bijection bij2 : B(b2) → dsinks(ξ). Let
S = Sline. We set

instSI(
#»s ) := ξ #»s .

Finally, for τ ∈ {0, 1}∗ we set

percSI(τ) :=
(
bij−1

1 (perception1(τ)), bij−1
2 (perception2(τ))

)
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if τ is an accepting path for the computation h
instSI(

#»
b )

i (0j), and percSI(τ) := >, otherwise.

We can now prove that SI satisfies the requirements of Definition 6.1.3, which then proves
Theorem 8.5.1, because clearly Multi(Source,Excess)(instSI(

#»s )) = | #»s |. Formally, we have:

8.5.4 Proposition. For all #»s ∈ B(
#»

b )S, we have: τ ∈ {0, 1}∗ is an accepting path for the
computation hinstSI( #»s )(0j) if and only if percSI(τ) ⊆ #»s .

Proof. Since τ is an accepting path of hinstSI( #»s )(0j), and since ξ is lucky, we conclude that

τ is also an accepting path of the computation hinstSI(
#»
b )(0j). This implies that percSI(τ) =

bij−1(perception(τ)). Clearly perception(τ) ⊆ bij( #»s ), since otherwise τ would not even be a
computational path of hinstSI( #»s )(0j) because of its oracle answers when querying lonely nodes
in perception(τ) r bij( #»s ). We conclude that percSI(τ) ⊆ #»s .

The argument is reversible: let percSI(τ) ⊆ #»s , in particular percSI(τ) 6= >. Then τ is an

accepting path of the computation hinstSI(
#»
b )(0j). Since τ is an accepting path of hinstSI(

#»
b )(0j), and

since ξ is lucky, we conclude that τ is also an accepting path of the computation hinstSI( #»s )(0j).

8.6 Combining set-instantiators for handling #CLS− 1

Let SCLS :=
{ #»

f ∈ N3 : 2f2 = f1 + 1, f2 ≥ 1, f3 ≥ 1
}

.

8.6.1 Theorem. Given a polynomial time nondeterministic Turing machine M . For every
#»

b ∈ N3 there exists a threshold j0 ∈ N such that for every j ≥ j0 and every A<j ∈ {0, 1}<j

there exists a set-instantiator SI against (M, j,A<j , S = SCLS,
#»

b ) such that ∀ #»s with | #»s | ∈ S :
Multi(NZSource,Excess,Iter)(instSI(

#»s )) = | #»s |.

Proof. The construction is basically a combination of the set-instantiator for
Multi(NZSource,Excess), and the set-instantiator for Iter. We can ignore the subtlety
of the interaction between both problems that was introduced to be able to have instances of
value 1, and for this set-instantiator we just care about instances that have value at least 2, which
is reflected in the set S by having f2 ≥ 1 and f3 ≥ 1. This is similar to choosing Sline in §8.5: it
already gives instances that are difficult enough.

We create a set-instantiator that creates pairs of instances that are glued together in a non-
sophisticated way by having the Multi(NZSource,Excess) instance in the first half and the
Iter instance in the second half. Both set-instantiators were obtained by proving that a uniformly
random creator is lucky with high probability, because it just has to satisfy a finite number of
constraints. We put both sets of constraints together and readily obtain a creator with a finite
number of constraints that also with high probability is lucky. As usual, the set-instantiator is then
obtained by picking any single instance from the creator.

8.7 The halving separation

In this section we prove the following result:

8.7.1 Theorem. We have #P ⊆ #COUNTALL-PPA(Leaf)/2 via a parsimonious relativizing
reduction. Moreover, there exists an oracle A with respect to which #COUNTALL-PPA(Leaf)A/2 6⊆
#PA.
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Proof. The inclusion #PA ⊆ #COUNTALL-PPA(Leaf)A/2 is of the same level of difficulty as the
considerations in §8.2. Given a CircuitSat instance we construct a AllLeaves instance of as
follows: Wherever the circuit yields True, we add two vertices that are connected by an edge. We
add no other vertices. We obtain an instance of value 2f . We are done, because (2f)/2 = f .

For the other direction, we use the Diagonalization Theorem 6.2.1 and the set-instantiator for
AllLonely (see Theorem 8.8.1), with

k = 1 , S = 2N.

Set ` = k = 1 and have no functions ζ.
We can now verify the preconditions of the Diagonalization Theorem 6.2.1:

1. Z contains the integer point 0,

2. C ′S = Q≥0 lies Zariski-dense in Q, and

3. the last point is a vacuous truth.

We fix Multiplicities = AllLonely. The necessary set-instantiators are given by The-
orem 8.8.1. We set ϕ(f1) = f1/2. Clearly ϕ + I = f1/2 + 〈0〉 is binomial-bad.
From the Diagonalization Theorem 6.2.1, it follows that for every M we have pA(0j) 6=
#accMA(0j). Hence #COUNTALL-PPA(Lonely)A 6= #PA. The statement follows from the
relativizing parsimonious equivalence between Lonely and Leaf, once we observe that pA ∈
#COUNTALL-PPA(Lonely)A/2.

Let C⊥ be an input to AllLonely (i.e., a circuit23) that yields output
#»
t . Let ` be the number

of inputs of the circuit C⊥ . Let νj(w) = True if and only if the string w has only zeros at positions
j+ 1, j+ 2, . . . Finally, let Cj be an input to AllLonelyA that describes the (j− 1)-input circuit
that consists of a single arity j oracle gate that takes a constant 1 into its first input, takes all
inputs into its remaining (j − 1) inputs, and forwards its output directly to the circuit output.

We construct a circuit α(x) := D|x| with max{`, |x|} many inputs and with oracle gates defined

as follows
(
w ∈ {0, 1}max{`,|x|}):
Dj(w) :=

(
(A(0|w|+1) = 0) and ν`(w) and C⊥(w1, . . . , w`)

)
and

(
(A(0|w|+1) = 1) and ν|x|(w) and C|x|+1(w1, . . . , w|x|)

)
We define the polynomially balanced relation R via R(w, y) if and only if rAllLonely(α(w), y).
We set β to be the identity function. By definition, R ∈ rCOUNTALL-PPA. The following function
is thus in #COUNTALL-PPA:∑

y∈{0,1}∗
R(x, y) =

∑
y∈{0,1}∗

rAllLonely(α(x), y)

which equals {
AllLonely(D|x|) if A(0|x|+1) = 1,

t otherwise.

This function equals 2pA(w), which finishes the proof.

23Note that in the case of Lonely it is naturally a single circuit, not a list of circuits, cf. footnote 10.
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8.8 A set-instantiator for #COUNTALL-PPA(Leaf)

8.8.1 Theorem. Let M be a polynomial time nondeterministic Turing machine. For every b ∈ N,
there exists a threshold j0 ∈ N, such that for every j ≥ j0 and every A<j ∈ {0, 1}<j, there exists a
set-instantiator SI against

(
M, j,A<j , S=2N, b

)
such that AllLonely(instSI(s)) = |s| for all s

with |s| ∈ S.

Intuitively, this says that for all our purposes AllLonely behaves exactly as #Peven. The rest
of this section is devoted to proving this theorem. We will first define a creator whose creations
will be the instantiations in the end, but the creator is not limited to a single creation for each
set. We will then define the set-instantiator from the creator by picking for every subset #»s with
| #»s | ∈ 2N just any one of its creations for #»s .

We crucially use the parsimonious polynomial-time reductions from AllLonely to AllLeaves
and back, so we can focus on AllLonely here. The reductions are gadget-based (with extremely
simple gadgets), but AllLonely fits perfectly for our proof technique, while it is slightly more
trouble to work with AllLeaves.

8.8 (a) Creations

Having 2j−1 many bits available, we can encode in a standard way a function ψ : [2n]→ [2n], where
n and j are polynomial related. We ignore any extra bits that are not needed for this encoding. A
paired node in ψ is an x ∈ [2n] for which y ∈ [2n] r {x} exists such that ψ(x) = y and ψ(y) = x.
A lonely node is a node that is not paired. Since 2n is even, clearly the number of lonely nodes is
always even.

For a ∈ 2N, a function ψ is called an a-creation if it consists of exactly a many lonely nodes,
and for each lonely node x we have ψ(x) = x. Let a-creations denote the set of all a-creations. Let
a−-creations :=

⋃
1≤c≤a c -creations. Finally, let lonely(ψ) ⊆ [2n] denote the set of all lonely nodes.

8.8 (b) Lucky creators

In this section we introduce the concept of a creator. A creator is a slightly less restrictive version
of a set-instantiator. For each blueprint a creator outputs a creation, where a blueprint is slightly
more general than the set #»s for a set-instantiator, but serves the same purpose.

For a set X, let
(

X
2 , ... ,2

)
denote the set of all set partitions of X into pairs. We call these

elements pairings. For b ∈ 2N, a b-creator ξ is a finite ordered set lonelies(ξ) of b many distinct
elements of [2n] together with a pairing pairing(ξ) ∈

(
[2n]rlonelies(ξ)

2 , ... ,2

)
. Let b-creators denote the set

of all b-creators.
Given a b-creator ξ, a subset L ⊆ [b] with |L| even, and a pairing o ∈

(
L

2 , ... ,2

)
, we obtain

a (b − |L|)-creation ξL,o by taking the pairing pairing(ξ), enlarging it pairing up the nodes as
indicated by o (i.e., if a and b are paired in o, then lonelies(ξ)a and lonelies(ξ)b get paired), and
setting ξL,o(x) = x for all nodes that are still unpaired.

8.8.2 Definition. We call ξ ∈ b-creators lucky if for all L ⊆ [b] with |L| even, and all pairings

o ∈
(

L
2,...,2

)
, we have: all accepting paths of the computation h

ξL,o
i (0j) do not access the oracle at

any point in lonelies(ξ) r lonely(ξL,o).

In other words, this says that the accepting paths do not access the oracle at positions where
lonely nodes are not, but could potentially be.

8.8.3 Claim. If ξ is sampled from Ub-creators , then ξ is lucky w.h.p.
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Proof. We describe a way of sampling from Ub-creators. Let
(
X
b

)
ordered

denote the set of length b
lists of distinct elements from X. We first sample lonelies(ξ) from U([2

n]
b )

ordered

. We then sample

pairing(ξ) from U([2
n]rlonelies(ξ)

2,...,2 ). This process samples a random variable ξ from Ub-creators.

Observe that for a fixed (L, o), where L ⊆ [b] and o ∈
(

L
2,...,2

)
, we have that ξL,o is uniformly

distributed from (b− |L|)-creations. It remains to show that for such fixed (L, o), we have that ξ
is lucky w.h.p. Note that since there are only constantly many such (L, o), the claim immediately
follows from the union bound. Hence, for the rest of the proof fix (L, o).

We have that ξL,o is uniformly distributed. Therefore, the set of lonelies(ξ) r lonely(ξL,o) is

uniformly distributed over a set of size
(2n−b+|L|

|L|
)
. By the union bound, an oracle query accesses

such a position with probability ≤ |L|
2n−b+|L| . By Bernoulli’s inequality, we have

(
1− |L|

2n − b+ |L|

)ti(j)
≥ 1 − |L| · ti(j)

2n − b+ |L|
.

Since n and j are polynomially related, this proves the claim.

8.8 (c) Defining the set-instantiator

For an a-creation ψ and a computation path τ ∈ {0, 1}∗ of a computation hψi (0j), let
perception(τ) ⊆ lonely(ψ) denote the set of accessed oracle positions that are lonely nodes.

Let ξ be a lucky b-creator. We interpret the list lonelies(ξ) as a bijection bij : [b]→ lonelies(ξ).
Let S = 2N. For every #»s ∈ B(

#»

b )S (actually, #»s = s is univariate), we let Ls := [b] r s and we
choose a os ∈

(
L

2,...,2

)
. We set

instSI(s) := ξLs,os .

Finally, for τ ∈ {0, 1}∗, let

percSI(τ) :=

{
bij−1(perception(τ)) if τ is an accepting path of the computation h

instSI(
#»
b )

i (0j),

> otherwise.

The rest of this section is devoted to proving that SI satisfies the requirements of Defini-
tion 6.1.3, which then proves Theorem 8.8.1, because clearly Lonely(instSI(

#»s )) = | #»s |. Formally,
we have the following result.

8.8.4 Proposition. For all #»s ∈ B(
#»

b )S, we have: τ ∈ {0, 1}∗ is an accepting path for the
computation hinstSI( #»s )(0j) if and only if percSI(τ) ⊆ #»s .

Proof. Since τ is an accepting path of hinstSI( #»s )(0j), and since ξ is lucky, we conclude that

τ is also an accepting path of the computation hinstSI(
#»
b )(0j). This implies that percSI(τ) =

bij−1(perception(τ)). Clearly perception(τ) ⊆ bij( #»s ), because otherwise τ would not even be a
computational path of hinstSI( #»s )(0j) because of its oracle answers when querying lonely nodes in
perception(τ) r bij( #»s ). We conclude percSI(τ) ⊆ #»s .

The argument is reversible. Indeed, let percSI(τ) ⊆ #»s , so in particular percSI(τ) 6= >. Then τ

is an accepting path of the computation hinstSI(
#»
b )(0j). Since τ is an accepting path of hinstSI(

#»
b )(0j),

and since ξ is lucky, we conclude that τ is also an accepting path of the computation hinstSI( #»s )(0j),
as desired.

66



8.9 The unbalanced flow separation

In this section we stud the BipartiteUnbalance problem, and prove that

#COUNTGAP(BipartiteUnbalance)A 6⊆ #COUNTALL-PPA(Leaf)A/2 .

For clarity of exposition, in notation of §8.2 (f), the vertices in V+ are called white and the vertices
in V− are called dark.

While all other classes in Figure 1 are contained in

PolynPunivariate :=
{
ϕ(#P) : ϕ univariate

}
,

it is not clear if the problem BipartiteUnbalance lies in that class. It does lie in

GapP ⊆ PolynPbivariate :=
{
ϕ(

#   »

#P) : ϕ bivariate
}
.

To put it into the complexity class inclusion diagram in Figure 1, the definition of its correspond-
ing complexity class #COUNTGAP(BipartiteUnbalance) is done in analogy to the definitions
in §3.2.

Consider the two relations

rBipartiteUnbalanceWhite and rBipartiteUnbalanceDark,

defined as follows. Let (C,w) ∈ rBipartiteUnbalanceWhite if and only if C describes a
graph in which w is a white vertex. Let the relation rBipartiteUnbalanceDark be defined
analogously.

Let rCOUNTGAP(BipartiteUnbalance) be the set of pairs of polynomially balanced relations
R = (R1, R2) for which a pair (α, β) of polynomial-time computable maps exists with (C, β(x)) ∈
R1 if and only if (α(C), x) ∈ rBipartiteUnbalanceWhite and (C, β(x)) ∈ R2 if and only
if (α(C), x) ∈ rBipartiteUnbalanceDark. In addition, we require that (C, β(x)) ∈ R1 and
(C, β(y)) ∈ R1 implies x = y, and we require that (C, β(x)) ∈ R2 and (C, β(y)) ∈ R2 implies
x = y.

Let rP× rP denote the set of pairs of polynomially balanced relations that can be evaluated in
polynomial time. By definition, rCOUNTGAP(BipartiteUnbalance) ⊆ rP × rP. We attach an
oracle completely analogous to §3.2, to obtain rCOUNTGAP(BipartiteUnbalance)A ⊆ rPA×rPA.
We define the corresponding counting class #COUNTGAP(BipartiteUnbalance)A via

f ∈ #COUNTGAP(BipartiteUnbalance)A if and only if

∃R ∈ rCOUNTGAP(BipartiteUnbalance)A : f(w) =
∑

y∈{0,1}∗

(
R1(w, y)−R2(w, y)

)
.

By definition and Proposition 8.2.20 we have #COUNTGAP(BipartiteUnbalance)A ⊆ GapPA≥0.
The main result of this subsection (Proposition 8.9.2) follows from the following theorem.

8.9.1 Theorem. There exists A ⊆ {0, 1}∗ with

2#COUNTGAP(BipartiteUnbalance)A 6⊆ #PA .

The following proposition is the inclusion and separation shown in Figure 1.
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8.9.2 Proposition. #COUNTALL-PPA(Leaf)/2 ⊆ #COUNTGAP(BipartiteUnbalance) via
a relativizing parsimonious reduction. Moreover, there exists an oracle A with respect to which
#COUNTGAP(BipartiteUnbalance)A 6⊆ #COUNTALL-PPA(Leaf)A/2.

Proof. We prove the first inclusion via a relativizing reduction that preserves the function value
(in the same way a parsimonious reduction preserves the function value). Given a Leaf instance,
replace each vertex that has nonzero degree by a white vertex and replace each edge by a black vertex
connecting the corresponding two white vertices. The value of the resulting BipartiteUnbalance
instance is exactly the number of connected components in the original instance.

The (non-)inclusion in the second part follows directly from dividing Theorem 8.9.1 by 2.
Formally, for all oracles A, we have #COUNTALL-PPA(Leaf)A ⊆ #PAeven . Therefore, we have
#COUNTALL-PPA(Leaf)A/2 ⊆ #PAeven/2.

We use Theorem 8.9.1 to obtain an oracle A such that

2#COUNTGAP(BipartiteUnbalance)A 6⊆ #PA .

In particular, we have

2#COUNTGAP(BipartiteUnbalance)A 6⊆ #PAeven .

We divide by 2:
#COUNTGAP(BipartiteUnbalance)A 6⊆ #PAeven/2.

But if
#COUNTGAP(BipartiteUnbalance)A ⊆ #COUNTALL-PPA(Leaf)A/2

were true, then
#COUNTGAP(BipartiteUnbalance)A ⊆ #PAeven/2

were also true, which we know is false.

Proof of Theorem 8.9.1. We use the Diagonalization Theorem 6.2.1 and the set-instantiator for
Multi(1Source,3Sink), see Theorem 8.10.1), with

k = 2, S =
{ #»

f ∈ N2 : f1 = 3f2 + 6
}
.

We switch the positions to get the set-instantiator for Multi(3Sink,1Source), with

k = 2, S =
{ #»

f ∈ N2 : f2 = 3f1 − 6
}
.

We set ` = 1 and ζ2(v1) = 3v1−6, so that I = 〈3v1−6−f2〉 and Z =
{ #»

f ∈ Q2 : 3f1−6−f2 = 0
}

.
We verify the preconditions of the Diagonalization Theorem 6.2.1:

1. Z contains the integer point (0, 6),

2. C ′S lies Zariski-dense in Q because (f1, 3f1 − 6) ∈ S for all f1 ∈ N≥2 , and

3. #»v = (1) satisfies 3v1 > 0.
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We fix Multiplicities = Multi(3Sink,1Source). The necessary set-instantiators are given by
Theorem 8.10.1. We set ϕ(f1, f2) = 8−4f1+2f2, which is the value of a 2BipartiteUnbalance in-
stance with one 6-source, f1 many 3-sinks, and f2 many 1-sources, as created by the set-instantiator
in §8.10.

We verify that ϕ+ I = −4f1 + 2f2 + 8 + 〈3f1− f2− 6〉 is binomial-bad by using the Polyhedron
Theorem 5.5.2. In the notation of the Polyhedron Theorem 5.5.2, we have ϕ′ = 2f1 − 4, δ = 1, so
that Oδ has only 2 elements. Hence, the polyhedron P(ϕ, ζ) will be defined using 2 equations.

Let (1, v1) be the order of basis vectors of basis vectors of Q[ #»v ]≤1. We express the 3 polynomials
y #»e over this basis and obtain coefficient vectors (1, 0), (0, 1), (−6, 3). The polyhedron given by

x0 −6x2 = −4
x1 +3x2 = 2
x0, x1, x2 ≥ 0

has no integer points. Therefore, ϕ+ I is binomial-bad by the Polyhedron Theorem 5.5.2.24 From
the Diagonalization Theorem 6.2.1 it follows that for every M we have pA(0j) 6= #accMA(0j).
Hence pA /∈ #PA. It remains to show that pA ∈ 2#COUNTGAP(BipartiteUnbalance)A.

Let C⊥ be an input to Multi(3Sink,1Source) (i.e., a circuit merged from multiple circuits
that describe the exponentially large graph, cf. footnote 10) that yields output

#»
t . Let ` be the

number of inputs of the circuit C⊥. Let νj(w) = True if and only if the string w has only zeros at
positions j + 1, j + 2, . . .

Finally, let Cj be an input to Multi(3Sink,1Source)A that describes the (j−1)-input circuit
that consists of a single arity j oracle gate that takes a constant 1 into its first input, takes all
inputs into its remaining j − 1 inputs, and forwards its output directly to the circuit output.

We construct a circuit α(x) := D|x| with max{`, |x|} many inputs, and with oracle gates as

follows (w ∈ {0, 1}max{`,|x|}):

Dj(w) :=
(

(A(0|w|+1) = 0) and ν`(w) and C⊥(w1, . . . , w`)
)

and
(

(A(0|w|+1) = 1) and ν|x|(w) and C|x|+1(w1, . . . , w|x|)
)

We define the polynomially balanced relations R = (R1, R2) as follows: let R1(w, y) if
and only if rBipartiteUnbalanceWhite(α(w), y). Similarly, let R2(w, y) if and only if
rBipartiteUnbalanceDark(α(w), y). We set β to be the identity function.

By definition, R ∈ rCOUNTGAP(BipartiteUnbalance). Therefore, the following function is
in #COUNTGAP(BipartiteUnbalance):∑

y∈{0,1}∗
R(x, y)

=
∑

y∈{0,1}∗
(rBipartiteUnbalanceWhite− rBipartiteUnbalanceDark)(α(x), y)

=

{
|V+|(D|x|)− |V−|(D|x|) if A(0|x|+1) = 1,

t1 − t2 otherwise.

Thus, this function equals pA(w) + 1, as desired. This finishes the proof.25

24Note that the LP relaxation has solutions, for example (0, 0, 2
3
), so a if a computation path could not just accept

or reject, but accept with a fractional contribution, then this would work out.
25We remark that the graph gadgets that make this separation work must be carefully chosen, and for several other

choices of gadgets we do not get a separation.
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8.10 A set-instantiator for 2#COUNTGAP(BipartiteUnbalance)

8.10.1 Theorem. Let M be a polynomial time nondeterministic Turing machine. Fix k = 2.
Then, for every

#»

b ∈ N2, there exists a threshold j0 ∈ N, such that for every j ≥ j0 and every
A<j ∈ {0, 1}<j, there exists a set-instantiator SI against (M, j,A<j , S = SBUline,

#»

b ), so that
Multi(1Source,3Sink)(instSI(

#»s )) = | #»s | for all #»s with | #»s | ∈ S.

Proof. The set-instantiator is constructed analogously to the construction for
Multi(NZSource,Excess) in Theorem 8.5.1, but with the source at zero, while the other
sources, the directed edges and the double sinks are replaced by graph gadgets. The rest of the
proof then works analogously.

We have slightly different parameters in this case. Let

SBUline :=
{

(f1, f2) ∈ N2 : f1 − 3f2 + 6 = 0
}
.

The graph gadgets are as follows, where the dark nodes have degree at least as high as all adjacent
white nodes.

First, a directed edge is replaced by a double edge, where each edge connects a white node of
degree 2 or 3, and a dark node of degree 3. An indegree = outdegree 1 node is replaced by the
following gadget:

Note that 2(#white nodes−#dark nodes) = 0 in this case.

Next, the zero source is replaced by the following gadget (in the original directed problem this
would be a 6-fold source):

Note that 2(#white nodes−#dark nodes) = 8 in this case. The source is replaced by the following
simple gadget:

Note that 2(#white nodes−#dark nodes) = 2.

Finally, there are no double sink nodes, but for a triple sink we use the following gadget:
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Note that 2(#white nodes−#dark nodes) = −4 in this case. This finishes the proof.

9 Open problems

9.1 Counting subgraphs

Let G = (V,E) be a simple graph. Denote by mk = mk(G) the number of k-matchings, i.e. sets of
k edges with disjoint vertices. As we mentioned in the introduction, the Heilmann–Lieb theorem
states [HL72]:

δ(k,G) := m2
k −mk+1mk−1 ≥ 0 for all k ≥ 1,

where we assume m0 = 1. Clearly, δ ∈ GapP≥0 .

9.1.1 Proposition ([Pak19]). In the notation above, δ ∈ #P.

The proof in [Pak19] is an easy adaptation of the proof by Krattenthaler [Kra96]. Many other
log-concavity problems remain open. Proposition 2.3.3 suggests some of them might not be in #P.

9.1.2 Theorem ([AHK18]). Let G = (V,E) be a simple graph, and denote by τk = τk(G) the
number of spanning forests in G with k edges. Then:

τ2
k ≥ τk+1τk−1 for all k ≥ 1.

This is a celebrated result by Adiprasito, Huh and Katz, which holds for all matroids, not just
truncations of the graphical matroids. We refer to [Huh18] for a survey of the algebraic approach,
and to [CP21, CP22] for an elementary approach using linear algebra.

(1) Is it true that τ2
k ># τk+1τk−1? This remains open and is a major challenge in the area, see

e.g. [Pak19] and [CP21, §17.17].

For many other unimodality and log-concavity results, see [Brä15, Huh18, Sta80]. Following
[Pak19] and the approach in this paper, most of these results can be rephrased as questions about
corresponding counting functions in #P.

9.2 Counting linear extensions

Let P = (X,≺) be a poset on |X| = n elements. A linear extension is a order-preserving bijection
f : X → [n], i.e. f(x) < f(y) for all x ≺ y. As in §1.2(1), denote by E(P ) and e(P ) := |E(P )| the
set and the number of linear extensions, respectively. The problem of computing e(P ) is famously
#P-complete [BW91], even in special cases of posets of height two, or of width two [DP18].
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There are some surprising combinatorial inequalities for the numbers of linear extensions. For
each element x ∈ X, let B(x) :=

{
y ∈ X : y < x

}
be the upper order ideal generated by x, and

let b(x) := |B(x)|.

9.2.1 Theorem (Björner–Wachs inequality [BW89]). In the notation above, we have:

e(P )
∏
x∈X

b(x) ># n!

The Björner–Wachs inequality is an equality for ordered forests, where it is called the hook-
length formula, see e.g. [SY89, Sta12]. The original proof in [BW89] uses an explicit injection which
is easily computable in polytime, see e.g. [CPP22].

For an element x ∈ X and integer 1 ≤ a ≤ n, let E(P, x, a) be the set of linear extensions
f ∈ E(P ) such that f(x) = a. Denote by e(P, x, a) :=

∣∣E(P, x, a)
∣∣ the number of such linear

extensions.

9.2.2 Theorem (Stanley inequality [Sta81]). In the notation above, we have:

e(P, x, a)2 ≥ e(P, x, a+ 1) e(P, x, a− 1).

The original proof in [Sta81] uses the Alexandrov–Fenchel inequalities applied to order poly-
topes (see §7.1), suggesting that a direct combinatorial proof might not exist. Recently, Stanley’s
inequality has been the subject of intense recent investigation, see [CPP21, SvH20]. Notably, an
elementary linear algebraic proof of the inequality is given in [CP21].

(2) Is it true that e(P, x, a)2 ># e(P, x, a+ 1) e(P, x, a− 1)?

9.2.3 Theorem (XYZ inequality [She82]). Let P = (X,≺), x, y, z ∈ X incomparable elements.
Let Pxy := P ∪ {x ≺ y}, Pxz := P ∪ {x ≺ z} and Pxyz := P ∪ {x ≺ y, x ≺ z}. Then:

e
(
P
)
e
(
Pxyz

)
≥ e

(
Pxy
)
e
(
Pxz
)
.

This correlation inequality is derived by Shepp from the FKG inequality mentioned in §7.4,
again suggesting that a direct combinatorial proof might not exist.

(3) Is it true that e
(
P
)
e
(
Pxyz

)
># e

(
Pxy
)
e
(
Pxz
)
?

The closest to resolving the problem in the positive is the combinatorial (but not injective!)
proof in [BT02], which involves an application of BipartiteUnbalance, see §8.1 and §8.9.

9.3 Ranks of matrices

In [GKPT16], the authors show the #P-hardness of the dimension dim ∂∗f of the space of partial
derivatives of a polynomial f , when the input is given in the sparse presentation (i.e., as a list of
monomials that have nonzero coefficients). They explicitly state as an open question whether or
not dim ∂∗f or dim ∂=kf are in #P. When f is homogeneous, then ∂=kf is a special case of a
so-called Young flattening.

For a partition λ, let SλCn denote the irreducible GLn-representation of type λ, i.e., for λ = (n),

we have S(d)Cn = C[x1, . . . , xn]d. Similarly, for λ = (1d), we have S(1d)Cn =
∧dCn. Pieri’s rule

states that if the Young diagrams of two partitions λ ⊆ µ differ by d boxes, at most by 1 in
each column, and if they both have least n many rows, then there is a unique nonzero GLn-
equivariant map S(d)Cn ⊗ SλCn → SµCn. For every f ∈ S(d)Cn this induces a linear map
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Fλ,µ : S(d) → End(SλCn, SµCn), see e.g. [Sam09, HI21]. The rank of this map has been used to
derive lower bounds in algebraic complexity theory, see e.g. [LO15, Lan15, Far16].

(4) Is the map (λ, µ, d, n, f) 7→ rank(Fλ,µ(f)) in #P, where f is given in the sparse presentation?

In [BIM+20], a very similar lower bounds technique, based on [HL16], is used to show that
a polynomial can be computed by an algebraic branching program of a certain format only when
approximations are allowed.

9.4 Orbit closures and representation theoretic multiplicities

The Kronecker and the plethysm coefficients have interpretations as dimensions of highest weight
vector spaces as follows. For a GLm-representation V a weight vector is a vector v that is rescaled
by the action of the algebraic torus: diag(α1, . . . , αm)v = αλ11 · · ·αλmn v. The list λ ∈ Zm is called
the weight of v.

A highest weight vector is a weight vector that is fixed under the action of a maximal unipotent
subgroup U (for example the upper triangular matrices with 1s on the main diagonal). In this case,
λ is always a partition. Highest weight vectors of weight λ form a vector space that we denote
by HWVλ(V ). In general, we have dimHWVλ(V ) = multλ(V ), where multλ(V ) is the number of
irreducible representations of type λ in any decomposition of V into irreducibles (this number does
not depend on the actual decomposition). We have:

pλ(d, n) = dimHWVλ
(
S(d)(S(n)Cm)

)
= multλ

(
S(d)(S(n)Cm)

)
for m large enough. In fact, the dimension is zero if the number of rows of λ is larger than
m, and it is a fixed number otherwise. An analog argument can be done for the triple product
GLm ×GLm ×GLm on the space of order 3 tensors

⊗3Cm:

g(λ, µ, ν) = dimHWV(λ,µ,ν)

(
S(d)(

⊗3Cm)
)

= mult(λ,µ,ν)

(
S(d)(

⊗3Cm)
)
.

For a GLm-orbit closure26 Z ⊆ S(n)Cm, the plethysm coefficient decomposes:

pλ(d, n) = multλ
(
I(Z)d

)
+ multλ

(
C[Z]d

)
,

We write pλ(d, n)Z+ := multλ(C[Z]d) and pλ(d, n)Z− := multλ(I(Z)d). Analogously for the tensor
setting, for a GL3

m-orbit closure Z, with d being the number of boxes in λ and also in µ and ν, we
have:

g(λ, µ, ν) = mult(λ,µ,ν)

(
I(Z)d

)
+ mult(λ,µ,ν)

(
C[Z]d

)
We write g(λ, µ, ν)Z+ := mult(λ,µ,ν)(C[Z]d) and g(λ, µ, ν)Z− := mult(λ,µ,ν)(I(Z)d). These numbers
are zero when m is too small, but are constant otherwise.

If Z is an orbit closure of a point q, then an upper bound for pλ(d, n)Z+ (and for g(λ, µ, ν)Z+

in the tensor setting), is given by the dimension of the invariant space of the irreducible GLm-
representation Vλ of type λ under the action of the stabilizer H of q, i.e. pλ(d, n)Z+ ≤ dimV H

λ or
g(λ, µ, ν)Z+ ≤ dim(Vλ ⊗ Vµ ⊗ Vν)H , see [BLMW11]. We denote this quantity by uλ(q).

The geometric complexity paper [MS08] pioneered studying a subset of the following multiplic-
ities, where input partitions and input numbers are always given in unary. Let

detn :=
∑
π∈Sn

sgn(π)
n∏
i=1

xiπ(i) and let pern :=
∑
π∈Sn

n∏
i=1

xiπ(i) .

26indeed, for any GLm-variety that is closed under rescaling, i.e., a projective variety

73



(5) For Z = GLn2 detn, is (d, n, λ) 7→ pλ(d, n)Z± in #P? Is (d, n, λ) 7→ uλ(detn) in #P? These
problems are studied in [Kum15, IP17, BIP19].

(6) For Z = GLn2pern, is (d, n, λ) 7→ pλ(d, n)Z± in #P? Is (d, n, λ) 7→ uλ(pern) in #P? See
[BLMW11, eq (5.5.2)].

Let

IMM(n)
m := tr

 x
(1)
1,1 ··· x

(1)
1,m

...
. . .

...
x
(1)
m,1 ··· x

(1)
m,m

 · · ·
 x

(n)
1,1 ··· x

(n)
1,m

...
. . .

...
x
(n)
m,1 ··· x

(n)
m,m

 and let Pow(n)
m := tr


 x

(1)
1,1 ··· x

(1)
1,m

...
. . .

...
x
(1)
m,1 ··· x

(1)
m,m

n


(7) For Z = GLm2nIMM
(n)
m , is (d, n,m, λ) 7→ pλ(d, n)Z± in #P? Is (d, n,m, λ) 7→ uλ(IMM

(n)
m )

in #P?

(8) For Z = GLm2Pow
(n)
m , is (d, n,m, λ) 7→ pλ(d, n)Z± in #P? Is (d, n,m, λ) 7→ uλ(Pow

(n)
m )

in #P? This last quantity has been studied in [GIP17].

(9) For Z = GLm(xn1 + xn2 + · · ·+ xnm), is (d, n,m, λ) 7→ pλ(d, n)Z± in #P? Is (d, n,m, λ) 7→
uλ(xn1 + xn2 + · · ·+ xnm) ∈ #P?

(10) For Z = GLn(x1 · · ·xn), is (d, n, λ) 7→ pλ(d, n)Z± in #P?

The multiplicities in (9) and (10) are used in [DIP20, IK20], see also [BI18, Thm. 22.4.1]. The
multiplicities in (10) play a central role in the Foulkes–Howe approach to the Foulkes conjecture, see
e.g. [McK08, CIM17]. For a partition λ with |λ| = nd, we actually have uλ(x1 · · ·xn) = pλ(n, d).

Let ei ∈ Cm denote the i-th standard basis vector, and let {ei,j : 1 ≤ i, j ≤ m} be a basis

of Cm2
. Consider the unit tensor and the matrix multiplication tensor:

Em := e⊗3
1 + · · ·+ e⊗3

m and Mm :=
m∑

i,j,k=1

ei,j ⊗ ej,k ⊗ ek,i

(11) For Z = GL3
m(Em), is (d,m, λ, µ, ν) 7→ g(λ, µ, ν)Z± in #P? Is (d,m, λ, µ, ν) 7→ q(λ,µ,ν)(Em) ∈

#P?

(12) For Z = GL3
m2(Mm), is (d,m, λ, µ, ν) 7→ g(λ, µ, ν)Z± in #P? Is (d,m, λ, µ, ν) 7→

q(λ,µ,ν)(Mm) ∈ #P?

The coefficients in open problems (11) and (12) were used in [BI11, BI13a] to study the com-
plexity of matrix multiplication. For (11), see also [BI18, Thm. 22.4.3]. See [BIL+21] for more
tensor setting examples.

In [BHIM22], the authors give software to compute pλ(d, n)Z± in small cases. The papers
[BIJL18] and [GIM+20] point out the hardness of computing these quantities in general. Notably,
Grochow [Gro15] reinterprets numerous lower bounds results in algebraic complexity theory as group
orbit (closure) separations, and thus they fall into the category of this paragraph, but the focus in
[Gro15] is not directly on the multiplicities, but on the more general approach of finding separating
modules.

9.5 Algorithms for the binomial basis on an affine variety

Expressing a polynomial in its binomial basis can be done using a greedy algorithm starting from
the top total degrees and proceeding to the lower degrees. Hence, given a polynomial ϕ in its
monomial basis, one can check in polynomial time whether or not ϕ is binomial-good. We have
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seen that it is important to understand when a coset ϕ+ I contains a binomial-good element (we
say that ϕ+ I is binomial-good), where I is an ideal.

(13) If we assume that a set of generating elements of I is presented in the binomial basis, what
is the complexity of determining whether or not ϕ+ I is binomial-good? In which cases do we get
efficient algorithms?
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