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Fluctuation-driven thermal transport in graphene double-layers at charge neutrality
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We develop a theory of fluctuation-driven phenomena in thermal transport in graphene double-layers. We
work in the regime of electron hydrodynamics and focus on the double-charge neutrality point. Although at the
neutrality point charge transport is decoupled from the hydrodynamic flow, thermal fluctuations of electron
density cause both drag and heat transfer between the layers. The thermal transport in the bilayer system
is governed by these two phenomena. We express the drag friction coefficient and the interlayer thermal
conductivity in terms of the interlayer distance and the intrinsic conductivity of the electron liquid. We then
obtain the thermal conductance matrix and determine the spatial dependence of the hydrodynamic velocity and
temperature in the system. For shorter system the thermal drag resistance is determined by drag. In longer
systems the situation of perfect thermal drag is realized, in which the hydrodynamic velocities in both layers
become equal in the interior of the systems. Estimates are given for the monolayer and bilayer graphene devices.
The predictions of our theory can be tested by the high-resolution thermal imaging and Johnson-Nyquist nonlocal
noise thermometry.
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I. INTRODUCTION

The electronic-double-layers (EDLs)—spatially separated
conducting electron systems—provide a versatile platform
to study quantum effects of electronic correlations. In these
systems, the coupling strength between the layers can be
effectively controlled by changing the interlayer separation
and/or carrier concentration, and the resulting state of the
system can be measured in a broad range of temperatures
and magnetic fields. As a consequence of this tunability,
the interlayer electron-electron interactions may lead to a
number of interesting phenomena that include, for exam-
ple, interlayer excitonic superfluidity [1,2], even-denominator
fractional quantum Hall states [3–5], and nonlocal frictional
transport effects of Coulomb drag [6,7].

In recent years, the great interest in EDL has been
motivated by the advent of graphene-boron-nitride het-
erostructures [8,9], which include both monolayer graphene
(MLG) [10–13] and bilayer graphene (BLG) [14–16] double-
layers. These devices offer a number of advantages compared
with quantum wells of GaAlAs-based two-dimensional elec-
tron systems. It takes only a few atomic layers of hexagonal
boron nitride (hBN) to confine carriers in graphene within
a single atomic plane and isolate graphene electrically. This
allows one to create double-layers with unprecedentedly small
interlayer separation and thus strong Coulomb coupling, since
hBN has relatively small dielectric constant (ε ≈ 4). The
charge carriers within each layer can be independently and
continuously tuned in a broad range of densities from the
charge-neutral state to high density of either electrons or
holes. Therefore, the Coulomb drag in graphene EDL het-
erostructures can be studied not only in the temperature
regime of degenerate electron gas T < EF , where EF is the

Fermi energy, but also in the regime of correlated fluid at
higher temperatures, where electronic system attains hydro-
dynamic limit [17–19].

In this paper we study hydrodynamic thermal transport in
a double-layer system at the double-charge neutrality point,
where the charge density in each layer is zero. The most
salient feature of electron hydrodynamics at charge neutrality
is the decoupling of the hydrodynamic flow from the charge
current. This decoupling holds only on average, while fluc-
tuations of the electron density produce mixing of charge
current and the hydrodynamic flow. Thermal charge fluctua-
tions transfer both energy and momentum between the layers,
causing both thermal drag [20–24] and interlayer thermal
conductivity [25–31], for the latter see also reviews [32,33]
devoted to the near-field heat transfer (NFHT). Both of these
fluctuation-driven phenomena modify the hydrodynamic flow
in both layers and thereby determine the thermal transport
properties of the double-layer system. We treat the ther-
mal fluctuations by introducing the Langevin sources into
the hydrodynamic equations. This is done by a straight-
forward extension of Landau and Lifshitz’s theory [34] to
non-Galilean-invariant liquids. The particular advantage of
hydrodynamic approach is that it enables considerations be-
yond the perturbation theory in interaction. We show that, at
charge neutrality, the thermal drag resistance and NFHT con-
ductance can be expressed in terms of intrinsic conductivity
of the pristine fluid and its thermodynamic entropy density.
We also work out a generic four-terminal setup and calculate
spatial distribution profiles for the electronic temperature in
the EDL, which can be mapped out experimentally via high-
resolution thermal imaging probes [35] and Johnson-Nyquist
nonlocal noise thermometry [36].
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The paper is organized as follows: In Sec. II we develop a
Langevin treatment of hydrodynamic fluctuations applicable
to non-Galilean invariant electron liquids. In Sec. III we apply
this approach to evaluate the thermal drag coefficient and in-
terlayer thermal conductivity. Using these results we develop
a macroscopic theory of thermal transport in electron bilayers
and provide experimentally relevant estimates for MLG and
BLG devices. In Sec. IV we summarize the main findings
of this work and outline perspectives for further extensions.
In Appendix A we outline an alternative approach to the
treatment of thermal charge fluctuations, which represents an
extension of the Langevin theory of van der Waals forces de-
veloped by Lifshitz [37,38] to nonequilibrium quantities. This
approach does not rely on the hydrodynamic approximation
and is applicable to electron layers of arbitrary thickness.

II. HYDRODYNAMIC FLUCTUATIONS

In this section we formulate the transport theory of hydro-
dynamic fluctuations in electron liquids. For that purpose, we
follow the classic work [34] making the necessary generaliza-
tions to account for the presence of Coulomb interaction and
broken Galilean invariance of electron liquids in solids.

The hydrodynamic equations express conservation of the
density of particle number, energy, and momentum of the
electron liquid. Since the energy density depends on the en-
tropy density of the liquid the energy conservation equation in
hydrodynamics is traditionally replaced by an equivalent evo-
lution equation for the entropy density [39]. Since entropy
production is quadratic in deviations from equilibrium, it may
be neglected for the purpose of studying linear transport. In
this approximation the entropy evolution equation expresses
conservation of entropy. Accordingly, the time derivatives
of the number density n, entropy density s, and momen-
tum density pi may be expressed in terms of divergences
of the corresponding conserved fluxes jn, js, and �i j . To
keep subsequent expressions more compact, it is convenient
to combine the thermodynamic densities as well as particle
and entropy fluxes into two-component column vectors

�x =
(
n
s

)
, �J =

(
jn
js

)
. (1)

Here and in what follows the column vector quantities are
denoted by arrows above them, and we use boldface letters
to denote the usual spatial vectors. In the notations of Eq. (1),
conservation of particle number and entropy are expressed by
the continuity equation

∂t �x = −∇ · �J, (2)

while the evolution equation for the momentum density has
the form of Newton’s second law,

∂t p = −∇ · �̂ − en∇φ. (3)

The electric potential φ here is related to the electron density
by the Poisson equation. Its presence reflects the flow of
momentum of the electron fluid due to long-range Coulomb
interactions between electrons, whereas the tensor �̂ ≡ �i j

denotes the local part of the momentum flux.
An essential ingredient of the hydrodynamic approach is

the assumption of local thermal equilibrium of the electron

liquid. Accordingly, the state of the liquid is characterized
by the local equilibrium parameters: temperature T , chemical
potential μ, and the hydrodynamic velocity v, whose values
are determined by the local densities of conserved quantities.
In the hydrodynamic approximation the fluxes of conserved
quantities are expanded to first order in the gradients of equi-
librium parameters.

Hydrodynamic fluctuations are described using the
Langevin approach by adding fluctuation terms to the hydro-
dynamic constitutive relations for the conserved currents [34].
For liquids that do not possess Galilean invariance,1 the ex-
pressions for the currents in Eq. (2) take the form

�J = �xv − ϒ̂ �X + �JL. (4)

The first term on the right-hand-side of Eq. (4) describes the
convective transport of charge and entropy by the hydrody-
namic flow with the hydrodynamic velocity v. The second
term describes dissipative transport of charge and heat rela-
tive to the fluid in response to driving forces �X , which are
thermodynamically conjugate to the corresponding densities

�x [40]. Specifically, the column vector �XT = (−eE,∇T ) con-
sists of the electromotive force eE = −∇(μ + eφ) and the
local temperature gradients ∇T generated in a fluid (above we
used symbol T to denote vector transposition). The matrix of
kinetic coefficients ϒ̂ characterizes the dissipative properties
of the electron liquid. It is given by

ϒ̂ =
(

σ/e2 γ /T

γ /T κ/T

)
, (5)

where κ is the thermal conductivity, σ is the intrinsic conduc-
tivity, and γ is the thermoelectric coefficient of the electron
liquid. The assumption of broken Galilean invariance is man-
ifested by nonvanishing σ and γ . The third term on the
right-hand-side of Eq. (4) captures the Langevin currents �JL
that describe thermally driven spatial and temporal fluctu-
ations whose variances are related to dissipative transport
coefficients by the fluctuation-dissipation theorem [41,42]〈�JL(r, t ) ⊗ �J T

L (r
′, t ′)

〉 = 2T ϒ̂δ(r − r′)δ(t − t ′). (6)

The notation �a ⊗ �bT is used to denote the direct product of
two vectors.

The momentum flux tensor of the electron liquid in Eq. (3),

�i j = Pδi j − �i j, (7)

comprises the local hydrodynamic pressure P and viscous
stress tensor

�i j = η(∂iv j + ∂ jvi ) + (ζ − η)δi j∂kvk + ςik, (8)

where η and ζ are, respectively, the shear and bulk viscosities.
The form of �i j was tailored to the two spatial dimensions.
The last term in the definition of �i j denotes stochastic

1In Galilean-invariant liquids, the particle current density is
uniquely determined by the local hydrodynamic velocity v, which in
turn is defined by the momentum density. In the absence of Galilean
invariance, additional and dissipative contributions of the particle
current arises.
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FIG. 1. A schematic representation of an electronic double-layer
in the regime of thermal Coulomb drag with generic four-terminal
biasing, which creates inhomogeneous temperature profiles T1,2(r).
Thermal fluctuations of electron density δn1,2(r, t ) are advected by
the hydrodynamic flow of heat. This results in momentum transfer
between the layers, causing thermal drag. The drag force must be bal-
anced by thermally induced pressure gradient. This, in turns causes
near-field transfer of thermal energy between the layers. The relevant
system dimensions include interlayer spacing d , layer length L, and
thermal equilibration healing length l , whose value is determined by
the competition between the thermal drag and interlayer heat transfer
[see Eq. (39)].

Langevin viscous stresses, whose correlation function is given
by [34]

〈ςik (r, t )ςlm(r′, t ′)〉 = [η(δilδkm + δimδkl ) + (ζ − η)δikδlm]

× 2T δ(r − r′)δ(t − t ′). (9)

The Langevin scheme outlined above provides a descrip-
tion of fluctuation-driven phenomena in the hydrodynamic
regime. It assumes local, but not global thermal equilib-
rium, and therefore remains applicable in the presence of a
hydrodynamic flow. For a given device geometry these equa-
tions need to be supplemented by the appropriate boundary
conditions. As we show below, this enables evaluation of both
fluctuation correlation functions, and thermoelectric transport
coefficients, which are affected by thermal fluctuations.

III. THERMAL DRAG EFFECT

In this section we use the theory of hydrodynamic fluc-
tuations to study nonlocal thermal drag in mesoscopic EDL
devices, and evaluate thermal transport coefficients of these
systems. A similar approach was recently applied to the prob-
lem of Coulomb drag resistance [43–46].

We consider a system formed by two two-dimensional
electron layers separated by a distance d , see Fig. 1. For
simplicity, we assume that both conducting layers are identi-
cal. To ensure applicability of hydrodynamic description, we
must requite the interlayer separation to exceed the equilibra-
tion length of the electron liquid. For the electron liquid in
graphene at charge neutrality, the latter is on the order of the
thermal de Broglie length, λT . We focus on the most inter-
esting regime of double charge neutrality, where each layer is
charge neutral on average. In this case the hydrodynamic flow

is decoupled from charge transport and corresponds to purely
thermal flux. However, this decoupling holds only on average,
whereas thermal fluctuations of the electron density violate
it. In the presence of hydrodynamic flow velocity v in the
active layer, the fluctuations of electron density with the wave
vector q are advected by the flow. As a result, their spreading
becomes anisotropic with respect to the direction of v. The
interlayer coupling of density fluctuations causes transfer of
both energy and momentum between the layers, resulting
in thermal drag. Below, we evaluate the rate of energy and
momentum between the layers by neglecting electron-phonon
coupling and accounting for the interlayer coupling of density
fluctuations caused by the Coulomb interaction.

A. Drag force from the density fluctuations

We begin with the consideration of drag in a pristine sys-
tems at double charge neutrality. The key point to realize is
that at charge neutrality the thermal fluctuations of charge
density δn, entropy δs, and hydrodynamic velocity δv are
independent to linear order. Moreover, the longitudinal fluc-
tuations of velocity are coupled to pressure and propagate in
the form of sound waves, while the transverse fluctuations of
velocity spread via vorticity diffusion. To determine the drag
force F , we thus focus on the density fluctuations and lin-
earize Eq. (2). For the active layer, labeled by the subscript 1,
we obtain

∂tδn1 + v · ∇δn1 − σ

e2
∇2(eδφ12) + ∇ · δ jn1 = 0, (10)

where δ jn is the part of the Langevin particle current, whose
variance is proportional to the intrinsic conductivity in Eq. (6),
and δφ12 is the Coulomb potential that includes density fluc-
tuations in the passive layer. In the passive layer, which is
labeled by the subscript 2, the density fluctuations δn2 are
given by the same equation as Eq. (11), except that v = 0 and
one needs to interchange the layer index 1 ↔ 2. Passing to the
Fourier transform, δn ∝ exp(−iωt + iqr), and symmetrizing
fluctuating density modes, δn± = δn1 ± δn2, and correspond-
ing fluctuating currents, δ jn± = δ jn1 ± δ jn2, we obtain

�±δn± = −i(q · δ jn±) − i

2
(q · v)(δn+ + δn−), (11)

where we introduced the susceptibility function

�±(q, ω) = −iω + (2πσq/ε)(1 ± e−qd ). (12)

To arrive at Eq. (11) we used

δφ12 = 2πe

εq
(δn1 + δn2e

−qd ), (13)

where ε is the dielectric constant of the medium surrounding
the electron layers.

In equilibrium, v = 0, fluctuating currents δ jn± render
density fluctuations δn±. These density modes are over-
damped due to the finite intrinsic conductivity. Fluctuations
relax exponentially in time, δn± ∝ e−tγ± , with the correspond-
ing characteristic Maxwell rate [47]

γ±(q) = (2πσq/ε)(1 ± e−qd ). (14)

This behavior should be contrasted with the hydrodynamic
fluctuation dynamics at high density. In that limit, density
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fluctuations, and thus drag effect, are dominated by the sym-
metric and antisymmetric plasmon modes, whose attenuation
is governed by the fluid viscosity [43].

In the presence of the hydrodynamic flow in the active layer
the correlation functions of the Langevin currents in Eqs. (6)
and (9) do not change, but the propagation of fluctuations is
affected by the flow velocity v. We account for this change
to linear order in v by splitting the density fluctuations δn =
δn(0) + δn(1) into the equilibrium part δn(0) and the linear-in-v
correction δn(1). We thus find from Eq. (11)

δn(0)± = q · δ jn±
i�±

, δn(1)± = q · v

i�±
(δn(0)+ + δn(0)− ). (15)

These expressions, combined with Eq. (6), enable evaluation
of the drag force. The latter represents the average force
exerted by density fluctuations in the active layer onto the
passive layer and is expressed by the following correlation
function:

F =
∫

d2qdω

(2π )3
(−iq)

(
2πe2

εq

)
e−qdDF (q, ω), (16)

where we introduced a shorthand notation

DF (q, ω) = 〈δn1(q, ω)δn2(−q,−ω)〉. (17)

EvaluatingDF to the linear order in v, we observe that density
averages of the same parity 〈δn±δn±〉 contain an overall factor
∝(�± − �∗

±) = −2iω. Therefore, these terms are odd in fre-
quency and consequently drop out from the force in Eq. (16).
In contrast, contributions from the density averages of the
opposite parity 〈δn±δn∓〉 contain a factor of �± + �∗

±, and
thus are even in frequency. Collecting all the terms together
and using the variance of Langevin currents from Eq. (6),

〈(q · δ jn±)(q · δ jn±)〉 = 4Tq2σ/e2, (18)

we arrive at the following expression:

DF (q, ω) = i(q · v)

(
Tq2σ

e2

)
Re(�+ − �−)
|�+|2|�−|2 . (19)

We substitute this expression into Eq. (16) and evaluate the
frequency integral first in the resulting expression,∫ +∞

−∞

dω

|�+|2|�−|2 = π

γ+γ−(γ+ + γ−)
.

The integration over the directions of q in the remaining
expression can be easily done and yields the drag force in the
form

F = kthv, (20)

were the coefficient of drag friction kth is given by

kth = Tσ

4e2

∫
q4d2q

4π2

(
2πe2

εq

)
e−qd (γ+ − γ−)

γ+γ−(γ+ + γ−)
. (21)

With the aid of Eq. (14), the remaining momentum integral
can be evaluated by introducing a dimensionless variable x =
2qd . It brings the numerical factor

∫ ∞
0 x2e−xdx/ sinh(x) =

ζ (3)/2, where ζ (z) is the Riemann’s zeta function. The re-
sulting drag friction coefficient,

kth = ζ (3)

64π2

( εT

σd3

)
, (22)

is inversely proportional to the third power of the interlayer
separation d . Notice the unusual dependence on the dielec-
tric constant in kth, which originates from two competing
effects. On the one hand, the dielectric environment weakens
Coulomb coupling; on the other hand, it prolongs the relax-
ation time of charge fluctuation that contributes to the density
correlation function and enhances the drag force.

Note that, in the ideal liquid approximation where all the
dissipative coefficients of the electron liquid are sent to zero,
the drag coefficient in Eq. (22) diverges. This may seem
counterintuitive, as one might naively expect that, in the ideal
liquid approximation, the drag coefficient and resistivity must
vanish. This expectation is however incorrect because it is
based on the implicit assumption that the charge density in the
two layers is uniform. However, this is true only on average,
whereas the equal-time density fluctuations, which depend
only on thermodynamic quantities (compressibility) remain
nonzero in the ideal liquid limit. Furthermore, in the ideal
liquid approximation all relaxation processes are switched
off. Therefore these equal time fluctuations remain “frozen”
into the liquid. This results in perfect linear response drag.
Indeed, equal-time density fluctuations are correlated between
the layers. Therefore dragging one liquid past the other in the
presence of frozen-in density variations requires overcoming
a finite energy barrier, which arises from interlayer correla-
tions of equal-time density fluctuations. A similar situation
arises in the hydrodynamic treatment of resistivity in systems
subjected to long disorder [48]. In that case the resistivity
is inversely proportional to the intrinsic thermal conductivity
and also diverges in the ideal-liquid limit. In that case the
liquid is not isentropic in equilibrium because the entropy per
particle depends on the local disorder potential. Because of
that, initiation of the flow requires overcoming a finite energy
barrier (stagnation enthalpy [49]), and linear-response flow is
impossible. Note that both of these states (perfect drag and
stagnant liquid) are dissipationless. In the case of drag we
have perfect locking of the layers coupled by elastic forces.
In the case of stagnant liquid the liquid is locked to disorder
at small drives.

It may be instructive to contrast this result with the earlier
calculation of kth carried out for the case of Galilean-invariant
liquids [43]. In that case the hydrodynamic density fluctua-
tions consist of plasmons driven by fluctuating longitudinal
stresses, diffusive modes caused by temperature fluctuations,
and thermal expansion of the electron liquid. It turns out that
the plasmons give the dominant contribution to drag in the
parameter kFd � 1, where kF is the Fermi wave number. The
resulting drag friction coefficient can be expressed as follows:

kth � εT (η + ζ )

e2n2d5
ln4

[
(nd )3

aB(η + ζ )

]
, (23)

where aB is the effective Bohr radius in the material. For the
Fermi liquid, η ∼ n(EF/T )2, while bulk viscosity vanishes for
a simple parabolic band or in general remains smaller than
η [50], therefore Eq. (23) can be rewritten as

kth ∼
(vFε

e2

)(
1

kFd5

)
EF

T
ln4

[
EF

T

4
√
aB/d√
kFd

]
. (24)
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The applicability of this result is restricted to the temperature
interval EF/ 4

√
kFd < T < EF provided kFd � 1.

The comparison between Eq. (22) and Eqs. (23) and (24)
shows that the Coulomb drag in Dirac liquids is much stronger
than that in Galilean-invariant liquids and exhibits a slower
(1/d3 rather than 1/d5) falloff with interlayer distance. We
expect that at high electron density (in the quantum degenerate
regime), the Coulomb drag in Dirac liquids should approach
the Galilean-invariant result. The study of the crossover be-
tween the regimes of high and low electron density is beyond
the scope of the present work.

B. Thermal drag in short systems

The drag force, characterized by the friction coefficient kth
in Eq. (22), affects the hydrodynamic flow of the electron
liquid. Since at charge neutrality hydrodynamic flow trans-
ports heat rather than charge, the drag force produces thermal
drag resistivity. At charge neutrality the drag force must be
balanced by the thermally induced pressure gradients arising
within the layers,

F = s∇T2 = −s∇T1. (25)

Because of the opposite sign of the temperature gradients in
the active and passive layer, a position-dependent temperature
difference between the two layers arises. In this situation,
thermal fluctuations of the electron density produce not only
momentum exchange but also energy exchange between the
layers.

In sufficiently short systems, the accumulated interlayer
temperature difference caused by drag is small and may be
neglected. In this approximation thermal energy transfer be-
tween the layers is absent, in complete analogy with charge
drag in which interlayer charge transfer is absent. The drag
thermal resistivity ρth may be defined as the ratio of the tem-
perature gradient induced in the passive layer to the conserved
heat current, jq1 = T js1, in the active layer. Since the latter is
given by jq1 = T sv1 − κ∇T1, we get

ρth = ∇T2
jq1

=
[
T s2

kth
+ 2κ

]−1

. (26)

When deriving this result we took into account that the ther-
mal current vanishes in the passive layer, jq2 = 0, which
fixes the hydrodynamic velocity induced by the drag, v2 =
(κ/T s)∇T2. This is then used in the force balance condi-
tion, kth(v1 − v2) = s∇T2, to relate v1 and ∇T2. Substituting
Eq. (22) into (26) and observing that in the hydrodynamic
regime the second term in the square bracket above may be
neglected in comparison with the first, we get a linear relation
between the thermal drag resistivity and the drag friction
coefficient,

kth = T s2ρth. (27)

This relation does not rely on the specific form of the drag
friction coefficient in Eq. (22) and holds as long as the drag
thermal resistivity is small in comparison with the intrinsic
thermal resistivity of the layer, ρthκ � 1. For the specific form

of the friction coefficient in Eq. (22) we get

ρth = ζ (3)

64π2

(
ε

σ s2d3

)
. (28)

In Sec. III E we provide estimates for the temperature depen-
dence of kth for both MLG and BLG systems.

C. Near-field heat transfer conductance

In longer systems the temperature gradients arising in the
layers cause appreciable heat transfer between the layers. At
small temperature differences the interlayer heat flux is pro-
portional to the temperature difference between the layers and
can be characterized by a thermal conductance per unit area.
This near-field thermal conductance can be readily evaluated
using the formalism developed above. For that purpose, we
consider a situation in which one layer is hotter than the
other T1 > T2 and evaluate the energy flux between the layers
by computing the work per unit time done by the density
fluctuations in the hot layer on the electrons in the cold layer.
Using Ehrenfest’s theorem [40], d

dt 〈Ĥ〉 = 〈∂t Ĥ〉, we can write
the heat flux per unit area in the form

JE = e

2
〈δn2∂tδφ2 − δn1∂tδφ1〉. (29)

After Fourier transform this expression can be equivalently
rewritten as follows:

JE =
∫

d2qdω

(2π )3
−iω

2

(
2πe2

εq

)
e−qdDE (q, ω), (30)

where DE is defined in analogy with Eq. (19) except that
it is expressed in the basis of symmetrized densities, DE =
〈δn+δn−〉. To determine the correlation function of fluctuating
densities, we use Eq. (11) and generalize Eq. (18) to the
situation of layers kept at different temperatures. As a result,
we obtain

DE (q, ω) = �T
σ

2e2
q2

�∗+�−
, (31)

where �T = T1 − T2 is the temperature difference between
the layers. Upon the frequency integration in JE , we get

JE = −�T
σ

e2

∫
q2d2q

(2π )2

(
πe2

εq

)
e−qd γ+ − γ−

γ+ + γ−
. (32)

Performing the momentum integration, we obtain the near-
field thermal conductance per unit area

κth = − JE

�T
= σ

8εd3
. (33)

We would like to make several comments on the results
presented in this and the preceding sections: (i) The hydrody-
namic description of the relevant density fluctuations assumes
that their wavelengths, ∼d , are longer than the inelastic re-
laxation length, and their frequencies are smaller than the
equilibration rate of the electron liquid. Since the electron
liquid in graphene is strongly coupled, this assumption is
justified when d exceeds the thermal de Broglie wavelength
of the electrons. (ii) For MLG, our results differ from the re-
sults obtained using the random-phase approximation (RPA)
treatment of density fluctuations [31]. We believe that the
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discrepancy arises because collision-induced damping is ne-
glected in the RPA treatment. For the strongly interacting
liquid in graphene this assumption is not expected to hold. (iii)
Our result for the near-field thermal conductivity in Eq. (33) is
expressed in terms of the electrical conductivity on the liquid.
Since charge transport is decoupled from the hydrodynamic
flow at charge neutrality, this suggests that the results apply
beyond the hydrodynamic regime. Indeed, our derivation only
relied on the assumption that the relevant charge-density fluc-
tuations obey Maxwellian relaxation, controlled by the layer
conductivity. In Appendix A we present an alternative treat-
ment of near-field thermal conductivity, which is in similar
spirit to the method developed by Lifshitz for the evaluation
of van der Waals forces between solids [37,38] and may be
applied to a double-layer of conductors of arbitrary thickness.

D. Thermal transport in long systems:
Thermal locking and perfect drag

As discussed above, in sufficiently long systems both
thermal drag and near-field interlayer thermal conductivity
significantly affect thermal transport in double-layers. In this
section we develop a macroscopic description of the thermal
transport in EDL by accounting for the effects of both thermal
drag and near-field heat transfer between the layers.

Thus far we have considered perfectly clean systems,
whereas realistic samples are disordered. To account for the
presence of disorder we assume that each layer is subject
to the disorder potential with a long (in comparison to the
equilibration length of the electron liquid) correlation radius
ξ . There are multiple pieces of experimental evidence in
support of this model assumption. Indeed, scanning probe
microscopy on hBN-encapsulated graphene reveals electron-
hole charge puddles with the typical correlation radius in
the range of ξ ∼ 100 nm and local strength of U ∼ 5 meV;
see Refs. [51,52]. One should note that, in this model, the
disorder-induced momentum relaxation in the flow may not
be described in terms of individual collisions of electrons
with impurities since microscopic length scale of momentum-
conserving electron collisions is much shorter than ξ . Instead
the momentum relaxation in this regime must be described
by the hydrodynamic approach [48]. For the electron liquids
in graphene this was done in Refs. [53,54]. In this approach,
a description of the transport in the system at spatial scales
exceeding ξ is obtained by averaging the hydrodynamic equa-
tions in an external potential over disorder realizations. As
a result, the force balance equation (3) acquires a friction
term [54],

F = −kv, k = 〈(sδn − nδs)2〉
2
(
n2κ
T − 2nsγ

T + s2σ
e2

) . (34)

In doped systems the friction coefficient k in Eq. (34) is
determined by the entire matrix of thermoelectric coefficients
[Eq. (5)] as well as both particle density δn(r) and entropy
density δs(r) fluctuations. In the regime near charge neutral-
ity, n → 0, its functional form simplifies to k = e2

2σ 〈δn2〉. For
simplicity, we assume that disorder does not induce interlayer
correlations. This assumption is certainly justified at large
interlayer separations.

At this point, consider the four-terminal setup of a ther-
mally biased EDL. For the system with the length L we take
for the lower layer T1(x = 0) = T1 and T1(x = L) = αT1, and
similarly for the top layer T2(x = 0) = T2 and T1(x = L) =
βT2, where the parameters α and β are close to unity. We are
interested in describing the resulting spatially inhomogeneous
flow of heat in the x direction. Since the transfer of energy
from the electrons to the phonons is suppressed by the small
ratio of the speed of sound to the electron velocity, we neglect
the extrinsic energy losses to phonons. This energy relaxation
channel can be described by introducing the corresponding
electron-lattice thermal conductivity into our equations.

The entropy current in each layer consists of two terms
generated by hydrodynamic velocity and local temperature
gradient,

jsi = svi − κ

T
∇Ti, i = 1, 2. (35)

The entropy conservation is formulated in terms of the conti-
nuity equation that states the loss of the entropy current in one
layer is governed by the outflow into the other layer via the
NFHT effect

∂x js1 + κth

T
(T1 − T2) = 0, (36a)

∂x js2 − κth

T
(T1 − T2) = 0. (36b)

In a steady state, the force balance condition in each of the
layers is determined by the thermal and frictional forces

−kv1 − kth(v1 − v2) − s∂xT1 = 0, (37a)

−kv2 − kth(v2 − v1) − s∂xT2 = 0, (37b)

which include both the disorder-induced friction (34) and the
thermal drag friction (27).

To solve this system of linear equations it is advantageous
to rewrite them in the symmetrized representation. For in-
stance, for temperatures T±(x) = T1(x) ± T2(x) we find(

T s2

k
+ κ

)
∂2
x T+ = 0, (38a)

(
T s2

k + 2kth
+ κ

)
∂2
x T− − 2κthT− = 0. (38b)

We see that symmetric and antisymmetric parts of the tem-
perature distribution decouple. The former one describes the
profile in the bulk of the flow, whereas the latter one cap-
tures thermal redistribution near the sample boundaries. The
interplay of the gradient term and the local term in the equa-
tion for T− introduces the natural healing length of interlayer
thermalization,

l−2 = 2κth

κ + T s2/(k + 2kth )
. (39)

Assuming k � kth, and using Eqs. (22) and (33) we get the
following estimate:

d2

l2
∼ 1

s2d4
� 1, (40)

which justifies our local approximation. As shown in the fol-
lowing section this condition can be easily met in graphene
devices.
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FIG. 2. The spatial profile of the temperature distributions in
the EDL under the regime of the thermal drag effect. The plot is
generated from Eq. (41) for the thermal healing length satisfying
the condition L/l = 15 and the following choice of parameters:
α = 3/4, β = 1/2, and τ = 1/2.

The solution of Eqs. (38) satisfying the boundary condi-
tions is given by

T1,2(x)

T1
= 1

2
[ fa(x) ± fb(x) ± fc(x)]. (41)

Here the upper (lower) sign is for T1(x) [T2(x)] and we intro-
duced three dimensionless functions:

fa(x) = (1 + τ )
(
1 − x

L

)
+ (α + βτ )

x

L
, (42a)

fb(x) = (α − βτ )
sinh (x/l )

sinh (L/l )
, (42b)

fc(x) = (1 − τ )
sinh ((L − x)/l )

sinh (L/l )
, (42c)

where τ = T2/T1. To illustrate the effect of interlayer heat
transfer and competing thermal drag processes we plot tem-
perature profiles in Fig. 2 for a particular choice of parameters.
In the bulk of the flow, far away from the system boundaries,
where l � x � L, we can clearly identify thermally locked
state, where the local temperatures in the two layers become
identical. This locking is caused by interlayer thermal con-
ductivity, which, in combination with force balance, leads to
exponential decay of interlayer temperature difference on the
scale of the healing length l defined by Eq. (39). From the
linear combination of the force balance equations (37), we
determine the spatial gradient of the locked temperatures in
the bulk of the device, −kv+ − s∂xT+ = 0. Thus, the tempera-
ture gradient in the bulk of the flow determines hydrodynamic
velocities, v1 ≈ v2, with exponential accuracy in the thermal
healing length, vi ≈ −(s/k)∇Ti. Therefore, the entropy cur-
rents defined by Eq. (35) in the bulk of the flow, l � x � L,
can be expressed as follows:

jsi = −
(
T s2

k
+ κ

)∇Ti
T

= −K∇Ti
T

. (43)

The coefficient K can be considered as an effective thermal
conductivity in the regime of the perfect drag effect. This
equation coincides with the expression for the thermal con-
ductivity of the electron liquid in the presence of disorder.

This reflects the fact that in the regime of thermal locking
the double-layer acts as a single electron liquid with identical
hydrodynamic velocities in the two layers.

E. Estimates

In this section we provide estimates for the obtained kinetic
coefficients in graphene EDL devices.

For MLG devices the intrinsic conductivity is known to be
of the order of conductance quantum ∼e2/2π (in units of h̄ =
1) modulo logarithmic renormalizations in the weak-coupling
theory [55,56]:

σ = e2

2πα2
T

, αT = αg

1 + (αg/4) ln (�/T )
, (44)

where αg = e2/(εv) is the temperature-independent dimen-
sionless interaction constant, which determines the bare
strength of the electron-electron interactions, and � is the cut-
off in the scheme of the renormalization group. The entropy
density of MLG at charge neutrality can be estimated as s ∼
(T/v)2. Therefore, neglecting all logarithmic factors, we find
from Eq. (33) that the NFHT conductance κth is only weakly
(logarithmically) temperature dependent. For the thermal drag
resistance in Eq. (28) we get ρth ∝ 1/T 4. For the healing
length we deduce from Eq. (40) that d/l ∼ (λT /d )2 � 1.

Furthermore, it is useful to compare the resulting thermal
drag friction coefficient kth to the disorder-induced friction
coefficient k. For that we need to express the density vari-
ance 〈δn2〉 in terms of the properties of the disorder potential
U . This can be done in the linear screening approxima-
tion, where the equilibrium density modulation is related to
the external potential as δn(q) = −νqU (q)/(q + r−1

TF ), with
rTF = 1/(2πe2ν) being the Thomas-Fermi screening radius
and ν ∼ T/v2 is the thermodynamic single-particle density
of states. This can be further simplified by noticing that in
the hydrodynamic regime, the correlation radius of disorder
ξ exceeds the Thomas-Fermi screening radius rTF. Therefore,
k ∼ (e2/σ )〈U 2〉/(ξ 2e4), where we additionally assumed that
the spectral density of disorder potential does not have strong
divergence at q → 0 (e.g., encapsulation-induced disorder).
Putting everything together, we deduce

kth
k

∼
(
e2

εv

)(
ξ

d

)2 TTd
〈U 2〉 , Td = v/d. (45)

Taking ξ ∼ 100 nm and d ∼ 200 nm we estimate Td ∼ 50K
with the typical velocity v ∼ 106 m/s. As a result, for the
typical potential variations in the scale ofU ∼ 5meV, we have
kth ∼ k for the range of temperatures T ∼ 50–100 K wherein
hydrodynamic effects are most pronounced.

Similar estimates can be obtained for BLG devices. For
instance, the entropy density of BLG has different tempera-
ture dependence, s ∼ m∗T , where m∗ is the effective mass of
the band structure. As a consequence, one expects different
results for the resistance, ρth ∝ 1/T 2. On the other hand, the
NFHT conductance remains parametrically the same, since
the intrinsic conductivity of BLG σ (n = 0,T ) is expected to
display rather weak temperature dependence [14].
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IV. SUMMARY AND PERSPECTIVE

In this work we studied thermal transport in electronic
double-layers in the regime of global charge neutrality, where
transport of charge decouples from that of heat. In these
systems thermal transport is dominated by thermally in-
duced density fluctuations that are coupled by the interlayer
Coulomb forces. This produces two effects: (i) thermal drag,
described by the corresponding resistivity in Eq. (28); and (ii)
interlayer near-field heat transfer, described by the conductiv-
ity in Eq. (33). One of the key conclusions that follow from
our analysis is the fact that, in systems without Galilean in-
variance, the drag is much stronger than in Galilean-invariant
systems, and has a much slower falloff with interlayer dis-
tance. Another key finding concerns the regime of perfect
drag. The spatial dependence of temperatures and the hy-
drodynamic velocity in the two layers is determined by the
interplay between drag and NFHT processes. For systems
that are longer than healing length l for interlayer thermal-
ization in Eq. (39), the bulk flow corresponds to the thermally
locked state which is characterized by the same hydrodynamic
velocity in each layer. In this regime EDL acts as a single
electron liquid with an effective thermal conductivity defined
by Eq. (43).

Earlier studies revealed that the decoupling of thermal
and electrical transport leads to anomalous thermoelectric
responses near charge neutrality. The latter is most notably
manifested by the observed gross violation of theWiedemann-
Franz law as captured by the Lorenz ratio [57] and Mott
relation for the Seebeck coefficient [58]. Therefore, transport
in EDLs open additional avenues for the exploration of re-
lated thermal transport phenomena. For instance, although we
focused our consideration on electron double-layers, the gen-
eral theory of hydrodynamic fluctuations in electron systems
without Galilean invariance developed above, is applicable
to other device geometries. In this regard, we would like to
mention that various drag anomalies were observed in other
hybrid circuits that include carbon nanotube-MLG and InAs
quantum wire-MLG double-layers [59,60], where our theory
may find useful applications.
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APPENDIX: LANGEVIN APPROACH

The derivation of the near-field thermal conductivity pre-
sented in the main text relied only on the Maxwellian
relaxation mechanism of relevant density fluctuations. In this

Appendix we present an alternative consideration of near-field
interlayer thermal conductance, which applies to conduc-
tors of arbitrary thickness. For conductors of finite thickness
the charge fluctuations can spread not only along the plane
but also in the perpendicular direction. We then apply this
approach to reproduce the known results for the near-field
conductance between two semi-infinite metals, which has a
drastically different dependence on the interlayer distance,
temperature, and the conductivity of the metals.

Fluctuations of electric current j and electric field E in
conductors can be treated within the scheme of Langevin
approach [42],

jω = σEω + δ jω, ∇ · Eω = 4π

iω
∇ · jω, (A1a)

〈δ jω(r)δ j−ω(r
′)〉 = ω2Imεω

2π
coth

ω

2T
δ(r − r′). (A1b)

Here we assumed absence of spatial dispersion of the di-
electric constant, εω = 1 + 4π iσ/ω. We also consider only
the fluctuations of the longitudinal electric field. Assum-
ing that the gap size d is much smaller than the thermal
wavelength, λT = 2πc/T , the contribution of transverse fluc-
tuations should be smaller in d/λT � 1.

The longitudinal current fluctuations can be expressed in
terms of the fluctuations of polarization, δPω(r) = iδ jω(r)/ω.
We therefore use intrinsic fluctuations of polarization as the
Langevin source. Denoting the fluctuations of the scalar po-
tential by δφ we obtain an inhomogeneous partial differential
equation obeyed by them,

∇2δφω + 4π i

ω
∇ · (σ∇δφω ) = −4π∇ · δPω(r). (A2)

This framework parallels with the earlier discussion pre-
sented in Sec. II for electron liquids in hydrodynamic regime.
Instead, here we tailor the formalism to describe thermal elec-
trodynamic fluctuations in the presence of matter for a generic
conductor.

1. Nanogap geometry

To find the contribution of electric-field fluctuations to the
thermal conductivity of a nanogap device we consider two
semi-infinite conductors filling the space at |x| > d separated
by a vacuum gap, |x| < d . Owing to the translation invariance
of the problem in yz plane we use Fourier representation
for the y and z variables. In this representation the resolvent
corresponding to Eq. (A2), the Green’s function, obeys the
equation

[
∂2
x + 4π i

ω
∂xσ (x)∂x − q2εω

]
Gω(x, x

′) = δ(x − x′), (A3)

whose solution can be expressed as

Gω(x, x
′) = 1

W (x′)

{
u(x)v(x′) x < x′

v(x)u(x′) x > x′,
(A4)

where u(x) and v(x) are two independent solutions of Eq. (A3)
with the vanishing right-hand side that vanish respectively at
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x → −∞ and x → +∞, andW is their Wronskian,

W (x) =
∣∣∣∣u(x) v(x)

u′(x) v′(x)

∣∣∣∣. (A5)

In what follows we consider a homogeneous junction with
identical conductors with the conductivity σ on both sides
of the junction, namely σ (x) = σθ (x2 − d2). In this case the
problem is symmetric with respect to reflection in the x = 0
plane and the two solutions of the homogeneous equation are
related by v(x) = u(−x). We also recall that, for the bulk
metal case, the three-dimensional conductivity σ has the di-
mensionality of the inverse time, so that 1/(4πσ ) (in CGS
units) has a meaning of the RC time needed to dissolve a
charge-density perturbation.

In general, the Green’s function can be defined for an
arbitrary layer thickness. For thin layers, the second term in
the square bracket in (A3) may be dropped. This corresponds
to neglecting polarization of the planes perpendicular to the
layers. In this case the approach reproduces our results from
the main text. The opposite limit of semi-infinite conductors
is considered below. The method enables consideration of the
entire crossover between these two limiting cases.

2. Green’s function

Inside the left conductor, x < −d , the first solution is
u(x) = eqx. Inside the gap it can be written as the linear
superposition of two exponentials

u(x) = Tωe
qx + (1 − Tω )e

−2qd−qx, |x| < d. (A6)

The value of the transmission amplitude Tω is obtained from
the boundary condition,

u′(−d + η) − u′(−d − η) = 4π iσ

ω
u′(−d − η), (A7)

where η → 0 is a positive infinitesimal. This gives

Tω = 1 + 2π iσ

ω
. (A8)

Inside the right conductor we write the first solution in the
form

u(x) = Aωe
qx + Bωe

−qx, x � d. (A9)

The values of the constants Aω and Bω are found from the
continuity of u(x) at x = d and from the condition on the
discontinuity of its derivative, which follows from Eq. (A3),

u′(d + η) − u′(d − η) = −4π iσ

ω
u′(d + η). (A10)

This gives

Aω = 1

εω

[
T 2

ω − (1 − Tω )
2e−4qd], (A11a)

Bω = − 1

εω

Tω(1 − Tω ) sinh (qd ). (A11b)

The coordinate dependence of the Wronskian can be found to
have a form

W (x) = −2qAω

{
1 |x| � d

εω |x| < d.
(A12)

Below we will need the Green’s function in the region x < −d
and x > d , where it is given by

Gω(x, x
′) = − 1

2qAω

eq(x−x′ ). (A13)

3. Heat fluxes and near-field heat transfer conductance

The heat flux from the right conductor to the left one can
be found as follows: The fluctuations of the electronic field
in the left conductor induced by the Langevin sources in the
right conductor are described by

δφω = 2π

qAω

eqx
∫ ∞

d
dx′[iqδP⊥

ω (x′) + ∂xδPx
ω(x

′)
]
e−qx′

.

(A14)
The heat flux from the right conductor to the left equals the
Joule-heat losses induced by the above fluctuations inside the
left conductor. For a nanogap device with a surface area S they
are given by

Q̇R
R→L = 2Sσ

∫
dωd2q

(2π )3

∫ −d

−∞
dxq2〈δφω(x)δφ−ω(x)〉. (A15)

Taking the variance of Langevin sources corresponds to ther-
mal equilibrium at temperature TR,

〈δPω(r)δP−ω(r′)〉 = 2σ

ω
coth

ω

2TR
θ (x − d )δ(r − r′), (A16)

we obtain〈[
iqδP⊥

ω (x) + ∂xδPx
ω(x)

][ − iqδP⊥
−ω(x

′) + ∂x′δPx
−ω(x

′)
]〉

= 2σ

ω
coth

ω

2TR
[q2 + ∂x∂x′]θ (x − d )δ(x − x′). (A17)

As the next step, we use Eq. (A14) and obtain

Q̇R→L = 2Sσ 2
∫

dω

2π

coth ω
2TR

ω

∫
d2q

q

e−2qd

|Aω|2

×
∫∫ ∞

d
dxdx′e−q(x+x′ )[q2 + ∂x∂x′]

× θ (x′ − d − η)δ(x − x′). (A18)

The presence and the sign of the infinitesimal η in the argu-
ment of the theta function is forced by the choice if the value
of the Wronskian corresponding to x′ > d . Physically this
means that the surface charge arising from Langevin sources
should be viewed as residing inside the conductor. Performing
the integration over coordinates x and x′ in the last expression
we find

Q̇R→L = 3Sσ 2
∫

dω

2π

coth ω
2TR

ω

∫ ∞

0
qdq

e−4qd

|Aω|2 . (A19)

In this expression, quantum noise needs to be disregarded as
it cannot produce dissipation. It is temperature independent
and will cancel with the opposite heat flux Q̇L→R leading to
the net energy current density JE = [Q̇R→L − Q̇L→R]/S. The
important frequencies are of the order of the temperature ω ∼
T . Using Eq. (A11) and assuming T � σ we can estimate
with logarithmic accuracy

κth = lim
T1,2→T

JE (T1,T2, d )

T1 − T2
� π3

160

T

d2

(T
σ

)2

ln
σ

T
. (A20)
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This analysis reproduces known results from the earlier stud-
ies [25,29] obtained in the same limit. In particular, we
see that in three-dimensional devices both temperature and

interlayer separation dependencies are different as compared
with two-dimensional case considered in the main part of this
work.
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