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Abstract—1In this work, we investigate the effect of sensor-
actuator clock offsets on reinforcement learning (RL) enabled
cyber-physical systems. In particular, we consider an off-policy
RL algorithm that receives data both from the system’s sensors
and actuators, and uses them to approximate a desired optimal
control policy. Nevertheless, owing to timing mismatches, the
control-state data obtained from these system components are
inconsistent, hence creating the question of how robust RL
will be. After an extensive analysis, we show that RL does
retain its robustness, in an epsilon-delta sense; given that the
sensor-actuator clock offsets are not arbitrarily large, and that
the behavioral control input satisfies a Lipschitz continuity
condition, RL converges epsilon-close to the desired optimal
control policy. Simulations are carried out on a two-link
manipulator, which clarify and verify theoretical findings.

I. INTRODUCTION

Cyber-physical systems (CPS) are large-scale, complex
platforms consisting of multiple sensing and actuating el-
ements that are tightly interconnected. From military appli-
cations to a variety of civilian ones—such as those related to
the healthcare industry [1], autonomous vehicles [2] and the
smart grid [3]—CPS are becoming increasingly important to
society. Furthermore, due to their operating in human-centric
environments, CPS must be safe and secure by design.

Methods for the development of safe-by-design systems
has been mostly focused on the quality of the information in
the network, i.e., in the mitigation of corrupted signals either
due to stochastic faults [4] or due to malicious manipulation
by adversarial agents [5]. However, the decentralized nature
of a CPS requires the development of methods that take
into account timing discrepancies among its components.
Issues of timing have been addressed in control systems in
order to assess the robustness of their stability properties to
such faults [6]; yet, the effects of timing issues on learning
mechanisms are rarely considered. Motivated by this fact, the
purpose of the present study is to investigate the behavior
of a system with RL capabilities under clock offsets. Our
main focus is the derivation of guarantees of convergence
for the corresponding learning algorithm, given that the CPS
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suffers from discrepancies in the control and measurement
time-stamps.

Related Work: RL methods for control systems have
been investigated extensively, both from the controls and
the learning communities. In particular, a plethora of data-
driven RL approaches to optimal control problems have been
developed, both model-based [7] and model-free [8]. All of
these address the issue of solving a Hamilton-Jacobi equation
by leveraging data obtained from the trajectories of the
system. One of these algorithms, which will be considered
in this work, was proposed in [9], where trajectory data are
generated by a pre-specified behavioral policy, different from
the target one.

The robustness of RL-enabled CPS, as far as faults and
attacks are concerned, has been explored in the literature.
For instance, the authors in [10] presented a survey of CPS
security issues, as well as the corresponding controls defense
techniques that can mitigate them. In [11], the problem of
a network of agents communicating via a network under
persistent adversarial inputs was investigated using game-
theoretic results. Similar results have employed optimization
techniques to derive algorithms that take into account in-
jected signals in CPS, such as [12], where an optimal control
problem was solved to detect adversarial signals in the
system. All of these existing results, however, consider the
effect of erroneous information to the CPS itself, rather than
to its learning mechanisms. Additionally, while the effect
that data manipulation or faults can have on a learning-based
system has been studied before (i.e., as in [13]), the effect
of timing discrepancies on RL is usually not considered.

The advent of networked and distributed systems has
prompted the control community to investigate the topic of
clock mismatches. For example, the authors of [14] consider
the use of linear feedback controllers for the stabilization
of systems with clock offsets between the sensors and
the controller. Specifically, sufficient conditions are derived,
under which a stabilizing controller exists. In the same
line of research, in [15], the dual effect of offsets and
quantization is explored. In [16], the authors model the
time perceived by the controller as a stochastic process
with respect to real, or “calendar,” time. Subsequently, they
design feedback controllers based on dynamic programming
principles. Finally, in [17], the authors demonstrate the loss
of optimality of a linear quadratic regulator for a linear
control system under clock mismatches. It is worth noting
that the aforementioned approaches explored the effects of
timing errors to the controlled system itself, rather than to a
learning algorithm used to derive the controller; the latter is
the purpose of the present work.
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TABLE I
CLOCK MISMATCHES.

Actual signal || Actuators’ Perception | Sensors’ Perception

u(t) H u(t) u(t —5(t))
z(t) z(t + 6(t)) z(t)

Contributions: The contributions of this paper are three-
fold. First, we formulate the problem of data-based RL
for optimal control, where the system suffers from sensor-
actuator clock discrepancies. Subsequently, we derive an off-
policy RL algorithm, which depends on inconsistent state-
input data to approximate the desired optimal controller.
Finally, we prove that, despite the sensor-actuator clock
offsets, convergence of the RL algorithm can be guaranteed
in an epsilon-delta sense, given some continuity assumptions.

Notation: As I,,, we will denote the identity matrix of
order n x n. For any two matrices Z; and Zs, Z1 ® Z» will
denote the Kronecker product of Z; and Zs. In addition,
vec(Z;) will denote the vectorized form of Z.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Sensor-Actuator Clock Mismatches

Consider, for all ¢t > ¢y > 0, the nonlinear system
z(t) = f(x(t)) + g(x(t))u(t), z(to) = xo, (D

where z(t) € R™ denotes the state, u(¢) € R™ is the control
input, and f : R* — R”, g : R® — R" ™ are the
system’s drift and input dynamics functions, respectively.
The functions f, ¢ are assumed to be unknown, and the
origin is assumed to be a fixed point of (1) when v = 0.

In this work, we will consider that there is an asynchrony
between the clocks of the sensors and the actuators of (1). To
be more specific, let us assume that the sensors can measure
the state x(t) of (1) at the time instant ¢ > ¢y. Then, from
the perspective of the actuators, the state x(t) was measured
at the time instant ¢ + §(¢), where §(¢) € R is the clock
mismatch; if §(¢) = 0 for all ¢ > ¢, then the sensors’ and
the actuators’ clocks are perfectly synchronized. In summary,
the actuators’ perception of the measured state is given by:

F(t) ==zt + 8(t)), VYt = to.

On the other hand, if u(t) € R™ is the control input at time
t > to from the actuators’ perspective, then this particular
control vector was implemented in the system at time ¢ —
d(t) from the sensors’ perspective. Specifically, the sensors’
perception of the control input at time ¢ > t; is given by:

a(t) = u(t —4(t)), vt = to. 2)
Table I summarizes the information regarding the sensor-
actuator clock offsets. In what follows, we will study the

robustness of off-policy reinforcement learning algorithms
for optimal control, with respect to these offsets.

B. Optimal Control and Policy Iteration

For a given feedback control policy p : R™ — R™, let us
define the infinite-horizon performance cost functional:

Teon) = | (QUam) +r (ualr)) )ér. G

to

Q0

Algorithm 1 Policy Iteration
1: Let i = 0, Q < R", ¢ > 0, and pick an admissible
control policy g € ¥(9).
2: repeat
3:  Solve for V;, Y € Q with V;(0) =0, in

VVi(@)(f(2) + g(z)pi(2) + Q(x) + r(ui(x)) = 0.
4:  Let the new policy be given by
pira(a) = — 3R @) V()

5 Seti=1+1.
6: until i > 2 & sup,.q |Vi-1(z) — Viea(2)] <e.

where () : R” — R is a known positive definite function,
r(x) = *TRx, R € R™*™ is a known, positive definite
matrix, and the integration in (3) is over the trajectories of
(1) under u(t) = p(x(t)). The integral (3) is well-defined
for any x¢ € 2 < R™ if the policy p is admissible on ).

Definition 1. A control policy x : R® — R™ will be
defined as admissible on (Q, and denoted as p € U(Q), if
it is continuous on Q with ©(0) = 0, and, given zy € Q,
u = p(x) asymptotically stabilizes (1) to the origin and the
cost J(xo, ) is finite. O

Given that it is continuously differentiable, the value
function V := J(-, ) : R™ — R of an admissible policy p,
with V' (0) = 0, can be found through the nonlinear equation:

V(@) (f(2) + g(@)pu(@)) + Q(x) + r(u(x)) =0,

where the argument of time has been omitted to simplify
exposition. In addition, the optimal control p* is given by

p(w) =~ R (@) VV @),

where V* := J(-, *) denotes the optimal value function,
which satisfies the Hamilton-Jacobi-Bellman (HJB) equation

!

vV (@) f (@)

VvV (z)g(x)R™ g (2)VV* (2)
+Q(x) =0, V*(0)=0. 4

The desired solution of (4) is generally difficult to derive an-
alytically. However, Policy Iteration (PI) [7], [18], described
in Algorithm 1, can be used to successively approximate it.

C. Learning-based PI

Although the PI algorithm provides an alternative to
directly solving the HIB equation, it requires knowledge of
the system’s dynamics in order to be executed. To relax
this requirement, the authors in [9] have proposed an off-
policy learning-based PI which can approximate the optimal
value function V'*, without knowing either f or g. However,
to carry out this algorithm, state and control input data
measured along the system’s trajectories are required.

More specifically, given an arbitrary control input u, the
system dynamics (1) can be expressed as

@(t) = f(x(t) +g(w(t))pi(x(t) +g(x(t) (ut) - pi(z(?))),
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Algorithm 2 Learning-based PI
1: Let i = 0, Q < R", ¢ > 0, and pick an admissible
control policy g € ¥(9).
2: repeat
3 Solve for V;, p;4+1 over £ simultaneously from (7).
4. Seti=1+1.
ssuntil i > 2 & sup,q|Vie1(z) — Viea(2)] < e

where p; is the control policy at step ¢+ € N of Algorithm
1. Taking the time derivative of the corresponding value
function V; along the trajectories of (1), one has

Vi(z(t) = VV (2(1)) (f(2(t)) + g(x(t)) us((1)))
+ Vi (@(t)g( () (u(t) — pi(x (1)) (5)

Hence, using the equations in Algorithm 1, (5) yields

Vi(z(t)) = —Qe(t)) — pf () Bpui (1))
= 2p 1 (@) R(u(t) — pi(x(1)).  (©6)

Letty > 0,k € {0,..., K} := K, be measuring time instants
and T' > 0 be a measuring duration. Then, the integration of
(6) over [tg, tr + T leads to

t+T

Vet ) ~Vaw) -~ | () @)

+r(ﬂi($(7)))+2ﬂ;r+l(x(T))R<u(T)_Mi(x<7—))))d7-7 kek.

Equation (7) provides a model-free way to express the value
function V;, hence leading to the learning-based PI algorithm
described in Algorithm 2. Effective methods to implement
Algorithm 2 using actor-critic networks have been proposed,
with convergence guarantees [9], [19]-[21].

D. Learning-based PI with Sensor-Actuator Clock Offsets

It is evident that Algorithm 2 assumes perfect synchroniza-
tion between the sensors’ and the actuators’ clocks, which
motivates us to study its behavior with regards to timing
issues. In particular, we will assume that the learning-based
Algorithm 2 receives, as input, measured state trajectories
x(t) from the sensors over the time intervals ¢ € [tx, ¢ +
T], for all k € K. Additionally, it matches these state
trajectories with the control input trajectories received from
the controller. However, instead of receiving w(t) for all
t € [tr, tp + T], the learning component receives u(t) =
u(t—4(t)) owing to the clock mismatch between the sensors
and the actuators. As a consequence, at each step ¢ € N
of Algorithm 2, instead of learning the function V; and the
policy p;.1 satisfying (7), one is forced to learn the function
V; and the policy fi;1; that satisfy:

- - et T
Vet ) ~ia) == | () ®)

+r(ﬂi($(7>))+2ﬂ;r+l(x(T))R<a(T)_ﬂi(33<7—))))d7-7 kek.

Notice that @ from (2) has been used, instead of u.
In what follows, we will study whether there exists an
upper bound to 6(¢) for which (the approximations of) V;

and f1;41 are close to V; and ;.1 over 2. In addition, we
will investigate whether V; and fi; 1 converge close to the
optimal solutions V*, p*.

Remark 1. The preceding discussion implicitly assumes that
the learning component of the CPS is synchronized with the
sensors’ clock, but such an assumption is not restricting due
to the time-invariant nature of (8). OJ

IIT. MAIN RESULTS
A. Learning Scheme

In practice, in order to approximately solve the set of
equations (7) for all k£ € K, the infinite dimensionality of V;
and p;+1 needs to be reduced. To this end, recall that, owing
to the Weierstrass approximation theorem [22], it holds that

Vi(z) = (w))"e"(2) + € (x),
pivi(@) = (W) " () + € (2),

where w} € RN, wi' € RNuXm gre weights, ¢V : R" —
RNv, ¢» : R®™ — RN are basis functions such that
¢(0) = ¢“(0) =0, and € : R —> R, € : R" — R™ are
the approximation errors. The approximation errors €, €;'
converge to zero, uniformly on 2, as N,,, N,, — 0.

Due to the fact that w] and wj’, 7 € N, are not known

beforehand, one needs to construct an actor-critic network
to approximate V; and 41, so that:
Vi(w) = (@})"¢" (@), ©)
friva(w) = () 6" (), (10)
where @Y € RVv, ¢ € RN«*™ are the critic and the actor
weights respectively, and ¢ € N. Subsequently, the weights
wy, w; need to be trained to approximate V; and p;y;
through the exploitation of equation (7). However, due to
the effect of the clock mismatches, the right-hand side of (7)
cannot be constructed, hence one resorts to approximating
V; and f1;,1 from (8) instead.
To this end, the left-hand side of (8) can be approximated
using the critic network as:

Vi(x(ty +T)) — Vi(o(tr))
= (¢"(x(tr + T)) — ¢"(x(tr)"07. (1)

In addition, the last term of the right-hand side of (8) can be
approximated using the actor network as:

24141 (7)) R(a(r) —f1i(x(7)))
= 2(¢" (x(7))) @} R(a(r)—hi(z(7)))
= 2(((@(r)~fu(2(r)TR) @ 6" (w(r))" ) vee(dt). (12)
Then, the error by approximating (8) using (11)-(12) is
th+T

%M=%wm+T»—%wm»+f

Qe
+7’(ﬂi(w(7)))+2ﬂ3+1(I(T))R(ﬂ(T)*ﬂi(x(T))))dT-
One can write ¢; , in a compact form, so that

i =W Wi+ Pip, (13)
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Algorithm 3 Learning-based PI with Clock Mismatches
1: Let i = 0, Q < R", ¢ > 0, and pick an admissible
control policy g € ¥(9).
2: repeat
3:  Solve for Wi through (14).
4 Seti=1i+1,
until i > 2 & HWi_l - WL'_QH < €.

W

where W; 5, 1= [W7, Wi, ], Wi = [(@?)T vec(w)T]T, and
= (" (ltx + 7)) — 0 (at)))
tot T
e [ 2@ —fuatr)"

k

R) ® ¢"(x(r))"dr,

D, = fHT (Q(x(’l’)) + r(pi(x(T))))dT.

k

The weight vector W; can then be solved for using least sum
of squares, provided that the following assumption holds,
which essentially requires the measured state-input data to
be sufficiently rich.

Assumption 1. There exist constants £ > 0 and Ky € N,
such that for all K > K|, it holds that % Z,f:o \PZTk\Iflk >
§IN, +mN,,- O

Given Assumption 1, the least squares solution to (13) is

Wi——(iwzkm) (Z%‘I’zk)

The learning-based PI algorithm with clock mismatches is
then given by Algorithm 3.

(14)

B. Convergence Properties

We shall now study the convergence properties of the
learning-based PI Algorithm 3 with clock mismatches, as
presented previously. Towards this end, let us define, for all
1 € N, the function f/l that satisfies the equation:

YV (2)(f(2) + g(@)fu(x)) + Q@) + r(fi(x)) = 0,

as well as the control law:

fiv1(z) = R 9" (@)VVi(x).
Notice that f/z is the true value function of ;. Hence,
following similar steps as for V; in Section II-C, it can be
shown, for all k£ € K, that:

Vi(z(ty +T))

B to+T
TGt -~ (Quer) a9

r(fii (2 (7)) +275 4 (2(7)) R(u(T) — ﬂi(x(T))))dT'

The following auxiliary lemma shows that there exists an
upper bound for the clock mismatch §(¢), V¢ > ¢g, for which
W; converges arbitrarily close to the actor-critic weights that
approximate V; and f1;+1 in the PI algorithm. For the results
to hold, a continuity assumption will be needed.

Assumption 2. The control input wu(¢) is Lipschitz continu-
ous with respect to time, for all ¢ > #. OJ

Lemma 1. Let Assumptions 1-2 hold, and the compact
weight vector W; be trained as in (14) for all i € N. Then,
for all ¢ > 0 and x € (), there exist constant integers
N, N} >0, and an upper clock mismatch bound 6* > 0,
such that if N, = N}, Ny, = N}, and |6(t)| < 6* for all
t = tg, it holds that:

[0 Vit <

Proof. Only a sketch of the proof will be given here. By
the Weierstrass approximation theorem, the functions V; and
it;+1, © € N, can be uniformly approximated on (2, so that

[fig1(2) = i (2)] < e

Vi(x) = (@0}) 9" (2) + & (x),

~ ~u\T ju ~u (16)
friy1(z) = (0)" ¢"(z) + &' (x).

The approximation errors €; : R* — R, €' : R* — R™

vanish uniformly on € as Nv, N — 0. Substltuting (16) in
(15), for ¢ € N, we derive:

0= \Ill kl/ffl + q)i,k + Ei,k + Mi,k; ke ]C, (17
where W;=[w?T vec(w?)T]T, and
Eip =& (a(ty+T)) — & (x(te))
tr+T
[ 2 ) R() - el
tk+Tk
M = f 2(¢" (x(7))) @y R(u(t) — u(r — 6(7)))dr.
tr

Since W; is estimated through the least-squares law (14) in
order to minimize the sum of squares of the errors in (13),
and since Assumption 1 holds, it will hold due to (17) that

K
Zelk DB+ Miy)?, ieN. (18)
k=0
Subtracting (17) from (13), we obtain:
eik + Eigp + Mg =, (Wi — W,). (19)

Multiplying (19) by itself and summing over & leads, due to
Assumption 1, to

K
Z(ei,k+Ei,k+Mzk Z Tk (Wi =)
k=0 k=0
> K¢ H(W W) (20)
Thus, from (18) and (20):
~ 2 “ - 2
max4 (Bt Miy ) > € |07 = W) 1)

Using Assumptions 1-2 and given that |§(t)| < &, V¢ > to
with § > 0, one can show that M; 1, Ez,k and e; ;, converge
to zero, uniformly on ©, as § — 0 and N,, N, — oo. Hence,
from (21), Ve; > O there exist constants N;*, N* > 0
and an upper clock mismatch bound §”*, such that if N, >
N, N, = NJ* and |[0(t)| < 0™ Vt > to, it holds that
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(a) Evolution of the norm of the critic weights at each iteration of the
learning-based PI with clock mismatches.
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(c) Evolution of the norm of the difference of the critic weights at each
scenario with the critic weights in scenario 1, where 6(¢) = 0, Vt = 0.

Fig. 1.
HW’ — Wi < €;. The final result then follows by (9), (16)
and the uniform convergence of €7, €. [ ]

The upcoming theorem generalizes Lemma 1, and states
that there exists an upper bound for the clock mismatches
d(t), Vt = to, for which the iterative learning law provided
by (14) converges arbitrarily close to V* and pu*.

Theorem 1. Let Assumptions 1-2 hold and 1y € V(Q).
Assume that W; is updated according to (14) for all © € N.
Then, for all ¢ > 0 and x© € (), there exist constant
integers NJ*, N;*, i* > 0 and an upper clock mismatch
bound §** > 0, such that if N, > N;*, N, > N}*, and
[6(t)] < 6** for all t = to, it holds that:

HV (z) — V*(%)H <e,  |pirsr(x) — pt (@) <e

Proof. The proof is based on the results of Lemma 1, and
is omitted due to space limitations. [ |

200 r .
® O(t) =0ms
e S)=2ms [
® I(t) =4ms
n 4(t) = 10ms
= 150 ® 5(t) =20ms 1
2 5(t) = 40ms
= & 5(t) = 100ms
—
]
© 100
<
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= Al _Rveaaasasasglaananasan,
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Z S0 Al O U Ngarm e s O O O O OO O DO
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Iteration Number

(b) Evolution of the norm of the actor weights at each iteration of the
learning-based PI with clock mismatches.

250
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(d) Evolution of the norm of the difference of the actor weights at each
scenario with the critic weights in scenario 1, where §(¢) = 0, V¢ = 0.

Evolution of the learning-based PI for each clock mismatch scenario.

IV. SIMULATIONS

Consider a two-link manipulator [23], with dynamics:
M(Q)Cj"" Vm(Qaq')q_'_qu"i'Fs((j) =u, (22)

where ¢ = [q1 ¢2]" and ¢ = [¢1 2] are the angular positions
(in rad) and the angular velocities (in rad/s), respectively. As
a result, the state vector is given by x = [z1 22 x3 24]T =
[¢1 @2 ¢1 ¢2]". The matrices M(q) € R?>*? and V,,,(q,q) €
R2*2 are the inertia and the centripetal-Coriolis matrices,
while Fy¢ and F(¢) model the dynamic and static friction,
respectively; all of them are modeled as in [23]. The ob-
jective is to approximate the optimal value function V* and
controller u* of (22), where Q(z) = ||z||* and R = I,. To
this end, the actor-critic network (9)-(10) is employed, with
basis functions given by polynomials up to the order of 4.
We will consider 7 different scenarios ¢ € {1,...,7}, in
each of which the clock mismatch §(¢) = §; is constant. In
particular, we choose §; = 0 ms, do = 2 ms, d3 = 4 ms,
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Fig. 2. Evolution of the Euclidean norm of the state over ¢ € [650, 700]
seconds, for the 7 different scenarios. Exploration takes place before t =
660 [sec], and the controller is subsequently learnt and updated.

04 = 10 ms, 05 = 20 ms, dg = 40 ms and J7 = 100 ms. As
a result, scenario 1 assumes perfect synchronization between
the sensors’ and the actuators’ clocks. In each scenario, the
first 660 seconds are used for exploration, in order to gather
sufficient state-input data from the system. Subsequently, the
learning-based PI with clock mismatches is carried out (1" =
50 ms), by iteratively solving equations (14). Finally, the
exploration noise is terminated at the 660th second, and the
controller is changed from the initial one to the one derived
by the PI algorithm.

The results are shown in Figures 1-2. It can be seen from
Figures 1(a)-1(b) that convergence of the learning-based PI
algorithm takes place for all values of the clock mismatch.
However, as shown in Figures 1(c)-1(d), the actor-critic
weights converge monotonically further away from their
nominal values (i.e., their values when the clock mismatch is
zero) as 0(t) is increased. Additionally, for the 100 ms case,
the convergence is marginal, with the learning-based PI being
close to becoming unstable. Figure 2 shows the evolution
of the norm of the state vector for each clock mismatch
scenario. While the manipulator does remain stable when
[6(t)] < 20 ms, the trajectories diverge when §(t) = 40 ms
or §(t) = 100 ms. This is not unexpected; the learning
window is equal to 7" = 50 ms, meaning that the control
input data over each integration time interval [t, tx + T,
k € IC, originate from a completely different time interval in
these cases.

V. CONCLUSION

In this work, we studied the robustness of off-policy actor-
critic algorithms with respect to sensor-actuator clock offsets.
It was shown that these algorithms remain robust when clock
mismatches are present and small. Future work will focus on
a more general framework, where different clock mismatches
will exist between all distinct sensors and actuators.
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