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A Graph-Theoretic Security Index Based on Undetectability for
Cyber-Physical Systems

Lijing Zhai!, Kyriakos G. Vamvoudakis', Jérome Hugues

Abstract—1In this paper, we investigate the conditions for
the existence of dynamically undetectable attacks and perfectly
undetectable attacks. Then we provide a quantitative measure
on the security for discrete-time linear time-invariant (LTI)
systems under both actuator and sensor attacks based on
undetectability. Finally, the computation of proposed security
index is reduced to a min-cut problem for the structured
systems by graph theory. Numerical examples are provided to
illustrate the theoretical results.

Index Terms— CPS security, undetectability, graph theory.

I. INTRODUCTION

Cyber-physical systems (CPS) are complex systems com-
bining physical devices with computational and communica-
tion components. Actuators and sensors are vital components
for CPS since the locations and numbers of actuators and
sensors directly affect the control policies made by the
system operators, who need to consider carefully where to
put the available actuators and sensors to ensure systems
operate in a desired and reliable way. Also, since actuators
and sensors can be expensive it is important to figure out how
many of them are needed in practice to be cost-efficient.
CPS have gradually become large-scale and decentralized
in recent years and rely more and more on communication
networks. This high-dimensional and decentralized structure
increases the exposure to malicious attacks that can cause
faults, failures and even significant damage.

Research efforts have been made on the cost-efficient
placement or allocation of actuators and sensors. However,
most of these developed methods mainly consider control-
lability or observability properties and do not take into
account the security aspect. Motivated by this gap, in this
work, we consider the dependence of CPS security on the
potentially compromised actuators and sensors, in particular,
on deriving a security measure under both actuator and
sensor attacks. The topic of CPS security has received
increasing attention recently and different security indices
are developed. The first kind of security measure is based on
reachability analysis, i.e., quantifying the size of reachable
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sets, which are the sets of all states reachable by dynamical
systems with admissible inputs [1], [2]. However, the direc-
tion on quantifying reachable sets under malicious attacks
and using the developed security metrics to guide actuator
and sensor selection from the perspective of security is not
fully studied. The second kind of security index is defined
as the minimal number of actuators/sensors that attackers
need to compromise without being detected [3], [4]. Graph
theory can be utilized to study on CPS security [5], [6].
The authors of [6] develop a generic actuator security and
propose graph-theoretic conditions for computing the generic
actuator security index with the help of maximum linking
and the generic normal rank of the corresponding structured
transfer function matrix. However, regarding calculating the
proposed generic security index, they utilize a brute force
search method to iterate through all attack sets. The main
difficulties in this direction include how to decouple the
computation of security index with the actuator and sensor
selection problem. In particular, with the security index at
hand, how to guide system operators to select the numbers
or locations of actuators and sensors. Moreover, when both
actuator and sensor attacks exist at the same time, how to
distribute the security index between actuators and sensors.
Contributions: The contribution of this work is twofold.
We provide conditions for the existence of dynamical and
perfect undetectability. In term of the perfect undetectability,
a security index for discrete-time LTI systems under actuator
and sensor attacks is proposed. Then, a graph-theoretic
approach for structured systems is used to compute the
security index by solving a min-cut/max-flow problem.

II. PROBLEM FORMULATION
Consider the following discrete-time LTI system,

Trr1 = Axp + Bug + Baay,
yr = Cxyp + Daay,

where k£ € N is the discrete time index, zp € R", u, € R™
and 3, € R! are the state vector, control input and potentially
compromised output, respectively, A € R"*", B e R"*™
and C' € R™™™ are the state matrix, input matrix and output
matrix, respectively. The attack vector a; € R™*! stands for
the additive adversaries with the first m entries of a; cor-
responding to actuator attacks while the remaining [ entries
corresponding to sensor attacks. The actuator attacks corrupt
the controller command uy, by adding a value Bag(1 : m,:)
that happens during the communication from controllers to
actuators, where ay(1 : m,:) stands for the first m entries of
ar. Similarly, the sensor attacks replace the true measurement
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signals C'zj, with a corrupted value that happens during the
communication from sensors to controllers [7]. The matrices
B, € R™(m+) and D, € R+ represent attacker’s
capabilities to corrupt actuators and sensors respectively,
given by B, = [B Onxi], Do = [Oixm I;], where I,
denotes an identity matrix with dimension [. The i-th column
vector of B corresponds to the i-th actuator while the j-th
row vector of C' corresponds to the j-th sensor. Let U and
S denote the set of actuators and sensors, respectively. Let
U, € U be the set of attacked actuators with |U,| = m/, and
Sa S S be the set of attacked sensors with |S, | = I’. Assume
there are no attack signals added to the safe actuators and
sensors. The attacker has full information of the system dy-
namics, i.e., matrices A, B, and C, while the injected attack
signals aj, are unknown to the system operator. Throughout
the work, the attack signal ay, is assumed to be nonzero. The
attacked actuators and sensors are assumed to be fixed but the
values of attack signals may change over time. The matrix
B is assumed to have a full column rank. The pairs (A, B)
and (A, C) are assumed to be controllable and observable,
respectively. Generally since control input wy is given by the
system operator, its contribution to output can be calculated
accurately and does not affect the results in this work. Due to
superposition properties of LTI systems, and without loss of
generality, we neglect the control input term Buy, throughout
this work [8], [9]. Instead, we shall focus on the following
system denoted as ¥ = (A4, B,C, B,, D,) Vk € N,

Tpy1 = Axy, + Baag, (1

yr = Cxp + Daay,. 2

Assumption 1. The pairs (A, B) and (A, C) are controllable
and observable, respectively. ]

III. CONDITIONS FOR UNDETECTABLE ATTACKS

The objective of this work is to investigate security
measures of malicious attacks. The security level of CPS
can be measured by their ability to detect attacks. So
in this section we study undetectable attacks. During
the time 0,1,...,N with N € Z.y , for the system
¥ = (A,B,C,By,D,), denote the corresponding
output trajectory as Yy = [yd yi yi]T,
and the corresponding unknown attack sequence as
Ex = J[af af ... a%]'. The output trajectory
Yx during the time 0,...,N is determined by the
initial state xy and the unknown attack sequence FEl,
formulated by Yy = Onxo + VNEN + (In+1 ® D) EN,
where ® stands for the Kronecker product, Oy =
[CT (CA)T (CA2)T CANT]Y i the

extended observability matrix, and Vy 1is given as
0 0 0 0 0
CB, 0 0 0 0
CAB, CBa, 0 0 0
CA®’B, CAB, CB., 0 0
CAN-1B, CcAM—2?B, CANB, CB, 0

Likewise, the state vector at the time instant [V is,

ey = ANxo +Cn_1En_1, €))

where Cy_1 = [AN7'B, AN72B, B, is the
extended controllability matrix. Now we introduce the fol-
lowing definitions [6], [10].

Definition 1. (Dynamically Undetectable Attacks) For the
system X = (A, B,C, B,, D,,), there exist dynamically un-
detectable attacks if and only if the nonzero attack sequence
En satisfies Onzo + VNEn + (Int1 ® Do) En = Onay,
VN € Z~, with initial state 2y and x{, € R™\0. O

Next, we shall provide the conditions for the existence of
dynamically undetectable attacks. First, we show that it is
sufficient to focus on the time period of 0,1,...,n — 1 to
decide whether there exists a dynamically undetectable attack
sequence for the time period of 0,1,..., N, VN € Z~,.

Lemma 1. For the system ¥ = (A, B,C, B,, D,), assume
Assumption 1 holds and that there exists a dynamically
undetectable attack sequence FE,,_; in the time period of
0,1,...,n—1. Then there exists a dynamically undetectable
attack sequence in the time period of 0,1,... , N, VN € Z~g.

Proof: Given that there exists a dynamically unde-
tectable attack sequence F,_; during the time period of
0,1,...,n—1,ie., On_l.lfo-F‘/n_lEn_l+(I7,,®Da)En_1 =
Opn_17}. Then left multiply OF | on both sides and re-
arrange to get OF [V, 1E, 1 + (I, ® Dy)E,_1] =
O 0, _1(z} — z0). The observability matrix O,,_; has
full column rank. Then it follows that the square ma-
trix (9;5_1(’)"_1 has full rank and thus is invertible. Then
A, = =z, — xp can be uniquely solved by A, =
(Og_lOn,l)*lO,TL_l[Vn,lEn,l + (In (9] Da)Enfl]. Now
consider the time instant N = n. Assume that there exists an
attack signal a,, such that O, 20+ V, E,, + (1,+1® D) E,, =
O, x} holds with E,, = [ET_, a,]T. Given now (2) and (3),
it follows that y,, = CA"zq+CA" ' Byag+CA" 2B,a; +
-+ CByan—1 + Dga, = CA™x|. Rearrange to get,

Dga, =CA"A, — (CA" 'Byag + -+ CByay,_1). (4)

Since A, is uniquely solved, the right-hand-side (RHS) of
(4) is uniquely determined. Considering D, = [0;x., I;], the
first m entries of a,, can be any values while the remaining
l entries of a,, are uniquely determined from (4). Thus, the
existence of a,, is guaranteed. Similarly, for N = n+1,n+
2, ..., the newly added attack signal an always exists. [ |

Definition 2. (Perfectly Undetectable Attacks) For the sys-
tem X = (A,B,C,B,,D,), there exist perfectly unde-
tectable attacks if and only if for a nonzero attack sequence
Ey, VNEN+(IN+1®DG)EN = 0 holds, VN € Z~y. ]

Perfectly undetectable attacks leave zero trace in the
sensory output. Therefore, Definition 2 is a stricter version of
Definition 1. Consequently, Lemma 1 also applies to attacks
of Definition 2. Now we have the following corollary.

Corollary 1. For the system & = (A4, B, C, B, D,,), suppose
that there exists a perfectly undetectable attack sequence
FE, 1 during the time period of 0,1,...,n — 1, then there
exists a perfectly undetectable attack sequence during the
time period of 0,1,..., N, VN € Z~o.
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Proof: The proof follows the same logic to that of
Lemma 1 with £y = 0 and z{, = 0. [ ]
Now we can only consider the time period of 0, 1, ..

1. First we recall the following definitions [11], [12].

L, n—

Definition 3. (Input Unobservable Subspace) For the sys-
tem ¥ = (A, B,C,B,,D,), the input unobservable sub-

space over k steps is defined as Z, = {z € R"
there exists an attack sequence Fj_1 such that Op_1x +
Vic1Br—1 + (I ® Do) Ex—1 = 0}. O

Definition 4. (Weakly Unobservable Subspace) For the sys-
tem ¥ = (4, B,C, By, D,), the weakly unobservable sub-
space, denoted as W(X), is defined as its input unobservable
subspace over n steps, i.e., W(X2) = Z,. ]

Definition 5. (Strongly Observable) The system % =
(A,B,C,B,, D,) is strongly observable if and only if its
corresponding weakly unobservable subspace is trivial. [

Theorem 1. For the system ¥ = (A, B,C, By, D,), there
exists a perfectly undetectable attack sequence F,,_; during
the time period of 0,1,...,n — 1 if and only if the system
> is strongly observable.

Proof: (< If) Assume system X is strongly observable,
which implies V,,_1E,_1 + (I, ® D,)E,—1 = 0. By Defi-
nition 2, this shows that there exists a perfectly undetectable
attack sequence E,,_; for the system ¥ = (A4, B,C, By, D,,)
with initial condition zyg = 0. (= Only if) Assume there
exists a perfectly undetectable attack sequence F,,_; for the
system X. By Definition 2, V,,_1 E,,_1+(I,®D,)E,_1 = 0.
If there exists ¢ # 0 such that O,,_10+V,_1E,—1 + (1, ®
D,)E,—1 =0, 0,_16 = 0 implies O,,_; does not have full
column rank (contradicts Assumption 1). So, the system %
is strongly observable. ]

Remark 1. The assumption that the system is strongly
observable is a sufficient and necessary condition for the
existence of perfectly undetectable attacks. O

Theorem 2. If the system ¥ = (A, B,C,B,,D,) is not
strongly observable, there exists a dynamically undetectable
attack sequence F,,_1 in the time period of 0,1,...,n — 1.

Proof: Assume the system X is not strongly observable.
By Definition 5, there exist a nonzero § € W(X) and an
attack sequence E,,_ such that O,,_10+V,, _1FE, 1+ (I, ®
D,)E,_1 = 0. Define z{, = z¢o — 0 and substitute it into
the above equation to get Op_120 + V1 En—1 + (I, ®
D,)E,—1 = On_1x{. Therefore, according to Definition
1, there exists a dynamically undetectable attack sequence
FE,, 1 during the time period of 0,1,...,n — 1. ]

Corollary 2. For the system ¥ = (A, B,C, B,, D,), non-
existence of dynamically undetectable attacks implies the
existence of perfectly undetectable attacks.

Proof: By Theorem 2, non existence of dynamically un-
detectable attacks implies the system is strongly observable.
By Theorem 1, perfectly undetectable attacks exist. [ ]

Note that the non-existence of dynamically undetectable
attacks implies the existence of perfectly undetectable at-

tacks. However, the existence of dynamically undetectable
attacks rules out the existence of perfectly undetectable at-
tacks. Therefore, it is safe to consider perfectly undetectable
attacks for the sake of system security.

IV. SECURITY INDEX

Based on the previous discussions on undetectable attacks,
we define security index in terms of perfect undetectability.

Definition 6. (Security Index) For the system X =
(A,B,C, B, D,), the security index is defined as the min-
imal number of attacked sensors and actuators to conduct
perfectly undetectable attacks, denoted as sy and given by,

50 = rlginllakllo &)
st. wpy1 =Axg + Baag, (6)
0 =Cuxy + Dyay, 7

xo =0, 3)

where ||ak|[o = [supp(ay)| and supp(ay) = {i€ T : a,(:) #
0}, with nonzero a, a,’ being the i-th element of aj, and
7 being a set of indices of elements of ay. O

The constraints (6) and (7) make sure the system dynamics
are obeyed. The constraints (7) and (8) imply that perfectly
undetectable attacks are considered. Note that if (5) has no
solution, which implies that the system X is not strongly
observable based on Theorem 1, then the security index
is denoted as sg = . If sg = m + [, the system X
is maximally secure, which implies that adversaries have
to attack all the available actuators and sensors to remain
perfect undetectable. The computation of security index is
generally NP-hard due to [y norm in the objective function
[13]. As a result, its computation is not efficient for high
dimensional systems. Next we shall rely on structured model
of systems to compute the security index.

A. Structured Model and Graph Representation

The structured matrices [A], [C], [Ba], [Da] have binary
elements. The (4,7) entry of matrix [A] equal to 0 means
A;; = 0 for every realization of matrix A while [A];; = 1
means A;; is a free parameter and can be any value from R
except 0. The same holds for matrices [C], [B,] and [D,].
Denote the set of all system realizations from structured ma-
trices [A], [C], [Ba], [Da] as R. Structured systems provide
less knowledge of system dynamics, but the analysis based
on structured models is robust to system dynamics variations
and applied to any realizations. To simplify the analysis, we
make the following assumption.

Assumption 2. Each state is influenced directly by only one
actuator and measured directly by only one sensor. O

Assumption 3. It is assumed that each attack signal only
corrupts one actuator. J

Remark 2. The formulation of the attack matrix D, implies
each attack signal only corrupts one sensor. O

1481

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 09,2022 at 18:04:22 UTC from IEEE Xplore. Restrictions apply.



We now associate a directed graph G = (V, &) with the
structured model [A] [C], [Ba], [Da] of the system (1)-(2).
Denote X = {a: ;2 2™} as the set of state vertices,

= {y®, 4@ . l)} as the set of output vertices,
A = {a, a(2) ...,a(m“)} as the set of attack vertices.
The vertex set of G is formed by V = X|JY[JA. The
edge set is formed by &€ = EaJEcJEB, UED,, where
Ea = {(zD), z®) : [A]” = 1} is the set of edges from
vertex z0) to vertex (), £ = {(zU),y®) : [C]w =1}
is the set of edges from vertex () to Vertex yW, €, =
{(a), 2™ [Ba]” = 1} is the set of edges from vertex
a9 to vertex 2V, Ep, = {(al9),yD) : [D,];; = 1} is the
set of edges from vertex a(J ) to vertex y*

Malicious attacks against the system X can be considered
as the attacker injecting signals into the system through
attack vertices in A. Perfect undetectability means that the
injected signals do not flow to output vertices in ). Thus,
we consider this problem as a flow network problem with
source vertices in A and sink vertices in ). First, we add a
dummy vertex ¢ and add edges from all sink/output vertices
inYtot Let & = {(yD,t) :VyD ey, i={1,2,...,1}}
denote the set of edges from vertex y(* to vertex t. The
vertex t is considered as an operator who receives all the
measurements in the process. For flow networks, in order to
stay perfectly undetectable, the attacker needs to prevent the
flow from reaching the operator vertex ¢, i.e., sensory output
always equals to zero. If the maximum flow from attack
vertices in A to t is zero, then attacks remain undetectable.
Let G, = (V, &) be the extended graph of the system with
the above modifications, i.e., V; = V|t and & = EJ Eye.

B. Characterization of Security Index

Due to Assumption 2 and Remark 2), we denote the set of
attack vertices corresponding to the set of attacked actuators,
ie., Uy, as A, and the set of attack vertices corresponding
to the set of attacked sensors, i.e., S,, as A,. It follows that

o =m' and | A = 1.

Theorem 3. Consider the extended graph G; = (V;,&).
For each vertex a(l) € Aa, 1 e {1,2,...,
X! = {z U) e x . (ay, @ 4 ) €&p,,al? e Aa\a,(f)}. There
exist perfectly undetectable attacks for the system X of any
realization from R with the set of attacked actuators U, and
the set of attacked sensor S, if and only if A} US, is a
vertex separator of al(;) and ¢ in G;.

Proof: (<= If) Given X; S, is a vertex separator of
a,(f) and t in G;, by Assumption 2, let the g-th actuator attack

signal al(;l) corrupting the j-th state xl(g) be,

al? = —A(j,)z1/Balj,q), keN ©)

where A(j, ;) denotes the j-th row of A, B, (7, q) is the (4, q)-
th element of B,,. Note that B, (3, q) # 0 due to Assumptions
2 and 3. For the p-th attacked sensor, let the corresponding
sensor attack signal be,

aém-kp)

= _O(p7 :)‘rk'7 keN (10)

where C(p, :) denotes the p-th row of C. Next we prove that
attacks defined by (9) and (10) are perfectly undetectable,

ie., y = 0 with ¢y = 0. For z( ) e X! with a(q) influencing

z0), applying equation (9) we have 20}, = A(j,:)ax +

B.(j,q)ay, (9 _ 0, which implies that all states in X equal
to 0. For the p-th attacked sensor, due to equation (10),
(m-+7) = 0. Next we define

we have y”) = C(p,:)zr + ay,
X = {xk§ € X : there exists a directed path from a](f) to
27 which does not include states in X}, We claim that
states in X} cannot be measured by attack-free sensors. If
so, then there exists a directed path from a,(j) to t, which
contradicts that X | JAs is a vertex separator of a,(j) and
t in G,. For the remaining states X7 = X\(X?JA}), we
claim that the edge (2", z”) with 2" € X and xffg € X}
does not exist. If so this would imply there exists a directed

path from a,(C) to 9:(6) which does not include states in X’
() ¢ A7, which is a

Then by the definition of X}, we get T,
€ X!. Thus, we conclude that states

contradiction since ")
in X7 are not affected by states in A}. Since xop = 0 and
we have proved that states in X! equal to 0, then states
in X! always remain 0. We have showed that states in X}
cannot be measured by attack-free sensors. Thus, the attack-
free sensor measurement equals to 0. We have proved that the
attacked sensor measurement remains 0. Therefore, attacks
with strategies of (9) and (10) are perfectly undetectable. (=
Only if) Suppose that X | JS, is not a vertex separator of

a,g) and ¢. Then it follows that there exists a directed path

from a;) to t which does not include states in X | JAs.
(i1) “(i2)

We denote this path as p; {a() - x, —ox —

- - x,(j”) — y,(f) — t}. Now we need to show that
no perfectly undetectable attacks for at least one realization
from R exist. For ac](fl) from path p;, let A(iq,:) = 0 so that
other states cannot affect gc,(fl). For other states x,(:j ) from
path p;, where 2 < j < n, set A(i;,h) # 0 for h = z'7 1
and A(ij,h) = 0 for h # i;_; so that only x(” Do
affect x( ). Let C(g,in) # 0 so that y,(cq) # 0 as long

as x,(:”) # 0 due to Assumption 2. For a](f) # 0, given

A(iy,:) = 0, we have x,(ﬁr)l = B(i1,1)a, ("% 0. Now for
other states from path p;, we have z(12) A(zz,zl)x( Vo2

k2 = k41
0 = x,(ﬁ):,) = A(13,22)x,£i)2 A0 = ... =57 =
Ay, in_ 1)33,(;$;1)1 # 0. Since C(q,1i,) # 0, then we have

y,(;iznﬂ = C(q, zn)x,g") # 0. Therefore, there does not exist

perfectly undetectable attacks for this realization. [

Note that in order for attacks to remain perfectly unde-
tectable, at least one actuator needs to be attacked to hide
sensor attack signals. Thus, we have the following corollary
to formulate the condition for the existence of perfectly
undetectable attacks from the view of sensor attack signals.

Corollary 3. Consider the extended graph G; = (V,&).
For each vertex algj) e As with j € {1,2,... ]| Asl}, let the
corresponding j-th attacked sensor measures the p-th state

(p ). Let aé) denote the actuator attack signal which attacks
the p-th state directly (i.e., there exists an edge from a,(;) to
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( ) or indirectly (i.e, there exists a directed path from a,(c)
to xk )). Define X = {z17) € X : (0\?,2) e £p,,al? €

a\a )} Then there exist perfectly undetectable attacks for
the system X of any realization from R with the set of
attacked actuators U, and the set of attacked sensor S, if
and only if X! | JS, is a vertex separator of a,(j) and t in G;.

Proof: Due to Assumption 4, Assumption 5 and
Remark 7, for the j-th attacked sensor measuring the p-
th state with attack signal a,(g ) e A, for the existence
of perfectly undetectable attacks, i.e., y = 0 with zg =
0,.there must exist an actuator attack signal denoted as

('L) € A, directly or indirectly corrupting the p-th state.
Thus following the same logic to the proof of Theorem 3,
X!| JS, being a vertex separator of aé) and t with y ) e Sq
is sufficient and necessary conditions for the existence of
perfectly undetectable attacks. ]

Definition of security index (5)-(8) aims to find the
minimum number of attacked actuators and sensors for
adversaries to remain perfectly undetectable. Theorem 3 and
Corollary 3 characterize the conditions for the existence of
perfectly undetectable attacks. Therefore, we can compute
the security index by solving a problem of finding the
minimum size of A, JAs such that X[ JS, is a vertex

separator of al(f) and t in Gy, with 1 € {1,2,...,|Aqal}.
Problem 1. For the system ¥ = (A4, B,C,B,,D,), the
security index s is computed as Vi € {1,2,...,|A4|},

s = min (A JAD)
st Al USa is a vertex separator of a,(f) and ¢ in G; with
X = {x,(j) eX: (a,(cq),:cg)) €&p,, (q) € Aa\a } O

C. Computation of Security Index

As we discussed above, the extended graph G; can be
considered as flows represented by attack signals from source
vertices in A, | J.As to the system operator ¢. For attacks
remaining perfectly undetectable, they need to prevent the
flow from reaching t. Inspired by [14], now we convert
the extended graph G; = (V,&;) to a flow network G’ =
(V',&") by adding a flow capacity for each edge. For each
1€{1,2,...,|Aq4|}, create V' and £’ as follows:

Rule 1. For each vertex :r](f € X, split xfcj ) into two vertices

:cg)l and :1:,(5)2 with an edge from xgj)l to xg; and a flow

capacity the same to the incoming flow to x,(g )1
) e X\X!, keep x(q) in G'.

B, in G’ with oo flow capacity.

Rule 2. For each vertex 33
Rule 3. Keep (a2 e 8
Rule 4. Consider ( Jk)
« For x,(g) e X, and a:(Q) € Xa, include (xg%,xéqi) in &
with a flow capacny oo
« For 2/ € Xi and 2\ € X\ X!, include (xfj%,xéq)) in
&’ with a flow capac1ty 0.
« For :r](j) e X\X! and ac,(ﬂq) € X!, include (:r,(j),xgq) in
&’ with a flow capacity co.
« For 2/ € X\ X7 and 27 € X\ X%, include (2, z\?)
in & with a flow capacity co.

Rule 5. For vertex ') € X, include (x,(j)l, x,(j)z) in & with
a flow capacity 1.

Rule 6. Consider (:1:,(f ,y,(f)) € &c. For a:,(fj) € X!, include
(x,(j)z,y,(fq)) in & with a flow capacity 1. For sc,(ij) e X\X:,
include (z ](j ), y,(cq)) in £ with a flow capacity 1.

Rule 7. Consider (y; 2 6. If y(j ) is not attacked, include

() s attacked,

(y,(j ) t) in & with a flow capacity oo. If y,
include (y ,i ), t) in & with a flow capacity 1.

Given Assumptions 2 and 3, Remark 2, when assigning
edge flow capacities, Rule 5 guarantees each attack signal
only corrupts one actuator and each actuator directly in-
fluences on state. Rule 6 guarantees each sensor directly
measures one state. Rule 7 guarantees each attack signal only
corrupts one sensor. Next we derive a relationship between

the minimum size of vertex separator and minimum cut.

Theorem 4. For the flow network G’ = (V',£’), the min-
imum size of vertex separator Xi|JS, from a\” to ¢ is
equivalent to the minimum a,(f) —t cut.

Proof: For x,(j ) e X, a:,(cj ) being a vertex separator
implies that there is a cut of the edge from x,(Cj i to x,(j;
in G’ with a flow capacity 1. For y(J) € S, y G) being a
vertex separator implies that there is a cut of the edge from
y,(cj) to ¢ with a flow capacity 1. Note that X | JS, being
a vertex separator from a,(f) to ¢ means that the removal of
all vertices in X | J S, eliminates all the directed paths from

(Z) to ¢, and one vertex in X JS, corresponds to a cut of
edge with a flow capacity 1. Therefore, the minimum size of
vertex separator X! | S, from a,(:) to ¢ is equivalent to the
minimum aé) —tcutin G'. ]

For the flow network G’ = (', £’), let § be the minimum

capacity of a,(f) —ton G, Vie {l,2,...,|As|}. Then by
Theorem 4, the solution to Problem 1 is s = § + 1, with

1 added due to the consideration of the attacked actuator
associated with the attack signal a,(;). Based on the Max-
flow Min-cut theorem, the minimum capacity of an s —¢ cut
equals to the size of maximum flow from s to ¢. Finding the
maximum flow on a directed graph is a standard max-flow
problem, which can be solved by Ford-Fulkerson algorithm
or Edmonds-Karp algorithm in polynomial time.

V. NUMERICAL EXAMPLES

In this section, we provide a numerical example to il-
lustrate the computation of the proposed security index.
Consider a structured system model with 5 states as follows,

1

1 0 0 1 1 0 0
01 0 0 O 1 0
[A]=|0 0 1 0 1|,[B]=]0 0],
01 0 1 O 0 O
0 0 1 0 1] 0 1
[0 1 0 0 0]
[C]=|0 0 1 0 0 (11)
_O 0 0 O 1
There are 2 actuators (u(l) u](f)), and 3 sensors
(y,(cl)7 y,(C ), yk ) Actuators u,(cl) and u,(f) directly affect
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and 331(@5)’ respectively. Sensors yzil), yi(f) and

y,(f’) directly measure states :r,(f), :Jc,(f) and xl(f), respectively.
Assume that both actuators and only the second sensor
are corrupted by malicious attacks, i.e., a,(gl) # 0, agf) #
0, a,(f) # 0. The extended graph representation G; for the
structured model (11) is shown as Figure 1. For ¢ = 1, Xal =

states

Fig. 1. Extended graph for the structured system model (11).

{x,(f)} while for i = 2, X2 = {ac;f)}. The corresponding
flow networks G’ from the perspective of a,(cl) and aéz) are
shown as Figure 2 and Figure 3, respectively. The security

Fig. 3. Flow network from a(?) to ¢ with highlighted max-flow path.

index is solved as s = min{1,2} + 1 = 2 with max-flow
paths from a to ¢ highlighted in red. Security index s = 2
implies that adversaries can only attack the first actuator u,(cl)
and another one actuator or sensor to remain undetectable.
Next, we aim to increase the security index by placing more
actuators or sensors. Specifically, a secure sensor ¥, is

added to directly measure x,il). Now the corresponding flow
networks are shown as Figure 4 and Figure 5 with max-flow

paths from a to ¢ highlighted in red. The security index is

Fig. 4. Flow network from a(1) to ¢ after adding y(%) to measure z:(1).

Fig. 5. Flow network from a(2) to ¢ after adding y(*) to measure (1),

now s’ = min{2,3} + 1 = 3, which shows the placement of
one more secure sensor makes the system less vulnerable.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate the conditions for the existence
of undetectable attacks and propose a security index for
discrete-time LTI systems under both actuator and sensor
attacks. Through structured models, the computation of the
security index is considered as a min-cut/max-flow problem.
Future work will focus on the actuator and sensor selection
or placement strategies based on the proposed security index.
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