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Online Learning-based Optimal Control of Nonlinear Systems with
Finite-Time Convergence Guarantees

Nick-Marios T. Kokolakis and Kyriakos G. Vamvoudakis

Abstract— This paper develops a critic-only reinforcement
learning-based algorithm for learning the solution to the
Hamilton-Jacobi-Bellman equation in finite time. In particular,
a non-Lipschitz experience replay-based learning law utilizing
recorded and current data is introduced for updating the critic
weights to learn the value function. The non-Lipschitz property
of the dynamics gives rise to finite-time convergence and
stability, while the experience replay-based approach eliminates
the need to satisfy the persistence of excitation condition
if the recorded data is sufficiently rich. Simulation results
demonstrate the efficacy of the proposed approach.

Index Terms— Adaptive learning, finite-time stability, optimal
control, reinforcement learning, autonomy.

I. INTRODUCTION

Exploiting the benefits of reinforcement learning (RL) [1],
the control systems community has conducted a considerable
effort towards enabling cognitive autonomy by designing
control mechanisms that run in real-time and adapt to
changes in the environment. This gives rise to intelligent
autonomous systems (IAS) exhibiting features such as the
strong ability to learn new tasks, adaptivity under uncertainty,
real-time optimality, and tolerance to unpredictable failures
[2]. Nevertheless, to ensure the effective operation of TAS
without human intervention, it is necessary for the decision-
making mechanism to generate optimal policies in finite-time
rather than in an infinite time.

Optimal control theory deals with finding a control law
for a given dynamical system so that a user-prescribed cost
functional is optimized [3]. In the infinite horizon optimal
control problem, the notions of optimality and asymptotic
stability are intertwined [4]. In particular, the optimal control
strategy is a state feedback law establishing asymptotic sta-
bility while minimizing the performance measure. In fact, to
derive the optimal control policy, one needs first to determine
the optimal cost function (value function) by solving a
nonlinear partial differential equation, the so-termed Hamil-
ton—Jacobi—Bellman (HJB) equation [5]. Nonetheless, ana-
lytically solving the HJB equation is a challenging task while
being usually computationally intractable, thereby giving rise
to the development of adaptive dynamic programming (ADP)
techniques [6]-[9].

N-M. T. Kokolakis and K. G. Vamvoudakis are with the Daniel Guggen-
heim School of Aerospace Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, 30332, USA e-mail: nmkokolakis@gatech.edu, kyri-
akos @gatech.edu.

This work was supported in part by ARO grant No. W911INF-19 — 1 —
0270, ONR Minerva grant No. N00014 — 18 — 1 — 2160, NSF grant Nos.
CAREER CPS-1851588 and SATC-1801611, and the Onassis Scholarship
[Scholarship ID: F ZR 025/1-2021/2022].

978-1-6654-5196-3/$31.00 ©2022 AACC

Related work

ADP unifies optimal [5] and adaptive [10] control to-
wards developing adaptive learning mechanisms enabling
the learning of solutions to optimal control problems by
employing measured data along the system trajectories [11]—
[19]. The ADP algorithms are developed through an actor-
critic structure involving two approximators. Specifically, a
critic network that evaluates the performance of a control
policy and an actor network that computes this policy. It
is evident that the vast majority of the existing adaptive
learning algorithms for solving optimal control problems [2],
[20] converge to a near-optimal control law provided that
a persistence of excitation (PE) [10] condition is satisfied.
On the other hand, concurrent learning/experience replay-
based ADP algorithms [21], [22] allow the learning of the
solution to the optimal control problem by requiring a weaker
form of a PE condition to be satisfied [23], [24]. In fact,
these algorithms are data-driven and leverage recorded and
instantaneous data concurrently for the adaptation of the
critic weights.

The aforementioned approaches and the references therein
concern the design of adaptive learning-based mechanisms
for solving the HIB equation associated with the infinite
horizon optimal control problem by means of an actor-critic
structure. However, as we already mentioned, the solution
to the infinite horizon optimal control problem renders the
equilibrium point of the closed-loop system asymptotically
stable [4]. The concept of asymptotic stability in dynamical
systems allows the convergence of system trajectories to a
Lyapunov stable equilibrium point over the infinite horizon
[25]. On the contrary, the notion of finite-time stability
enables the convergence of the system solutions to a Lya-
punov stable equilibrium state in finite time [26]. In real-
world applications, it is imperative to design decision-making
mechanisms guaranteeing optimality as well as finite-time
stability. In the context of optimal control, this necessity
is captured by the finite-time optimal control problem first
stated in [27], that is, the problem of finding state-feedback
control laws that optimize a given performance functional
while guaranteeing finite-time stability of the closed-loop
system. To the best of our knowledge, an ADP approach
enabling learning of the solution to the HJB equation in
finite-time is absent from the literature.

Contributions: The contributions of the present paper
are threefold. First, a RL-based framework is developed for
learning online and in finite time the optimal value function
and the optimal control policy. Then, a non-Lipschitz expe-
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rience replay-based adaptive learning law for updating the
critic weights is introduced while ensuring finite-time stabil-
ity properties provided that the recorded data is sufficiently
rich. Finally, the proposed scheme relies on the use of only
a critic network, allowing the simultaneous learning of the
value function and the optimal strategy, thus leading to a less
computationally expensive learning structure.

Structure: The remainder of the paper is structured
as follows. Section II states the finite-time optimal control
problem. In Section III, a critic-only learning framework
is developed for learning online and in finite time the
solution to the optimal control problem. Section IV provides
simulation results. Finally, Section V concludes and provides
future work directions.

Notation: The notation used in this paper is standard.
Specifically, |-, = [>;, 2:"]"", 1 < p < o0, denotes
the Holder p-norm of a vector. The induced 2-norm for the
matrix @ € R™*" is defined as |Q| = / Amax (QTQ) =
Omax (@), With Apax (resp., Amin) denoting the maximum
(resp., minimum) eigenvalue and o,y (resp., omin) denoting
the maximum (resp., minimum) singular value. The gradient
of a scalar-valued function V' with respect to a vector-valued
variable z is defined as a row vector and is denoted by V' (z).
We define the open ball B, (z.) = {x € R" : ||x — z¢| < &}
centered at x. with radius ¢ in the Euclidean norm, while the
corresponding closed ball is denoted as B.[z.]. Let [-]7 =
| - |"sign(-), where | - | and sign(-) operate componentwise
and n > 0. The distance of a point p € R™ to a closed
set C < R™ in the norm | - || is defined as dist (zg,C) =
infiee {||zo — z||}. The X x Y is the Cartesian product of
X and ). Finally, 0S and S¢ denote the boundary and the
complement of the set S, respectively.

II. FINITE-TIME OPTIMAL CONTROL PROBLEM

Consider the following continuous-time dynamical system

o(t) =F(x(t),u(t))
=[f((t) + G(z(t))u(t),
where x € R" is the state vector, u € R is the control input,
f:R" - R"™ and G : R* — R™ ™ are continuous on R"
with f(0) = 0.
Define the cost functional associated with (1) as

T out) = [ " La(t), u(t)dt )

0

z(0) =20, t=0, (1)

with
L(z,u) = Li(x) + Lo(x)u + u" R(z)u, 3)

where L; : R” - R, Ly : R® —» R>™ and R : R® —
R™>*™ are continuous on R™, and R(z) > 0, x € R™.
We now introduce the notion of finite-time stability.

Definition 1. [26]. The zero solution z(¢) = 0 to (1)
with u(t) = 0 is finite-time stable if it is Lyapunov stable
and finite-time convergent, i.e., for all z(0) € A\{0},
where N' € R™ is some open neighborhood of the origin,
limy_,p(z0)) z(t) = 0, where T'(:) is the settling-time

function such that T'(z(0)) < oo, x(0) € N. The zero
solution z(t) = 0 to (1) with u(t) = 0 is globally finite-
time stable if it is finite-time stable with N/ = R". O

Definition 2. [28]. Let N' < R"™ be an open neighborhood of
the origin. The compact set M < N is finite-time attractive
with respect to (1) with u(t) = 0 if for every x(0) € N,
the solution x(t), ¢ = 0, satisfies dist (x(t), M) =0, ¢t >
T(x(0)), where T'(-) is the settling-time function such that
T(x(0)) < oo, x(0) € N. Furthermore, the compact set M
is globally finite-time attractive if it is finite-time attractive
with A/ = R™. O

Next, we state the finite-time optimal stabilization problem
by following the formulation of [27].

Problem 1. For each initial condition o € R", define the set
of globally finite-time stabilizing controllers S (x¢) = {u(-) :
x(+) given by (1) satisfying x(¢) — 0 as ¢t — T'(x(0))}. The
objective amounts to finding a globally finite-time stabilizing
optimal control law u*(-) € S(xg), xo € R™, rendering
the equilibrium point of the closed-loop system (1) with
u = u*(x) globally finite-time stable while minimizing the
performance index (2). O

The finite-time optimal stabilization problem involves the
minimization
Vi(xo) =

min rg € R",

J (zo,u(+)),
o in (wo, u(-))

subject to (1). Note that the function V() is the value
function and can be thought of as the optimal cost (cost-
to-go) from zg.

Define the Hamiltonian function

H(x,u, V'Y (2)) = L(z,u) + V' (2)F(2,u),
(z,u) e R* x R™. 4)
Applying the stationary condition to the Hamiltonian func-
tion (4), one obtains the feedback control law «*(x), which

is the global minimizer of the Hamiltonian function for all
x € R" since H(z,u, V' (x)) is convex in u. Namely,

u*(x)

Il

aEgEHI{Enin H (.Z’, u, V/T(x))
- *%Rfl(z) [La(z) + V’(I)G(«'E)}T- )

Plugging (5) into (4), one can derive the HIB equation

0= Li(z) + V'(z)f(2) — 7 [V'(2)G(2) + La(2)]

!
4
_ T
‘R (2) [V/(2)G(2) + Lo(z)] . (6)
Alternatively, the HJB equation (6) can be written in the
compact form

H(z,u*(z),V'"(z)) = min H (z,u, V" (z)) =0. (7

ueR™

The next theorem provides sufficient conditions allowing
us to characterize an optimal feedback controller attaining
stabilization of the closed-loop system in finite time.
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Theorem 1. Consider the controlled nonlinear dynamical
system (1) with performance index (2). Suppose that there
exist a radially unbounded continuously differentiable func-
tion V : R™ — R, real numbers ¢ > 0 and € (0,1), and a
continuous control law u* : R™ — R™ such that

u™(0) =
V(0) =
V(z) >0, zeR™{0},
V() F(z,u"(z)) < —c(V(2))’, zeR",
H(z,u"(2), 'T(m)) =0, zeR",
H(z,u,V'T(2)) >0, (z,u)eR"xR™.

Then, with the feedback control u(-) = u*(x(-)), the zero
solution z(t) = 0 to (1) is globally finite-time stable with a
settling-time function T : R™ — [0, 00) such that

L v (o)),

T(J)o) < m

o € Rn, (8)

and

J (o, u”(x())) = V (o) ,

Furthermore, the feedback control u(-)
J (zo,u(-)) in the sense that

Xg € R™.

= u*(x(-)) minimizes

J(zg,u*(z(-))) = min J(zg,u(")).
(o, (1)) = | min J (zo.u()
Proof. The proof follows from [27]. ]

Remark 1. Although we deal with the finite-time optimal
control problem, we assess the system performance over
the infinite horizon. In particular, the settling-time function
depends on the system’s initial conditions and satisfies the
inequality (8). Thus, in view of radial unboundedness, it
follows that the time of convergence to the equilibrium point
may increase (possibly unboundedly) as the vector norm of
the initial condition increases. O

The problem of the finite-time optimal control amounts to
solving the HIB equation (7), which is in general intractable
aside from special cases. Thus, the next section will devise
learning-based techniques for approximating the solution of
the HJB equation.

III. FINITE-TIME STABLE ONLINE LEARNING

In this section, we develop a learning-based algorithm for
learning online and in finite time the solution of the HIB
equation (7) by utilizing data gathered along the system tra-
jectories. Towards this, we will employ a critic structure, i.e.,
an approximator allowing us to simultaneously approximate
the value function and the optimal controller.

A. Finite-Time Stable Tuning

According to the Weierstrass higher-order approximation
theorem [29], we can locally approximate the value function
V() and its gradient on a compact set X < R”™ that includes
the origin with a neural network approximator as

V(z) = W é(x) +e(z), z€X,

VT(z) =T (a)W* + T (x), zel, )

where W* € RY is an ideal constant weight vector satisfying
W*|, < Wy, for some Wy, > 0, ¢ : X — RV
is a vector of basis functions such that ¢;(0) = 0 and
¥i(0) =0, ¢« = 1,...,N, N is the number of neurons
in the hidden layer of the neural network, and e(z) is an
approximation error. Note that one has to select the basis
functions ;(x), ¢ = 1,..., N, properly in order that they
form a complete independent basis set [30].
The optimal control law can be approximated as

wt = B (La(a) + (6@ +T@) Gw)
reX.

Substituting (9) into (7), we obtain the approximate HIB
equation

H (z,u*(z), ¢ (2)W*) =L(z,u* (z))
+ W*be (2)F(x,u*(x))

=ens, T E X,

N

where egp = —€’(2)F(z,u*(x)) is the residual error com-
ing from the value function approximation error.

However, the ideal weights W* are unknown, and thus we
consider a critic with estimates W € RN of the form

V(z) = WT(z), zeX, (10)
and an approximate optimal controller given by
\T T
is =g (L) + (67@0) G
reX. (11)

Plugging the approximate value function (10) and the
approximate optimal control law (11) into (4), one obtains
the approximate HJB equation

H(:c a, ¢ ()W ) W' (x)F(x,a) + Lz, ),
zeX, (12

which is available for measurement, unlike the parameter
error W == W — W™, which is not since W* is unknown.

Define the Hamiltonian estimation error corresponding to
the data collected at the current time ¢ > 0 as

e(t) = 1 (w(t), (1), o (@)W (1))
— H (a(t),w” (2(£)), V" (@(1)))
= A (a(t), a(t), ¢ (@)W (D)), >0,

and the Hamiltonian error associated with the recorded
data at the time instants 0 < ¢q,...,t; <t as

ff(w( 0 (k)¢ (x (1) W ()
W () (t) + L (2 (1) (1)) ,
where w(t) = ¢ (x()) F(x(t), i(t)), t > 0.

I

e (ti7 t)

H>

814
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Next, define the cost function of the current and past
Hamiltonian estimation errors for v € (0,1) as

. ! e(t) Lk
E(W(t”wH( ST Bw() 1
v+1
+ZwT t“t )+ 1 >’ r=0

The finite-time convergent data-driven learning law for up-
dating the critic weights is derived using a gradient descent
algorithm as

W=—a

O‘EMT )+ 1 { (tf)(fjkzj)+1JV’

W(O)=W0, t >0, (13)

where o > 0 is a constant gain that dictates the learning rate.
In the sequel, by taking into account (12) and (13), one
can derive the parameter error dynamics as

wT(t)w(t wl(t)w(t) + 1
k
w(ti)
B a; Wl (t)w(t;) + 1

=Wy, t=0, (14)

where ey = H (2,4, ¢'T(x)W*) behaves as a disturbance
stemming from the value function approximation error, and
thus it is imperative to investigate its boundedness relative
to the number of neurons N in the hidden layer of the critic
neural network. The next proposition examines this issue.

Proposition 1. For every €,, > 0 there exist L(e,,) > 0 and
No(€m) > 0 such that sup,c v |eg| < L(em), N = No(em).
Furthermore, If N — o0, then ey = 0.

Proof. 1t has been omitted due to space limitations and will
be presented in the journal version of this work. [

Before proceeding to our main theorem establishing the
finite-time stability properties of our concurrent learning
law, the following definition introducing the concept of a
sufficiently rich data set is needed.

Definition 3. The recorded data set {w (ti)}f:1 is k-
sufficiently rich if the matrix Q = [w(¢1)...w (tx)] has
rank(Q2) = N. N

It follows from Definition 3 that a recorded data set is
k-sufficiently rich if and only if the set {w (ti)}i;l contains
N linearly independent vectors.

Theorem 2. Consider the weight parameter error dynamics
given by (14). Define (-) = % let €qm, Wm > 0,
and 6 € (0,1), and assume that the recorded data set
{w (ti)}i;l is k-sufficiently rich. Then the following state-
ments hold:

i) If eg = 0, then the zero solution W(t) = 0 to (14)
is globally uniformly finite-time stable with a settling-time
function T : RN — [0, 00) such that

W), 7

T (W (0)) < - , W(0)eRV,
(70) < e VO
where v € (0,1).
ii) Define
v = ot Q)(1 - 0)(1 - ).

If eg #£ 0, then the solutions to (14) are globally uniformly
ultimately bounded with the ultimate bound

e (k+ 1)el @m \
0o ’YJrl(Q)

min

and a settling-time function T : RN — [0,00) such that

TV (0)) < W)y —p .

W (0) e RY.
(6924

In particular, for every initial condition W(O) e RY., the
solution W (t), t = 0, to (14) satisfies

1

. WO 2a)F v 7
|W<t>|2<m< L 5 t) ,

t<T (W(o)) :

W (®)]2 < p

Proof. 1t has been omitted due to space limitations and will
be presented in the journal version of this work. [

t>T (W(O)) .

Remark 2. In the absence of the value function approxi-
mation error, the critic weights will converge to the opti-
mal weights W™ in finite time. However, even though the
settling-time function is unknown, it is upper bounded by
a strictly increasing function of |[T¥(0)[2 that depends on
the parameter . Thus, the larger the learning rate « is, the
faster the convergence of the parameter error to the origin
will be. On the other hand, in the presence of the value
function approximation error, it turns out that for every initial
condition W (0) € RY, the solution W (t), t > 0, to (14)

reaches the compact set B,, [0] in finite time, that is, at most
W (0 p'
ao Hl,tl(%)sg)(l 0)(1—)’ B
time. Note that 7'(W (0)) = 0 if and only if W (0) € B,, [0].
Finally, one can reduce the parameter error along with the
settling time by choosing the parameters v and k properly
since they determine the size of pu, that is, the size of the

ball B, [ ] as well as the upper bound of the settling time
W (0 )H -
ao tH(Q)(1- 9)(1

)

in time and remains therein for all future

for every initial condition W (0) € RV,

O
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The next theorem investigates the stability properties of
the augmented dynamics composed of the adaptive law (13)
for updating the critic and the resulting closed-loop dynamics
after substituting in (1) the approximate optimal controller
(11), that is,

#(t) = f(x(t) + G(x(t))a(d),

Theorem 3. Consider the weight parameter error dynamics
(14) with the closed-loop dynamics (15), and let Z &
[WT, 2T]T € RN x X be the state vector of the augmented
dynamics (14) and (15). Define () = % let
€Hm, Wm, d > 0, and v, 6 € (0,1). Suppose that the
recorded data set {& (t,;)}le is k-sufficiently rich, let ey %
0, and define

- <d+ (k + 1)egmwm>

2(0) =z, t=0.(135)

==

ZaR(9)

Then, the compact set Z = B[0] x X < RN x X is finite-

time attractive with a settling-time function T : RN x X —
[0,00) such that

) <« WO g
Qo (@)1= 0)(1=7)

T (2(0) ., Z(0) e RN x X.
In particular, for every initial condition Z(O) e RN x
X, the solutions Z(t), t = 0, to (14) and (15) satisfy
dist (Z(t),Z) —0,t>T (Z(o)).

Proof. 1t has been omitted due to space limitations and will
be presented in the journal version of this work. [

Remark 3. According to Theorem 3, it follows that for every
initial condition Z(0) € RN x X, there exists T (Z(O)) =0
such that the solution Z(t), t > 0, to (14) and (15) converges
to Z in finite time. However, note that T (Z (0)) =0 if and

only if Z (0) € Z. Finally, note that Z is a compact set and
not necessarily a ball associated with a particular norm. [

IV. SIMULATION RESULTS

Consider a spacecraft with one axis of symmetry given by

w1 (t) = 123W30J2(t) + Uuq (t), w1 (O) = W10, (16)
wa(t) = —Iazwswi (t) + ua(t), wa(0) = wao, (17

where Ios = (Iy—I3)/I1, I, I, and I3 denote the
spacecraft principal moments of inertia such that 0 < [; =
I < I3, w1 - [07OO> —>R, wo : [0,00) —’R, and ws € R are
the components of the angular velocity vector with respect
to a given inertial reference frame expressed in a central
body reference frame, and u; and uy denote the spacecraft
control moments. Note that the dynamical system (16) and
(17) can be cast in the form of (1) withn =2, m =2, x =
[wi, wo]®, f(z) = [[oswswa, —Iaswswn]", G(z) = I,
and u = [u1, us] .

Next, towards structuring the finite-time optimal
control problem, the terms composing the
performance integrand (3) are given by Li(z) =

t>0,

—

State

0 1 2 3 4 5 6
Time(s)

Fig. 1. The time evolution of the state trajectories x(¢), ¢ = 0. Once
the learning procedure terminates, the state trajectories converge to
the origin in finite time.

_2 2 _2 2
(%le.’EHQ 3 4 IQgUngg) + g—gwﬂxb 34 123w3w1) y

LQ(LC) =2 [—.[230.)30.)2, IQg(Ugwl , and R(.Z‘) = _[2.
However, by employing inverse optimal control

arguments, the authors of [27] have unveiled that

the value function together with the optimal control

2
law are given by V (z) = (2Tz)® and w*(z) =

2 2 T
[ —%le.’EHQ_E — I23(U3WQ, —%WQHCCHQ_E + 1230.)3&)1 ] B
respectively, whereas the settling-time funcltion T:R? -
[0,00) is such that T (z0) < 2 (w¥, +w3y)®, zo € R

Let Iy = I, = 0.4kg -m?, I3 = 0.2 kg -m?, wy =
4 Hz, wog = —4 Hz, ws =1 Hz, o = 10, and v = 0.9.
Concerning critic, the initial weights are randomly initialized
within the interval [0, 1] and the basis functions are selected
as ¢p(z) = [ 2}, w120, a3 ]T. To enable the collection of
sufficiently rich data along the closed-loop system trajecto-
ries, we inject a dithering excitation to the control input (11)
in the form of p(¢) = 0.01 (sin(1.37t) + cos(1.37t)), 0 <
t <0.5.

Fig. 1 depicts the evolution of the controlled state tra-
jectories over time. Note that z(t) = 0 for ¢ > 4.787 sec,
which confirms that T (zg) < 7.1433 sec. Fig. 2 illustrates
the finite-time convergence of the critic weights, while Fig. 3
shows the evolution of the approximate optimal control law
(11). It is evident that the learning is attained in a finite time
of ¢t = 4.452 sec.

V. CONCLUSION AND FUTURE WORK

This paper developed a critic-only RL-based algorithm
for learning in finite time the value function alongside the
optimal control policy associated with the finite-time optimal
control problem for nonlinear systems. Under the assumption
of sufficiently rich data, which is an easier condition to
satisfy compared to the traditional PE condition, we devised a
non-Lipschitz data-driven learning law for updating the critic
weights while establishing finite-time stability via Lyapunov
analysis. We also highlighted that the proposed learning

816
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Fig. 2. The time evolution of the critic weights W (t), ¢ > 0. Note
that the learning is achieved in a finite time of ¢ = 4.452 sec.
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Fig. 3. The time evolution of the approximate optimal controller
au(t), t = 0.

mechanism is composed only of a critic and thus exhibits
a lower complexity than other architectures in the literature
whose structure additionally requires an actor. Simulation
results validated the feasibility of the proposed learning algo-
rithm. Future research endeavors will extend this framework
to address the finite-time optimal trajectory tracking control
problem.
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