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A B S T R A C T   

The three-compartment-controller with enhanced recovery (3CC-r) model of fatigue has been validated, in 
multiple stages and by different methods, for sustained (SIC) and intermittent isometric contractions (IIC). It has 
also been validated using a common methodology for both contraction types simultaneously to derive sex- 
specific representative model parameters for each functional muscle group, at the expense of reducing the 
sample size used to estimate each parameter set. In this study, a sensitivity analysis of the model to both vari
ations in experimental measurements and to variations in the parameter values is carried out to estimate the 
robustness of the parameter sets. Torque decline prediction error is found to increase only slowly with increasing 
randomness injected into experimental data, with <1 % increases in error for 8–29 % variation in experimental 
endurance times. The results demonstrate that the obtained parameters from our previous study are reliable and 
can be used for fatigue prediction in multiple scenarios without significant loss of accuracy. For all sexes and 
functional muscle groups examined, the fatigue process dominates recovery in the experimental conditions 
examined. Finer estimates of the model’s recovery parameter will likely require changes to the experiment design 
in future studies.   

1. Introduction 

Muscle fatigue (MF) is a temporary, exercise-induced reduction of a 
muscle’s force generating capacity (Bigland-Ritchie et al., 1995). It is a 
complex neuromuscular phenomenon with multiple contributing cen
tral and peripheral mechanisms (Vøllestad, 1997), but which typically 
manifests as any combination of discomfort, muscle pain, a sense of 
tiredness, and reduced performance (Chaffin, 1999). 

Fatigue is a useful metric in the fields of rehabilitation, occupational 
safety, and ergonomics. While its occurrence can never be entirely 
avoided, steps may be taken to minimize its extent in occupational 
settings through careful task analysis and design. The goal, in each case, 
is to design tasks that never exceed the user’s capacity. Since direct 
measurements of strength are often time-consuming, invasive, and 
impractical during actual task performance, muscle fatigue models 
(MFMs) are employed to predict the change in strength through the 
duration of a task. 

Empirical and theoretical models exist for activity types ranging 
from sustained isometric contractions (SICs) to dynamic contractions. 
The relatively simple empirical models, fit to experimental data, deal 

with SICs due to the limited number of task parameters required to 
define an activity, i.e., target load (TL) (Rohmert, 1960). The two 
additional parameters required to define intermittent isometric tasks 
(duty cycle (DC) and cycle time (CT)) necessitate the use of theoretical 
models to obtain any useful predictions. The three-compartment- 
controller with enhanced recovery (3CC-r) model (Looft et al., 2018) 
can predict strength decline during both SICs and IICs, and it has pre
viously been indicated that it could be employed for dynamic contrac
tions as well (Xia and Frey-Law, 2008). Moreover, its model parameters 
have been calculated at the functional muscle group level for both sexes 
separately for isometric contractions (Rakshit et al., 2021), but the 
robustness of the model parameters was not examined. 

The 3CC-r model divides the constituent motor units (MU) of a 
muscle or muscle group into 3 compartments corresponding to 3 
states—resting, active, and fatigued, and defines rules (Equations 1–6) 
for the rates at which they transition from one state to another. 

dMR

dt
= − C(t) + r(k, TL) × R × MF (1)  
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dMA

dt
= C(t) − F × MA (2)  

dMF

dt
= F × MA − r(k, TL) × R × MF (3)  

If MA < TL and MR > TL − MA, C(t) = LD × (TL − MA) (4)  

If MA < TL and MR < TL − MA, C(t) = LD × MR (5)  

If MA ≥ TL, C(t) = LR × (TL − MA) (6) 

MR, MA, and MF are the fractions of motor units in the muscle that are 
currently resting, active, and fatigued, respectively. C(t) is a bidirec
tional activation-deactivation drive. F and R are the fatigue and recovery 
rate constants, respectively, and r is a recovery multiplier that is a 
discontinuous function of target load (TL) and a constant k, as defined in 
Equation (7). The model is relatively insensitive to the muscle force 
development (LD) and relaxation (LR) factors (Xia and Frey-Law, 2008), 
so a constant value of 10 is chosen for both. 

r =

{
k, if TL = 0
1, if TL > 0 (7) 

Only MUs in the active state can generate force. Fatigued MUs are 
unable to generate any force, and resting MUs may move to the active 
state if required to achieve the target load. When comparing model 
predictions to experimental data, it is assumed that all MUs are initially 
resting (MR = 1) when the participant is fully rested. When they perform 
an MVC, all MUs move to the active state (MA = 1) for a brief instant 
before being redistributed among the resting and fatigued compart
ments. The torque output produced by the participant is then directly 
related to the number of active MUs, and is calculated as: 

T = MVC × MA (8)  

where MVC is the maximum voluntary contraction torque measured for 
that muscle group in an unfatigued state. Experimentally, torque decline 
at a given time t is the difference between the MVC conducted at the 
beginning of experiment and one conducted at time t. Since fatigued 
MUs cannot contribute to torque production, the torque decline is 
calculated by the model simply as: 

TD = MVC × MF (9) 

Rashedi and Nussbaum (2015) conducted a sensitivity analysis of the 
3CC-r model which, at the time, did not include an augmented rest re
covery parameter. They analyzed the variance in endurance time (ET) at 
36 combinations of the 3 task parameters, and across a range of model 
parameters (F, R) corresponding to thrice the standard deviation within 
the model parameters across all joints. As the outcome variable was 
chosen to be ET, only general and limited assessments of the model’s 
accuracy could be made. Here, we choose the outcome variable to be the 
torque decline (TD) prediction error (the weighted root mean square 
difference between the experimental and the model-predicted normal
ized TDs at a given experimental ET) which allows us to assess the 
model’s accuracy across different regions of the parameter space. 

Parameters that best fit a given set of experimental data can readily 
be obtained through a computationally expensive but relatively 
straightforward process of optimization (Rakshit et al., 2021). However, 
it is vital to understand to what extent those parameters can be relied 
upon to also represent other similar datasets. To that end, in this work 
we analyze the variation in the prediction error for multiple simulated 
datasets that we generate using the base dataset. This gives us an esti
mate of the model’s performance for datasets that were not used to 
develop the parameters. Additionally, we study how far the predictions 
diverge when the constituent model parameters are perturbed. Plots of 
the error sensitivity graphically depict the model behavior for mixed- 
task datasets over various regions of the parameter space and can help 

identify which parameters may require further tuning, and which may 
be treated as constants. 

2. Methods 

The robustness of the model is tested in two key ways: by calculating 
the sensitivity of the prediction errors (1) to variations in the underlying 
experimental data, and (2) to variation in model parameters. Each 
method relies on an error calculation routine that takes as input as a set 
of experimental data points (task parameters and endurance times) and 
optimized model parameters (F, R, r) for the corresponding sex ×

functional muscle group (FMG) combination, and which outputs the 
weighted root mean square deviation (wRMSD) of the model predicted 
TD from the experimental TD using the input model parameters. The 
experimental data used for this work comes from a collection of 172 
studies found in literature, the full list of which is detailed in (Rakshit 
et al., 2021) along with the inclusion and exclusion criteria, and which 
was itself culled from the meta-analyses of SICs (Frey-Law and Avin, 
2010) and IICs (Looft et al., 2018). The combined data is organized in 
the form of sets of task parameters (TL, DC, CT) and the associated 
endurance times, along with sex-specific sample sizes. For most studies, 
the torque decline is simply the difference between 100 % MVC and the 
target load at the ET, but there are also some studies which detail torque 
decline at intermediate time points. These are included as well. 

2.1. Sensitivity to experimental data variation 

Experimental data points are often treated as the “true” values that a 
model must be able to predict with a certain accuracy. However, 
experimental data may itself contain variations due to factors such as 
differences in calibration and varying accuracies of equipment, differ
ences in methodology used to measure MVCs (Vera-Garcia et al., 2010), 
varying levels of participant effort and techniques to control them, 
differing physiologies between participants, etc. All of these can 
contribute to variations in the measured endurance time for the same set 
of task conditions. Since the measured variable for majority of the 
studies in the experimental dataset was ET, we chose to introduce var
iations into ET data (input), and then examine the corresponding 
changes to the TD prediction error (output). 20 new datasets are 
generated based on the original dataset. Each of these corresponds to a 
different maximum ET variation percentage p, ranging from 5 to 100 in 
increments of 5. p is the maximum percentage variation introduced into 
each ET data point. For instance, when p = 15, an ET of 200 s in the base 
dataset may be changed to any value between 170 s and 230 s in the 
generated dataset. The original dataset with maximum 0 % injected ET 
variation corresponds to p = 0. At the other extreme, p = 100 corre
sponds to a dataset in which some of the individual ETs may have been 
changed by as much as 100 % of their original values (either reduced to 
0 s or doubled). The generated i-th ET (ETgen

ip ) within a dataset corre
sponding to p% maximum injected variation is expressed as: 

ETgen
ip = ETi0 × (1 + 0.01p × rand( − 1, 1) ) (10)  

where rand( −1, 1) is a random whole number between −1 and 1, and 
ETi0 is the unaltered i-th endurance time. 

The task parameters (TL, DC, CT) and the TD corresponding to a 
given ET are kept intact for every data point in all the generated data
sets. Then, the 3CC-r model is used to generate TD predictions for each 
set of task parameters present in experimental data. The wRMSD be
tween the predicted and the experimental TDs is calculated at the 
generated experimental ET by the expression: 

wRMSDp =
ns

∑
ns

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i

(
TDgen

ip − TDmod
ip

)2

nd

√
√
√
√

(11)  
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where ns is the number of participants of sex s contributing to a study, 
∑

ns is the total number of participants of sex s counted across all the 
studies contributing to data for a particular functional muscle group, 
TDgen

ip 
is the i-th recorded torque decline in the study corresponding to 

ETgen
ip , TDmod

ip 
is the model-predicted torque decline corresponding to 

ETgen
ip , and nd is the number of published data points in the study. Since 

mean endurance times published for large studies may not be repre
sentative of the entire population, the published ET is always weighted 
by ns∑

ns 
which assigns a proportionally larger error for larger studies. The 

random number generator seed is reset for each study so that the results 
are reproducible. Finally, 21 values of wRMSDp are obtained for each 
sex × FMG combination corresponding to p = 0–100 % injected error (in 
increments of 5 %). 0 % error corresponds to the original dataset with 
unaltered endurance times. 

2.2. Sensitivity to parameter variation 

To verify that the optimum parameter sets derived correspond to the 
minimum error and to investigate the change in prediction error with 
variations in F and R, a sensitivity analysis is set up by first simulta
neously varying F and R (23 values of each). F varies between 0.001 and 
0.040, while R is varied between 0.0001 and 0.0060. These common 
limits are chosen to cover 200 % the optimized F and R values (see 
Table 1) for all sexes and FMGs. 

The wRMSD between the modeled (using a specific pair of F, R 
values) and the expected TDs (from the base dataset, with 0 % injected 
variation) is calculated as: 

wRMSD0(F, R) =
ns

∑
ns

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i

(
TDexp

i0 − TDmod
i0 (F, R)

)2

nd

√
√
√
√

(12)  

where TDexp
i0 

is the i-th experimental TD with 0 % injected error, TDmod
i0 (F,

R) is the modeled TD for specific (F, R) pair at a time corresponding to 
the unmodified i-th experimental ET. 

A generic parameter sensitivity is defined as the change in the 
weighted RMS deviation (between the modeled and expected TD) in Eq. 
(12) due to an infinitesimal change in a generic model parameter X, and 
calculated as: 

ϕX =
∂wRMSD0

∂X
(13) 

The normalized generic parameter sensitivity is the ratio of the 
fractional change in the weighted RMS deviation in Eq. (12) due to an 
infinitesimal fractional change in the generic parameter X, and is 
therefore given by: 

ϕX =
∂wRMSD0

∂X
×

X
wRMSD0

(14) 

Had an analytical expression been available for wRMSD as a function 
of the parameter X, the normalized generic parameter sensitivity ϕX 
could also have been expressed analytically. However, TD predictions 
using the 3CC-r model are neither analytical nor continuous and 

therefore need to be obtained by numerically solving the governing 
equations using a pair of (F, R) values at each time step between 0 and 
the specified ET. The normalized generic parameter sensitivity ϕX must 
therefore be expressed in finite difference form as: 

ϕX =
wRMSD0q+1 − wRMSD0q

Xq+1 − Xq
×

Xq+1 + Xq

wRMSD0q+1 + wRMSD0q

(15) 

The fatigue and recovery parameter sensitivities are therefore simi
larly expressed, in finite difference form, as: 

ϕF(F, R) =
wRMSD0m+1 (R) − wRMSD0m (R)

Fm+1 − Fm

×
Fm+1 + Fm

wRMSD0m+1 (R) + wRMSD0m (R)
(16)  

ϕR(F, R) =
wRMSD0n+1 (F) − wRMSD0n (F)

Rn+1 − Rn

×
Rn+1 + Rn

wRMSD0n+1 (F) + wRMSD0n (F)
(17)  

where m indexes over the range of F values, and n indexes over the range 
of R values, wRMSD0m (R) is the weighted RMS deviation corresponding 
to the m-th F value and a given R value, and wRMSD0n (F) is the weighted 
RMS deviation corresponding to the n-th R value and a given F value. 
Fig. 1 shows a typical plot of RMS prediction error over a range of F and 
R values. wRMSD0m+1 , wRMSD0m , (dark blue) Fm+1, Fm (orange), 
wRMSD0n+1 , wRMSD0n (light blue), and Rn+1, Rn (red) are marked. 

Since minor changes in F and/or R can result in extending or 
shortening the ET for an IIC task by up to one full cycle, localized peaks 
sometimes show up in the corresponding wRMSD0 surfaces. These peaks 

Table 1 
Optimized parameter values for the 3CC-r model, segregated by sex and functional muscle group (Rakshit et al., 2021).  

Joint Functional muscle group Female Male   

F R r F R r 

Ankle Dorsiflexors  0.00746  0.00081  4.97  0.00725  0.00096 10.36 
Elbow Extensors  0.01874  0.00206  21.22  0.01269  0.00085 30.21  

Flexors  0.00965  0.00197  6.22  0.01302  0.00188 8.99 
Hand First dorsal interosseous  –  –  –  0.01637  0.0036 3.66  

General handgrip  0.01159  0.00217  7.39  0.01238  0.00178 8 
Knee Extensors  0.01407  0.00185  6.32  0.0142  0.00153 10.96  

Fig. 1. Weighted RMS deviation in model prediction as a function of F and R 
for a typical sample. wRMSD0 is calculated separately for each combination of 
F, R to form a 3D surface. F and R sensitivities are calculated with a finite 
difference approach using adjacent points on the surface and the corresponding 
F and R values. 
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propagate to the ϕF and ϕR surfaces, resulting in what appear to be small 
discontinuities when plotted on a coarse parameter grid. To more clearly 
reveal the overall trend of sensitivity, the resulting values are finally 
smoothed out to eliminate local peaks by nearest-neighbor averaging, 
where each sensitivity value is replaced by the arithmetic mean of itself 
and its 8 surrounding values on the grid. 

Only sensitivity to the F and R parameters are studied here, while 
using constant values of the augmented recovery parameter r detailed in 
Table 1. For error sensitivity to r the reader is referred to (Looft et al., 
2018). 

3. Results 

3.1. Experimental data errors 

The variation in wRMSD with increasing injected TD error is depic
ted in Fig. 2 (See Table 1 for optimized parameter values used) for all 
possible sex × FMG combinations. The plot for first dorsal interosseous 
(female) is omitted due to insufficient studies contributing to the un
derlying experimental data. Prediction errors increase steadily with 
increasing injected error for all groups. 

Fig. 2. Root mean square prediction error as a function of maximum percentage injected error in experimental ET data. The plot for the first dorsal interosseous in 
females is excluded due to insufficient sample size. The horizontal intercepts mark the minimum prediction error and the MID (1% more than the minimum error) for 
each sex, and the vertical intercepts mark the maximum percentage of injected error corresponding to the MID. 
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3.2. Parameter variation 

The wRMSD0 for each sex × FMG combination plotted against a grid 
of F and R is depicted in Fig. 3. The combination excluded in Fig. 1 is also 
excluded here for the same reason. Normalized fatigue and recovery 
parameter sensitivities, derived from the wRMSD0 plots for the same 
combinations, are depicted in Fig. 4 (female) and Fig. 5 (male), 
respectively. 

4. Discussion 

As expected, RMS prediction errors are observed to increase with 

increasing fractions of maximum injected TD error into the experimental 
data. However, there is only a marginal increase in wRMSDp (<1%) 
compared to the base dataset for up to 7.6 % injected error in the case of 
female general handgrip and up to 29.3 % injected error for male elbow 
flexors (Table 2). The range of injected error that gives rise to a mini
mally important difference (MID) of < 1 % wRMSDp is between ~ 8 % 
and ~ 29 % for the other sex × FMG combinations, indicating that there 
will be negligible change in model predictions for a reasonable variation 
in measured endurance times. For fractions higher than 40 %, wRMSDp 

increases are disproportionately higher and too large to yield valuable 
estimates of fatigue. Thus, the model using optimized parameters is 
capable of accommodating reasonable (up to 8 %) ET deviations across 

Fig. 3. Weighted RMS prediction error as a function of F and R for all evaluated functional muscle groups for female (left) and male (right) participants. The plot for 
the first dorsal interosseous depicts wRMSD0 for male participants only. The 4 nodes marked in red in each plot are those surrounding the point of minimum error 
(optimized F, R values). 
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all sexes and FMGs with a negligible performance penalty. In practice, 
the model should be able to predict TD for a given time to within 1 % of 
the base error value for each FMG. For higher fractions of maximum 
injected error, the prediction errors are observed to increase, as is the 

sensitivity of the errors. The increased sensitivity is explained by the fact 
that since a higher fraction of each ET is being replaced by a random 
time value, the model predictions for each experimental condition 
(which do not change) are compared to the experimental TDs at 

Fig. 3. (continued). 
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Fig. 4. Sensitivity plots for all evaluated functional muscle groups for female participants. On the left are F sensitivity plots, and on the right are R sensitivity plots. 
The 4 nodes marked in red in each plot are those surrounding the point of minimum error (optimized F, R values). 
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increasingly different time points. 
In each of the F and R sensitivity plots, it is observed that the range of 

ϕF is always 2–3 times greater than the maximum ϕR within the specified 
(F, R) range, corroborating prior findings of the dominance of the fatigue 
compared to the recovery process (Rashedi and Nussbaum, 2015) where 
the sensitivity of ET was studied. A thorough investigation of the R 

parameter will therefore require a dataset whose experiments allow for 
greater recovery. It must be noted that the model, like the physiological 
system it represents, tends to conserve and recover strength by boosting 
recovery when excessively fatigued, so torque decline (or strength) does 
not vary excessively beyond a certain time despite continued cyclic 
exertion. This allows for absolute sensitivity of TD to be much lower 

Fig. 5. Sensitivity plots for all evaluated functional muscle groups for male participants. On the left are F sensitivity plots, and on the right are R sensitivity plots. The 
4 nodes marked in red in each plot are those nearest to the point of minimum error (optimized F, R values). 
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than absolute sensitivity of ET, and for absolute sensitivity of TD pre
diction error to be lower still as only a small variation in TD will be found 
for a relatively wide range of ETs given fixed task conditions, but the 
normalization of the sensitivities in each case makes them comparable. 

Both ϕF and ϕR are also observed to flatten out at high F and low R 
values (which also correspond to shorter ETs), confirming the model’s 
propensity for having low ET sensitivity at those conditions. While this 
may appear to make it more difficult for the model to be employed in 
low-demand tasks (with longer endurance times), the minima of the 
wRMSD0 plots in the low F-low R regions and the existence of extended 
zones of near-zero sensitivity in all the ϕF and ϕR plots indicate that 
proper selection of model parameters for these common tasks may be 
easier in practice than previously thought. It is also observed that the 
zones of zero sensitivity in both ϕF and ϕR always pass through the re
gion of minimum error in the corresponding wRMSD0 surface, which is a 
necessary consequence of the grid-search method of finding the opti
mized model parameters. In the case of the elbow extensors for female 
participants, the optimized parameters used result in ϕF ≈ 0.95 (inter
polated from the four surrounding nodes) implying that a lower F-value 
(associated in this case with a lower ϕF) is necessary to obtain minimum 
prediction error, but the current optimized R-value is still suitable. 

A number of important limitations remain in this analysis. The 

inclusion of studies that report strength as an aggregate for its male and 
female participants may skew the prediction error for both sexes, since 
the true value for neither group is available, and the average must be 
assumed to be true for both groups. The preponderance of SIC data (83 
% of the total participants performed SICs) and the overrepresentation 
of male participants, who represented 72 % of the total sample size, also 
makes the conclusions less reliably applicable to women and IICs. Lastly, 
since a pseudo-random number generator (PRNG) was used for repeat
ability and the individual sample sizes for each combination of task 
conditions were still rather limited, it is possible that the choice of PRNG 
and of the seed influenced the values of the maximum allowable ET 
variation for a minimally important difference of 1 %. However, 
different choices in this regard are not expected to introduce vast 
changes, and the general conclusions without regard to the exact ranges 
of allowable variation should still hold. 

5. Conclusion 

Prior work (Rashedi and Nussbaum, 2015) has indicated that the 
3CC-r model’s predicted endurance times are more sensitive under 
“easy” task conditions which are less likely to be a target for MFM 
application. Despite this heightened sensitivity, the model appears to 
have fairly stable predictions under mixed task conditions as evidenced 
by the presence of extended low-sensitivity zones in its sensitivity plots. 
Additionally, it is also able to retain its predictive accuracy for reason
able deviations in recorded endurance times, making it a good candidate 
for further development and extension to wider task conditions. Future 
work should focus on expanding the model’s capabilities to include 
prediction fatigue for low-to-medium velocity dynamic contractions to 
make it more occupationally relevant. 
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