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The three-compartment-controller with enhanced recovery (3CC-r) model of fatigue has been validated, in
multiple stages and by different methods, for sustained (SIC) and intermittent isometric contractions (IIC). It has
also been validated using a common methodology for both contraction types simultaneously to derive sex-
specific representative model parameters for each functional muscle group, at the expense of reducing the
sample size used to estimate each parameter set. In this study, a sensitivity analysis of the model to both vari-
ations in experimental measurements and to variations in the parameter values is carried out to estimate the
robustness of the parameter sets. Torque decline prediction error is found to increase only slowly with increasing
randomness injected into experimental data, with <1 % increases in error for 8-29 % variation in experimental
endurance times. The results demonstrate that the obtained parameters from our previous study are reliable and
can be used for fatigue prediction in multiple scenarios without significant loss of accuracy. For all sexes and
functional muscle groups examined, the fatigue process dominates recovery in the experimental conditions
examined. Finer estimates of the model’s recovery parameter will likely require changes to the experiment design

in future studies.

1. Introduction

Muscle fatigue (MF) is a temporary, exercise-induced reduction of a
muscle’s force generating capacity (Bigland-Ritchie et al., 1995). Itis a
complex neuromuscular phenomenon with multiple contributing cen-
tral and peripheral mechanisms (Vgllestad, 1997), but which typically
manifests as any combination of discomfort, muscle pain, a sense of
tiredness, and reduced performance (Chaffin, 1999).

Fatigue is a useful metric in the fields of rehabilitation, occupational
safety, and ergonomics. While its occurrence can never be entirely
avoided, steps may be taken to minimize its extent in occupational
settings through careful task analysis and design. The goal, in each case,
is to design tasks that never exceed the user’s capacity. Since direct
measurements of strength are often time-consuming, invasive, and
impractical during actual task performance, muscle fatigue models
(MFMs) are employed to predict the change in strength through the
duration of a task.

Empirical and theoretical models exist for activity types ranging
from sustained isometric contractions (SICs) to dynamic contractions.
The relatively simple empirical models, fit to experimental data, deal
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with SICs due to the limited number of task parameters required to
define an activity, i.e., target load (TL) (Rohmert, 1960). The two
additional parameters required to define intermittent isometric tasks
(duty cycle (DC) and cycle time (CT)) necessitate the use of theoretical
models to obtain any useful predictions. The three-compartment-
controller with enhanced recovery (3CC-r) model (Looft et al., 2018)
can predict strength decline during both SICs and IICs, and it has pre-
viously been indicated that it could be employed for dynamic contrac-
tions as well (Xia and Frey-Law, 2008). Moreover, its model parameters
have been calculated at the functional muscle group level for both sexes
separately for isometric contractions (Rakshit et al., 2021), but the
robustness of the model parameters was not examined.

The 3CC-r model divides the constituent motor units (MU) of a
muscle or muscle group into 3 compartments corresponding to 3
states—resting, active, and fatigued, and defines rules (Equations 1-6)
for the rates at which they transition from one state to another.
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Mg, My, and M are the fractions of motor units in the muscle that are
currently resting, active, and fatigued, respectively. C(t) is a bidirec-
tional activation-deactivation drive. F and R are the fatigue and recovery
rate constants, respectively, and r is a recovery multiplier that is a
discontinuous function of target load (TL) and a constant k, as defined in
Equation (7). The model is relatively insensitive to the muscle force
development (Lp) and relaxation (Lg) factors (Xia and Frey-Law, 2008),
so a constant value of 10 is chosen for both.

[k if TL=0
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Only MUs in the active state can generate force. Fatigued MUs are
unable to generate any force, and resting MUs may move to the active
state if required to achieve the target load. When comparing model
predictions to experimental data, it is assumed that all MUs are initially
resting (Mg = 1) when the participant is fully rested. When they perform
an MVC, all MUs move to the active state (M, = 1) for a brief instant
before being redistributed among the resting and fatigued compart-
ments. The torque output produced by the participant is then directly
related to the number of active MUs, and is calculated as:

T =MVC x M, ®

where MVC is the maximum voluntary contraction torque measured for
that muscle group in an unfatigued state. Experimentally, torque decline
at a given time t is the difference between the MVC conducted at the
beginning of experiment and one conducted at time t. Since fatigued
MUs cannot contribute to torque production, the torque decline is
calculated by the model simply as:

TD = MVC x Mg (C)]

Rashedi and Nussbaum (2015) conducted a sensitivity analysis of the
3CC-r model which, at the time, did not include an augmented rest re-
covery parameter. They analyzed the variance in endurance time (ET) at
36 combinations of the 3 task parameters, and across a range of model
parameters (F, R) corresponding to thrice the standard deviation within
the model parameters across all joints. As the outcome variable was
chosen to be ET, only general and limited assessments of the model’s
accuracy could be made. Here, we choose the outcome variable to be the
torque decline (TD) prediction error (the weighted root mean square
difference between the experimental and the model-predicted normal-
ized TDs at a given experimental ET) which allows us to assess the
model’s accuracy across different regions of the parameter space.

Parameters that best fit a given set of experimental data can readily
be obtained through a computationally expensive but relatively
straightforward process of optimization (Rakshit et al., 2021). However,
it is vital to understand to what extent those parameters can be relied
upon to also represent other similar datasets. To that end, in this work
we analyze the variation in the prediction error for multiple simulated
datasets that we generate using the base dataset. This gives us an esti-
mate of the model’s performance for datasets that were not used to
develop the parameters. Additionally, we study how far the predictions
diverge when the constituent model parameters are perturbed. Plots of
the error sensitivity graphically depict the model behavior for mixed-
task datasets over various regions of the parameter space and can help
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identify which parameters may require further tuning, and which may
be treated as constants.

2. Methods

The robustness of the model is tested in two key ways: by calculating
the sensitivity of the prediction errors (1) to variations in the underlying
experimental data, and (2) to variation in model parameters. Each
method relies on an error calculation routine that takes as input as a set
of experimental data points (task parameters and endurance times) and
optimized model parameters (F, R, r) for the corresponding sex x
functional muscle group (FMG) combination, and which outputs the
weighted root mean square deviation (WRMSD) of the model predicted
TD from the experimental TD using the input model parameters. The
experimental data used for this work comes from a collection of 172
studies found in literature, the full list of which is detailed in (Rakshit
et al., 2021) along with the inclusion and exclusion criteria, and which
was itself culled from the meta-analyses of SICs (Frey-Law and Avin,
2010) and IICs (Looft et al., 2018). The combined data is organized in
the form of sets of task parameters (TL, DC, CT) and the associated
endurance times, along with sex-specific sample sizes. For most studies,
the torque decline is simply the difference between 100 % MVC and the
target load at the ET, but there are also some studies which detail torque
decline at intermediate time points. These are included as well.

2.1. Sensitivity to experimental data variation

Experimental data points are often treated as the “true” values that a
model must be able to predict with a certain accuracy. However,
experimental data may itself contain variations due to factors such as
differences in calibration and varying accuracies of equipment, differ-
ences in methodology used to measure MVCs (Vera-Garcia et al., 2010),
varying levels of participant effort and techniques to control them,
differing physiologies between participants, etc. All of these can
contribute to variations in the measured endurance time for the same set
of task conditions. Since the measured variable for majority of the
studies in the experimental dataset was ET, we chose to introduce var-
iations into ET data (input), and then examine the corresponding
changes to the TD prediction error (output). 20 new datasets are
generated based on the original dataset. Each of these corresponds to a
different maximum ET variation percentage p, ranging from 5 to 100 in
increments of 5. p is the maximum percentage variation introduced into
each ET data point. For instance, whenp = 15, an ET of 200 s in the base
dataset may be changed to any value between 170 s and 230 s in the
generated dataset. The original dataset with maximum 0 % injected ET
variation corresponds to p = 0. At the other extreme, p = 100 corre-
sponds to a dataset in which some of the individual ETs may have been
changed by as much as 100 % of their original values (either reduced to
0 s or doubled). The generated i-th ET (ET‘gf") within a dataset corre-

sponding to p% maximum injected variation is expressed as:

ET{" = ET;, x (1+0.01p x rand(—1,1)) 10)
where rand(—1,1) is a random whole number between —1 and 1, and
ET;, is the unaltered i-th endurance time.

The task parameters (TL, DC, CT) and the TD corresponding to a
given ET are kept intact for every data point in all the generated data-
sets. Then, the 3CC-r model is used to generate TD predictions for each
set of task parameters present in experimental data. The wRMSD be-
tween the predicted and the experimental TDs is calculated at the
generated experimental ET by the expression:

2
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Table 1
Optimized parameter values for the 3CC-r model, segregated by sex and functional muscle group (Rakshit et al., 2021).
Joint Functional muscle group Female Male
F R r F R r
Ankle Dorsiflexors 0.00746 0.00081 4.97 0.00725 0.00096 10.36
Elbow Extensors 0.01874 0.00206 21.22 0.01269 0.00085 30.21
Flexors 0.00965 0.00197 6.22 0.01302 0.00188 8.99
Hand First dorsal interosseous - - - 0.01637 0.0036 3.66
General handgrip 0.01159 0.00217 7.39 0.01238 0.00178 8
Knee Extensors 0.01407 0.00185 6.32 0.0142 0.00153 10.96
where n; is the number of participants of sex s contributing to a study,
n, is the total number of participants of sex s counted across all the wRMSD, wRMSD,
m m+1
studies contributing to data for a particular functional muscle group,
TD{™ is the i-th recorded torque decline in the study corresponding to
E'I'ie", TD;’:"d is the model-predicted torque decline corresponding to
E'Iﬁe", and ny is the number of published data points in the study. Since
mean endurance times published for large studies may not be repre- e

sentative of the entire population, the published ET is always weighted
by Z’f‘n which assigns a proportionally larger error for larger studies. The

random number generator seed is reset for each study so that the results
are reproducible. Finally, 21 values of wRMSD, are obtained for each
sex x FMG combination corresponding to p = 0-100 % injected error (in
increments of 5 %). 0 % error corresponds to the original dataset with
unaltered endurance times.

2.2. Sensitivity to parameter variation

To verify that the optimum parameter sets derived correspond to the
minimum error and to investigate the change in prediction error with
variations in F and R, a sensitivity analysis is set up by first simulta-
neously varying F and R (23 values of each). F varies between 0.001 and
0.040, while R is varied between 0.0001 and 0.0060. These common
limits are chosen to cover 200 % the optimized F and R values (see
Table 1) for all sexes and FMGs.

The wRMSD between the modeled (using a specific pair of F, R
values) and the expected TDs (from the base dataset, with 0 % injected
variation) is calculated as:

2
n | (1D D R))
WRMSD,(F, R) = S -
s d

(12)

where TD;? is the i-th experimental TD with 0 % injected error, TD]"**(F,
R) is the modeled TD for specific (F, R) pair at a time corresponding to
the unmodified i-th experimental ET.

A generic parameter sensitivity is defined as the change in the
weighted RMS deviation (between the modeled and expected TD) in Eq.
(12) due to an infinitesimal change in a generic model parameter X, and
calculated as:

_ OwRMSD,

X X as

The normalized generic parameter sensitivity is the ratio of the
fractional change in the weighted RMS deviation in Eq. (12) due to an
infinitesimal fractional change in the generic parameter X, and is
therefore given by:

G, — OWRMSD) X

X X wRMSD, a4

Had an analytical expression been available for WRMSD as a function
of the parameter X, the normalized generic parameter sensitivity ¢y
could also have been expressed analytically. However, TD predictions
using the 3CC-r model are neither analytical nor continuous and

S
ST =
,'IIII;;;I;;

Fig. 1. Weighted RMS deviation in model prediction as a function of F and R
for a typical sample. WRMSD, is calculated separately for each combination of
F, R to form a 3D surface. F and R sensitivities are calculated with a finite
difference approach using adjacent points on the surface and the corresponding
F and R values.

therefore need to be obtained by numerically solving the governing
equations using a pair of (F, R) values at each time step between 0 and
the specified ET. The normalized generic parameter sensitivity ¢, must
therefore be expressed in finite difference form as:

— wRMSD,,,, — wRMSD,, Xg1 + X, a1s)
X X1 — X, WRMSD,,, + wRMSD,,

The fatigue and recovery parameter sensitivities are therefore simi-
larly expressed, in finite difference form, as:

_ WRMSD,,,(R) — wRMSD, (R)
B Fupr — Fo
o Fog1 +Fy
WRMSD,,_,(R) + wRMSD,, (R)

%F(Fa R)

(16)

_ WRMSDs,,,(F) — wRMSD,, (F)
B Rui1 — R,

R, +R,
(F) + wRMSDy, (F)

$R(F7 R)

17
* WRMSD, an

1

where m indexes over the range of F values, and n indexes over the range
of R values, WRMSD,, (R) is the weighted RMS deviation corresponding
to the m-th F value and a given R value, and wRMSD, (F) is the weighted
RMS deviation corresponding to the n-th R value and a given F value.
Fig. 1 shows a typical plot of RMS prediction error over a range of F and
R values. wRMSD,, ,, WRMSD,,, (dark blue) Fp.i, F, (orange),
WRMSD,,.,, WRMSD,, (light blue), and Ry1, R, (red) are marked.
Since minor changes in F and/or R can result in extending or
shortening the ET for an IIC task by up to one full cycle, localized peaks
sometimes show up in the corresponding wRMSD, surfaces. These peaks
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Fig. 2. Root mean square prediction error as a function of maximum percentage injected error in experimental ET data. The plot for the first dorsal interosseous in
females is excluded due to insufficient sample size. The horizontal intercepts mark the minimum prediction error and the MID (1% more than the minimum error) for
each sex, and the vertical intercepts mark the maximum percentage of injected error corresponding to the MID.

propagate to the ¢ and ¢ surfaces, resulting in what appear to be small
discontinuities when plotted on a coarse parameter grid. To more clearly
reveal the overall trend of sensitivity, the resulting values are finally
smoothed out to eliminate local peaks by nearest-neighbor averaging,
where each sensitivity value is replaced by the arithmetic mean of itself
and its 8 surrounding values on the grid.

Only sensitivity to the F and R parameters are studied here, while
using constant values of the augmented recovery parameter r detailed in
Table 1. For error sensitivity to r the reader is referred to (Looft et al.,
2018).

3. Results
3.1. Experimental data errors

The variation in wRMSD with increasing injected TD error is depic-
ted in Fig. 2 (See Table 1 for optimized parameter values used) for all
possible sex x FMG combinations. The plot for first dorsal interosseous
(female) is omitted due to insufficient studies contributing to the un-
derlying experimental data. Prediction errors increase steadily with
increasing injected error for all groups.
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Fig. 3. Weighted RMS prediction error as a function of F and R for all evaluated functional muscle groups for female (left) and male (right) participants. The plot for
the first dorsal interosseous depicts WRMSD® for male participants only. The 4 nodes marked in red in each plot are those surrounding the point of minimum error

(optimized F, R values).

3.2. Parameter variation

The wRMSD, for each sex x FMG combination plotted against a grid
of F and R is depicted in Fig. 3. The combination excluded in Fig. 1 is also
excluded here for the same reason. Normalized fatigue and recovery
parameter sensitivities, derived from the wRMSD, plots for the same
combinations, are depicted in Fig. 4 (female) and Fig. 5 (male),
respectively.

4. Discussion

As expected, RMS prediction errors are observed to increase with

increasing fractions of maximum injected TD error into the experimental
data. However, there is only a marginal increase in wRMSDP (<1%)
compared to the base dataset for up to 7.6 % injected error in the case of
female general handgrip and up to 29.3 % injected error for male elbow
flexors (Table 2). The range of injected error that gives rise to a mini-
mally important difference (MID) of < 1 % wRMSD, is between ~ 8 %
and ~ 29 % for the other sex x FMG combinations, indicating that there
will be negligible change in model predictions for a reasonable variation
in measured endurance times. For fractions higher than 40 %, wRMSD,
increases are disproportionately higher and too large to yield valuable
estimates of fatigue. Thus, the model using optimized parameters is
capable of accommodating reasonable (up to 8 %) ET deviations across



R. Rakshit et al. Journal of Biomechanics 141 (2022) 111224

Grip First Dorsal Interosseous - Male

VC

~ 70 \/;
/

/11

VL

WRMS prediction error (%

N (&) N o @
o i<} S =} =}

oo
M

WRMS prediction error (%MVC)

Fig. 3. (continued).

all sexes and FMGs with a negligible performance penalty. In practice, sensitivity of the errors. The increased sensitivity is explained by the fact
the model should be able to predict TD for a given time to within 1 % of that since a higher fraction of each ET is being replaced by a random
the base error value for each FMG. For higher fractions of maximum time value, the model predictions for each experimental condition
injected error, the prediction errors are observed to increase, as is the (which do not change) are compared to the experimental TDs at
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The 4 nodes marked in red in each plot are those surrounding the point of minimum error (optimized F, R values).
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increasingly different time points.

In each of the F and R sensitivity plots, it is observed that the range of
¢r is always 2-3 times greater than the maximum ¢y within the specified
(F, R) range, corroborating prior findings of the dominance of the fatigue
compared to the recovery process (Rashedi and Nussbaum, 2015) where
the sensitivity of ET was studied. A thorough investigation of the R

parameter will therefore require a dataset whose experiments allow for
greater recovery. It must be noted that the model, like the physiological
system it represents, tends to conserve and recover strength by boosting
recovery when excessively fatigued, so torque decline (or strength) does
not vary excessively beyond a certain time despite continued cyclic
exertion. This allows for absolute sensitivity of TD to be much lower
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Table 2
Maximum ET deviation resulting in MID of 1% in TD prediction errors for
different functional muscle groups.

Joint Functional muscle group ~ Maximum percentage of ET deviation injected
at MID
Male  Female
Ankle Dorsiflexors 15.8 12.5
Elbow  Extensors 13.8 23.2
Flexors 29.3 16.9
Hand First dorsal interosseous 7.7 -
General handgrip 9.4 7.6
Knee Extensors 20.2 19.6

than absolute sensitivity of ET, and for absolute sensitivity of TD pre-
diction error to be lower still as only a small variation in TD will be found
for a relatively wide range of ETs given fixed task conditions, but the
normalization of the sensitivities in each case makes them comparable.

Both ¢, and ¢ are also observed to flatten out at high F and low R
values (which also correspond to shorter ETs), confirming the model’s
propensity for having low ET sensitivity at those conditions. While this
may appear to make it more difficult for the model to be employed in
low-demand tasks (with longer endurance times), the minima of the
wWRMSD, plots in the low F-low R regions and the existence of extended
zones of near-zero sensitivity in all the ¢ and ¢, plots indicate that
proper selection of model parameters for these common tasks may be
easier in practice than previously thought. It is also observed that the
zones of zero sensitivity in both ¢ and ¢ always pass through the re-
gion of minimum error in the corresponding wRMSD, surface, which is a
necessary consequence of the grid-search method of finding the opti-
mized model parameters. In the case of the elbow extensors for female
participants, the optimized parameters used result in ¢y ~ 0.95 (inter-
polated from the four surrounding nodes) implying that a lower F-value
(associated in this case with a lower ¢y) is necessary to obtain minimum
prediction error, but the current optimized R-value is still suitable.

A number of important limitations remain in this analysis. The

inclusion of studies that report strength as an aggregate for its male and
female participants may skew the prediction error for both sexes, since
the true value for neither group is available, and the average must be
assumed to be true for both groups. The preponderance of SIC data (83
% of the total participants performed SICs) and the overrepresentation
of male participants, who represented 72 % of the total sample size, also
makes the conclusions less reliably applicable to women and IICs. Lastly,
since a pseudo-random number generator (PRNG) was used for repeat-
ability and the individual sample sizes for each combination of task
conditions were still rather limited, it is possible that the choice of PRNG
and of the seed influenced the values of the maximum allowable ET
variation for a minimally important difference of 1 %. However,
different choices in this regard are not expected to introduce vast
changes, and the general conclusions without regard to the exact ranges
of allowable variation should still hold.

5. Conclusion

Prior work (Rashedi and Nussbaum, 2015) has indicated that the
3CC-r model’s predicted endurance times are more sensitive under
“easy” task conditions which are less likely to be a target for MFM
application. Despite this heightened sensitivity, the model appears to
have fairly stable predictions under mixed task conditions as evidenced
by the presence of extended low-sensitivity zones in its sensitivity plots.
Additionally, it is also able to retain its predictive accuracy for reason-
able deviations in recorded endurance times, making it a good candidate
for further development and extension to wider task conditions. Future
work should focus on expanding the model’s capabilities to include
prediction fatigue for low-to-medium velocity dynamic contractions to
make it more occupationally relevant.
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