

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

16

Metabolic Engineering and the Synthetic Biology Toolbox for *Clostridium*

Rochelle C. Joseph¹, Susan Kelley¹, Nancy M. Kim², and Nicholas R. Sandoval¹

¹Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA

²Interdisciplinary BioInnovation PhD Program, Tulane University, New Orleans, LA, USA

16.1 Introduction

The primary driver for interest in *Clostridium* is the ability for consumption of a wide variety of carbon sources into a handful of valuable/useful compounds. The well-studied ABE fermentation (acetone, butanol, and ethanol) of the type strain *Clostridium acetobutylicum* has been the subject of interest for decades, primarily due to acetone first, then butanol as a next generation biofuel. Indeed, the allied acetone production process during WWI (critical for cordite production) relied on the “Weizmann process,” which fermented potato starch using *C. acetobutylicum* (or, the Weizmann strain). The second component of the ABE fermentation, butanol, has several advantages as a biofuel over the yeast-based ethanol production from corn that is currently blended in fuel. Ethanol production by yeast has millennia of human engineering behind it. Butanol production, therefore, requires engineering of *Clostridium* to achieve titers that can compete with ethanol along with bioprocess engineering [1]. Research has also turned, as it has with ethanol production, to the use of waste carbon sources, primarily lignocellulosic biomass. Here, a major challenge is the toxic compounds that are formed during hydrolysis of the biomass [2], and research has been ongoing both on improved methods of processing biomass and engineering tolerance to such compounds. Due to the wide breadth of clostridial feedstock consumption capabilities, waste carbon and energy sources now include gaseous feedstocks (such as syngas) and crude glycerol (derived from biodiesel production). The *Clostridium* genus is home to multiple industrially relevant strains. *Clostridium* species are natively capable of cellulosic and hemicellulosic biomass degradation (e.g. *C. cellulolyticum*) [3], carbon fixation (e.g. *C. carboxidivorans*, *C. ljungdahlii*) [4], advanced biofuel production (e.g. *C. acetobutylicum*, *C. beijerinckii*) [5], platform chemical production (e.g. *C. pasteurianum*) [6], and even acting as anticancer therapeutics (e.g. *C. novyi-NT*) [7]. Additionally, biotechnological development in this genus will aid research in strains of medical interest (e.g. *C. botulinum*, *C. tetani*, *C. perfringens*) [8, 9].

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

While these powerful capabilities have been well known for decades, the major stumbling block has been the difficulty of working with and engineering *Clostridium* species. Members of the genus *Clostridium* are Gram+, sporulating anaerobic firmicutes, thus requiring special equipment to work with them. While compatible with plasmid manipulation, transformation is notoriously inefficient and the number of unique genetic elements available for use in *Clostridium* species (e.g. inducible promoters, terminators, antibiotic resistance markers) are far fewer than those available for *E. coli*. Thus, metabolic engineering advancements have not been made at the same level of progress compared to more tractable bacteria. However, the impetus to engineer *Clostridium* is strong, as the innate capabilities of *Clostridium* with respect to biofuel production and feedstock consumption are superior to similar traits of meticulously engineered *E. coli* strains [10]. In this chapter, we endeavor to explore the state-of-the-art methods of metabolic engineering in *Clostridium*, including a discussion on engineered genetic parts that enable such progress to occur.

From a broad perspective, in the quest of producing fuels and chemicals from metabolically engineered strains, there are two competing design paradigms. One method aims to take some phenotypic trait (e.g. cellulose consumption, butanol production) from an organism with few or no engineering tools and bestow it upon some chassis strain (e.g. *E. coli*) with the overarching rationale that strain engineering will be faster. High throughput methodologies can enable rapid construction of balanced pathways [11], synthetically designed genetic parts [12, 13], and whole-genome recoding [14]. This method often requires substantial work to achieve growth and consumption rates, productivities, and/or titers that are common to the native production strains. Not only does this require the importation of genes expressing the biochemical pathway enzymes, but also knocking out competing pathways, engineering the regeneration of cofactors, expression of helper proteins, and a synthetic regulatory structure. For example, when the butanol production pathway from *Clostridium* was imported into *E. coli*, the first attempts yielded low titers ($<1\text{ g l}^{-1}$ [15]) and subsequent metabolic engineering led to titers of $15\text{--}20\text{ g l}^{-1}$ in batch conditions and even up to 30 g l^{-1} with in situ product removal [16, 17]. This is compared to *C. acetobutylicum* where the type strain produces $\sim 15\text{ g l}^{-1}$ butanol in a batch reaction [18], a chemically mutagenized strain is able to produce 19 g l^{-1} (batch) or 30 g l^{-1} (with in situ product recovery) [16], and a rationally engineered strain in a continuous fermentation can achieve productivities of $14\text{ g l}^{-1}\text{ h}^{-1}$ [1].

The competing paradigm is to engineer strains with desired traits to improve or augment the phenotype of interest. This approach enjoys the benefit of starting with strains already endowed with the genes and cofactors necessary to produce [19–21]. However, untangling the existing regulatory structure surrounding the phenotype of interest (e.g. uncoupling sporulation from butanol production in *C. acetobutylicum*) can prove difficult.

The development of an advanced genome engineering “toolbox” in non-platform organisms brings these two models closer together. Advancements in synthetic biology methods are necessary and have brought closer the utilization of the biotechnologically important capabilities of the *Clostridium* genus. In this chapter, we briefly overview metabolic engineering strategies

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

applied to clostridia, and focus more on the methods for genetic engineering the *Clostridium* genus, continued challenges that hamper progress, and the application of “-omics” methods to better inform engineering approaches.

16.2 Aims of Metabolic Engineering in *Clostridium*

The primary biotechnological goal of *Clostridium* engineering is the production of biofuels and other chemicals, preferably from waste carbon streams including gaseous and lignocellulosic feedstocks [1].

Efforts common among metabolic engineering across bacteria involve the disruption or deletion of genes that encode the biochemical pathways to undesired metabolites. For the increased production of solvents, acidogenic pathways can be disrupted as shown in *C. beijerinckii* to improve solvent production from biomass hydrolysate [22]. This has been done in thermophilic strains as well, as exemplified by the disruption of *C. thermocellum*’s hydrogen, acetic acid, lactic acid, and formic acid pathways in a single quintuple deletion strain, which doubled the ethanol yield from cellulosic biomass [23]. Another theme in *Clostridium* metabolic engineering is exchanging genetic material within the genus (and other closely related organisms) to endow properties of one strain onto another. For example, the ABE fermentation of *C. acetobutylicum* was modified to produce isopropanol–butanol–ethanol (IBE) through expression of an alcohol dehydrogenase from *C. beijerinckii* NRRL B-593, which reduced accumulation of undesired acetone through conversion to isopropanol [24]. Ethanol pathway genes from *Thermoanaerobacterium saccharolyticum* improved ethanol productivity in *C. thermocellum* by twofold compared to an unmodified strain [25]. In an ambitious example, *C. thermocellum* was endowed with butanol production through the systematic installation of thermostable butanol pathway genes from multiple anaerobes [26]. When coupled with other techniques, such as directed evolution and co-culture strategies, even greater production gains can be achieved upon the successes of rational metabolic engineering.

For non-cellulolytic biofuel producers, lignocellulosic biomass must be pre-treated and saccharified to make available the sugars for fermentation, which also leads to the release of compounds inhibitory to growth and production [2]. Adaptive library evolution (or, directed evolution) is a widely used method to generate and adapt strains to overcome feedstock and product toxicity. Typically, adapted strains with improved phenotypes are sequenced and notable mutations are impressed onto the parent strain to test for efficacy. This method has been used to improve the growth and productivity of many *Clostridium* strains for faster growth rate in glucose [27], butanol tolerance [16], crude corn stover hydrolysate [22], and crude glycerol (a byproduct of biodiesel) [28]. Rational strategies to mitigate inhibitory compounds have been done for furfural [29, 30] and other inhibitory compounds [31, 32], but require a priori knowledge of the mechanism of inhibition. Fermentation of hydrolysates using various *Clostridium* species has led to butanol titers up to 15 g l⁻¹ [33, 34].

To avoid the necessity of pretreating biomass prior to fermentation, consolidated bioprocessing combines the saccharification and fermentation steps using

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

cellulolytic organisms. Cellulolytic *Clostridium* species express cellulosomes to generate sugar monomers from cellulose and cellobiose. Work has been done to improve or bestow biofuel production on cellulolytic organisms, particularly in thermophiles [25, 35], while less work has been done to express a functional cellulosome on solventogens [36, 37]. Ethanol formation at titers of $>20\text{ g l}^{-1}$ and yields of $>70\%$ have been achieved in *C. thermocellum* through a sequential genetic engineering step eliminating competing pathways followed by adaptive library evolution [38, 39]. Adaptive evolution has also been applied to species amenable to consolidated bioprocessing. *C. thermocellum* was adapted to butanol in a chemostat where the resultant strain was tolerant to 15 g l^{-1} butanol (improved from 5 g l^{-1} tolerance). A mutation in the *adhE* gene was found to be causative, and the mechanism of tolerance was the elimination of reverse flux of added butanol, altering internal redox balances [40]. Systems biology coupled with metabolic modeling can identify key targets of mutation for metabolic engineers [41]. For example, in *C. thermocellum*, five reactions were identified as the least thermodynamically favorable for generating ethanol from cellobiose [42].

Even with highly productive strains, carbon escape, the loss of carbon to carbon dioxide as sugars are incorporated into the central metabolism as acetyl-CoA, limits the viability of biofuel production. The gaseous carbon consumption capability of *C. ljungdahlii* and *C. carboxidivorans* has been posited to be a solution to reassimilate gaseous C1 compounds through the Wood–Ljungdahl pathway (WLP). Attempts have been made through either endowing solventogenic pathways into C1 fermentors (e.g. acetone production in *C. ljungdahlii*) [4] or the WLP into solventogens [43, 44]. Both types of attempts have proven difficult to achieve high titers of the desired product due to the difficulty of either engineering acetogenic *Clostridium* or generating a functional WLP in solventogens. Syntrophic co-culture strategies may achieve the desired outcome through allowing cells to exchange metabolites akin to naturally occurring microbiota [45, 46]. Interestingly, direct contact between cells has been observed, indicating that transfer of metabolites does not go through an intermediate culture broth stage, but rather is exchanged directly from cell to cell, resulting in yields impossible if fermented in a monoculture [45]. Similar co-culture strategies have been employed for the consumption of cellulosic biomass to allow for both five- and six-carbon sugar consumption [47]. Strategies involving many strains or even entire microbiomes have been explored to exploit *Clostridium* strains such as *C. kluyveri* that can perform chain elongation from short-chain fatty acids to medium- or long-chain fatty acids through the addition of alcohols [48, 49]. Such co-culture strategies will still require genomic engineering and optimization in order to achieve maximal productivity.

16.3 Genomic Editing in *Clostridium*

Clostridium genome editing has evolved from the initial reports of single-crossover insertions of plasmids in the 1990s to now include intron- and

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

transposon-based disruption methods as well as plasmid-based double-crossover insertion methods coupled with counterselection markers, including CRISPR-based cleavage.

16.3.1 ClosTron

Targeted gene disruption can be achieved using Group II Mobile introns. The ClosTron system is a *Clostridium*-optimized version of the TargetTron method [50, 51]. While use of the TargetTron/ClosTron systems necessarily leaves a genetic scar, these methods avoid the cloning and transformation of large homologous arms most often required for successful editing when using other targeted gene knockout methods.

ClosTron works by expression of a ribonucleoprotein complex comprising the intron-encoded protein (IEP, LtrA based on the *Lactococcus lactis* Ll.LtrB intron) and the corresponding RNA in a lariat conformation. This RNA contains the genetic material to be inserted as well as the targeting regions, two exon binding sequences of 5 and 9 nt lengths providing a total of 14 bases of specificity for RNA-DNA interaction (akin to a crRNA in CRISPR systems). This specificity is coupled with the IEP-DNA interactions over two ranges of 17 and 11 nt lengths, where 7 and 1 bases contribute the majority of the binding strength, respectively (akin to a PAM site in a CRISPR system) [52]. This relative complexity in identifying optimal integration loci is mitigated by a free online tool to design the requisite cloning primers [53]. The ClosTron system is minimally dependent on the host, as the IEP performs the maturation, endonuclease, and reverse transcriptase activities necessary for the chromosomal insertion. The method for selecting successful insertion events depends on the inclusion of the retrotransposition-activated selection marker (RAM) [50]. This RAM, most commonly an antibiotic resistance gene, is inactivated by a Group I intron that self-catalytically spliced out of the mRNA only in the event of a chromosomal insertion event, preventing expression of the resistance marker from the plasmid (Figure 16.1a). Inclusion of flanking FRT sites permits the removal of the selection marker through additional steps.

The Targetron/ClosTron system has been used to perform gene targeting in both Gram-positive and Gram-negative bacteria [54] including several *Clostridium* spp.: *C. perfringens* [55, 56], *C. acetobutylicum* [57–60], *C. beijerinckii* [53, 61], *C. pasteurianum* [62], and *C. botulinum* [63, 64]. ClosTron has also been used in the closely related species *Clostridioides difficile* (née *Clostridium difficile*) [65–68]. While integration of genetic material is possible with ClosTron, the size of the cargo cannot be very large and efficiency falls rapidly with increasing amounts of cargo DNA [53].

16.3.2 Transposon-Based Random Mutagenesis

Quasi-random insertional mutagenesis in *Clostridium* spp. has been achieved through transposon-based methods. The Tn916/Tn1545 family of transposons (called conjugative transposons) were among the first elements available for random gene insertions in *Clostridium* and contain the conjugation,

Color Fig: 16.1

		Successful event	Unsuccessful event
(a) ClosTron Selection: Antibiotic resistance Targetable: Yes Scarless: No		Antibiotic resistant	Antibiotic sensitive
(b) pyrE Complementation Selection: Chemical Targetable: Yes Scarless: Yes		5FOA - X → 5FOMP → 5FdUTP (toxic)	5FOA → 5FOMP → 5FdUTP (toxic)
(c) Allele-coupled exchange Selection: (1) chemical (2) uracil prototrophy Targetable: (1) No (2) Yes Scarless: No, curable		5FOA - X → 5FOMP → 5FdUTP (toxic) Glutamine → UMP (promoterless)	5FOA → 5FOMP → 5FdUTP (toxic) Glutamine → UMP (cell starvation)
(d) MazF Selection: Toxin Targetable: Yes Scarless: No		mRNA → MazF → (cell death)	mRNA → (cell death)
(e) CRISPR-Cas Selection: DSB Targetable: Yes Scarless: Yes		Guide RNA → CRISPR effector → No DSB	DSB (cell death)

Figure 16.1 Counterselection markers used in *Clostridium* spp. and their mechanisms of selection. The native gene of interest (GOI) is represented in red, desired insert in blue, and the counterselection marker gene in dark purple. The green and blue bars represent regions of homology between the chromosome and donor plasmid. (a) ClosTron: RAM disrupted by a Group I intron (white triangle) is only active after the L1.LtrB intron is inserted into the chromosome; (b) *pyrE* complementation: PyrE catalyzes conversion of 5-fluoroorotic acid (5FOA) to 5-fluororotidine monophosphate (5FOMP) producing toxic fluorodeoxyuridine monophosphate (FdUTP); (c) allele-coupled exchange: (i) double-crossover event at the *pyrE* locus results in truncated version of *pyrE* for counterselection with same mechanism as B, (ii) successful homologous recombination inserts a promoter-less copy of the *pyrE* gene directly downstream of a native constitutive promoter, allowing production of uracil 5' monophosphate (UMP). Note: must be performed on *pyrE*-deficient strain; (d) *MazF* protein degrades mRNA at 5'-ACA-3' sequences; (e) Cas9: successful homologous recombination gRNA-targeted double stranded break resulting in cell death.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

recombination, regulation, and accessory functions required for chromosomal disruption. Unlike ClosTron, which requires specific targeting for disruption, transposon-based mutagenesis is commonly used to perform loss-of-function screens. In use, expression of Tn916 for mutagenesis is often plasmid-based [69], but has been demonstrated from the chromosome of hosts such as *E. coli* and *Bacillus subtilis* [70]. The use of Tn916-like transposons is limited by size, a tendency to insert in multiple copies or specific “hot spots,” and deletions at the insertion site [71–73]. Non-conjugative transposon systems, such as Mu phage and EZ-Tn5-based transposon systems, have addressed several of these concerns and have been successfully employed in *Clostridium* [56, 74, 75], but are limited by a preferential insertion into rRNA genes [74, 75].

Mariner-transposable *Himar1*-based systems have also been developed for random mutagenesis in *Clostridium* [76–79]. The *Himar1* transposable element (a transposase gene flanked by short inverted terminal repeat sequences) was originally discovered in the horn fly and has been shown to insert quasi-randomly into the genomes of several bacteria species, including members of the *Clostridium* genus. Successful *Himar1*-based events have been recorded in *C. acetobutylicum* [78], *C. perfringens* [77], *C. sporogenes* [80], and *C. ljungdahlii* [81]. *Himar1* transposase binds and cuts the element in its ITR region, which, in turn, is inserted at a TA dinucleotide target site. This has been a valuable tool for mutagenesis in AT-rich *Clostridium* as it inserts on average at one copy per cell. When coupled with next-generation deep sequencing, this method, termed TraDIS, can yield large genotype-to-phenotype data, as exemplified through identification of gene essentiality in *C. difficile* [82].

16.3.3 Counterselection Markers

Counterselection markers enable the isolation of double-crossover homologous recombination events in *Clostridium* spp.

Another method for targeted gene disruption in *Clostridium* method for targeted gene disruption in *Clostridium* is performed via plasmid-based, double-crossover recombination events. This way differs from the abovementioned intron and transposon-based methods in that here the site-specific targeting is achieved through two large (>500 nt usually) regions of homology flanking the cargo DNA. Additionally, this method relies entirely on the host’s native recombination machinery as no heterologous protein expression is required. The term “double crossover” refers to the two separate recombination events that must occur for successful editing; the first integrates the entire plasmid into the genome while the second excises the vector backbone from the chromosome.

Counterselection markers, genetic elements that result in cell death when present, are useful for selecting chromosomal insertions that do not contain the vector backbone (i.e. single-crossover events). Few successful double-crossover mutations were isolated prior to the development of *Clostridium*-specific counterselection marker systems [83, 84]. Previously described homologous recombination mutations were often single-crossover integrations, which are by their nature unstable [85–90].

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

One counterselection method involves deactivating an easily screenable gene on the chromosome first and then complementing the mutant strain with a heterologous version of that gene as a counterselective marker. Uracil auxotrophic mutants, formed by disrupting *pyrE*, *pyrF*, or *upp* genes, require uracil supplementation for growth and are resistant to the antimetabolites 5-fluoroorotic acid (5-FOA) or 5-fluorouracil (5-FU). Double-crossover events in these mutants can easily be isolated by including a functional copy of the disrupted gene on the backbone of the donor DNA plasmid as successful events are marked by cells that no longer require uracil supplementation or demonstrate a resistance to 5-FOA or 5-FU [91–93] (Figure 16.1b).

Similarly, in *C. perfringens*, disruption of the *galKT* operon produces mutants unable to produce the enzymes involved in galactose metabolism. GalK catalyzes the production of galactose-1-phosphate (Gal-1-P) from galactose, and GalT catalyzes its consumption. The accumulation of Gal-1-P is believed to inhibit cell growth by causing intracellular stress and inducing stress-responsive genes [94, 95]. By including only the *galK* gene and not the *galT* gene on the integration vector and plating mutant cells on galactose-supplemented plates, unedited cells do not grow due to an accumulation of Gal-1-P while mutants that undergo a double-crossover event can be isolated [96].

Allelic Coupled Exchange (ACE) couples a counterselection marker gene to a desired double-crossover event. This has been demonstrated in two ways. One method exploits the 5-FOA resistance conferred by a disrupted *pyrE* or *pyrF* gene. This method does not require the cells to be auxotrophic for uracil prior to recombination, nor does it rely on a heterologous version of the gene as a counterselection marker. ACE technology employs asymmetric homology arms to direct the order in which crossover events occur. The longer arm, homologous to a 1200 bp region immediately downstream of the *pyrE* or *pyrF* directs the first-crossover event in which the entire plasmid is incorporated into the genome. The second-crossover event excises the plasmid backbone and is directed by the shorter arm, which is homologous to a 300 bp internal region of the *pyrE* or *pyrF* gene. This second recombination replaces the wildtype *pyrE* gene with a truncated form, thereby producing a mutant that can be screened based on 5-FOA resistance [93]. Alternatively, a promoter-less heterologous *pyrE* gene or antibiotic marker can be inserted in the integration vector with the regions of homology such that a successful double-crossover event places the silent gene directly downstream of a constitutive promoter [93]. However, unlike previous methods, which relied heavily on ClosTron technology to first produce auxotrophic mutants, *pyrE* mutants can be created utilizing ACE technology while the use of an antibiotic marker circumvents the need for a requisite mutant strain [93, 97] (Figure 16.1c). ACE has been proven to be applicable over a range of *Clostridium* species, having been used for gene editing in *C. acetobutylicum* [98–100] and *C. sporogenes* [78, 93], as well as *C. difficile* [9, 93].

Several heterologous genes have been used for counterselection. The cytosine deaminase gene (*codA*) from *E. coli* can be used for counterselection based on the ability of the CodA protein to catalyze the conversion of 5-fluorocytosine (5-FC), an innocuous pyrimidine analog, to 5-FU [101]. *codA* can only be used for counterselection in strains with a functional *upp* gene but no native *codA*

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

gene [98]. However, a bioinformatics survey suggests several *Clostridium* species contain *codA* homologs, restricting the applicability of *codA* among the genus [102].

In order to genetically manipulate *C. saccharobutylicum*, a markerless deletion system was developed using *codBA* operon utilizing the *codA* gene and a *codB* gene that encodes a cytosine permease. A suicide vector containing *catP* gene for thiamphenicol resistance and the *codBA* gene fuses DNA segments around the deletion target [103]. This led to further markerless deletion and insertion techniques to edit both *C. acetobutylicum* and *C. saccharobutylicum* [104].

Restriction-less, markerless counterselection markers have also been used to continuously produce *n*-butanol with glucose as a sole carbon source by deleting *ldhA*, *ctfAB*, *adc*, *ptb*, *buk*, and *adhE2* genes. This optimized the acetyl-CoA conversion to *n*-butanol. By creating a stable process to produce *n*-butanol, the Weizmann process can be used to ferment and scale up production of *n*-butanol [1].

Toxin-antitoxin systems are another useful source of counterselection markers. The *E. coli*-based *mazF* is an mRNA interferase, coded along with *mazE* in an operon. Under regular cell conditions, *mazE* binds to and inhibits *mazF* activity. During cellular stress, *mazE* is degraded, allowing *mazF* to bind mRNA, degrading them at 5'-ACA'3' sequences, thereby arresting cell growth. *mazF*, coupled with an antibiotic-resistant marker flanked by FRT sites, can be used as a counterselection marker in plasmid based-homologous recombination. *mazF* is placed on the gene disruption plasmid under the control of an inducible *lac* promoter. A double-crossover event can be isolated in cells able to grow on lactose-supplemented plates [102] (Figure 16.1d). The use of *mazF* requires no prior mutation for successful screening, is independent of the availability of *Clostridium* genetic parts, and has been shown to function across *Clostridium* species [28, 80, 102]. Flp-frt recombination has also been used to eliminate the backbone of a donor plasmid following a single-crossover event in *C. acetobutylicum*, allowing for the use of an antibiotic gene as a marker for the crossover event after the donor plasmid had been cured [105].

16.3.4 CRISPR-Based Editing in *Clostridium*

CRISPR systems have revolutionized gene editing in several non-model organisms including *Clostridium* species. Natively found in prokaryotes [106, 107] and some few bacteriophages [108], these systems have been repurposed for a variety of gene manipulation applications in a wide range of organisms [109–111]. In *Clostridium* and other bacterial species, CRISPR systems, most commonly CRISPR/Cas9, have been used as a counterselection tool based on their ability to implement a double stranded break (DSB) to a targeted DNA region. *Clostridium* spp. lack or have inefficient nonhomologous end-joining (NHEJ) systems, therefore a chromosomal DSB results in cell death [112, 113]. Studies in *E. coli* have shown that DSBs can enhance homologous recombination in bacteria, whereby homology directed repair (HDR) occurs after a break has been induced [114], but studies in various *Clostridium* species suggest that HDR efficiency is too low to select for successful HDR events [115–117]. Counterselection, in the context of plasmid-based double-crossover editing, is achieved by the targeting of the

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

CRISPR/Cas system to the wildtype sequence to eliminate non-edited members of the population. The use of CRISPR/Cas9 can enable scarless edits and represents a major advancement in *Clostridium* genomic editing.

The Type II CRISPR system native to the *Streptococcus pyogenes* bacterium was the first exploited for genomic engineering based on its minimality [118] with other CRISPR systems having been discovered and repurposed since [119]. The CRISPR/Cas9 system consists of a single effector protein (Cas9), which can bind to and implement a DSB to a targeted DNA system, when co-expressed with a single guide RNA (sgRNA, a fusion of the individual crRNA and trRNAs found in the native system) targeting a 20 bp region immediately adjacent to the protospacer adjacent motif (PAM, NGG for *SpyCas9*). While the CRISPR/Cas9 system has been used as a counterselection tool in several *Clostridium* species (Table 16.1) [105, 117, 120, 136], its use has been hindered by several factors. First, the limited number of characterized genetic parts for *Clostridium* poses a challenge. A dearth of well-characterized, tightly regulated, promoters can lead to simultaneous constitutive expression of both the Cas9 protein and sgRNA, resulting in very few transformed colonies even in the presence of a homologous repair template, as Cas9 activity induces cell death before recombination can occur [105, 117, 120, 136]. One way this can be addressed is through a two-plasmid system, where the donor template and sgRNA are introduced separately from the Cas9 protein, allowing time for recombination prior to counterselection [105, 115, 143]. Not only has this method facilitated the isolation of recombinants at high efficiencies, but it avoids the transformation of very large plasmids, which reduce transformation efficiency. However, it requires two separate transformation events [121]. Successful recombinants have been isolated at a rate of up to 100% [121] with commonly observed efficiencies of greater than 50% (Table 16.1).

Although inducible promoters have been employed for Cas9 expression [105, 121] their use has not always mitigated cell death as basal expression from leaky promoters can still be lethal. In response, methods for more stringent control of Cas9 expression have been developed. RiboCas employs the use of a theophylline-induced riboswitch for tight control of Cas9 expression. It has facilitated genomic deletions of up to 2.4 kbp across four *Clostridium* species at 100% efficiency and was used in *C. sporogenes* to facilitate the insertion of a 2.9 kbp fragment at efficiencies over 90% (Table 16.1) [8]. Anti-CRISPR proteins, proteins which are able to post-translationally inhibit the nuclease activity of CRISPR effector proteins, also reduce unwanted Cas9 activity [151]. The antiCas protein AcrIIA4 has been coupled with a dual-plasmid CRISPR-Cas9 system in *C. acetobutylicum* to limit undesired activity of the Cas9 protein, resulting in significantly higher transformation rates and 100% gene editing efficiency [122].

Cas9 nickase (Cas9n) systems exploit CRISPR gene editing while circumventing the lethality associated with the co-expression of a guide RNA with Cas9. This method utilizes Cas9n, a Cas9 with one of its nuclease sites mutated, so a nick results in lieu of a DSB. Implementing a single nick into the genome via Cas9n allows homologous recombination without the lethal effects of a Cas9-mediated DSB, thus permitting a mixed population of edited and unedited strains to coexist. CRISPRn has been used to implement gene deletions and

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/
ohne Korrekturen

After corrections/
nach Ausführung
der Korrekturen

Date/Datum:

Signature/Zeichen:

Table 16.1 CRISPR-based gene and gene repression in *Clostridium* spp.

Species	CRISPR effector	Number of spacers	Desired edit (efficiency, maximum deletion/insertion, HA length)	Notes	References
<i>C. acetobutylicum</i>	<i>Spy</i> Cas9	1	Deletion (100%, 66 bp, 500–1000 bp); replacement (100%, 306 bp, 1000 bp); DNM (100%, N/A, 664 bp)		[120–122]
<i>C. autoethanogenum</i>	<i>Spy</i> Cas9n	1	Deletion (7–100%, 20 bp, NR)	1	[116]
	<i>Spy</i> Cas9	1	Deletion (>50%, NR, NR)		[105]
<i>C. beijerinckii</i>	<i>Spy</i> Cas9n	1	Deletion (0–100%, 2379 bp, 400–1000 bp); insertion (75–87%, 1614 bp, 1000 bp); SNM (>99%, N/A, 1000 bp)		[115, 117]
	<i>Spy</i> Cas9n-Apobec1-UGI	1	Deletion (0–100%, 1149 bp, 150–1200 bp)	2	[116, 123, 124]
			Base editing (11–100%)		[125]
<i>C. botulinum</i>	<i>As</i> Cas12a	1	Deletion (100%, 1021 bp, 500 bp)		[126]
	<i>Spy</i> Cas9	1	Deletion (100%, 240 bp, NR)		[8]
<i>C. cellulolyticum</i>	<i>Spy</i> Cas9n	1	Deletion (100%, 23 bp, 200–1000 bp), insertion (95–100%, 1720 bp, 100–1000 bp)	3	[127–129]
<i>C. chauvoei</i>	<i>Spy</i> Cas9	1	Deletion (100%, 948 bp, 1000 bp)		[130]
	<i>Spy</i> Cas9	1	Deletion (20–100%, 2400 bp, 1000 bp); insertion (80%, >400 bp, NR)		[8, 131–133]
<i>C. difficile</i>	<i>As</i> Cas12a	1	Deletion (37.5–100%, 46.7 kbp, 500–1000 bp)		[134]
		2	Deletion (25–58.3%, 46.7 kbp, 500–1000 bp)	4	[134]
<i>C. jiangdahlii</i>	<i>Cas3^b</i>	1	Deletion (100%, 258 bp, 1200 bp)		[135]
	<i>Spy</i> Cas9	1	Deletion (50–100%, 2600 bp, NR); insertion (100%, 8500 bp, N/A)	5, 6	[136, 137]
	d <i>Spy</i> Cas9-Deaminase fusion	1	Base editing (12.5–100%)		[138]
	<i>Fn</i> Cas12a	1	Deletion (100%, 2600 bp, 1000–2500 bp)		[139]

(continued)

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/
ohne Korrekturen

After corrections/
nach Ausführung
der Korrekturen

Date/Datum:

Signature/Zeichen:

Table 16.1 (Continued)

Species	CRISPR effector	Number of spacers	Desired edit (efficiency, maximum deletion/insertion, HA length)	Notes	References
<i>C. pasteurianum</i>	<i>Spy</i> Cas9	1	Deletion (100%, 2400 bp, 1000 bp)		[8, 140]
	<i>Spy</i> Cas9n Cas3 ^b	1	Deletion (100%, 1200 bp, 1000 bp) Deletion (100%, 762 bp, NR)		[141] [140]
<i>C. saccharoperbutyl-acetonicum</i>	<i>Spy</i> Cas9	1	Deletion (>75%, NR, 1000 bp); insertion (NR, 2560 bp, 1000 bp)	7	[142–144]
	Cas3 ^b	1	SNP (20%, N/A, NR); deletion (100%, NR, 760 bp); insertion (35–60%, 5000 bp, 950 bp)		[145]
<i>C. sporogenes</i>	<i>Spy</i> Cas9	1	Deletion (100%, 2400 bp, NR); insertion (>90%, 2900 bp, NR)		[8]
	<i>Geo</i> Cas9n Cas3 ^b	1	Deletion (0.21–91%, NR, 50–1000 bp) Deletion (14–70%, NR, 50–1000 bp)	8, 9, 10	[146]
<i>C. thermocellum</i>	<i>Spy</i> Cas9	1	Deletion (25%, 816 bp, 500 bp)	9, 10	[146]
	AsCas12a Cas3 ^b	1	Deletion (12.5%, 816 bp, 500 bp) Deletion (100%, NR, 300–1000 bp); replacement (100%, NR, 500 bp)		[147]
<i>C. tyrobutyricum</i>	Cas3 ^b	1	Deletion (100%, NR, 300 bp)	11	[148]
	CRISPR effector	2	Target strand (level of repression) Method of detection	4, 5	[148] References
<i>C. acetoxylicum</i>	d <i>Spy</i> Cas9		Fluorescence of targeted reporter AFP; RT-qPCR, GC analysis of metabolites		[116, 120]
<i>C. beijerinckii</i>	d <i>Spy</i> Cas9		Target strand (20%); nontemplate (45–90%) RT-qPCR, GC analysis of metabolites; enzyme activity assay, measure protein concentration		[116, 149]

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

<i>C. cellulovorans</i>	dSpCas9	RT-qPCR, GC analysis of metabolites	[150]
		Target strand not reported (95%)	
<i>C. ljundahlii</i>	dFnCas12a	RT-qPCR, GC analysis of metabolites	[139]
		Template (88–99%)	

1) Lower efficiencies with ptb promoter vs. thl.
 2) HA of 500 bp or less resulted in less than 50% efficiency.
 3) Short homology arms did not significantly affect efficiency. Attempts to insert fragments of 3000 and 6000 bp were unsuccessful using HA of 1000 bp.
 4) Duplexed CRISPR array used to target multiple crRNAs to a single gene for increased editing efficiency AND to target multiple genes simultaneously.
 5) Subculturing required for maximum efficiency.
 6) 8.5 kbp inserted by coupling CRISPR/Cas9 system with phage serine integrase system.
 7) Also used for curing of 136 kbp megaplasmid [144].
 8) Attempts to utilize wt *Geo*Cas9 yielded no transformed colonies.
 9) Spacer of approximately 30 bp optimal. PAM Site = TCR where R is adenine or guanine.
 10) Coupling CRISPR system with heterogeneous recombinase machinery greatly increased recombination efficiency.
 11) Low editing efficiencies observed with HA of 50 bp even when recombinase machinery is expressed.
 All mentions of Cas9 refer to *Streptococcus pyogenes*-derived Cas9. Reported editing efficiencies are the fraction of successful mutants of total colonies screened.
 Abbreviations: DNM, dinucleotide modification; NR, not reported; SNM, single nucleotide modification.
 Cas3 is the effector protein in the native *C. pasteurianum* type I-B CRISPR system.
 a) Targeted region downstream of *Ccel_3198* gene.
 b) Endogenous system.

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/ ohne Korrekturen <input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen <input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

insertions in *C. acetobutylicum* [113], *C. beijerinckii* [116], *C. cellulolyticum* [128], *C. pasteurianum* [140] with up to 100% efficiency.

While the most common, *SpyCas9* use on *Clostridium* genomes (~30% GC content) has been limited by relative unavailability of the G-rich PAM site as well as the inability to easily target multiple genes simultaneously. To address these challenges, Type V-A systems have been used in *Clostridium* species. Like the Type II CRISPR systems, the Type V-A only requires a single CRISPR effector protein, Cas12a, co-expressed with a CRISPR RNA (crRNA) to implement a DSB. Cas12a proteins recognize T-rich PAM sites and are capable of self-processing CRISPR arrays into individual crRNAs, thereby easily allowing for multiple targets simultaneously (i.e. multiplexing) [139, 152]. Various Cas12a proteins have been employed for counterselection in *Clostridium* species. AsCas12a (from *Acidaminococcus* sp.), which recognizes a TTTV PAM site, has been the most used Cas12a protein in *Clostridium*. AsCas12a-mediated editing has been demonstrated in *C. beijerinckii*, *C. difficile*, and *C. tyrobutyricum* [126, 134, 147]. In *C. difficile*, a CRISPR array was used to target AsCas12a to multiple regions simultaneously. Multiplexed CRISPR activity is able to accommodate both the editing of multiple genes concurrently and the targeting of a single gene in multiple regions for increased editing efficiency [134]. A second Cas12a protein, FnCas12a, native to *Francisella novicida*, has been used for counterselection in *C. ljundahlii* with 100% observed efficiency [139] (Table 16.1). In that study, FnCas12a was selected as it was least toxic to cells from a group of four Cas12a proteins. This study suggests the level of toxicity of heterogeneous Cas effector proteins may be specific to species.

Type I-B CRISPR systems are endogenous to several *Clostridium* species and can be programmed via expression of synthetic CRISPR arrays for gene targeting in their native species. The repurposing of endogenous CRISPR systems to facilitate gene editing circumvents the need to transform large plasmid constructs, as only a synthetic CRISPR array and donor DNA is required for successful activity. Utilization of native systems has especially been beneficial in species whose primary method of plasmid uptake is via conjugation such as *C. difficile* [153] and *C. tyrobutyricum* where conjugation efficiencies have impeded CRISPR-based editing progress. *C. tyrobutyricum*'s native CRISPR system, which recognizes a TCR PAM site, has been used for gene editing with 100% efficiencies. The utility of this method is exemplified by the replacement of the *cat1*, which previously could not be deleted, with *adhE*, which mostly eliminated butyrate production in *C. tyrobutyricum*, a known hyper-butyrate producer, and converted it into a hyper-butanol producing strain [148]. *SpyCas9* and AsCas12a systems have successfully been employed in *C. tyrobutyricum* due to increasing conjugation efficiencies [147], but with lower success rates. Endogenous CRISPR systems have also been employed in *C. difficile* [153], *C. pasteurianum* [140], and *C. thermocellum* [146]. One major challenge in using the endogenous CRISPR system is the identification of the corresponding PAM sequence, which may require bioinformatic approaches along with wet lab experiments to identify functional motifs.

Thermophilic *Clostridium*, of general interest for their cellulose consumption capabilities, cannot use the well-characterized CRISPR systems that have been

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

successfully employed in mesophilic strains. In *C. thermocellum*, the use of both its native Type I-B CRISPR system, as well as a Cas9 variant from *Geobacillus stearothermophilus* (*GeoCas9*), has been performed [146]. Editing efficiencies of up to 70 and 94% were achieved using the endogenous Type I-B CRISPR system and the *GeoCas9* respectively.

In general, longer regions of homology on the donor plasmid have been shown to increase efficiency. In *C. cellulolyticum*, donor template arm lengths greater than 0.2 kbp had an efficiency of more than 95% when compared with smaller arms, which were only 55% efficient in a CRISPRn system [127]. A similar study using Cas9 in *C. acetobutylicum* demonstrated an increased efficiency when homology arm lengths of 1 kbp were used as opposed to 500 bp arm lengths [120]. In *C. tyrobutyricum*, homology arms of 300 bp were used with its endogenous CRISPR system, compromising the rate of recombination for smaller plasmid size and increased transformation efficiency. In this case, maximal efficiency was achieved via subculturing, which has also been shown to enhance the edited population across all CRISPR systems [136, 139, 146, 148].

CRISPR systems have been further repurposed for the regulation of gene expression. In catalytically dead effector proteins, the nuclease active sites are mutated such that the proteins retain their ability to bind to DNA but are unable to perform endonuclease activity. In *Clostridium* species, these proteins, most commonly, dSpyCas9, have been used for targeted gene repression, whereby, transcription of a gene is sterically hindered by the CRISPR effector protein bound to it. CRISPR interference (CRISPRi) has enabled simple, tunable, reversible gene knockdown at a transcriptional level through the co-expression of the catalytically dead effector protein and sgRNAs, designed with the aid of bioinformatics tools. This method is reversible, with no permanent change in the genome [154]. Additionally, CRISPRi activity can be modulated not only through controlling the expression of effector protein [155], but also by its relative position to the promoter and gene start site [156], allowing tight control of gene expression.

dSpyCas9 has allowed gene knockdowns in *C. acetobutylicum* [120], *C. beijerinckii* [116, 149], in *C. cellulovorans* [150], and *C. difficile* [8, 131, 132] and has been used to silence both native [116, 149, 150] and heterologous genes [120]. dFnCas12a has been used to regulate gene expression in *C. ljundahlii* [138]. Gene repression of up to 97% was achieved with dSpyCas9 and 99% using dFnCas12a, although the effectiveness of CRISPRi varies among species with similar configurations [116], as well as among genes targeted within a single species (Table 16.1). The tunability of dCas9 has yet to be fully explored in *Clostridium*, as it has in other bacterial systems [155, 156]. Control of effector protein expression is important as constant expression is needed to suppress genes. One study showed activity of the knockdown target unintentionally increased over the time of fermentation, which was attributed to the variable strength of the commonly used thiolase promoter used [149].

Gene expression knockdowns have also been accomplished on the translational level in *Clostridium* through antisense RNA (asRNA) technology. The asRNA knockdown method involves targeting an mRNA transcript using its asRNA. This method has been used to investigate the function of genes in various *Clostridium*

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

species [128, 157–160], including essential genes where a genetic knockout is unfeasible. asRNA technology has also been used to manipulate gene expression affecting solvent titers [161, 162]. asRNAs are tunable and reversible, and have been effective in silencing, achieving as high as 90% repression levels of certain genes. However, despite their lengths (>100 bp) asRNAs have been shown to be promiscuous, binding especially to transcripts with a high homology to the target sequence [157]. Consequently, asRNA technology requires large constructs for efficient gene repression while CRISPRi provides repression specificity, using a 20 nt sgRNA choice.

Several other applications of catalytically dead CRISPR effector proteins have been recognized based on their very ability to selectively bind to specified DNA sequences. Base editors, deaminases which indiscriminately install cytosine-to-thymine or adenine to guanine point mutations to DNA, have been tethered to dCas9 (as well as Cas9n) to implement targeted point mutations in several organisms [163–168]. The fusion of the base editor to dCas9 limits its activity to the region in which the dCas9 protein is targeted. In *Clostridium*, CRISPR-mediated base editing has been performed in *C. ljundahlii* and *C. beijerinckii* with editing efficiencies of between 11 and 100% [138, 169]. While CRISPR-based gene activation and imaging tools [170–173] have been developed in other bacterial species, the application of these tools has yet to be realized in *Clostridium* species.

Application of CRISPR tools overall is still limited in *Clostridium* due to low plasmid transformation efficiencies and a lack of characterized recombineering and NHEJ tools. While the use of native CRISPR systems circumvents the need to express heterologous Cas effector proteins, the applicability of these systems may be limited to strains with functional CRISPR/Cas machinery and by unknown PAM sequences. Recombineering, through lambda red technology, has facilitated gene engineering in *E. coli* via the use of linear DNA repair templates, a process that skips the cloning steps required in plasmid-based homologous recombination methods. Coupled with CRISPR, this technology enables multiplexed ssDNA recombineering events with efficiencies allowing large libraries (>10⁵ members) to be constructed in parallel [174]. However, the lack of ssDNA recombineering machinery functional in *Clostridium* hinders the development of comparable *Clostridium*-based technologies. Although a RecT protein from *C. perfringens* demonstrated recombineering activity in *C. acetobutylicum*, the results obtained were not comparable to routine recombineering events in *E. coli* [175]. Similarly, the expression of Ku and LigD genes from *Mycobacterium tuberculosis* enabled NHEJ in *E. coli* following the implementation of a DSB via Cas9 [176]. Although NHEJ-related genes (*ku*, *DNA ligase*, and *ligD*) are found on the *C. cellulolyticum*, they are not highly expressed and NHEJ events have not been observed in the species after a Cas9 DSB [127]. Heterologous expression of such genes may enable NHEJ in *Clostridium*.

16.4 Genetic Parts in *Clostridium*

Rational engineering of solventogenic clostridia relies on having access to a “toolbox” of well-characterized biological parts including promoters, ribosomal

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/ ohne Korrekturen <input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen <input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

binding sites (RBS), origin of replication (ORI), and terminators for further advancement of metabolic engineering efforts in *Clostridium*. To enhance productivity and yield of desired products, the “toolbox” should enable assemblies of individual or grouped genes to be well-regulated [177].

16.4.1 Promoters

Promoters play a critical role in controlling gene expression. Precise control of gene expression allows balancing gene expression of metabolic pathways and constructing compatible genetic circuits. Therefore, expanding the availability of well-characterized promoters is essential in proper construction of genetic circuits for *Clostridium*. Several *Clostridium* regulatory promoters and transcription factors have been identified through systems biology and bioinformatic analysis. Transcriptional analysis data of differential carbohydrate utilization in the presence of glucose in *C. acetobutylicum* [178] were used to develop new sugar-based inducible promoter systems for the carbon source of interest [179]. Sugar-based inducers are simultaneously utilized as carbon sources in *Clostridium* hosts, and thus depleted over time and are complicated by carbon catabolite repression [180].

As in *E. coli*, lactose, and the unconsumable isopropyl β -D-1-thiogalactopyranosidethe (IPTG)-responsive promoters are the most widely used inducible systems in *Clostridium* (Table 16.2). Pfac system, engineered with the *E. coli* LacI regulator and *lacO*, is responsive to 1 mM IPTG in *C. acetobutylicum*, *C. botulinum*, *C. sporogenes*, and *C. difficile* [51, 188]. Sugar-based inducers are utilized as carbon sources in *Clostridium* hosts and complicated by carbon catabolite repression.

Tetracycline/Anhydrotetracycline (aTc)-inducible systems regulated by TetR from *S. aureus* [158], *C. autoethanogenum* [186], and *E. coli* [181] are commonly used systems in *Clostridium*, however, can lead to inducer toxicity at high concentrations [180].

Use of *Clostridium* promoters is complicated by the limited supply of native promoters originating from a few strains that are not always transferrable across hosts within the same genus. Commonly used constitutive promoters such as the *ptb* (phosphotransbutyrylase) and *thl* (thiolase) from *C. acetobutylicum* and *C. pasteurianum* have shown varied promoter activity in different strains and stages of growth [189, 190]. Furthermore, high basal expression is often observed across *clostridial* inducible promoters such as the ARAi system [80], lactose-inducible promoters using the transcriptional regulator BgaR [182], xylose-inducible promoter-repressor system [179, 187, 191], as well as many others (Table 16.2) when used in organisms other than the base strain, thus, affecting the dynamic range.

Optimization strategies to further fine-tune the biosensor performance to respond with the appropriate sensitivity and signal output can be achieved by altering the number, location, and sequence of TF binding sites. Through the addition of two *tetO1* operator sequences surrounding the -35 and -10 boxes of a native constitutive promoter, the creation of a tetracycline/aTc-inducible promoter, Pcm-2tetO1, reduced basal expression and increased binding of TetR. This resulted in a 313-fold induction compared to a 41-fold induction performed

Druckfreigabe/approval for printing
 Trim Size: 170mm x 244mm Single Column Loose
 Without corrections/
 ohne Korrekturen
 After corrections/
 nach Ausführung
 der Korrekturen
 Date/Datum:
 Signature/Zeichen:

 Table 16.2 Inducible promoters in *Clostridium*.

Inducer	Transcription factor Source	Promoter Source	Species tested	Dynamic range	Reporter gene	References
L-Arabinose	AraR <i>C. acetobutylicum</i>	P_{ptk} <i>C. acetobutylicum</i>	<i>C. cellulolyticum</i>	>800-fold (Imaging)	<i>gusA</i> (MUG) <i>PpFEPm</i>	[80]
		P1341-2 <i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	60-fold		
		P1343 <i>C. acetobutylicum</i>	<i>C. beijerinckii</i>	32-fold	<i>mCherryOpt</i>	[179]
		Pcm-2tetO1 <i>P_{cm}/tetO1</i>	<i>C. acetobutylicum</i>	21-fold		
		Pcm-2tetO1 <i>C. acetobutylicum/E. coli</i>	<i>C. beijerinckii</i>	27-fold		
aTc	TetR <i>E. coli</i>	Pcm-2tetO2/1 <i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	313-fold	<i>gusA</i> (X-Gluc)	[181]
		P0231 <i>C. acetobutylicum</i>	<i>C. ljungdahlii</i>	28-fold		
		P0234 <i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	120-fold	<i>mCherryOpt</i>	
		BgaR <i>C. perfringens</i>	<i>C. acetobutylicum</i>	2-fold	<i>lacZ</i> (X-gal)	[179]
			<i>C. beijerinckii</i>	<2-fold	<i>mCherryOpt</i>	
Fructose	FruR <i>C. acetobutylicum</i>	P0234 <i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	4-fold	<i>gusA</i> (ONPG)	[182]
		BgaR <i>C. perfringens</i>	<i>C. perfringens</i>	2-fold	<i>yfp</i> -tagged <i>piB</i>	
		P_{bgal} <i>C. perfringens</i>	<i>C. acetobutylicum</i>	80-fold	<i>gusA</i>	[102]
		LacI ^Q <i>E. coli</i>	<i>C. ljungdahlii</i>	10-fold	<i>gusA</i>	[183]
		P_{lac} system $P_{\text{tdx}}/\text{lacO}$	<i>C. acetobutylicum</i>	8-fold		
Lamin-ribiose	GlyR3 <i>C. thermocellum</i>	$P_{\text{lacC/celO}}$ <i>C. pasteurianum/E. coli</i>	<i>C. sporogenes</i>	10-fold	<i>LLtrB</i>	[51]
		$P_{\text{celC/celO}}$ <i>C. thermocellum</i>	<i>C. thermocellum</i>	100-fold	<i>LLtrB</i>	
				40-fold	<i>spoOA</i>	[184]

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

Maltose	CcpA V302N	P0532-3	<i>C. acetobutylicum</i>	11-fold	<i>mCherryOpt</i>
	<i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>			
Sucrose	LicT	P0423-5	<i>C. acetobutylicum</i>	21-fold	<i>mCherryOpt</i>
	<i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>			
Tetra-cycline	TetR	P _{xyt} /tetO	<i>C. difficile</i>	200-fold	<i>gusA</i>
	<i>S. aureus</i>	<i>B. subtilis</i> /S. <i>aureus</i>	<i>C. acetobutylicum</i>	4.5-fold	<i>phiLOV2.1</i>
			<i>C. sordellii</i>	5.6-fold	
	TetR	tet3nO	<i>C. autoethanogenum</i>	NR	<i>catP</i>
		P _{thi} /tetO	<i>C. autoethanogenum</i>		
		tet3nO (optimized)	<i>C. autoethanogenum</i>	9-fold higher than tet3nO	
		P _{thi} /P _{L12} /tetO	<i>C. cellulolyticum</i>	10-fold	<i>PpFbFP</i>
	Xylan	P1133	<i>C. cellulolyticum</i>		[113]
		<i>C. cellulolyticum</i>	<i>C. cellulolyticum</i>		
	XylR	P _{xytA} /xytO	<i>C. acetobutylicum</i>	17-fold	<i>gusA</i>
		<i>S. xylosus</i>	<i>C. acetobutylicum</i>		
	XylR	P _{xytB} /xytO	<i>C. difficile</i>	100-fold	<i>mCherryOpt</i>
		<i>C. difficile</i>	<i>C. acetobutylicum</i>		
	Xylose	P2610-12	<i>C. acetobutylicum</i>	3-fold	<i>mCherryOpt</i>
		<i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	60-fold	<i>lacZ (X-gal)</i>
	XylR	P3451-2	<i>C. acetobutylicum</i>	300-fold	<i>mCherryOpt</i>
		<i>C. acetobutylicum</i>	<i>C. acetobutylicum</i>	60-fold	<i>lacZ (X-gal)</i>
		P1133	<i>C. beijerinckii</i>	20-fold	<i>mCherryOpt</i>
			<i>C. acetobutylicum</i>	5-fold	<i>mCherryOpt</i>
			<i>C. beijerinckii</i>	2-fold	<i>mCherryOpt</i>

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

by the one operator version, Pcm-*tetO1* [181]. In another TetR-based inducible system, the engineered tet3no promoter [186] was further optimized through randomizing in the spacer between the -35 and -10 boxes [105]. The basal expression of the improved tet3no promoter had ninefold higher dynamic range than the original tet3no promoter, thus, improving CRISPR/Cas9-mediated gene deletion by 50% in *C. autoethanogenum* under the control of the optimized promoter.

Artificial promoter libraries with varying promoter activities are often utilized to identify useful promoters to obtain the desired phenotype. Mutagenesis of the flanking regions surrounding the -35 and -10 consensus sequences of the *thl* promoter yielded a range of promoter strengths covering two orders of magnitude for use in *C. acetobutylicum* and *C. ljungdahlii* [190]. Generation of a library displaying a wide distribution of promoter strengths requires the proper mutation stringency for the promoter of interest to ensure there is a range of active promoters. Over-mutating the sequence space can lead to complete loss of promoter activity in the intended organism of study, while limiting the number of randomized bases can reduce the range of various promoter activities [192]. Controlling the mutation frequency of the thiolase promoter generated a library displaying a distribution of promoter strengths over a 260-fold range [192].

16.4.2 Reporters

Reporter genes act as an observable proxy for some unobservable process. Helpfully, they can be used to provide measurement of gene expression for screening and characterization of promoters. An ideal reporter has high sensitivity and specificity, a large dynamic range of detection, and low endogenous levels of the reporter.

16.4.2.1 Enzyme-Based Reporters

Chloramphenicol acetyltransferase (CAT) reporter, encoded by *catP*, has been extensively used to measure promoter activity in the *Clostridium* genus [193, 194]. When expressed by an active promoter, the CAT enzyme catalyzes an acetyl group from exogenously added substrate, acetyl-CoA, to the antibiotic chloramphenicol (Cm), which then can be used as an antibiotic selection marker. Addition of compound 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) is then used to quantify the concentration of the thiol groups of the acetylated Cm under the absorbance at 412 nm [195]. However, its use is limited to strains naturally resistant to Cm, such as *C. acetobutylicum* and *C. beijerinckii* [195]. Yet, a *catP-lacZ* dual reporter system was implemented in *C. acetobutylicum* to rapidly screen and characterize the thiolase promoter library [190]. The initial screen would select and partition for promoters with various CAT activity on agar with varying Cm concentrations, ranging from 100 to 1200 $\mu\text{g ml}^{-1}$ chloramphenicol. Then the *lacZ* gene is subsequently used as a colorimetric reporter to accurately measure promoter activities.

Commonly used reporters to study quantitative and qualitative gene expression in *Clostridium* are the β -galactosidase enzymes, encoded by *lacZ* from *Thermoanaerobacterium thermosulfurigenes* EM [189, 196, 197]

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

and the β -glucuronidase enzyme, encoded by *gusA* (or *uidA*) from *E. coli* [80, 181, 183, 198]. Both *lacZ* and *gusA* reporters are versatile in their detection platform depending on the substrate. Measurement of β -galactosidase activity as a colorimetric reporter is done by adding substrate 5-bromo-4-chloro-3-indolyl- β -D-galactoside (X-GAL) in agar plates [179, 197]. Substrate *o*-nitrophenyl- β -D-galactopyranoside (ONPG) can be used for colorimetric and spectrophotometric assays [182]. β -Glucuronidase reporters utilize analogous substrates to β -galactosidase reporters: 5-bromo-4-chloro-3-indolyl-glucuronide (X-Gluc) for colorimetric [181, 199], and *p*-nitrophenyl- β -D-glucuronide (PNPG) for spectrophotometric detection. For fluorescent assays, 4-methylumbelliferyl- β -D-galactopyranoside (MUG) for fluorescent assays is used in both β -galactosidase and β -glucuronidase assays [80, 187]. The *gusA* gene is smaller and more stable compared to *lacZ*, and has been reported to have lower background when used as a fusion reporter in *Clostridium* [198]. Other enzymatic reporters not as commonly used but available in *Clostridium* include the β -1,4-endoglucanase gene (*eglA*) isolated from *C. saccharobutylicum* [200], thermostable lipase (*tilA*) gene from *Pseudomonas fluorescens* [201], AmyE^{opt} comprising of a codon-optimized amylase gene from *C. acetobutylicum* and secreting PPEP-1 signal sequence [202], and the alkaline phosphatase gene (*phoZ*) isolated from *Enterococcus faecalis* [203, 204].

16.4.2.2 Bioluminescent Reporters

Bioluminescent reporters are useful as they can amplify the signal from genes expressed at low levels. Despite the need for oxygen (generally undesired for anaerobic *Clostridium*), luciferase reporters (*luc* and *lucB* from firefly *Photinus pyralis*) in *Clostridium* spp. can be used with the addition of ATP and washing cells with a neutral buffer [81, 197, 205]. This luciferase has also been applied in developing and optimizing clostridia-based cell-free systems [206]. In *C. difficile*, a luciferase fusion with secreting protein PPEP-1 (sLuc^{opt}) enabled low-background expression anaerobically with measurement in an aerobic environment, albeit with a delay in signal [202]. Similarly, bacterial luciferases (*luxAB*) of the lux system from *Vibrio fischeri* provide a luminescent output in the presence of flavin mononucleotide (FMN) and long-chain aldehyde substrate in *C. perfringens* [81, 194]. A major limitation with the use of bioluminescence is that while they can be expressed in anaerobic bacteria, transcription activity is not directly correlated with the output [207].

16.4.2.3 Fluorescent Reporters

Fluorescent reporters such as green fluorescent protein (GFP) and its variants allow real-time measurements of gene expression at a single cell level without the need of substrates. *Clostridium* species can express GFP and its variants under anaerobic conditions; however, the intrinsic chromophore of the fluorescent protein requires exposure to molecular oxygen to fluoresce [208]. In addition, the protein complex responsible for cell division quickly disassembles when O₂ disrupts energy metabolism pathway in *Clostridium*.

While an anaerobic reporter would be more suitable, the fluorescence intensity of GFP-based reporters is often more favorable, however, in more

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm Single Column Loose	
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

oxygen-tolerant clostridia such as *C. perfringens* [182, 209]. A codon-optimized enhanced GFP (*Cp*EGFP) surpassed the codon-optimized version of anaerobic fluorescent protein, *Bs*FbFP, after exposed to air for 20 minutes [209]. To quantitatively measure sporulation events, however, it was required to resuspend the bacterial culture in PBS to reduce background fluorescence caused by media constituents. When using codon-optimized cyan fluorescent protein (CFPopt) [210] and mCherryOpt [208], fixation of *C. difficile* cells was necessary to prevent cell lyses upon exposure to an aerobic environment and to preserve the fluorescent protein structure. This process known as “aerobic fluorescence recovery” allows the chromophore to mature in fixed cells.

Due to an intrinsic green and blue autofluorescence in *Clostridium* cells, yellow fluorescent protein (YFP) [182] and mCherry are better alternates to GFP and CFP in *Clostridium*. Complete fluorescence with low autofluorescence background was observed after being exposed to oxygen for two hours in *C. difficile* with the use of mCherry [208]. Furthermore, mCherry is smaller in size than other GFP variants.

16.4.2.4 FbFP-Based Fluorescent Reporters

FMN-based fluorescent proteins (FbFPs) are an emerging class of fluorescent reporters for anaerobes [211–213]. These fluorescent reporters utilize a FMN as a chromophore cofactor, thus independent of oxygen. Due to its smaller size (~13 kDa), FbFPs have relatively faster turnover rates and are most often fused with the protein of interest without disruption of its native function in *C. difficile* [185].

Several versions of FbFP exist each with its own attributes: (i) *Pp*FbFP, based on a sensory box protein from *Pseudomonas putida*, (ii) *Bs*FbFP, based on the N-terminal LOV domain of YTVA protein from *B. subtilis*, (iii) *Ec*FbFP, a codon-optimized version of *Bs*FbFP, (iv) *i*LOV, created from the LOV2 domain of the blue light photoreceptor phototropin from *Arabidopsis thaliana* [214], and photostable version of *i*LOV (v) *phi*LOV2.1 [211]. *i*LOV and *Ec*FbFP have been engineered to retain 60–70% fluorescence in a pH range of 4–11, while *Pp*FbFP loses fluorescence at pH 11 [214]. While *i*LOV outperforms other versions in fluorescence at elevated temperatures over *Pp*FbFP and *Ec*FbFP, all three FbFPs have a higher thermal stability (50 °C) over GFP. Although *phi*LOV2.1 outperformed other FbFPs, GFP still outshines *phi*LOV2.1 [185].

Several *Clostridium* species have utilized FbFPs, including *Ec*FbFP, as fluorescent reporters: *Pp*FbFP (commercial name Evoglow-CK^{XN}-Pp1) in *C. cellulolyticum* [80, 113], *C. ljungdahlii* [215], and *C. pasteurianum* [120]; *Bs*FbFP (commercial name Evoglow-CK^{XN}-Bs2) in *C. ljungdahlii* [215], *C. tyrobutyricum* [216], and *C. acetobutylicum* [217]; *Ec*FbFP in *C. beijerinckii* [213]; and *phi*LOV2.1, in *C. difficile*, *C. acetobutylicum*, and *C. sordellii* [185].

Performance of FbFP can vary across *Clostridium* hosts and readout platforms. Due to a lower quantum yield (brightness) compared to GFP, the intrinsic green autofluorescence of *Clostridium* cells lowers the fluorescence signal-to-noise ratio [185, 192]. While GFP-based reporters have a diverse palette of colors, FbFP is limited to one. A few strategies are suggested when using FbFP in *Clostridium*. Eliminating yeast and beef extract from flavin-based media such as

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/ ohne Korrekturen <input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen <input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

reinforced clostridial medium (RCM) and PETC (ATCC medium 1754) lowers fluorescent backgrounds [215]. However, removal of yeast and beef extract from the media significantly affected the growth rates of *C. ljungdahlii*, thus affecting proper quantitative analysis between protein expression and growth phase. For fluorescence microscopy, a mitigating method is to take cells expressing the fluorescent reporter and fluorescent negative cells separately through a series of different excitation wavelengths, then identify the excitation wavelength with the widest spread of the signal between the fluorescent positive and negative cells. The overall fluorescence of *phiLOV2.1* reporter in *C. difficile* at excitation wavelengths at 450 and 470 nm were 2.1-fold and 1.7-fold higher than the non-fluorescent cell, and improved the overall noise-to-signal fluorescence [185].

16.4.2.5 FAST, HaloTag, and SNAP-Tag Fluorescent Reporters

The versatility of the fluorescence-activating and absorption-shifting tag (FAST) protein is a promising reporter for *Clostridium*. The FAST protein is expressed within the cell under a control of a promoter, and only fluoresces when bound to an exogenously added fluorogenic ligand under either aerobic or anaerobic conditions [218]. Depending on the fluorogen analog, the fluorogen–FAST complex produces various fluorescence colors: a green-yellow fluorescence is emitted using 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR) upon blue light excitation.

A major limitation of metabolic engineering in *Clostridium* has been the low transformation efficiency of plasmid DNA inside the cell. Plasmid transformation was first described in *C. acetobutylicum* using 1 µg of DNA in an *in vivo* methylation using *B. subtilis* phage ϕ 3T I methyltransferase in *E. coli* [219]. Methods to transform plasmid DNA using common techniques (e.g. electroporation) require strain-by-strain development [220]. One major obstacle is the restriction-modification systems present in each strain. Genomic DNA methylation analysis (using PacBio SMRT sequencing) can be performed to identify methylation motifs to avoid including these sequences in the plasmid of interest [28]. Additionally, bioinformatic analysis can be used to clone methylation genes in *E. coli* to protect plasmid DNA prior to transformation.

16.4.3 Terminators

At the 3' end of an expression construct, terminators are often overlooked genetic elements in the clostridial toolbox despite their role in gene expression stability. Non-native terminators, including bidirectional *E. coli* terminator BB1_B1010 from iGEM Parts Registry, have demonstrated a 36% increase in *catP* reporter expression over the native *adc* terminator [221].

Commonly used terminators are obtained from genes *adc* (acetoacetate decarboxylase) from *C. acetobutylicum* and *fdx* (ferredoxin) from *C. pasteurianum* [76, 78, 158, 189, 191], as well as the *in silico* identified CD0164 terminator of *C. difficile* 630 fdx gene [9, 222]. With limited selection of terminators, *E. coli rrnB T1* and *B. subtilis tyrS* tRNA terminators were found to be efficient terminators for use in *C. acetobutylicum* [188].

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

Availability of bioinformatic tools such as TransTermHP [223, 224], RNAMotif [223], and WebGeSTer [225] have enabled identification and prediction of *Clostridium* terminators. Expansion of clostridial terminators can further enhance the synthetic biology toolbox.

16.4.4 5'-UTRs and Riboswitches

Components within the noncoding regions of RNAs are emerging as important regulatory elements to control gene expression in *Clostridium*. Careful design of the 5' untranslated regions (5'-UTR) of the mRNA can increase mRNA stability and gene expression of *adhE1* and *adhE2* in *C. acetobutylicum* and *C. beijerinckii* [221].

New inducible systems in *Clostridium* have been engineered using components known as riboswitches that are found within the 5'-UTRs. Riboswitches can regulate gene expression in a ligand-dependent manner, without the need of a protein regulator. Riboswitches consists of an aptamer domain where the ligand binds, and the gene expression platform that directly controls gene expression. Upon ligand binding, a conformational change of the riboswitch either exposes or blocks the RBS from ribosome binding, and thereby regulates translation of the expression platform. For example, a natural purine-responsive riboswitch was utilized in tuning expression of *adhE* to control the production of ethanol in thermophile *C. thermocellum* [226]. Other uses have included a theophylline-responsive riboswitch to tune Cas9 expression in *C. sporogenes* [8], a nickel or cobalt ion riboswitch to tune Cas9 expression in *C. scindens* [227], and an engineered glycine-responsive riboswitch from *C. pasteurianum* that helped increased production of 5-aminolevulinic acid by 11% in *E. coli* [228]. While only a few have been implemented as an alternative to inducible promoters for use in *Clostridium*, a growing number of riboswitches have been identified in the *Clostridium* genus, opening up possibilities for continued development [229–232].

Author Contributions

RJ, SK, NK, and NS prepared and edited the manuscript; RJ prepared Figure 16.1 and Table 16.1; NK prepared Table 16.2.

References

- 1 Nguyen, N.-P.-T., Raynaud, C., Meynil-Salles, I., and Soucaille, P. (2018). Reviving the Weizmann process for commercial *n*-butanol production. *Nature Communications* 9: 3682.
- 2 Mills, T.Y., Sandoval, N.R., and Gill, R.T. (2009). Cellulosic hydrolysate toxicity and tolerance mechanisms in *Escherichia coli*. *Biotechnology for Biofuels* 2: 26.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

- 3 Heinze, S., Mechelke, M., Kornberger, P. et al. (2017). Identification of endoxylanase XynE from *Clostridium thermocellum* as the first xylanase of glycoside hydrolase family GH141. *Scientific Reports* 7: 11178.
- 4 Jones, S.W., Fast, A.G., Carlson, E.D. et al. (2016). CO₂ fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. *Nature Communications* 7: 12800.
- 5 Liu, K., Atiyeh, H.K., Pardo-Planas, O. et al. (2015). Butanol production from hydrothermolysis-pretreated switchgrass: quantification of inhibitors and detoxification of hydrolyzate. *Bioresource Technology* 189: 292–301.
- 6 Xin, B., Wang, Y., Tao, F. et al. (2016). Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by *Clostridium diolis*. *Scientific Reports* 6: 19044.
- 7 Staedtke, V., Roberts, N.J., Bai, R.Y., and Zhou, S.B. (2016). *Clostridium novyi*-NT in cancer therapy. *Genes and Diseases* 3: 144–152.
- 8 Cañadas, I.C., Groothuis, D., Zygouropoulou, M. et al. (2019). RiboCas: a universal CRISPR-based editing tool for *Clostridium*. *ACS Synthetic Biology* 8: 1379–1390.
- 9 Ng, Y.K., Ehsaan, M., Philip, S. et al. (2013). Expanding the repertoire of gene tools for precise manipulation of the *Clostridium difficile* genome: allelic exchange using pyrE alleles. *PLoS One* 8: 13.
- 10 Ferreira, S., Pereira, R., Wahl, S.A., and Rocha, I. (2020). Metabolic engineering strategies for butanol production in *Escherichia coli*. *Biotechnology and Bioengineering* 117: 2571–2587.
- 11 Smanski, M.J., Bhatia, S., Zhao, D. et al. (2014). Functional optimization of gene clusters by combinatorial design and assembly. *Nature Biotechnology* 32: 1241–1249.
- 12 Rohlhill, J., Sandoval, N.R., and Papoutsakis, E.T. (2017). Sort-seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated *Escherichia coli* growth on methanol. *ACS Synthetic Biology* 6 (8): 1584–1595.
- 13 Jones, J.A., Vernacchio, V.R., Lachance, D.M. et al. (2015). ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. *Scientific Reports* 5: 11301.
- 14 Ostrov, N., Landon, M., Guell, M. et al. (2016). Design, synthesis, and testing toward a 57-codon genome. *Science* 353: 819–822.
- 15 Atsumi, S., Cann, A.F., Connor, M.R. et al. (2008). Metabolic engineering of *Escherichia coli* for 1-butanol production. *Metabolic Engineering* 10: 305–311.
- 16 Shen, C.R., Lan, E.I., Dekishima, Y. et al. (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in *Escherichia coli*. *Applied and Environmental Microbiology* 77: 2905–2915.
- 17 Ohtake, T., Pontrelli, S., Laviña, W.A. et al. (2017). Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in *Escherichia coli*. *Metabolic Engineering* 41: 135–143.
- 18 Lütke-Eversloh, T. and Bahl, H. (2011). Metabolic engineering of *Clostridium acetobutylicum*: recent advances to improve butanol production. *Current Opinion in Biotechnology* 22: 634–647.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

636 | 16 Metabolic Engineering and the Synthetic Biology Toolbox for Clostridium

- 19 Czajka, J., Wang, Q., Wang, Y., and Tang, Y.J. (2017). Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms. *Applied Microbiology and Biotechnology* 101 (20): 7427–7434.
- 20 Wang, M., Chen, B., Fang, Y., and Tan, T. (2017). Cofactor engineering for more efficient production of chemicals and biofuels. *Biotechnology Advances* 35 (8): 1032–1039.
- 21 Wu, G., Yan, Q., Jones, J.A. et al. (2016). Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. *Trends in Biotechnology* 34: 652–664.
- 22 Liu, J., Jiang, Y., Chen, J. et al. (2020). Metabolic engineering and adaptive evolution of *Clostridium beijerinckii* to increase solvent production from corn stover hydrolysate. *Journal of Agricultural and Food Chemistry* 68: 7916–7925.
- 23 Papanek, B., Biswas, R., Rydzak, T., and Guss, A.M. (2015). Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in *Clostridium thermocellum*. *Metabolic Engineering* 32: 49–54.
- 24 Lee, J., Jang, Y.S., Choi, S.J. et al. (2012). Metabolic engineering of *Clostridium acetobutylicum* ATCC 824 for isopropanol–butanol–ethanol fermentation. *Applied and Environmental Microbiology* 78: 1416–1423.
- 25 Hon, S., Olson, D.G., Holwerda, E.K. et al. (2017). The ethanol pathway from *Thermoanaerobacterium saccharolyticum* improves ethanol production in *Clostridium thermocellum*. *Metabolic Engineering* 42: 175–184.
- 26 Tian, L., Conway, P.M., Cervenka, N.D. et al. (2019). Metabolic engineering of *Clostridium thermocellum* for *n*-butanol production from cellulose. *Biotechnology for Biofuels* 12: 186.
- 27 Jiang, L., Li, S., Hu, Y. et al. (2012). Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in *Clostridium tyrobutyricum*. *Biotechnology and Bioengineering* 109: 708–718.
- 28 Sandoval, N.R., Venkataraman, K.P., Groth, T.S., and Papoutsakis, E.T. (2015). Whole-genome sequence of an evolved *Clostridium pasteurianum* strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. *Biotechnology for Biofuels* 8: 227.
- 29 Zhang, Y., Ujor, V., Wick, M., and Ezeji, T.C. (2015). Identification, purification and characterization of furfural transforming enzymes from *Clostridium beijerinckii* NCIMB 8052. *Anaerobe* 33: 124–131.
- 30 Agu, C.V., Ujor, V., and Ezeji, T.C. (2019). Metabolic engineering of *Clostridium beijerinckii* to improve glycerol metabolism and furfural tolerance. *Biotechnology for Biofuels* 12: 50.
- 31 Okonkwo, C.C., Ujor, V., and Ezeji, T.C. (2019). Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in *Clostridium beijerinckii* NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. *Scientific Reports* 9: 7634.
- 32 Jiménez-Bonilla, P., Zhang, J., Wang, Y. et al. (2020). Enhancing the tolerance of *Clostridium saccharoperbutylacetonicum* to

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from *Pseudomonas putida*. *Bioresource Technology* 312: 123532.

- 33 Kinney, J.B. and McCandlish, D.M. (2019). Massively parallel assays and quantitative sequence–function relationships. *Annual Review of Genomics and Human Genetics* 20: 99–127.
- 34 Huang, J., Du, Y., Bao, T. et al. (2019). Production of *n*-butanol from cassava bagasse hydrolysate by engineered *Clostridium tyrobutyricum* overexpressing adhE2: kinetics and cost analysis. *Bioresource Technology* 292: 121969.
- 35 Tian, L., Perot, S.J., Hon, S. et al. (2017). Enhanced ethanol formation by *Clostridium thermocellum* via pyruvate decarboxylase. *Microbial Cell Factories* 16: 171.
- 36 Perret, S., Casalot, L., Fierobe, H.-P. et al. (2004). Production of heterologous and chimeric scaffoldins by *Clostridium acetobutylicum* ATCC 824. *Journal of Bacteriology* 186: 253–257.
- 37 Kovács, K., Willson, B.J., Schwarz, K. et al. (2013). Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in *Clostridium acetobutylicum* ATCC 824. *Biotechnology for Biofuels* 6: 117.
- 38 Tian, L., Papanek, B., Olson, D.G. et al. (2016). Simultaneous achievement of high ethanol yield and titer in *Clostridium thermocellum*. *Biotechnology for Biofuels* 9: 116.
- 39 Holwerda, E.K., Olson, D.G., Ruppertsberger, N.M. et al. (2020). Metabolic and evolutionary responses of *Clostridium thermocellum* to genetic interventions aimed at improving ethanol production. *Biotechnology for Biofuels* 13: 40.
- 40 Tian, L., Cervenka, N.D., Low, A.M. et al. (2019). A mutation in the AdhE alcohol dehydrogenase of *Clostridium thermocellum* increases tolerance to several primary alcohols, including isobutanol, *n*-butanol and ethanol. *Scientific Reports* 9: 1736.
- 41 Liu, H., Zhang, J., Yuan, J. et al. (2020). Gene coexpression network analysis reveals a novel metabolic mechanism of *Clostridium acetobutylicum* responding to phenolic inhibitors from lignocellulosic hydrolysates. *Biotechnology for Biofuels* 13: 163.
- 42 Dash, S., Olson, D.G., Joshua Chan, S.H. et al. (2019). Thermodynamic analysis of the pathway for ethanol production from cellobiose in *Clostridium thermocellum*. *Metabolic Engineering* 55: 161–169.
- 43 Fast, A.G. and Papoutsakis, E.T. (2018). Functional expression of the *Clostridium ljungdahlii* acetyl-coenzyme A synthase in *Clostridium acetobutylicum* as demonstrated by a novel *in vivo* CO exchange activity en route to heterologous installation of a functional Wood-Ljungdahl pathway. *Applied and Environmental Microbiology* 84: e02307-17.
- 44 Carlson, E.D. and Papoutsakis, E.T. (2017). Heterologous expression of the *Clostridium carboxidivorans* CO dehydrogenase alone or together with the acetyl coenzyme a synthase enables both reduction of CO₂ and oxidation of CO by *Clostridium acetobutylicum*. *Applied and Environmental Microbiology* 83: e00829-17.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

638 | 16 Metabolic Engineering and the Synthetic Biology Toolbox for *Clostridium*

- 45 Charubin, K., Modla, S., Caplan, J.L., and Papoutsakis, E.T. (2020). Inter-species microbial fusion and large-scale exchange of cytoplasmic proteins and RNA in a syntrophic *Clostridium* coculture. *MBio* 11: e02030-20.
- 46 Charubin, K. and Papoutsakis, E.T. (2019). Direct cell-to-cell exchange of matter in a synthetic *Clostridium* syntrophy enables CO₂ fixation, superior metabolite yields, and an expanded metabolic space. *Metabolic Engineering* 52: 9–19.
- 47 Beri, D., York, W.S., Lynd, L.R. et al. (2020). Development of a thermophilic coculture for corn fiber conversion to ethanol. *Nature Communications* 11: 1937.
- 48 Zhu, X., Tao, Y., Liang, C. et al. (2015). The synthesis of *n*-caproate from lactate: a new efficient process for medium-chain carboxylates production. *Scientific Reports* 5: 14360.
- 49 Lonkar, S., Fu, Z., and Holtzapple, M. (2016). Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate. *Biotechnology and Bioengineering* 113: 2597–2604.
- 50 Zhong, J., Karberg, M., and Lambowitz, A.M. (2003). Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. *Nucleic Acids Research* 31: 1656–1664.
- 51 Heap, J.T., Pennington, O.J., Cartman, S.T. et al. (2007). The ClosTron: a universal gene knock-out system for the genus *Clostridium*. *Journal of Microbiological Methods* 70: 452–464.
- 52 Perutka, J., Wang, W., Goerlitz, D., and Lambowitz, A.M. (2004). Use of computer-designed group II introns to disrupt *Escherichia coli* DExH/D-box protein and DNA helicase genes. *Journal of Molecular Biology* 336: 421–439.
- 53 Heap, J.T., Kuehne, S.A., Ehsaan, M. et al. (2010). The ClosTron: mutagenesis in *Clostridium* refined and streamlined. *Journal of Microbiological Methods* 80: 49–55.
- 54 Karberg, M., Guo, H., Zhong, J. et al. (2001). Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. *Nature Biotechnology* 19: 1162–1167.
- 55 Chen, Y., Caruso, L., McClane, B. et al. (2007). Disruption of a toxin gene by introduction of a foreign gene into the chromosome of *Clostridium perfringens* using targetron induced mutagenesis. *Plasmid* 58: 182–189.
- 56 Chen, Y., McClane, B.A., Fisher, D.J. et al. (2005). Construction of an alpha toxin gene knockout mutant of *Clostridium perfringens* type A by use of a mobile group II intron. *Applied and Environmental Microbiology* 71: 7542–7547.
- 57 Honicke, D., Lutke-Eversloh, T., Liu, Z.Y. et al. (2014). Chemostat cultivation and transcriptional analyses of *Clostridium acetobutylicum* mutants with defects in the acid and acetone biosynthetic pathways. *Applied Microbiology and Biotechnology* 98: 9777–9794.
- 58 Liu, Z., Qiao, K., Tian, L. et al. (2015). Spontaneous large-scale autolysis in *Clostridium acetobutylicum* contributes to generation of more spores. *Frontiers in Microbiology* 6: 7.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

59 Shao, L., Hu, S., Yang, Y. et al. (2007). Targeted gene disruption by use of a group II intron (targetron) vector in *Clostridium acetobutylicum*. *Cell Research* 17: 963–965.

60 Xu, M.M., Zhao, J.B., Yu, L. et al. (2015). Engineering *Clostridium acetobutylicum* with a histidine kinase knockout for enhanced n-butanol tolerance and production. *Applied Microbiology and Biotechnology* 99: 1011–1022.

61 Liu, J., Guo, T., Shen, X. et al. (2016). Engineering *Clostridium beijerinckii* with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance. *Journal of Biotechnology* 229: 53–57.

62 Pyne, M.E., Moo-Young, M., Chung, D.A., and Chou, C.P. (2014). Expansion of the genetic toolkit for metabolic engineering of *Clostridium pasteurianum*: chromosomal gene disruption of the endogenous CpaAI restriction enzyme. *Biotechnology for Biofuels* 7: 163.

63 Meaney, C.A., Cartman, S.T., McClure, P.J., and Minton, N.P. (2016). The role of small acid-soluble proteins (SASPs) in protection of spores of *Clostridium botulinum* against nitrous acid. *International Journal of Food Microbiology* 216: 25–30.

64 Meaney, C.A., Cartman, S.T., McClure, P.J., and Minton, N.P. (2015). Optimal spore germination in *Clostridium botulinum* ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ. *Anaerobe* 34: 86–93.

65 Baban, S.T., Kuehne, S.A., Barketi-Klai, A. et al. (2013). The role of flagella in *Clostridium difficile* pathogenesis: comparison between a non-epidemic and an epidemic strain. *PLoS One* 8: 12.

66 Dingle, T.C., Mulvey, G.L., and Armstrong, G.D. (2011). Mutagenic analysis of the *Clostridium difficile* flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. *Infection and Immunity* 79: 4061–4067.

67 Hensbergen, P.J., Klychnikov, O.I., Bakker, D. et al. (2015). *Clostridium difficile* secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. *FEBS Letters* 589: 3952–3958.

68 Lawson, P.A., Citron, D.M., Tyrrell, K.L., and Finegold, S.M. (2016). Reclassification of *Clostridium difficile* as *Clostridioides difficile* (Hall and O'Toole 1935) Prevot 1938. *Anaerobe* 40: 95–99.

69 Flannagan, S.E. and Clewell, D.B. (1991). Conjugative transfer of Tn916 in *Enterococcus faecalis*: trans activation of homologous transposons. *Journal of Bacteriology* 173: 7136–7141.

70 Woolley, R.C., Pennock, A., Ashton, R.J. et al. (1989). Transfer of Tn1545 and Tn916 to *Clostridium acetobutylicum*. *Plasmid* 22: 169–174.

71 Hussain, H.A., Roberts, A.P., and Mullany, P. (2005). Generation of an erythromycin-sensitive derivative of *Clostridium difficile* strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. *Journal of Medical Microbiology* 54: 137–141.

72 Wang, H., Roberts, A.P., and Mullany, P. (2000). DNA sequence of the insertional hot spot of Tn916 in the *Clostridium difficile* genome and discovery of

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

a Tn916-like element in an environmental isolate integrated in the same hot spot. *FEMS Microbiology Letters* 192: 15–20.

73 Awad, M.M. and Rood, J.I. (1997). Isolation of α -toxin, θ -toxin and κ -toxin mutants of *Clostridium perfringens* by Tn916 mutagenesis. *Microbial Pathogenesis* 22: 275–284.

74 Lanckriet, A., Timbermont, L., Happonen, L.J. et al. (2009). Generation of single-copy transposon insertions in *Clostridium perfringens* by electroporation of phage mu DNA transposition complexes. *Applied and Environmental Microbiology* 75: 2638–2642.

75 Vidal, J.E., Chen, J., Li, J., and McClane, B.A. (2009). Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in *Clostridium perfringens* strain 13. *PLoS One* 4: e6232.

76 Cartman, S.T. and Minton, N.P. (2010). A mariner-based transposon system for in vivo random mutagenesis of *Clostridium difficile*. *Applied and Environmental Microbiology* 76: 1103–1109.

77 Liu, H., Bouillaud, L., Sonsenschein, A.L., and Melville, S.B. (2013). Use of a mariner-based transposon mutagenesis system to isolate *Clostridium perfringens* mutants deficient in gliding motility. *Journal of Bacteriology* 195: 629–636.

78 Zhang, Y., Grosse-Honebrink, A., and Minton, N.P. (2015). A universal mariner transposon system for forward genetic studies in the genus *Clostridium*. *PLoS One* 10: e0122411.

79 Zhang, Y., Xu, S., Chai, C. et al. (2016). Development of an inducible transposon system for efficient random mutagenesis in *Clostridium acetobutylicum*. *FEMS Microbiology Letters* 363: fnw065.

80 Zhang, J., Liu, Y.-J., Cui, G.-Z., and Cui, Q. (2015). A novel arabinose-inducible genetic operation system developed for *Clostridium cellulolyticum*. *Biotechnology for Biofuels* 8: 36.

81 Phillips-Jones, M.K. (2000). Use of a lux reporter system for monitoring rapid changes in alpha-toxin gene expression in *Clostridium perfringens* during growth. *FEMS Microbiology Letters* 188: 29–33.

82 Dembek, M., Barquist, L., Boinett, C.J. et al. (2015). High-throughput analysis of gene essentiality and sporulation in *Clostridium difficile*. *MBio* 6: e02383-14.

83 Awad, M.M., Bryant, A.E., Stevens, D.L., and Rood, J.I. (1995). Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in *Clostridium perfringens*-mediated gas gangrene. *Molecular Microbiology* 15: 191–202.

84 Bannam, T.L., Crellin, P.K., and Rood, J.I. (1995). Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from *Clostridium perfringens*: the TnpX site-specific recombinase excises a circular transposon molecule. *Molecular Microbiology* 16: 535–551.

85 Green, E.M., Boynton, Z.L., Harris, L.M. et al. (1996). Genetic manipulation of acid formation pathways by gene inactivation in *Clostridium acetobutylicum* ATCC 824. *Microbiology* 142: 2079–2086.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

- 86 Green, E.M. and Bennett, G.N. (1996). Inactivation of an aldehyde/alcohol dehydrogenase gene from *Clostridium acetobutylicum* ATCC 824. *Applied Biochemistry and Biotechnology* 57–58: 213–221.
- 87 Harris, L.M., Welker, N.E., and Papoutsakis, E.T. (2002). Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in *Clostridium acetobutylicum* ATCC 824. *Journal of Bacteriology* 184: 3586–3597.
- 88 Nair, R.V., Green, E.M., Watson, D.E. et al. (1999). Regulation of the sol locus genes for butanol and acetone formation in *Clostridium acetobutylicum* ATCC 824 by a putative transcriptional repressor. *Journal of Bacteriology* 181: 319–330.
- 89 O'Connor, J.R., Lyras, D., Farrow, K.A. et al. (2006). Construction and analysis of chromosomal *Clostridium difficile* mutants. *Molecular Microbiology* 61: 1335–1351.
- 90 Liyanage, H., Kashket, S., Young, M., and Kashket, E.R. (2001). *Clostridium beijerinckii* and *Clostridium difficile* detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. *Applied and Environmental Microbiology* 67: 2004–2010.
- 91 Croux, C., Nguyen, N.-P.-T., Lee, J. et al. (2016). Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer *Clostridium acetobutylicum*. *Biotechnology for Biofuels* 9: 23.
- 92 Tripathi, S.A., Olson, D.G., Argyros, D.A. et al. (2010). Development of pyrF-based genetic system for targeted gene deletion in *Clostridium thermocellum* and creation of a pta mutant. *Applied and Environmental Microbiology* 76: 6591–6599.
- 93 Heap, J.T., Ehsaan, M., Cooksley, C.M. et al. (2012). Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. *Nucleic Acids Research* 40: e59.
- 94 Lee, S.J., Trostel, A., Le, P. et al. (2009). Cellular stress created by intermediary metabolite imbalances. *Proceedings of the National Academy of Sciences of the United States of America* 106: 19515–19520.
- 95 Lee, S.J., Trostel, A., and Adhya, S. (2014). Metabolite changes signal genetic regulatory mechanisms for robust cell behavior. *MBio* 5: e00972–e00913.
- 96 Nariya, H., Miyata, S., Suzuki, M. et al. (2011). Development and application of a method for counterselectable in-frame deletion in *Clostridium perfringens*. *Applied and Environmental Microbiology* 77: 1375–1382.
- 97 Minton, N.P., Ehsaan, M., Humphreys, C.M. et al. (2016). A roadmap for gene system development in *Clostridium*. *Anaerobe* 41: 104–112.
- 98 Ehsaan, M., Kuit, W., Zhang, Y. et al. (2016). Mutant generation by allelic exchange and genome resequencing of the biobutanol organism *Clostridium acetobutylicum* ATCC 824. *Biotechnology for Biofuels* 9: 4.
- 99 Willson, B.J., Kovacs, K., Wilding-Steele, T. et al. (2016). Production of a functional cell wall-anchored minicellulosome by recombinant *Clostridium acetobutylicum* ATCC 824. *Biotechnology for Biofuels* 9: 22.
- 100 Bankar, S.B., Jurgens, G., Survase, S.A. et al. (2015). Genetic engineering of *Clostridium acetobutylicum* to enhance isopropanol–butanol–ethanol

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

production with an integrated DNA-technology approach. *Renewable Energy* 83: 1076–1083.

- 101 Cartman, S.T., Kelly, M.L., Heeg, D. et al. (2012). Precise manipulation of the *Clostridium difficile* chromosome reveals a lack of association between the *tcdC* genotype and toxin production. *Applied and Environmental Microbiology* 78 (13): 4683–4690.
- 102 Al-Hinai, M.A., Fast, A.G., and Papoutsakis, E.T. (2012). Novel system for efficient isolation of *Clostridium* double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. *Applied and Environmental Microbiology* 78: 8112–8121.
- 103 Huang, C.-N., Liebl, W., and Ehrenreich, A. (2018). Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer *Clostridium saccharobutylicum*. *Biotechnology for Biofuels* 11: 264.
- 104 Foulquier, C., Huang, C.-N., Nguyen, N.-P.-T. et al. (2019). An efficient method for markerless mutant generation by allelic exchange in *Clostridium acetobutylicum* and *Clostridium saccharobutylicum* using suicide vectors. *Biotechnology for Biofuels* 12: 31.
- 105 Nagaraju, S., Davies, N.K., Walker, D.J.F. et al. (2016). Genome editing of *Clostridium autoethanogenum* using CRISPR/Cas9. *Biotechnology for Biofuels* 9: 219.
- 106 Barrangou, R., Fremaux, C., Deveau, H. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. *Science* 315: 1709–1712.
- 107 Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. *Nature* 482: 331–338.
- 108 Pausch, P., Al-Shayeb, B., Bisom-Rapp, E. et al. (2020). CRISPR-CasΦ from huge phages is a hypercompact genome editor. *Science* 369: 333–337.
- 109 Zhu, H., Li, C., and Gao, C. (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. *Nature Reviews Molecular Cell Biology* 21: 661–677.
- 110 Wu, Y., Liu, Y., Lv, X. et al. (2020). Applications of CRISPR in a microbial cell factory: from genome reconstruction to metabolic network reprogramming. *ACS Synthetic Biology* 9: 2228–2238.
- 111 Khan, A.H., Tye, G.J., and Noordin, R. (2020). CRISPR-Cas9 genome editing tool for the production of industrial biopharmaceuticals. *Molecular Biotechnology* 62: 401–411.
- 112 Cui, L. and Bikard, D. (2016). Consequences of Cas9 cleavage in the chromosome of *Escherichia coli*. *Nucleic Acids Research* 44: 4243–4251.
- 113 Teng, L., Wang, K., Xu, J., and Xu, C. (2015). Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for promoter screening in *Clostridium cellulolyticum*. *Journal of Microbiological Methods* 119: 37–43.
- 114 Jiang, W., Bikard, D., Cox, D. et al. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nature Biotechnology* 31: 233–239.
- 115 Wang, Y., Zhang, Z.-T., Seo, S.-O. et al. (2016). Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

desirable “clean” mutant selection in *Clostridium beijerinckii* as an example. *ACS Synthetic Biology* 5: 721–732.

116 Li, Q., Chen, J., Minton, N.P. et al. (2016). CRISPR-based genome editing and expression control systems in *Clostridium acetobutylicum* and *Clostridium beijerinckii*. *Biotechnology Journal* 11 (7): 961–972.

117 Wang, Y., Zhang, Z.-T., Seo, S.-O. et al. (2015). Markerless chromosomal gene deletion in *Clostridium beijerinckii* using CRISPR/Cas9 system. *Journal of Biotechnology* 200 <https://doi.org/10.1016/j.biote.2015.02.005>.

118 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* 337: 816–821.

119 Moon, S.B., Kim, D.Y., Ko, J.-H., and Kim, Y.-S. (2019). Recent advances in the CRISPR genome editing tool set. *Experimental & Molecular Medicine* 51: 1–11.

120 Bruder, M.R., Pyne, M.E., Moo-Young, M. et al. (2016). Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in genus *Clostridium*. *Applied and Environmental Microbiology* 82: 6109–6117.

121 Wasels, F., Jean-Marie, J., Collas, F. et al. (2017). A two-plasmid inducible CRISPR/Cas9 genome editing tool for *Clostridium acetobutylicum*. *Journal of Microbiological Methods* 140: 5–11.

122 Wasels, F., Chartier, G., Hocq, R. et al. (2020). A CRISPR/anti-CRISPR genome editing approach underlines the synergy of butanol dehydrogenases in *Clostridium acetobutylicum* DSM 792. *Applied and Environmental Microbiology* 86 (13): e00408-20.

123 Diallo, M., Hocq, R., Collas, F. et al. (2020). Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in *Clostridium beijerinckii*. *Methods* 172: 51–60.

124 Xin, X., Cheng, C., Du, G. et al. (2020). Metabolic engineering of histidine kinases in *Clostridium beijerinckii* for enhanced butanol production. *Frontiers in Bioengineering and Biotechnology* 8: 214.

125 Li, Q., Seys, F.M., Minton, N.P. et al. (2019). CRISPR-Cas9(D10A) nickase-assisted base editing in the solvent producer *Clostridium beijerinckii*. *Biotechnology and Bioengineering* 116 (6): 1475–1483.

126 Zhang, J., Hong, W., Zong, W. et al. (2018). Markerless genome editing in *Clostridium beijerinckii* using the CRISPR-Cpf1 system. *Journal of Biotechnology* 284: 27–30.

127 Xu, T., Li, Y., Shi, Z. et al. (2015). Efficient genome editing in *Clostridium cellulolyticum* via CRISPR-Cas9 nickase. *Applied and Environmental Microbiology* 81: 4423–4431.

128 Xu, T., Li, Y., He, Z. et al. (2017). Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in *Clostridium cellulolyticum*. *Frontiers in Microbiology* 8: 1744.

129 Tao, X., Tao, X., Kemphner, M.L. et al. (2020). Precise promoter integration improves cellulose bioconversion and thermotolerance in *Clostridium cellulolyticum*. *Metabolic Engineering* 60: 110–118.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

644 | 16 Metabolic Engineering and the Synthetic Biology Toolbox for Clostridium

130 Gupta, S.K., Dixit, S., Dangi, S.K. et al. (2020). Marker-less deletion of *cctA* gene of *Clostridium chauvoei*. *Anaerobe* 61: 102116.

131 Wang, S., Hong, W., Dong, S. et al. (2018). Genome engineering of *Clostridium difficile* using the CRISPR-Cas9 system. *Clinical Microbiology and Infection* 24: 1095–1099.

132 Ingle, P., Groothuis, D., Rowe, P. et al. (2019). Generation of a fully erythromycin-sensitive strain of *Clostridioides difficile* using a novel CRISPR-Cas9 genome editing system. *Scientific Reports* 9: 8123.

133 McAllister, K.N., Bouillaut, L., Kahn, J.N. et al. (2017). Using CRISPR-Cas9-mediated genome editing to generate *C. difficile* mutants defective in selenoproteins synthesis. *Scientific Reports* 7 (1): 14672.

134 Hong, W., Zhang, J., Cui, G. et al. (2018). Multiplexed CRISPR-Cpf1-mediated genome editing in *Clostridium difficile* toward the understanding of pathogenesis of *C. difficile* infection. *ACS Synthetic Biology* 7 (6): 1588–1600.

135 Maikova, A., Kreis, V., Boutsenin, A. et al. (2019). Using an endogenous CRISPR-Cas system for genome editing in the human pathogen *Clostridium difficile*. *Applied and Environmental Microbiology* 85 (20): e01416-19.

136 Huang, H., Chai, C., Li, N. et al. (2016). CRISPR/Cas9-based efficient genome editing in *Clostridium ljungdahlii*, an autotrophic gas-fermenting bacterium. *ACS Synthetic Biology* 5 (12): 1355–1361.

137 Huang, H., Chai, C., Yang, S. et al. (2019). Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting *Clostridium ljungdahlii*. *Metabolic Engineering* 52: 293–302.

138 Xia, P.F., Casini, I., Schulz, S. et al. (2020). Reprogramming acetogenic bacteria with CRISPR-targeted base editing via deamination. *ACS Synthetic Biology* 9 (8): 2162–2171.

139 Zhao, R., Liu, Y., Zhang, H. et al. (2019). CRISPR-Cas12a-mediated gene deletion and regulation in *Clostridium ljungdahlii* and its application in carbon flux redirection in synthesis gas fermentation. *ACS Synthetic Biology* 8 (10): 2270–2279.

140 Pyne, M.E., Bruder, M.R., Moo-Young, M. et al. (2016). Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in *Clostridium*. *Scientific Reports* 6: 25666.

141 Schmitz, R., Sabra, W., Arbter, P. et al. (2019). Improved electrocompetence and metabolic engineering of *Clostridium pasteurianum* reveals a new regulation pattern of glycerol fermentation. *Engineering in Life Sciences* 19 (6): 412–422.

142 Wang, P., Feng, J., Guo, L. et al. (2019). Engineering *Clostridium saccharoperbutylacetonicum* for high level isopropanol-butanol-ethanol (IBE) production from acetic acid pretreated switchgrass using the CRISPR-Cas9 system. *ACS Sustainable Chemistry & Engineering* 7 (21): 18153–18164.

143 Wang, S., Dong, S., Wang, P. et al. (2017). Genome editing in *Clostridium saccharoperbutylacetonicum* N1-4 with the CRISPR-Cas9 system. *Applied and Environmental Microbiology* 83 (10): e00233-17.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

144 Gu, Y. et al. (2019). Curing the endogenous megaplasmid in *Clostridium saccharoperbutylacetonicum* N1-4 (HMT) using CRISPR-Cas9 and preliminary investigation of the role of the plasmid for the strain metabolism. *Fuel* 236: 1559–1566.

145 Atmadjaja, A.N. et al. (2019). CRISPR-Cas, a highly effective tool for genome editing in *Clostridium saccharoperbutylacetonicum* N1-4(HMT). *FEMS Microbiology Letters* 366 (6): fnz059.

146 Walker, J.E., Lanahan, A.A., Zheng, T. et al. (2020). Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium *Clostridium thermocellum*. *Metabolic Engineering Communications* 10: e00116.

147 Zhang, J., Hong, W., Guo, L. et al. (2020). Enhancing plasmid transformation efficiency and enabling CRISPR-Cas9/Cpf1-based genome editing in *Clostridium tyrobutyricum*. *Biotechnology and Bioengineering* 117: 2911–2917.

148 Zhang, J., Zong, W., Hong, W. et al. (2018). Exploiting endogenous CRISPR-Cas system for multiplex genome editing in *Clostridium tyrobutyricum* and engineer the strain for high-level butanol production. *Metabolic Engineering* 47: 49–59.

149 Wang, Y., Zhang, Z.-T., Seo, S.-O. et al. (2016). Gene transcription repression in *Clostridium beijerinckii* using CRISPR-dCas9. *Biotechnology and Bioengineering* 113: 2739–2743.

150 Wen, Z., Minton, N.P., Zhang, Y. et al. (2017). Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. *Metabolic Engineering* 39: 38–48.

151 Rauch, B.J., Silvis, M.R., Hultquist, J.F. et al. (2017). Inhibition of CRISPR-Cas9 with bacteriophage proteins. *Cell* 168: 150–158.e10.

152 Zetsche, B., Gootenberg Jonathan, S., Abudayyeh Omar, O. et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* 163: 759–771.

153 Maikova, A., Kreis, V., Boutsenin, A. et al. (2019). Using an endogenous CRISPR-Cas system for genome editing in the human pathogen *Clostridium difficile*. *Applied and Environmental Microbiology* 85: e01416–e01419.

154 Qi Lei, S., Larson Matthew, H., Gilbert Luke, A. et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell* 152: 1173–1183.

155 Li, X.T., Jun, Y., Erickstad, M.J. et al. (2016). tCRISPRi: tunable and reversible, one-step control of gene expression. *Scientific Reports* 6: 39076.

156 Kim, S.K., Kim, H., Ahn, W.-C. et al. (2017). Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from *Eubacterium eligens*. *ACS Synthetic Biology* 6: 1273–1282.

157 Cooksley, C.M., Davis, I.J., Winzer, K. et al. (2010). Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic *Clostridium botulinum*. *Applied and Environmental Microbiology* 76: 4448–4460.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

646 | 16 Metabolic Engineering and the Synthetic Biology Toolbox for Clostridium

158 Fagan, R.P. and Fairweather, N.F. (2011). *Clostridium difficile* has two parallel and essential Sec secretion systems. *The Journal of Biological Chemistry* 286: 27483–27493.

159 Chandrasekaran, R., Kenworthy, A.K., and Lacy, D.B. (2016). *Clostridium difficile* toxin A undergoes clathrin-independent, PACSIN2-dependent endocytosis. *PLoS Pathogens* 12: e1006070.

160 Chu, M., Mallozzi, M.J., Roxas, B.P. et al. (2016). A *Clostridium difficile* cell wall glycopolymer locus influences bacterial shape, polysaccharide production and virulence. *PLoS Pathogens* 12: e1005946.

161 Tummala, S.B., Welker, N.E., and Papoutsakis, E.T. (2003). Design of anti-sense RNA constructs for downregulation of the acetone formation pathway of *Clostridium acetobutylicum*. *Journal of Bacteriology* 185: 1923–1934.

162 Sillers, R., Al-Hinai, M.A., and Papoutsakis, E.T. (2009). Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in *Clostridium acetobutylicum* fermentations. *Biotechnology and Bioengineering* 102: 38–49.

163 Cai, Y., Chen, L., Zhang, Y. et al. (2020). Target base editing in soybean using a modified CRISPR/Cas9 system. *Plant Biotechnology Journal* 18: 1996–1998.

164 Wang, M., Xu, Z., Gosavi, G. et al. (2020). Targeted base editing in rice with CRISPR/ScCas9 system. *Plant Biotechnology Journal* 18: 1645–1647.

165 Yu, S., Price, M.A., Wang, Y. et al. (2020). CRISPR-dCas9 mediated cytosine deaminase base editing in *Bacillus subtilis*. *ACS Synthetic Biology* 9: 1781–1789.

166 Li, Y., Ma, S., Sun, L. et al. (2018). Programmable single and multiplex base-editing in *Bombyx mori* using RNA-guided cytidine deaminases. *G3: Genes, Genomes, Genetics* 8: 1701–1709.

167 Zheng, K., Wang, Y., Li, N. et al. (2018). Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. *Communications Biology* 1: 32.

168 Grünewald, J., Zhou, R., Lareau, C.A. et al. (2020). A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. *Nature Biotechnology* 38: 861–864.

169 Teh, M.Y., Ooi, K.H., Danny Teo, S.X. et al. (2019). An expanded synthetic biology toolkit for gene expression control in acetobacteraceae. *ACS Synthetic Biology* 8: 708–723.

170 Ho, H.-I., Fang, J.R., Cheung, J., and Wang, H.H. (2020). Programmable CRISPR-Cas transcriptional activation in bacteria. *Molecular Systems Biology* 16: e9427.

171 Fontana, J., Dong, C., Kiattisewee, C. et al. (2020). Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. *Nature Communications* 11: 1618.

172 Liu, Y., Wan, X., and Wang, B. (2019). Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. *Nature Communications* 10: 3693.

173 Lu, Z., Yang, S., Yuan, X. et al. (2019). CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in *Bacillus subtilis*. *Nucleic Acids Research* 47: e40.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

174 Ronda, C., Pedersen, L.E., Sommer, M.O., and Nielsen, A.T. (2016). CRMAGE: CRISPR optimized MAGE recombineering. *Scientific Reports* 6: 19452.

175 Dong, H., Tao, W., Gong, F. et al. (2014). A functional recT gene for recombineering of *Clostridium*. *Journal of Biotechnology* 173: 65–67.

176 Su, T., Liu, F., Gu, P. et al. (2016). A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. *Scientific Reports* 6: 37895.

177 Kim, N.M., Sinnott, R.W., and Sandoval, N.R. (2020). Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. *Current Opinion in Biotechnology* 64: 39–46.

178 Servinsky, M.D., Kiel, J.T., Dupuy, N.F., and Sund, C.J. (2010). Transcriptional analysis of differential carbohydrate utilization by *Clostridium acetobutylicum*. *Microbiology* 156: 3478–3491.

179 Han, S., Kim, Y., Karanjikar, M. et al. (2020). Genetic sensor-regulators functional in clostridia. *Journal of Industrial Microbiology & Biotechnology* 47 (8): 609–620.

180 Müh, U., Pannullo, A.G., Weiss, D.S., and Ellermeier, C.D. (2019). A xylose-inducible expression system and a CRISPR interference plasmid for targeted knockdown of gene expression in *Clostridioides difficile*. *Journal of Bacteriology* 201: e00711-18.

181 Dong, H., Tao, W., Zhang, Y., and Li, Y. (2012). Development of an anhydrotetracycline-inducible gene expression system for solvent-producing *Clostridium acetobutylicum*: a useful tool for strain engineering. *Metabolic Engineering* 14: 59–67.

182 Hartman, A.H., Liu, H., and Melville, S.B. (2011). Construction and characterization of a lactose-inducible promoter system for controlled gene expression in *Clostridium perfringens*. *Applied and Environmental Microbiology* 77: 471–478.

183 Banerjee, A., Leang, C., Ueki, T. et al. (2014). Lactose-inducible system for metabolic engineering of *Clostridium ljungdahlii*. *Applied and Environmental Microbiology* 80: 2410–2416.

184 Mearls, E.B., Olson, D.G., Herring, C.D., and Lynd, L.R. (2015). Development of a regulatable plasmid-based gene expression system for *Clostridium thermocellum*. *Applied Microbiology and Biotechnology* 99: 7589–7599.

185 Buckley, A.M., Jukes, C., Candlish, D. et al. (2016). Lighting up *Clostridium difficile*: reporting gene expression using fluorescent lox domains. *Scientific Reports* 6: 23463.

186 Walker, D.J.F. and Koepke, M. (2016). Method of producing a recombinant microorganism. Google Patents.

187 Girbal, L., Mortier-Barrière, I., Raynaud, F. et al. (2003). Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for *Clostridium acetobutylicum*. *Applied and Environmental Microbiology* 69: 4985–4988.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

648 | 16 Metabolic Engineering and the Synthetic Biology Toolbox for Clostridium

188 Willson, B.J., Kovács, K., Wilding-Steele, T. et al. (2016). Production of a functional cell wall-anchored minicellulosome by recombinant *Clostridium acetobutylicum* ATCC 824. *Biotechnology for Biofuels* 9: 1–22.

189 Pyne, M., Moo-Young, M., Chung, D., and Chou, C. (2015). Antisense-RNA-mediated gene downregulation in *Clostridium pasteurianum*. *Fermentation* 1: 113.

190 Yang, G., Jia, D., Jin, L. et al. (2017). Rapid generation of universal synthetic promoters for controlled gene expression in both gas-fermenting and saccharolytic *Clostridium species*. *ACS Synthetic Biology* 6: 1672–1678.

191 Nariya, H., Miyata, S., Kuwahara, T., and Okabe, A. (2011). Development and characterization of a xylose-inducible gene expression system for *Clostridium perfringens*. *Applied and Environmental Microbiology* 77: 8439–8441.

192 Mordaka, P.M. and Heap, J.T. (2018). Stringency of synthetic promoter sequences in *Clostridium* revealed and circumvented by tuning promoter library mutation rates. *ACS Synthetic Biology* 7: 672–681.

193 Matsushita, C., Matsushita, O., Koyama, M., and Okabe, A. (1994). A *Clostridium perfringens* vector for the selection of promoters. *Plasmid* 31: 317–319.

194 Bullifent, H.L., Moir, A., and Titball, R.W. (1995). The construction of a reporter system and use for the investigation of *Clostridium perfringens* gene expression. *FEMS Microbiology Letters* 131: 99–105.

195 Shaw, W. (1975). Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. *Methods in Enzymology* 43: 737–755.

196 Tummala, S.B., Welker, N.E., and Papoutsakis, E.T. (1999). Development and characterization of a gene expression reporter system for *Clostridium acetobutylicum* ATCC 824. *Applied and Environmental Microbiology* 65: 3793–3799.

197 Feustel, L., Nakotte, S., and Durre, P. (2004). Characterization and development of two reporter gene systems for *Clostridium acetobutylicum*. *Applied and Environmental Microbiology* 70: 798–803.

198 Ravagnani, A., Jennert, K.C., Steiner, E. et al. (2000). Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. *Molecular Microbiology* 37: 1172–1185.

199 Woolston, B.M., Emerson, D.F., Currie, D.H., and Stephanopoulos, G. (2018). Rediverting carbon flux in *Clostridium ljungdahlii* using CRISPR interference (CRISPRi). *Metabolic Engineering* 48: 243–253.

200 Quixley, K.W. and Reid, S.J. (2000). Construction of a reporter gene vector for *Clostridium beijerinckii* using a *Clostridium endoglucanase* gene. *Journal of Molecular Microbiology and Biotechnology* 2: 53–57.

201 Oh, Y.H., Eom, G.T., Kang, K.H. et al. (2016). Construction of heterologous gene expression cassettes for the development of recombinant *Clostridium beijerinckii*. *Bioprocess and Biosystems Engineering* 39: 555–563.

202 Oliveira Paiva, A.M., Friggen, A.H., Hossein-Javaheri, S., and Smits, W.K. (2016). The signal sequence of the abundant extracellular metalloprotease PPEP-1 can be used to secrete synthetic reporter proteins in *Clostridium difficile*. *ACS Synthetic Biology* 5: 1376–1382.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

203 Edwards, A.N., Pascual, R.A., Childress, K.O. et al. (2015). An alkaline phosphatase reporter for use in *Clostridium difficile*. *Anaerobe* 32: 98–104.

204 Gibson, C.M. and Caparon, M.G. (2002). Alkaline phosphatase reporter transposon for identification of genes encoding secreted proteins in gram-positive microorganisms. *Applied and Environmental Microbiology* 68: 928–932.

205 Davis, T.O., Henderson, I., Brehm, J.K., and Minton, N.P. (2000). Development of a transformation and gene reporter system for group II, non-proteolytic *Clostridium botulinum* type B strains. *Journal of Molecular Microbiology and Biotechnology* 2: 59–69.

206 Krüger, A., Mueller, A.P., Rybnicky, G.A. et al. (2020). Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. *Metabolic Engineering* 62: 95–105.

207 Iqbal, M., Doherty, N., Page, A.M.L. et al. (2017). Reconstructing promoter activity from Lux bioluminescent reporters. *PLoS Computational Biology* 13: e1005731.

208 Ransom, E.M., Ellermeier, C.D., and Weiss, D.S. (2015). Use of mCherry red fluorescent protein for studies of protein localization and gene expression in *Clostridium difficile*. *Applied and Environmental Microbiology* 81: 1652–1660.

209 Wakabayashi, Y., Nariya, H., Yasugi, M. et al. (2019). An enhanced green fluorescence protein (EGFP)-based reporter assay for quantitative detection of sporulation in *Clostridium perfringens* SM101. *International Journal of Food Microbiology* 291: 144–150.

210 Ransom, E.M., Williams, K.B., Weiss, D.S., and Ellermeier, C.D. (2014). Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in *Clostridium difficile*. *Journal of Bacteriology* 196: 2290–2300.

211 Christie, J.M., Hitomi, K., Arvai, A.S. et al. (2012). Structural tuning of the fluorescent protein iLOV for improved photostability. *The Journal of Biological Chemistry* 287: 22295–22304.

212 Drepper, T., Eggert, T., Circolone, F. et al. (2007). Reporter proteins for in vivo fluorescence without oxygen. *Nature Biotechnology* 25: 443–445.

213 Seo, S.O., Lu, T., Jin, Y.S., and Blaschek, H.P. (2018). Development of an oxygen-independent flavin mononucleotide-based fluorescent reporter system in *Clostridium beijerinckii* and its potential applications. *Journal of Biotechnology* 265: 119–126.

214 Mukherjee, A., Walker, J., Weyant, K.B., and Schroeder, C.M. (2013). Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. *PLoS One* 8: e64753.

215 Molitor, B., Kirchner, K., Henrich, A.W. et al. (2016). Expanding the molecular toolkit for the homoacetogen *Clostridium ljungdahlii*. *Scientific Reports* 6: 1–10.

216 Cheng, C., Lin, M., Jiang, W. et al. (2019). Development of an in vivo fluorescence based gene expression reporter system for *Clostridium tyrobutyricum*. *Journal of Biotechnology* 305: 18–22.

Druckfreigabe/approval for printing	
Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	
<input type="checkbox"/>	
After corrections/ nach Ausführung der Korrekturen	
<input type="checkbox"/>	
Date/Datum:	
Signature/Zeichen:	

217 Cho, C. and Lee, S.Y. (2017). Efficient gene knockdown in *Clostridium acetobutylicum* by synthetic small regulatory RNAs. *Biotechnology and Bioengineering* 114: 374–383.

218 Plamont, M.A., Billon-Denis, E., Maurin, S. et al. (2016). Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. *Proceedings of the National Academy of Sciences of the United States of America* 113: 497–502.

219 Mermelstein, L.D. and Papoutsakis, E.T. (1993). In vivo methylation in *Escherichia coli* by the *Bacillus subtilis* phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of *Clostridium acetobutylicum* ATCC 824. *Applied and Environmental Microbiology* 59: 1077–1081.

220 Riley, L.A., Ji, L., Schmitz, R.J. et al. (2019). Rational development of transformation in *Clostridium thermocellum* ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. *Journal of Industrial Microbiology & Biotechnology* 46: 1435–1443.

221 Lee, J., Jang, Y.-S., Papoutsakis, E.T., and Lee, S.Y. (2016). Stable and enhanced gene expression in *Clostridium acetobutylicum* using synthetic untranslated regions with a stem-loop. *Journal of Biotechnology* 230: 40–43.

222 Heap, J.T., Pennington, O.J., Cartman, S.T., and Minton, N.P. (2009). A modular system for *Clostridium* shuttle plasmids. *Journal of Microbiological Methods* 78: 79–85.

223 Chen, Y., Indurthi, D.C., Jones, S.W., and Papoutsakis, E.T. (2011). Small RNAs in the genus *Clostridium*. *MBio* 2: e00340-10.

224 Wang, Y., Li, X., Mao, Y., and Blaschek, H.P. (2011). Single-nucleotide resolution analysis of the transcriptome structure of *Clostridium beijerinckii* NCIMB 8052 using RNA-Seq. *BMC Genomics* 12: 479.

225 Bordeleau, E., Purcell, E.B., Lafontaine, D.A. et al. (2015). Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of *Clostridium difficile*. *Journal of Bacteriology* 197: 819–832.

226 Marcano-Velazquez, J.G., Lo, J., Nag, A. et al. (2019). Developing riboswitch-mediated gene regulatory controls in thermophilic bacteria. *ACS Synthetic Biology* 8: 633–640.

227 Furukawa, K., Ramesh, A., Zhou, Z. et al. (2015). Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. *Molecular Cell* 57: 1088–1098.

228 Zhou, L., Ren, J., Li, Z. et al. (2019). Characterization and engineering of a *Clostridium* glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in *Escherichia coli*. *ACS Synthetic Biology* 8: 2327–2335.

229 Saad, N.Y., Schiel, B., Braye, M. et al. (2012). Riboswitch (T-box)-mediated control of tRNA-dependent amidation in *Clostridium acetobutylicum* rationalizes gene and pathway redundancy for asparagine and asparaginyl-tRNA^{asn} synthesis. *Journal of Biological Chemistry* 287: 20382–20394.

230 McKee, R.W., Harvest, C.K., and Tamayo, R. (2018). Cyclic diguanylate regulates virulence factor genes via multiple riboswitches in *Clostridium difficile*. *mSphere* 3 (5): e00423-18.

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/
ohne Korrekturen

After corrections/
nach Ausführung
der Korrekturen

Date/Datum:

Signature/Zeichen:

231 Furukawa, K., Gu, H., Sudarsan, N. et al. (2012). Identification of ligand analogues that control c-di-GMP riboswitches. *ACS Chemical Biology* 7: 1436–1443.

232 Atilho, R.M., Perkins, K.R., and Breaker, R.R. (2019). Rare variants of the FMN riboswitch class in *Clostridium difficile* and other bacteria exhibit altered ligand specificity. *RNA* 25: 23–34.

Trim Size: 170mm x 244mm	Single Column Loose
Without corrections/ ohne Korrekturen	<input type="checkbox"/>
<hr/>	
After corrections/ nach Ausführung der Korrekturen	<input type="checkbox"/>
<hr/>	
Date/Datum:
Signature/Zeichen:

Page Proof

Druckfreigabe/approval for printing
Trim Size: 170mm x 244mm Single Column Loose
Without corrections/ ohne Korrekturen <input type="checkbox"/>
After corrections/ nach Ausführung der Korrekturen <input type="checkbox"/>
Date/Datum:
Signature/Zeichen:

“keywords/abstract

Dear Author,

Keywords and abstracts will normally not be included in the print version of your chapter but only in the online version (if not decided differently by Wiley-VCH).

Thank you!"

Abstract

The *Clostridium* genus contains a diverse range of Gram-positive, sporulating, obligate anaerobes that have been of historical biotechnological interest due to their acetone–butanol–ethanol (ABE) solvent production. Within the last few decades, interest has grown in the *Clostridium* spp. capable of consuming a wider variety of feedstocks, which include gaseous and renewable biomass sources. Additionally, attenuated pathogens have been of interest as potential therapeutics. The fruition of the genus's great promise has been limited by the slow progress in genetic engineering and synthetic biology methods and tools, relative to workhorse organisms such as *Escherichia coli*. Recent advances in these areas, not least of which include CRISPR-based tools, renew the promise of metabolic engineering for a broad range of feedstock consumption and production of chemicals. In this chapter, we describe the current state of engineering in the *Clostridium* genus by describing efforts and continued challenges in directed evolution, the use of systems biology for greater understanding, methods for performing genomic editing, and the expanding library of genetic parts. These new capabilities and tools have expanded the number of species that are able to be engineered for biotechnological purposes, increased the throughput of genetic studies, and expanded the range of products made from *Clostridium*.

Keywords

Clostridium; genomic engineering; synthetic biology; anaerobic reporters; inducible promoters; CRISPR