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FEDOR MANIN

Abstract. Spaces with positive weights are those whose rational homotopy type admits
a large family of “rescaling” automorphisms. We show that finite complexes with positive
weights have many genuine self-maps. We also fix the proofs of some previous related results.

1. Main result

Following [4], who attribute the term to Morgan and Sullivan, we say that a simply con-
nected space has positive weights if its rational homotopy type has a one-parameter family
of “rescaling” automorphisms. A given space will often have many such families. A precise
definition is given in §3.

The main result of this paper is that of any such family consisting of a Q’s-worth of rational
automorphisms, a Z’s-worth of them can be realized as self-maps of any finite complex of
that homotopy type.

Theorem A. Let Y be a finite simply connected CW complex with positive weights, as
witnessed by a one-parameter family of homomorphisms λt : Y(0) → Y(0). Let ℓ : Y → Y(0) be
the rationalization map. Then there is an integer t0 ≥ 1 such that for every z ∈ Z, there is a
genuine map fz : Y → Y whose rationalization is λzt0, that is, such that ℓ ◦ fz ≃ λzt0 ◦ ℓ.

The class of spaces with positive weights is large; for example, it includes all formal spaces
[20, Thm. 12.7], homogeneous spaces [4, Prop. 3.7], and smooth complex algebraic varieties
[18]. Indeed, it is somewhat nontrivial to find a simply connected space which does not have
positive weights. The lowest-dimensional nonexample, as far as we know, is a complex given
in [17, §4] which is constructed by attaching a 12-cell to S3 ∨ CP2; other, much higher-
dimensional non-examples are given in [2, 7, 6, 1].

We state a corollary for formal spaces which follows immediately by [20, Theorem 12.7],
which states that every formal rational homotopy type has a one-parameter family of au-
tomorphisms which induces the grading automorphisms on H∗(Y ;Q) which send a class
α ∈ Hn(Y ;Q) to tnα.

Corollary 1.1. Let Y be a simply connected formal finite complex. Then there is an integer
t0 ≥ 1 such that for every z ∈ Z, there is a map fz : Y → Y which induces multiplication by
(zt0)

n on Hn(Y ;Q) for every n.

While this paper is motivated by an application of this corollary to quantitative homotopy
theory, the author hopes that it will be of wider interest.

2. Prior work

The statement of Theorem A is not quite present in the literature, although a number
of prior papers state similar results and give arguments which would imply this theorem.
However, the author was unable to fill in the details of these arguments; this is the major
motivation for this short paper.
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• A slight weakening of Corollary 1.1 was originally stated by Shiga [19]. However,
his proof has significant issues. In particular, the argument on the bottom of p. 432
seems to rely on the claim that, e.g., in the equation Q2 = Q(1, 1)⊕Q(−1, 1) one can
replace Q with Z, and the author was not able to fix the argument to avoid this.

• A number of similar results are discussed in [4]. The main result of that paper is that
for finite complexes, the positive weight condition is equivalent to p-universality for
any p a prime or zero. A space is p-universal, a notion introduced by Mimura and Toda
[17], if for every q ̸= p it has a self-map that induces isomorphisms on mod-p homology
(rational in the case p = 0) and the zero map on mod-q homology. In particular, 0-
universality is closely related to the conclusion of Theorem A, and Proposition 3.3
and Lemma 3.4 of [4] are similar to Lemmas 5.3 and 5.1 below. However, in this
case the author was again unable to complete the argument as written: the map fq
constructed in the inductive step of Lemma 3.4 depends on a choice of homotopy and
it’s unclear how or whether one can pick a version that would satisfy the claimed
conditions. In this paper, we give an alternate proof of Proposition 3.3 of [4].

• Amann [1, Theorem 4.2] asserts a result similar to Shiga’s, but for spaces with positive
weights in general. However, the proof again contains a mistake: an obstruction lies
in the cohomology of the wrong space. Amann has pointed out to the author that
this mistake is similar to that in the published proof of [3, Lemma B.1], which has
been fixed on the arXiv, and can be fixed in a similar way. This is different from our
method, but could be used to give a slightly weaker form of Theorem A.

Our proof method has major similarities to those of [4] (in overall strategy) and [1] (in the
use of the Moore–Postnikov tower of the rationalization map Y → Y(0)).

3. Positive weights

We assume knowledge of Sullivan’s model of rational homotopy theory; the reader is re-
ferred to [9] or [10] for the basics.

Let Y be a simply connected space of finite type, and denote its Sullivan minimal DGA
by M∗

Y . Then Y has positive weights if there is a set {xi} of indecomposable generators of
M∗

Y and corresponding integers ni ≥ 1 such that for each t ∈ Q, there is a homomorphism
λt : M∗

Y → M∗
Y such that λt(xi) = tnixi.

Notice that when t ̸= 0, this λt is an automorphism; the set {λt : t ∈ Q×} is a subgroup of
the automorphism group of M∗

Y and is called a one-parameter subgroup or family.
Since there is an equivalence of homotopy categories between rational spaces1 of finite type

and their minimal DGAs, such an automorphism λt induces a homotopy automorphism of
the rationalization Y(0), which by an abuse of notation we may also call λt.

Note that there are often many possible choices of basis and of the ni. For example,
given one such family λt any other automorphism φ of M∗

Y , one can get a new family by
conjugating λt by φ. Concretely, let Y = S2 × S3, and choose:

• λt to be the product of degree t maps on S2
(0) and S3

(0);

• φ to be the rationalization of the map

S2 × S3 → S2 × S3

which sends S2 to itself and S3 to S2 ∨ S3 via Hopf + idS3 .2

1That is, simply connected CW complexes whose homotopy groups are rational vector spaces.
2Such a map exists because the Whitehead product [idS2 ,Hopf + idS3 ] is zero in S2 × S3.
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Then φ−1λtφ and λt are different families of automorphisms.
It is clear from the definition that λt induces diagonalizable automorphisms on πn(Y )⊗Q.

The same is true for homology and cohomology:

Proposition 3.1. If λt : M∗
Y → M∗

Y is a one-parameter family of automorphisms, then there
are also bases for H∗(Y ;Q) and H∗(Y ;Q) consisting of eigenvectors of the maps induced by
λt.

Proof. The action of λt on M∗
Y is diagonalizable. Since λt sends cocycles in M∗

Y to cocycles,
they form an invariant subspace, which is therefore also diagonalizable. This diagonalization
passes to the quotient by coboundaries, giving the result for cohomology. Dualizing gives us
the same result for homology. □

In [4, Theorem 2.7], it is shown that the positive weight condition is independent of coef-
ficients: a minimal Q-DGA has positive weights if and only if its tensor product with R or
another larger field does. Many additional topological and algebraic properties of the positive
weight condition are discussed in [8], including closure under operations such as wedge and
product. Most interestingly, the condition is its own Eckmann–Hilton dual.

Remark on the definition. In the definition of a space with positive weights, the assign-
ment of “weights”, xi ↦→ ni, extends uniquely to a second grading on M∗

Y that respects the
multiplication. Then a space with positive weights is one which has such a second grading
with respect to which the differential has degree zero. This obviously equivalent definition is
the one more often given, e.g. in [4, Definition 2.1].

In [4, Proposition 2.3], this equivalence is shown over other coefficient fields.

4. Corollaries and related results

A useful result closely related to Theorem A shows that there are many maps between two
spaces of the same positive-weight rational homotopy type:

Theorem B. Let Y and Y ′ be two rationally equivalent simply connected finite complexes,
with rationalizations ℓ : Y → Y(0) and ℓ′ : Y ′ → Y(0). Let λt : Y(0) → Y(0) be a one-parameter
family of homotopy automorphisms. Then there are maps f : Y → Y ′ and g : Y ′ → Y and a
t ∈ Z such that ℓgf ≃ λtℓ and ℓ′fg ≃ λtℓ

′.

We prove this along with Theorem A in the next section.
A manifold is flexible in the sense of Crowley and Löh [7] if it has self-maps of infinitely

many degrees (or equivalently, at least one degree other than 0 and ±1). An immediate
corollary of Theorem A and Proposition 3.1 is the following result:

Corollary 4.1. Manifolds with positive weights are flexible.

This was previously essentially stated by Amann [1, Theorem 4.2]. Another, quicker proof
is implicit in a recent paper of Costoya, Muñoz, and Viruel [5, Theorem 3.2].

Finally, we explore simple quantitative implications of our results. Given finite complexes
X and Y with a piecewise Riemannian metric, the growth function g[X,Y ](L) of the set [X,Y ]
of homotopy classes of maps X → Y is the number of classes that have representatives of
with Lipschitz constant at most L, as a function of L. This notion was first studied by
Gromov [11, 12, 13]. While the definition uses the metrics on X and Y , the asymptotics of
this function depend only on the homotopy types of the two spaces. Indeed, in [15, §6] it was
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shown, based on the results of [4], that if X and Y have positive weights, then the growth
function only depends on their rational homotopy type.

In fact, g[X,Y ](L) is always bounded by a polynomial in L when Y is simply connected or,
more generally, nilpotent [15, Corollary 4.7]. On the other hand, since [X,Y ] is more or less
the set of solutions to a system of diophantine equations, general lower bounds are hard to
come by. However, for spaces with positive weights, Theorem A provides such a lower bound:

Theorem C. Suppose that Y is a simply connected finite complex with positive weights.
Then the growth function g[Y,Y ](L) is bounded below by Lr for some rational r.

Proof. By Theorem A there is a sequence of maps fz : Y → Y realizing λzt0 : M∗
Y → M∗

Y
for every z ∈ Z. The latter induce maps on the R-minimal DGA of Y which we likewise call
λzt0 . Let mY : M∗

Y (R) → Ω∗Y be a minimal model for the differential forms on Y . By the
shadowing principle [14, Theorem 4–1], we can find a map homotopic to fz with Lipschitz
constant controlled by a notion of “size” of the homomorphism mY λzt0 : M∗

Y (R) → Ω∗Y .
Specifically, put a norm on the vector space Vk = Hom(πk(Y ),R) of indecomposables in
M∗

Y (R) for each k ≤ dimY , and for every φ : M∗
Y (R) → Ω∗Y let

Dil(φ) = max
k∈{2,...,dimY }

∥φ|Vk
∥1/kop .

This measurement depends on the choices of which elements we consider indecomposable, of
norms and of mY , but only up to a multiplicative constant. In particular,

Dil(mY λzt0) ≤ max
{︁
C(Y )(zt0)

ni/ dimxi | deg(xi) ≤ dimY
}︁
.

By the shadowing principle, this means that we can choose fz so that

Lip fz ≤ C ′(Y )
[︁
max

{︁
(zt0)

ni/dimxi | deg(xi) ≤ dimY
}︁
+ 1

]︁
,

and so g[Y,Y ](L) ≥ Lmin{dimxi/ni|deg(xi)≤dimY }. □

5. Proof of Theorems A and B

In this section, let Y be a simply connected finite complex equipped with a rationalization
map ℓ : Y → Y(0) and a one-parameter family of automorphisms λt : M∗

Y → M∗
Y which

induce maps Y(0) → Y(0) which we also call λt.
We prove Theorems A and B using a series of lemmas.

Lemma 5.1. For every n, there is a complex Kn and a rational equivalence qn : Kn → Y(0)
with the following properties:

(i) For m ≤ n, πm(Kn) is free abelian.
(ii) For each prime p, there is a map rp,n : Kn → Kn such that qn ◦ rp,n ≃ λp ◦ qn.

Moreover, the induced map on πm(Kn), m ≤ n, has a Z-eigenbasis.
(iii) For m > n, πm(Kn) is a Q-vector space, and therefore qn∗ : πm(Kn) → πm(Y(0)) is

an isomorphism.

Proof. We will construct the Kn as successive stages of a Moore–Postnikov tower with base
Y(0). That is, we take K1 = Y(0) (in which case the base case is trivially true) and then
construct a tower

Kn+1

qn+1

↘↘

fn+1

↓↓

Kn
qn
→→ Y(0)
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such that the homotopy fiber of fn+1 is a K(π, n) (note the nonstandard indexing). In
particular, any such construction automatically satisfies (iii).

Now suppose we have constructed Kn and maps qn : Kn → Y(0) and rp,n : Kn → Kn

satisfying (i)–(iii). We will now construct the next stage of the Moore–Postnikov tower, as
well as maps rp,n+1 which are lifts of rp,n along fn+1, in the sense that

fn+1 ◦ rp,n+1 ≃ rp,n ◦ fn.
Since πn(Kn) is free abelian and we would like the same for πn+1(Kn+1), we get

πn+1(Kn,Kn+1) ∼= Qd/Zd,

where d is the rank of πn+1(Y ). Therefore, to fix Kn+1, it suffices to specify a k-invariant
κ ∈ Hn+1(Kn; (Q/Z)d) for the pullback diagram

Kn+1
→→

fn+1

↓↓↓↓

PK((Q/Z)d, n+ 1)

↓↓

Kn
κ →→ K((Q/Z)d, n+ 1).

Since Q/Z is an injective Z-module,

Hn+1(Kn;Q/Z) ∼= Hom(Hn+1(Kn),Q/Z).
Therefore we can think of κ as a homomorphism Hn+1(Kn) → (Q/Z)d. Moreover, the
composition κ ◦ h : πn+1(Kn) → (Q/Z)d, where h is the Hurewicz homomorphism, fits into
the long exact sequence of homotopy groups

· · · → πn+1(Kn)
κ◦h−−→ (Q/Z)d → πn(Kn+1) → πn(Kn) → 0 → · · · .

Since we would like πn(Kn+1) ∼= πn(Kn), κ ◦ h needs to be surjective.
Denote the nth Postnikov stage of Kn by (Kn)n. To compute Hn+1(Kn), we apply the

Serre spectral sequence to the map Kn → (Kn)n, whose homotopy fiber is an n-connected
rational space W with Hn+1(W ) ∼= Qd. This gives us a short exact sequence

0 → A → Hn+1(Kn) → Hn+1((Kn)n) → 0

where A = coker
(︁
d : Hn+2((Kn)n) → Hn+1(W )

)︁
. Since (Kn)n is of finite type, the first

term is Qd modulo a finitely generated subgroup, and the last term is finitely generated. In
particular, the first term is an injective Z-module, so the sequence splits.

Now in order to pick the desired κ, we would like to understand the action of the various
rp,n on Hn+1(Kn). Specifically, we would like to pick κ so that im(κ ◦ rp,n∗) ⊆ im(κ). Then
since κ ◦ fn+1∗ = 0 by construction, we also get κ ◦ rp,n∗ ◦ fn+1∗ = 0, and therefore there is a
lift

Kn+1
rp,n+1

→→

fn+1

↓↓↓↓

Kn+1
→→

fn+1

↓↓↓↓

PK((Q/Z)d, n+ 1)

↓↓

Kn
rp,n

→→ Kn
κ →→ K((Q/Z)d, n+ 1).

The automorphism λt induces diagonalizable linear transformations with eigenvalues tα

for various integers α on both π∗(Kn) ⊗ Q and H∗(Kn;Q). In particular, we can choose
a basis of eigenvectors xi for Qd, as well as additional eigenvectors yj ∈ Hn+1(Kn) which,
together with those xi whose images in A ⊗ Q are nonzero, form a basis for Hn+1(Kn;Q).
The yj , together with a choice of splitting for the torsion elements, determine a splitting
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s : Hn+1((Kn)n) → Hn+1(Kn). The eigendecomposition determines the action of rp,n on
homology except for its action on the torsion subgroup B ⊆ Hn+1((Kn)n). However, the
image of B will always be contained in the finite subgroup B ⊕ {a ∈ A : |B|a = 0}.

Now we fix κ. Write the codomain as
⨁︁d

i=1(Q/Z)ei. Then we set κ ◦ s = 0 and, for q ∈ Q,
κ(qxi) = Nqei, where N is large enough that {a ∈ A : |B|a = 0} is sent to zero. As a result,

κ ◦ rp,n∗(s(Hn+1((Kn)n))) = 0 and κ ◦ rp,n∗(xi) = pnixi,

and therefore im(κ◦rp,n∗) ⊆ im(κ). This shows that rp,n◦fn+1 lifts to a map rp,n+1. Moreover,
the generators xi/N of

πn+1(Kn+1) = ker(κ ◦ h) =
⨁︁

i

⟨︁
1
N xi

⟩︁
form a Z-eigenbasis for (rp,n+1)∗ : πn+1(Kn+1) → πn+1(Kn+1). □

Lemma 5.2. Given Kn and rp,n as in Lemma 5.1, there is a power of rp,n which induces
the zero map on H∗(Kn;Z/pZ) for all ∗ ≤ n.

Proof. This is essentially the direction (b′) ⇒ (b) of [16, Theorem 2.1]. □

Lemma 5.3. There is a finite complex K and a rational equivalence q : K → Y(0) with the
following properties:

(i) For each m ≤ dimY , πm(K) is free abelian, and for each m > dimY , Hm(K) = 0.
(ii) For each prime p, there is a map rp : K → K such that q ◦ rp ≃ λp ◦ q. More-

over, for every prime p′ ̸= p, rp is a p′-equivalence, i.e. it induces isomorphisms on
H∗(K;Z/p′Z).

(iii) For each prime p, there is a power sp of rp which induces the zero map on H∗(K;Z/pZ).

Proof. Let n be the dimension of Y , and let Kn be as in Lemma 5.1. Since (Kn)n is of
finite type, we can build a finite n-complex K ′ with a map ι′ : K ′ → Kn which induces
isomorphisms on Hm for every m < n and a surjection on Hn. In particular, there is no
obstruction to homotoping the map rp,n ◦ ι′ : K ′ → Kn so that its image lands ι′(K ′); we can
then lift this to a map r′p : K

′ → K ′.
Now, by the Hurewicz theorem, since the homotopy fiber of ι′ is (n − 1)-connected, the

Hurewicz map πn+1(Kn,K
′) → Hn+1(Kn,K

′) is surjective. Therefore we can add (n+1)-cells
to K ′ which kill the kernel of ι′∗ : Hn(K

′) → Hn(Kn). Moreover, since K ′ is n-dimensional,
Hn(K

′) is free abelian, and so is this kernel; thus we can do this without adding any homology
in degree n+ 1. We call the resulting (n+ 1)-complex K; by construction it satisfies (i).

Note that Hn+1(K;π) is zero integrally and rationally, but may be nontrivial with torsion
coefficients. In particular, ι′ extends uniquely over the (n+ 1)-cells of K, since πn+1(Kn) is
a Q-vector space. This gives us a map ι : K → Kn, and we then set q = qn ◦ ι. This is a
rational equivalence since ι induces an isomorphism on Hm for m ≤ n and both K and Y(0)
are homologically trivial in degrees > n. Finally, r′p extends to a map rp : K → K, and this
extension is unique up to torsion; therefore q ◦ rp ≃ λp ◦ q.

Since the homotopy groups of Kn are either rational or free abelian, and the maps induced
by rp,n on the free abelian groups πm(Kn), m ≤ n, have an eigenbasis whose vectors are
multiplied by powers of p, rp,n induces isomorphisms on π∗(Kn) ⊗ Z/p′Z for every prime
p′ ̸= p. By the mod p′ Hurewicz theorem, rp,n also induces isomorphisms on H∗(Kn;Z/p′Z).
Now, ι′ induces isomorphisms on mod p′ homology in degrees m < n and a surjection in
degree n, and factors into the inclusion K ↪→ Kn and the homology isomorphism ι. Since r′p
induces isomorphisms in degrees m < n and on the quotient of the surjection in degree n, rp
induces isomorphisms on all mod p′ homology and cohomology groups.
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Condition (iii) comes directly from Lemma 5.2, since rp induces the same map on H≤n as
rp,n, and H>n(K) = 0. □

Lemma 5.4. There is a map f : Y → K which commutes with λt after rationalization; more
precisely, q ◦ f ≃ λt ◦ ℓ for some t.

Proof. Let Z be an infinite telescope of mapping cylinders build using copies of K and maps

r2, r2, r3, r2, r3, r5, . . .

Now consider the map q̂ : Z → Y(0) extending q on the first copy of K. Let’s call the inclusion
map of this copy i1, so then q̂ ◦ i1 ≃ q.

By Lemma 5.3(i) and (ii), q̂ induces isomorphisms on πm form ≤ n. Thus, by the Hurewicz
theorem, q̂ also induces isomorphisms on Hm for m ≤ n. On the other hand, for m > n,

Hm(Z) ∼= Hm(Y(0)) ∼= 0.

Therefore q̂ is a homotopy equivalence, and so there is a map ℓ̂ : Y → Z such that q̂ ◦ ℓ̂ ≃ ℓ.
Since Y is compact, this map lands in a finite set of mapping cylinders, and therefore we
can homotope it into a single copy of K. Let’s call the inclusion map of this copy it, where
t = p1 · · · pN such that

it ≃ Rt ◦ i1 = rpN ◦ · · · ◦ rp1 ◦ i1.
The resulting map is f . To see that q ◦ f ≃ λt ◦ ℓ, consider the diagram

Y
ℓ̂

→→

ℓ

→→

f

↓↓

Z
q̂

→→ Y(0)

λt

↓↓

K

i1

↑↑

Rt↙↙

q

→→

K

it

↗↗

q
→→ Y(0).

The triangles all commute up to homotopy by construction, and the bottom right square by
Lemma 5.3(ii). Moreover, every map in the diagram is a rational equivalence; in other words,
after rationalization, every arrow is reversible. This implies that the outer square commutes
rationally. But since the target Y(0) is a rational space, it commutes integrally as well. □

Lemma 5.5. There is a map g : K → Y such that g ◦ f realizes λt0 for some integer t0, i.e.
ℓ ◦ g ◦ f ≃ λt0 ◦ ℓ.

Proof. We again use the proof of [16, Theorem 2.1]. That theorem asserts the equivalence of
several conditions for a finite simply connected CW complex K, including:

(b) For any prime p, there is a map sp : K → K which induces the zero map on
H∗(K;Z/pZ).

(a) Given a rational equivalence f : Y → X between two CW complexes and a map
h : K → X, there are maps g : K → Y and k : K → K completing the diagram

K
k →→

g

↓↓

K

h
↓↓

Y
f
→→ X.
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We showed in Lemma 5.3 that K satisfies (b) and that we can take sp to be a power of rp.
The proof that (b) implies (a) goes through several steps, but the resulting map k : K → K
is always a composition of sp for various p. Applying (a) with X = K, h = id, and f the
map from Lemma 5.4, we get a map g : K → Y such that f ◦ g : K → K is a composition of
various rp, whose product is, let’s say, t0. Then

ℓgf ≃ λt−1qfgf ≃ λt−1λt0qf ≃ λt−1λt0λtℓ ≃ λt0ℓ. □

Proof of Theorem A. For any z ∈ Z, let rz : K → K be the composition of the rp’s in its
prime decomposition. Then g ◦ rz ◦ f is a map realizing the automorphism λzt0 . □

Proof of Theorem B. Using Lemmas 5.4 and 5.5, we construct maps

Y
f−→ K

g−→ Y

Y ′ f ′
−→ K

g′−→ Y ′

such that ℓgf ≃ λtℓ and ℓ′g′f ′ ≃ λt′ℓ
′. Then g′f : Y → Y ′ and fg′ : Y ′ → Y are the desired

maps. □

Finally, the fact that the rp are p′-equivalences for every p ̸= p′ completes an alternate
proof of Proposition 3.3 in [4]. This can be used to recover the theorem that spaces with
positive weights are p-universal for every p.
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