
Classical and Quantum Gravity

PAPER

Tetrahedral omnidirectional full-tensor gravitational
wave detector
To cite this article: Zachary Metzler et al 2022 Class. Quantum Grav. 39 225012

 

View the article online for updates and enhancements.

You may also like
A new class of equivalence principle test
masses, with application to SR-POEM
Robert D Reasenberg

-

Interactions of toroidally coupled tearing
modes in the KSTAR tokamak
Gnan Kim, Gunsu S Yun, Minho Woo et
al.

-

Cause and impact of low-frequency
chirping modes in DIII-D hybrid discharges
D. Liu, W.W. Heidbrink, M. Podestà et al.

-

This content was downloaded from IP address 192.54.97.137 on 09/11/2022 at 21:41

https://doi.org/10.1088/1361-6382/ac902d
https://iopscience.iop.org/article/10.1088/0264-9381/31/17/175013
https://iopscience.iop.org/article/10.1088/0264-9381/31/17/175013
https://iopscience.iop.org/article/10.1088/1361-6587/aaa2eb
https://iopscience.iop.org/article/10.1088/1361-6587/aaa2eb
https://iopscience.iop.org/article/10.1088/1741-4326/ab868c
https://iopscience.iop.org/article/10.1088/1741-4326/ab868c
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssprnmzVNeyGj9AGHVd7yHueKg_sroUibuLZvTtRIxVuUtJdDMTc9yLx5ljfxDgIJvnBeubW0BnmuUxQ55NSWrQTF8-DqOwxjYIoZdeTJl6ABZdtk2FfP5XsY0sTw7WqF4dIRqJv2KyuhfIdAX4c2dHgub-wp8pit6exvYyX7_O4rfV8WP_1pH-rA-BokGqtq8lbKe0TqVsV9dHkFzKVSvqQDD_7KEk5T7Xupz66adTkrGkuB3p7RwwHT5vSmG5zJWwbmbYkp9jGQOeY2h7JDR6Jqvl8lIO9Dr9jT-ms_NJcw&sai=AMfl-YT1xLv8j77g4s_CZXy_fboflE_R93Gd7EpYPkoSeJ-vKIWZWvM4_Sp5Dk-2tfZ3nFhfVsovHUWSSPRdizJWyw&sig=Cg0ArKJSzFk_JQuw4V_n&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 225012 (9pp) https://doi.org/10.1088/1361-6382/ac902d

Tetrahedral omnidirectional full-tensor
gravitational wave detector

Zachary Metzler , Christopher J Collins, Ho Jung Paik∗

and Peter S Shawhan

Department of Physics, University of Maryland, College Park, MD 20742, United
States of America

E-mail: hpaik@umd.edu

Received 10 May 2022, revised 27 July 2022
Accepted for publication 7 September 2022
Published 24 October 2022

Abstract
We propose a new tetrahedral configurationof three-axis inertial sensors, whose
signals when combined create an isotropic sensitivity to gravitational waves.
This arrangement provides total sky coverage and full-tensor measurements of
the gravity gradient using only four test masses (TMs), compared to the six TMs
of the previously studied TIGA and superconducting omnidirectional gravita-
tional radiation observatory designs. Since weakly suspending a TM in all three
directions is difficult due to the gravity bias, we also present the directional sen-
sitivity plot for the casewhere only horizontal displacements aremeasured. This
antenna pattern is no longer isotropic, and results in a maximum sensitivity to
minimum sensitivity ratio of 2:1 in power. The full gravity gradient tensor can
in this case still be reconstructed if the platform is sufficiently isolated from
ground tilt.

Keywords: gravitational wave detection, tensor gravitational wave detector,
tetrahedral configuration

(Some figures may appear in colour only in the online journal)

1. Background

A longstanding goal for gravitational wave (GW) detection has been the development of
an omnidirectional antenna. Such a device could independently determine the direction and
strength of an incident GW using just a single site, rather than requiring a network of GW
detectors, as is the case with the currently operating interferometric detectors. A spheri-
cal antenna, first proposed in the 1970s by Forward [1] and Wagoner and Paik [2], would
offer isotropic sensitivity, as a uniform sphere has five degenerate elastic quadrupole modes,
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each maximally sensitive to a different polarization and direction of incoming GWs. Further-
more, for the same mass, the sphere would increase the interaction cross-section over the
state-of-the-art cylindrical and bar detectors by a factor of about 5 [2]. The response of the
sphere itself must ultimately be measured by one or more displacement sensors. An important
development was the discovery by Johnson and Merkowitz [3, 4] of the truncated icosahe-
dral pattern of sensors, more commonly known as TIGA. This arrangement has a valuable
feature, namely, that it has isotropic sky coverage using six radial transducers on a single
spherical antenna.

In the quest for a mid-frequency spherical antenna with high sensitivity, Paik et al proposed
superconductingomnidirectional gravitational radiation observatory (SOGRO) [5, 6] in which,
rather than a single sphere, there are six equal test masses (TMs) suspended from a common
rigid platform in an octahedral configuration. SOGRO is another omnidirectional full-tensor
GW detector. The six TMs must each sense all three translational modes. The SOGRO with a
50 m baseline would be sensitive enough to detect GWs from IMBH binaries and fill the miss-
ing frequency band 0.1–10 Hz between laser interferometer space antenna [7] and the planned
third-generation ground-based detectors, cosmic explorer [8] and Einstein telescope [9]. Major
challenges still lie ahead for SOGRO, as it requires large-scale cryogenics, advanced super-
conducting quantum interference devices (SQUIDs), and low-frequency three-axis suspension
systems for its TMs.

Here, we propose a new TM configuration with the same features as SOGRO but requiring
only four TMs as opposed to six. We show explicitly the combination of TM motions that can
be used to give isotropic full-sky coverage, and reconstruct the full gravity gradient tensor.
Hence, with only four properly aligned TMs, the incoming GW can be localized in the sky,
modulo 180 degrees. Since weakly suspending TMs in the vertical direction is difficult due to
the strong gravity bias, we also examine the case where only the horizontal motion of the four
TMs is measured. The antenna patterns for these two cases are presented and compared to the
currently operating interferometric detectors’ antenna pattern.

2. TM configuration

We propose a new geometry using only four TMs to achieve full-tensor isotropic coverage.
Figure 1 shows the locations of the accelerometers for the three patterns discussed here.
Figure 1(a) presents the TIGA formation, which has isotropic sky coverage with six radial
accelerometers. Paik and Venkateswara [10] discovered that six accelerometers tangent to the
surface of the sphere also result in an isotropic sensitivity. Figure 1(b) presents the octahe-
dral formation used in the proposed SOGRO design [5]. Finally, figure 1(c) presents the novel,
tetrahedral formation, which has many of the same characteristics as the octahedral forma-
tion, using two fewer TMs. Since GWs (assuming general relativity) couple only to the five
spheroidal quadrupole modes of the sphere, the six accelerometers in the TIGA and SOGRO
configuration overdetermine the GW signals. The extra condition that the GW signals must
satisfy provides a stronger rejection capability for non-GW events.

In this geometry, the TMs are positioned at the vertices of a regular tetrahedron, inscribed in
a sphere of radius R. These four points can also be visualized as alternating vertices of a cube,
and in figure 1(c) we have oriented the cube with its edges parallel to Cartesian coordinate
axes. The positions of the four TMs, Mi, are then given by

M1 :
R√
3
(1, 1, 1), M2 :

R√
3
(−1, 1,−1), M3 :

R
√3

(1,−1,−1), M4 :
R√
3
(−1,−1, 1).

(1)

2
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Figure 1. Accelerometer configuration options for forming a full-tensor GW detector.
(a) Icosahedral configuration of six accelerometers on a hemisphere Reprinted figure
with permission from [4], Copyright (1995) by the American Physical Society., (b)
octahedral configuration of six accelerometers on the entire sphere, and (c) tetrahedral
configuration of four accelerometers on four of the eight vertices of a cube.

We can relate each element of the GW strain tensor to the displacements of the TMs using

xi j =
3∑

k=1

h jkuik
2

, i, j = 1, 2, 3 (2)

where xij is the displacement of the ith TM in the j direction, hjk are the GW strain tensor
components, and uik is the kth coordinate of the position of the ith TM. The motion of these
TMs can be combined to reconstruct each element of hij using a procedure similar to that
outlined in Paik et al [5] for SOGRO:

hii =
2
L

(
xii+ − xii−

)
(3)

hi j =
1
L

((
xi j+ − xi j−

)
+
(
x ji+ − x ji−

))
i �= j (4)

where L = 2R is the baseline of the SOGRO detector, and xij+ represents the motion in the i
direction for a TM lying on the positive j axis, with the sign i/j+ and i/j- indicating whether
the TM is positioned at +L or -L along the i/j-axis. Therefore, we difference the displacements
of two TMs separated along the coordinate axis in question to measure the differential-mode
(DM) signal. For example, in the case of SOGRO, hxx is the DM displacement between the
TMs located on the positive and negative x axis.

In the coordinate system we use for the tetrahedral configuration, however, none of the TMs
lie on the coordinate axes. In this case, we must first combine the common-mode (CM) dis-
placement between the two TMswith positive x values, TMs 1 and 3, and the CM displacement
between the two TMs with negative x coordinates, TMs 2 and 4. Then we take the difference
between the two CM signals in order to produce hxx. Note that in the tetrahedral case, the effec-
tive arm-length between TMs, L = 2R√

3
. The following expressions are found for each element

of the GW tensor:

hxx =

√
3
R

(
x1x + x3x

2
− x2x + x4x

2

)
(5a)

3
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hyy =

√
3
R

(
x1y + x2y

2
− x3y + x4y

2

)
(5b)

hzz =

√
3
R

(
x1z + x4z

2
− x2z + x3z

2

)
(5c)

hxy =

√
3

2R

((
x1y + x3y

2
− x2y + x4y

2

)
+

(
x1x + x2x

2
− x3x + x4x

2

))
(5d)

hxz =

√
3

2R

((
x1z + x3z

2
− x2z + x4z

2

)
+

(
x1x + x4x

2
− x2x + x3x

2

))
(5e)

hyz =

√
3

2R

((
x1z + x2z

2
− x3z + x4z

2

)
+

(
x1y + x4y

2
− x2y + x3y

2

))
. (5f)

In the tetrahedral case there are four TMs, each measuring three displacement components,
giving 12measurement channels in total. These can be combined to produce 12 signal channels,
corresponding to three CM displacements, three CM rotations, the five components of the GW
tensor, and finally one Laplace-equation violating radial (monopole) ‘breathing mode’, which
acts as a null channel for general relativity. This final channel can be used to search for a scalar
wave predicted by some alternative theories, such as the Brans–Dicke theory [12].

In the ideal case, by combining the signals this way, we reject the CM in order to isolate
the DM response due to the GW. In practice sufficient CM rejection is difficult to achieve.
For the case of a set of accelerometers mounted on a common, rigid platform, the signals are
combined at the input of a DC SQUID prior to amplification and digitization, and small dif-
ferences in response and calibration of these sensors could lead to the gravity gradient signals
being swamped by imperfectly subtracted seismic noise. Therefore, precise CM balancing of
this instrument is essential in order to reach the intrinsic sensitivity of the detector [5]. Mis-
alignment of the sensor would also lead to off-axis accelerations coupling into the gradiometer
output, and so the instrument requires either precisemechanical tolerances, or somemechanism
of adjusting the axis alignment in situ.

3. Omnidirectionality of tetrahedral configuration

We determine the omnidirectionality by looking at the response of the four TMs to a planewave
GW propagating in a radial direction with polar angle θ, azimuthal angle ϕ, and polarization
angle ψ. In this coordinate system, each of the angles being zero corresponds to a GW propa-
gating from the positive z axis with + polarization in the lab frame. Then, using equation (2),
we sum the squares of the displacement of each accelerometer due to this hjk(θ, ϕ, ψ) to get
the power of the response.

In figure 2(a), we show the polarization-averaged response of the tetrahedron to a GW inci-
dent from (θ, ϕ). Figure 2(b) shows the directional dependence of an L-shaped interferometer
detector such as LIGO [11] for comparison. Unlike the laser interferometer-based detectors,
this tetrahedral formation provides isotropic full-sky coverage to GWs, similar to SOGRO and
TIGA. For this calculation, the LIGO-like detector’s arms are diagonal to the x and y axes
(rotated π/4 around the z axis), so the antenna pattern is 1/4 of its own maximum at (θ = π/2,
ϕ = π/4) and is 0 along the x and y axes. The maximum polarization-averaged response for
the LIGO-like detector is 1/2 that of the tetrahedron because the LIGO-like detector is only

4
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Figure 2. Polarization-averaged antenna patterns of (a) tetrahedron vs (b) LIGO. The
antenna pattern for the tetrahedron is perfectly spherical, representing isotropic sky cov-
erage, while the antenna pattern for a LIGO-like detector is at a maximum along the z
axis. Themaximum polarization-averaged response for the LIGO-like detector is 1/2 that
of the tetrahedron because the LIGO-like detector is only sensitive to the× polarization
along the z axis, while the tetrahedral arrangement is equally sensitive to both the + and×
polarizations.

sensitive to the × polarization along the z axis, while the tetrahedral arrangement is equally
sensitive to both the + and × polarizations. A detailed discussion of how the plots in figure 2
are produced can be found in the appendix.

For co-located LIGO-like detectors, at least four detectors with different orientations would
be necessary to determine the direction and polarization of the most general GW signal. How-
ever, a network of interferometric detectors at different locations on the Earth, such as LIGO
+ Virgo + KAGRA, record the passing GW signal at different times as well as with differ-
ent detector orientations. The time delay between detectors is typically comparable to the
period of signals in the sensitive band, which allows triangulation to be used to better local-
ize sources and break degeneracies, see for instance [13]. Also, for modeled astrophysical
signals such as binary inspirals, relations between the polarization components allow sources
to be located with fewer detectors. The reconstruction accuracy of the network is however
highly anisotropic.

4. Lab-frame horizontal modes only

One challenge for the implementation of this design, as mentioned in section 1, is that weakly
suspending a TM in all three directions is difficult due to the gravity bias. It is of interest
to analyze what the directional sensitivity plot looks like if only horizontal displacements
are measured. Such a system is simpler to implement and could consist only of pendulum
systems or magnetically levitated TMs. Therefore, in this section, we simply set xiz = 0 in
equations (5a)–(5f), to produce equations (6a)–(6e) for the GW tensor components.

5
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However, the absence of vertical components of acceleration would not allow a direct mea-
surement of hzz. If we assume general relativity, hzz could be obtained from the tracelessness
condition of the GW tensor, as in equation (6f). This condition is in turn a result of the gravita-
tional potential in a vacuum obeying Laplace’s equation. In doing this, we would be sacrificing
the possibility of detecting a scalar wave predicted by some alternative theories [12]. The
equations for hi j in the case of measuring only horizontal displacements are found to be

hxx =

√
3
R

(
x1x + x3x

2
− x2x + x4x

2

)
(6a)

hyy =

√
3
R

(
x1y + x2y

2
− x3y + x4y

2

)
(6b)

hxy =

√
3

2R

((
x1y + x3y

2
− x2y + x4y

2

)
+

(
x1x + x2x

2
− x3x + x4x

2

))
(6c)

hxz =

√
3
R

(
x1x + x4x

2
− x2x + x3x

2

)
(6d)

hyz =

√
3
R

(
x1y + x4y

2
− x2y + x3y

2

)
(6e)

hzz = −(hxx + hyy). (6f)

The difference between equations (6d) and (5e) can be understood as follows. The amplitude
of the DM signal of the vertically separated CM motion in the x direction should be the same
amplitude as the unmeasured DM signal of the x-separated CM motion in the z direction as
long as there is sufficient rotational isolation from seismic noise. Therefore,we can still recover
hxz (and by a similar approach, hyz) by doubling the amplitude of the signal in the measured
arm. This is a similar step to that done in Paik et al for SOGRO [6].

This can also be seen by comparing the measured degrees of freedom with the three-axis
case. We now only have 8 rather than 12 measurement channels. From this, we construct
eight signal channels, corresponding to two CM displacements (x and y), three CM rotations
(about the x, y and z-axis), three pure (assuming there is no signal in the radial breathing
mode) components of the GW tensor (hxx, hyy and hxy). In addition, the last two tensor com-
ponents (hxz and hyz) can be recovered from two CM rotations (about the x and y axes) since
the pendulum suspension ensures that there should be negligible CM rotation signal in the
tilt modes.

The antenna pattern for the polarization-averaged response is shown in figure 3. This detec-
tion scheme is clearly no longer isotropic. However, it maintains sensitivity in all regions of
the sky. The ratio of the maximum sensitivity to minimum is 2:1 in power. It is worth noting
also that this is the same ratio as six horizontal TMs in the SOGRO arrangement. Therefore,
this tetrahedral arrangement can achieve the same direction-dependent sensitivity as SOGRO
with the appropriate baseline and TMs.

6
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Figure 3. Antenna pattern for the tetrahedral configuration using only the horizontal
motion of each TM. The maximum value for this antenna pattern is along the z axis and
is the same value as the spherical case. However, in the xy plane, the value dips to a
minimum that is 1/2 of the maximum value.

5. Conclusion

We have shown that four three-axis superconducting accelerometers arranged in a tetrahedron
provide isotropic, full-sky coverage for the entire GW tensor. Additionally, this arrangement
of four three-axis sensors provides full-sky coverage and allows the incoming signal to be
reconstructed modulo 180 degrees. In order to reach the detector noise of each sensor, the ana-
log acceleration signals from all four accelerometers must be combined in precise proportions
before they are amplified by a DC SQUID. This requires accurate alignment of the sensors and
fine adjustments of the calibration of the readout circuits.

Since it is difficult to weakly suspend TMs and thus achieve high acceleration sensitivity in
the vertical direction,we also considered the possibility of using only horizontalmeasurements
of the TMs. However, sacrificing the verticalmotion of the TMs removes the omnidirectionality
and the ability to directly measure hzz. Nevertheless, we achieve the same antenna pattern as
SOGRO in both the three-axis and horizontal sensor cases.

Acknowledgments

We acknowledge useful discussions with VolMoody and Ronald Norton. This work was partly
supported by NASA Grant 80NSSC19K0447 and NSF Grant PHY1912627.

Data availability statement

No new data were created or analysed in this study.

7



Class. Quantum Grav. 39 (2022) 225012 Z Metzler et al

Appendix. Derivation of antenna pattern

Here,wewill show the steps to deriving an antenna pattern for a set of three-axis accelerometers
to an incoming GW. We begin with a +-polarized GW incident along the positive z-axis:

h0 =

⎛
⎝h 0 0
0 −h 0
0 0 0

⎞
⎠ (7)

where h is a unitless measure of the strength of the GW. Then, we give the GW a polarization,
ψ, by rotating h0 about the z axis:

hpol(ψ) =

⎛
⎝cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎞
⎠h0

⎛
⎝ cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎞
⎠. (8)

Next, we allow the GW to come from any point in the sky, defined by (θ, ϕ), by rotating
about the y axis by θ and then about the z axis by ϕ:

hrot(θ,ϕ,ψ) =

⎛
⎝cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0
0 0 1

⎞
⎠
⎛
⎝ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎞
⎠hpol(ψ)

×

⎛
⎝cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎞
⎠
⎛
⎝ cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

⎞
⎠. (9)

We next define the positions, ui, of the three-axis accelerometers, relative to their collective
center of figure:

−→ui =

⎛
⎝uixuiy
uiz

⎞
⎠ = uik (10)

where i indexes the accelerometers and k = x, y, z indexes the component of the position. The
displacement induced on each TM by the GW is given by

−→xi (θ,ϕ,ψ) =
hrot(θ,ϕ,ψ)

−→ui
2

. (11)

Note that equation (11) is the same as equation (2), except that here we have explicitly
written the dependence on θ, ϕ, and ψ and used the matrix and vector notation as opposed to
the i and j subscripts.

Finally, we calculate the polarization-averaged sensitivity of the detector by summing in
quadrature the displacements of each TM, giving the following expression:

R(θ,ϕ) =
1
π

∫ π

0
dψ

∑
i
‖−→xi (θ,ϕ,ψ)‖2. (12)

ThisR(θ,ϕ) is what we have shown in figures 2 and 3. The only differencewhen taking only
the horizontal motion of the accelerometers is that in equation (12), we set the z component
of −→xi (θ,ϕ,ψ) to zero. Furthermore, in the discussion of figures 2 and 3, we set the maximum

8
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value of R(θ,ϕ) to 1 if the antenna is equally sensitive to both GW polarizations by adjusting
h in equation (7) accordingly.
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