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Abstract—In this paper, we focus on temperature-aware Mono-
lithic 3D (Mono3D) deep neural network (DNN) inference accel-
erators for biomedical applications. We develop an optimizer that
tunes aspect ratios and footprint of the accelerator under user-
N defined performance and thermal constraints, and generates near-
g optimal configurations. Using the proposed Mono3D optimizer,

we demonstrate up to 61% improvement in energy efficiency for
AN biomedical applications over a performance-optimized accelerator.

I. INTRODUCTION

Deep neural network (DNN) inference is widely used for
] image segmentation and recognition in biomedical applications,
e.g., improving imaging for cancer detection [1]], [2]]. For these
T Tapplications, mobile/portable DNN accelerators are in demand
— to optimize for computation speed, energy efficiency, and small
Lu, footprint [3]. Monolithic 3D (Mono3D) is an emerging 3D
2 technology with the potential to offer these characteristics and
—provide improvement over 2D systems [4].
In Mono3D ICs, two or more thin tiers are vertically inte-
' grated in a sequential fabrication process, where nanometer-
> scale vias provide high-density vertical interconnects, thus
— leading to dense integration. Due to the thin tiers, Mono3D has
OO lower vertical thermal resistance than other 3D technologies,
U e.g., 3D stacking [3]], and results in strong inter-tier thermal
' coupling. Furthermore, the strong thermal coupling may lead
€M) to similar high density hot spots across tiers [6]]. In addition, the
O absence of heat sinks and fans in mobile systems can escalate
thermal concerns. Therefore, it is imperative to consider thermal
. . awareness while designing mobile Mono3D systems.
.~ To provide energy and area efficiency, while also maintaining
>< thermal integrity in Mono3D systems, we utilize an existing
—
<

O Mar

temperature-aware optimizer to generate near-optimal mobile
DNN accelerator configurations for biomedical applications. In
this work, we use systolic arrays as the target DNN accelerator
due to their simple architecture [7]. We investigate two DNNs
(U-Net, ResNet-50) that are used for image segmentation and
classification, respectively, due to their high accuracy.

II. TEMPERATURE-AWARE Mono3D SYSTOLIC ARRAYS
We show a temperature-aware optimization flow in Fig. [Ia]

[8]. The inputs to the optimizer are design constraints (latency,
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(a) Mono3D optimizer. (b) 4x4 systolic array.

Fig. 1: Mono3D optimization flow and a sample systolic array.

temperature, footprint), a DNN and its topology (input/filter
size, number of filters/channels, etc.), and an objective function
(energy efficiency). A multi-start simulated annealer (MSA)-
based optimizer iterates through performance, power, and
thermal evaluation and converges to a near-optimal Mono3D
configuration with safe chip temperature when it can no longer
find better configurations. Multiple starts in MSA increase
the probability of escaping local optima and converging to
global optima. We show our target DNN accelerator, a sys-
tolic array, in Fig. [Ib] Systolic arrays are a 2D network of
processing elements (PEs) with SRAMs for input feature map
(IFMAP), weights (Filter), and outputs (OFMAP). Each PE is
a multiply-and-accumulate (MAC) unit with internal registers
for inputs/partial sums. Inputs are read from the top and left
edges and passed on to the PEs in every clock cycle (Fig. [Tb).

Several tools and models are integrated into the optimizer
to evaluate Mono3D systolic array configurations. As shown
in Fig. the optimizer starts with performance evaluation
of the DNN using SCALE-Sim, a cycle-accurate stall-free
DNN inference simulator for systolic arrays [9], followed by
power evaluation using CACTI-6.5 [10] and Mono3D power
models. For thermal evaluation, the optimizer uses HotSpot-
6.0 to obtain steady-state temperatures [11]. There also exists
a leakage-temperature loop for an accurate power/temperature
estimation. The loop converges when the difference between
consecutive HotSpot simulations is < 1°C.

We investigate a Mono3D configuration comprising two tiers,
as shown in Fig. [2a] The logic layer, i.e., systolic array tier
is closer to the heat spreader and MIVs are used for SRAM
read/writes. For simplicity, we assume that the systolic array
and SRAM tiers are roughly equal in size [8]. We adopt a
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Fig. 2: Cross-sectional view of Mono3D chipstack (left) and performance versus power tradeoffs in Mono3D DNN accelerators.

representative Mono3D power model for interconnect power
from a recent work [8]]. A simplifying assumption made in this
power model is that the interconnect power equals 15% of the
total chip dynamic power. On top of this interconnect power,
10% interconnect power savings are applied for Mono3D power
savings at iso-performance [8]. We also adopt a representative
thermal model from a recent work [12] composed of metal
layers, dielectric, etc. with the corresponding layer thicknesses
and thermal resistivities.

III. EXPERIMENTAL RESULTS

To demonstrate the benefits of thermal awareness in the
design of DNN systolic arrays for biomedical applications, we
use two DNNs: U-Net and ResNet-50. Table [[| shows our design
space. We set a thermal threshold of 80°C and a limit on
maximum performance loss of < 10% with respect to a latency-
optimized configuration. We use an example MAC unit’s area,
power, and frequency, and include three frequency levels in
our analysis: (500, 600, 735) MHz [§]]. In total, there are 6k
unique configurations for each DNN, including the frequencies.
We launch six starts for each frequency with five perturbations.
MSA parameters are set to 1.44/0.88, 0.85 for initial/final
annealing temperature{] and rate of cooling, respectively [8].

Table lists the optimized configurations for inference
latency, chip power, and energy-delay-area product (EDAP).
We utilize EDAP to measure energy- and area-efficiency.
Figures [2b] and show the configurations explored by the
optimizer for power minimization. Absence of a frequency level
depicts that the optimizer did not find a valid configuration
for initialization at that frequency. As shown in the table,
the optimizer converges to lowest frequency level for U-Net
and highest frequency level for ResNet-50. This difference is
due to the topological differences among these DNNs. ResNet-
50 downsizes the input to make a final prediction for object
classification, which leads to lower systolic array utilization,
lower power, and fewer thermal violations (Fig. . On the
other hand, U-Net first downsizes and then expands the input to
obtain a high image resolution. Due to a larger input size in its
latter layers, the array utilization is greater than in ResNet-50,
thus leading to higher power and more thermal violations (Fig.
[2c). The table also shows that due to the imposed constraint
in performance loss, the optimizer converges to ~53% larger
systolic arrays for U-Net at 500 MHz than ResNet-50 at 735

! Annealing temperature: Unitless MSA parameter to determine when to
accept a worse solution. Rate of cooling: Decaying rate of the annealing
temperature to achieve convergence.

MHz. In comparison to latency-optimized configuration, the
power- and EDAP-optimized configurations achieve 21% and
61% improvement in chip power and EDAP, respectively, while
sacrificing only 9.5% in latency for U-Net. ResNet-50 achieves
49% and 83% improvement in chip power and EDAP using
the optimizer, while sacrificing only 7.25% in latency. We also
compare these results with unoptimized points corresponding
to the smallest configuration in our design space (64 x68 with
352 K B SRAM) running at the lowest frequency of 500 MHz,
thus characterized by low power and area. Even though these
configurations have lower power (avg. 55%), the latencies are
3x (U-Net) and 2x (ResNet-50) of the fastest configurations
due to fewer PEs. While the unoptimized configuration has
35% lower EDAP for ResNet-50, for U-Net this results in 50%
higher EDAP due to longer latency. The above results show
the importance of temperature-awareness in optimizing DNN
accelerators for different objectives and DNNs. In addition,
it motivates the need for systematic optimization to balance
constraints and objectives in a thermally-aware manner.

64x64 to 256x256

(32, 64 ... 4096) KB
0.94 to 1

(735, 600, 500) MHz

Systolic array size
Each SRAM size
Aspect ratio of the chip
Frequencies

TABLE I: Design space for DNN accelerators.

Optimization Goal U-Net ResNet-50
Performance 194%192 (500 MHz) 186196 (735 MHz)
(Inference Latency) 4256 KB 4160 KB
Chip Power 162x 172 (500 MHz) 132x 138 (735 MHz)
3136 KB 2112 KB
162x172 (500 MHz 134x136 (735 MHz
System EDAP T g

TABLE II: Optimization results: Systolic array (operating fre-
quency) and total SRAM (IFMAP, Filter, OFMAP).

IV. CONCLUSION

We demonstrate the effectiveness of including temperature-
awareness in design optimization for Mono3D energy efficient
DNN accelerators, subject to user-defined performance and
thermal constraints for biomedical applications. Since U-Net
dissipates high power and results in higher temperature, the
optimizer converges to Mono3D configurations operating at a
lower frequency for energy efficiency. For ResNet-50, the opti-
mizer utilizes the thermal slack and converges to configurations
operating at a higher frequency due to fewer thermal violations.
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