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1 INTRODUCTION

Register allocation and instruction scheduling are two fundamentally important compiler opti-
mizations. In most production compilers, register allocation and instruction scheduling are done
in two different passes, because doing them simultaneously in one pass would be too complex.

Instruction scheduling and register allocation are closely related, because the instruction order
computed in the pre-allocation instruction scheduling pass determines the register pressure (RP),
which is the number of virtual registers that have overlapping live ranges and must be assigned
to different physical registers. RP reflects the demand for physical registers. If the demand for
registers exceeds the number of physical registers on the target machine, the register allocator
must spill some virtual registers to main memory by adding load and store instructions (spill code)
that may slow the program. On a Graphics Processing Unit (GPU), spilling is rare and extremely
expensive. However, RP determines the GPU occupancy, which is the number of thread groups
that can be executed in parallel. When each thread uses fewer registers, the GPU can run more
threads in parallel. Occupancy usually has a high impact on the execution time of a GPU program.
Therefore, the impact of RP reduction on the performance of a GPU program is generally greater
than its impact on the performance of a CPU program.

Minimizing RP is not the only objective of pre-allocation instruction scheduling. In fact, the
original objective of instruction scheduling is exploiting Instruction-Level Parallelism (ILP).
ILP is exploited by executing independent instructions in parallel to minimize the schedule length,
but this tends to increase RP, as more registers are needed to hold the results of the instructions that
are executed in parallel. Thus, maximizing ILP and minimizing RP are two conflicting objectives
that must be balanced in pre-allocation scheduling.

Compiler scheduling for ILP has a particularly high impact on the performance of in-order
processors. GPUs do not reorder instructions within a single thread at run time. Therefore, the
impact of compiler scheduling for ILP on GPU performance is generally higher than its impact on
the performance of a modern out-of-order CPU.

The problem of balancing ILP and RP in pre-allocation instruction scheduling is a fundamental
open problem in code generation and optimization. Even optimizing one of these two conflicting
objectives (ILP or RP) is NP-hard [Cooper and Torczon 2011]. Current production compilers solve
this problem using heuristics (usually greedy heuristics). However, recent research on both CPUs
[Lozano et al. 2019, Shobaki et al. 2019] and GPUs [Rawat et al. 2018, Shobaki et al. 2020] has shown
that these heuristics may produce sub-optimal results that significantly degrade performance. On
GPUs, pre-allocation instruction scheduling is particularly important, because both RP and ILP
significantly impact the execution time.

In the operations research (OR) field, researchers have successfully computed precise, and
often exact, solutions to NP-hard problems using intelligent search techniques, including Branch-
and-Bound (B&B), Constraint Programming (CPR), and Ant Colony Optimization (ACO).
Despite the success of these techniques in OR, applying such computationally expensive tech-
niques to NP-hard compiler optimization problems was impractical in the past. However, today’s
powerful computing has motivated some researchers to explore applying some of these techniques
to NP-hard problems in code optimization [Domagala et al. 2016, Lozano et al. 2018 and 2019,
Shobaki et al. 2019 and 2020]. The results of this recent research show that applying such tech-
niques can significantly improve performance in some cases and that the increase in compile time
can be controlled by applying them selectively to the hot code and setting reasonable time limits
[Shobaki et al. 2013 and 2019].

In this paper, we explore applying ACO to the register-pressure-aware instruction scheduling
problem in compilers, and we apply it to both CPU and GPU targets. ACO is a population-based
optimization technique inspired from nature. Other population-based techniques include genetic
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algorithms, genetic programming, and particle swarm optimization. Ants in nature find short paths
between a food source and their nest by depositing pheromones as they carry food. The act of ants
following the pheromones while occasionally straying from the pheromone trail and the natu-
ral dissipation of pheromones cause the trail over time to shorten and approach optimality. This
phenomenon inspired a class of ant-based algorithms for finding optimal solutions to NP-hard op-
timization problems. As detailed in Section 4, a pheromone table is used in an ACO algorithm to
simulate the deposition and dissipation of pheromones.

ACO was introduced by Dorigo and Gambardella [1997] to compute precise solutions to large
instances of the Traveling Salesman Problem (TSP), which is a well-known NP-hard problem.
In later research, the technique was applied to a number of related problems such as job-shop
scheduling [Martens et al. 2007], protein folding [Hu et al. 2008], image processing [Jevti¢ 2009],
and many others.

The ACO algorithm proposed in the current paper is based on the Ant Colony System (ACS)
described by Gambardella and Dorigo [2000] for solving the Sequential Ordering Problem (SOP),
which is a generalization of the TSP. In the SOP, the objective is finding a node permutation that
minimizes a path length without violating a given set of precedence constraints [Escudero 1988].
Our proposed ACO algorithm capitalizes on the similarity between the instruction scheduling
problem and the SOP. The objective in both problems is finding a minimum-cost sequence that
satisfies certain precedence constraints. To the best of our knowledge, our work is the first attempt
to apply ACO to the register-pressure-aware instruction scheduling problem in compilers.

To apply ACO to the compiler instruction scheduling problem, the problem must be formulated
as a combinatorial optimization problem with an explicit cost function. In previous work, we ex-
plored two different approaches to this two-objective optimization problem. The first approach is
a single-pass approach in which the objective is minimizing a weighted sum of the schedule length
and the RP cost. The second approach is a two-pass approach in which RP is treated as a primary
objective that is minimized in the first pass, while schedule length is treated as a secondary objec-
tive that is minimized in the second pass. As explained in previous work [Shobaki et al. 2020], a
two-pass approach is more effective on a GPU target, because optimizing occupancy is critically
important and the two-pass approach ensures that enough time is spent searching for the best oc-
cupancy. In the current paper, we use the single-pass approach for CPU targets and the two-pass
approach for the GPU target.

In previous work, we introduced multiple cost functions for estimating RP during instruction
scheduling, including the Peak Excess Register Pressure (PERP) [Shobaki et al. 2013] and the
Sum of Live Interval lengths (SLIL) [Shobaki et al. 2019] for CPU targets, and the Adjusted
Peak Register Pressure (APRP) [Shobaki et al. 2020] for GPU targets. In this paper, we use all
three cost functions. RP cost functions are summarized in Section 2.

The proposed ACO algorithm is implemented in the LLVM compiler [Lattner 2004] and its
performance is evaluated on three different machines with three different instruction-set archi-
tectures: Intel x86, ARM, and AMD GPU. The proposed ACO algorithm is compared to our ex-
act branch-and-bound algorithm [Shobaki et al. 2019, 2020]. On x86 and ARM, both algorithms
are evaluated relative to LLVM’s generic scheduler using the SPEC CPU 2017 benchmarks [SPEC
2017], while on the AMD GPU, the algorithms are evaluated relative to AMD’s production sched-
uler using the PlaidML benchmarks [PlaidML]. AMD’s algorithm is well-tuned for the AMD GPU.

The experimental results show that using SPECrate 2017 Floating Point (FP2017 for short), the
proposed algorithm gives geometric-mean improvements of 1.13% and 1.25% in execution speed
on x86 and ARM, respectively, relative to the LLVM scheduler. Using PlaidML on an AMD GPU, it
gives a geometric-mean improvement of 7.14% in execution speed relative to the AMD scheduler.
The ACO algorithm gives approximately the same execution-time results as the B&B algorithm,
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with each algorithm outperforming the other on a substantial number of hard scheduling regions.
ACO gives better results than B&B on many large instances that B&B times out on. Both the ACO
algorithm and the B&B algorithm outperform the LLVM algorithm on the CPU targets and the
AMD algorithm on the GPU target. An important advantage of the ACO algorithm is that it has a
higher degree of parallelism and is thus more likely to benefit from parallelization on a massively
parallel processor.

The rest of this paper is organized as follows. Section 2 defines the terms used in the paper and
explains the preliminary concepts. Section 3 summarizes previous work. Section 4 describes the
proposed algorithm. Section 5 presents the experimental results, and Section 6 summarizes the
conclusions and outlines future work.

2 BACKGROUND

The problem addressed in this paper is pre-allocation instruction scheduling with RP taken into
account. Scheduling is done within a basic block. A basic block is a straight-line piece of code with
no branches out of it except at the end of the block and no branches into it except at the beginning
of the block [Cooper and Torczon 2011]. The input to the instruction scheduler is a sequence
of instructions with their dependencies represented by a data dependence graph (DDG). The
output is a schedule, which is an assignment of instructions to machine cycles. The objective is
finding a schedule that achieves the best possible balance between schedule length and RP. The
schedule length is the number of cycles used in the schedule, and RP is modeled using one of the
cost functions described below.

The number of cycles in the schedule depends on the machine model. Our implementation of
the proposed algorithm supports a general machine model with an arbitrary number of functional
units and issue slots per cycle and arbitrary latencies. It also supports both pipelined and un-
pipelined instructions. The experimental results, however, were produced using a simple machine
model. In this simple model, the processor can issue one instruction of any type in each cycle, but
the model still captures instruction latencies, and this appears to be the most important factor that
affects performance. In previous work, we experimented with more accurate machine models, and
they did not seem to make a significant difference in terms of execution-time performance on the
target processors that we experimented with.

In the pre-allocation scheduling phase, registers in the code are virtual registers. In certain spe-
cial cases, the code may contain physical registers. Each register has a specific data type. Register
pressure computation is based on the Defand Use sets of the scheduled instructions. The Def set of
an instruction is the set of registers that are defined by that instruction, and the Use set is the set
of registers that the instruction uses. Our algorithm and our implementation allow an instruction
to have an arbitrary number of Defs and Uses. Given an instruction schedule, the register pressure
for a given data type at a given point in the schedule is the number of registers of that type that
are live at that point. A register is live at a given point in a schedule if it has been defined but at
least one instruction that uses it has not been scheduled yet at that point.

In previous work, we used two different approaches to the pre-allocation scheduling problem:
a single-pass approach [Shobaki et al. 2013, 2019] and a two-pass approach [Shobaki et al. 2020].
These approaches are described next.

2.1 Single-Pass Approach

In this approach, a weighted sum of schedule length and RP is optimized in a single pass [Shobaki
et al. 2013]. Given a sequence of instructions, the objective is to find a schedule S that minimizes
the following cost function:

Cost (S) = |S| = Ly + w(P — L) (1)
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where [S] is the schedule length, Ls is a lower bound on the schedule length, P is the RP cost, L, is
alower bound on the RP cost, and w is the register pressure weight (RPW). The RPW parameter
expresses the weight of RP relative to the schedule length. A tight lower bound on the schedule
length may be computed using the algorithm of Langevin and Cerny [1996]. In this work, the
single-pass approach is used in scheduling for CPU targets.

2.2 Two-Pass Approach

On a GPU target, minimizing RP maximizes occupancy, and maximizing occupancy generally has
a higher impact on GPU performance than exploiting ILP (minimizing the schedule length). In
theory, this can be captured in the single-pass approach by setting the RPW to a sufficiently large
value. Experimentally, however, we found that an extremely high RPW results in a very slow
algorithm that may not spend enough time minimizing RP [Shobaki et al. 2020]. Therefore, we
introduced the two-pass approach in which occupancy is maximized (RP is minimized) in the first
pass as a primary objective and ILP is maximized in the second pass as a secondary objective. In
the second pass, the algorithm searches for a minimum-length schedule among all the schedules
that maintain the best occupancy found in the first pass. The first pass is called the occupancy pass,
and the second pass is called the ILP pass. As explained in detail in the original paper, the two-
pass approach is more effective for a GPU target, because it ensures that adequate time is spent
optimizing occupancy. In this work, we use the two-pass approach for the GPU target.

In the two-pass approach to scheduling for the GPU, the best occupancy found in the first pass
is treated as a constraint in the second pass. So, in the second pass, the algorithm searches for the
shortest possible schedule among all the schedules that satisfy that occupancy constraint, and any
schedule that does not satisfy the occupancy constraint is treated as an invalid schedule.

2.3 Register-Pressure Cost Functions

In previous work, we explored multiple cost functions for representing RP during scheduling,
including the Peak Excess Register Pressure (PERP) [Shobaki et al. 2013] and the Sum of Live
Interval Lengths (SLIL) [Shobaki et al. 2019] for CPU targets and the Adjusted Peak Register
Pressure (APRP) [Shobaki et al. 2020] for GPU targets. In this subsection, we briefly describe
these cost functions. The details can be found in the original papers.

The Peak Register Pressure (PRP) of a given data type in a given schedule is the maximum
value of that type’s RP at any point in the schedule. The PERP of a given data type is the difference
between that type’s PRP and the number of available physical registers of that data type on the
target machine.

Assuming that the code is in Static Single Assignment (SSA) form [Cooper and Torczon 2011],
each virtual register in a given basic block has a live interval that consists of one definition and
one or more uses. Therefore, each live interval has one defining instruction and one or more us-
ing instructions. The Live Interval Length (LIL) is the number of instructions in the instruction
sequence that starts with the definition and ends with the last use. The SLIL is the sum of live inter-
val lengths for all virtual registers in a given schedule. Since live interval overlapping makes live
intervals longer, a larger SLIL indicates more overlapping among live intervals, and thus higher RP.

As explained in previous work [Shobaki et al. 2019], the SLIL cost function may capture live
interval overlaps that are not captured by the PERP cost function. SLIL captures the overlaps
among all intervals, while PERP captures only the overlaps that contribute to the peak pressure.
In a high-pressure scheduling region, the peak-pressure point in the schedule is not the only
point that will cause the register allocator to insert spill code. Therefore, minimizing SLIL is more
likely to minimize spill code than minimizing PERP, especially in larger scheduling regions with
multiple high-pressure segments.
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On a GPU, multiple PRP values may give the same occupancy value. To account for this, we
introduced the adjusted peak register pressure (APRP) step function for modeling occupancy
during instruction scheduling. The APRP of a given PRP value x is the maximum PRP value that
gives the same occupancy as x. For example, on the AMD GPU used in this work, a PRP of 24 vec-
tor general-purpose registers (VGPRs) or less gives the maximum occupancy of 10 wavefronts,
while PRP values in the range [25-28] give an occupancy of 9 wavefronts (a wavefront is a group
of GPU threads that must be executed in lockstep). Therefore, PRP values in the range [1-24] are
mapped to an APRP of 24 and PRP values in the range [25-28] are mapped to an APRP of 28.

3 RELATED WORK

Compiler researchers have been studying instruction scheduling for many decades. Instruction
scheduling for minimum register pressure, or the Minimum-Register Instruction Sequence
(MRIS) problem, has been studied since 1970 by Sethi and Ullman [1970] who proposed an algo-
rithm for finding an instruction order for computing an expression using the minimum number
of registers when the DDG is a tree. However, a tree DDG is a special case with limited practical
value, as the DDGs constructed in an optimizing compiler for real code are often not trees.

A more practical algorithm for balancing ILP and RP was proposed by Goodman and Hsu [1988].
That algorithm was heuristic-based with no guarantee of optimality. Other heuristic approaches
were then proposed by Govindarajan et al. [2003], Touati [2005] and Barany and Krall [2013].

Over the past two decades, some researchers proposed combinatorial approaches (intelligent
search techniques) that are guaranteed to give optimal solutions if they terminate within a given
time limit. Kessler [1998] proposed a dynamic programming approach to both the MRIS problem
and the general problem of balancing RP and ILP. Barany and Krall [2013] proposed an Integer
Linear Programming solution to the MRIS problem. Malik [2008] used Constraint Programming
(CPR) to solve the MRIS problem, and Domagala et al. [2016] used CPR to integrate RP-aware
instruction scheduling and loop unrolling. Lozano et al. [2018] used CPR to solve the integrated
instruction scheduling and register allocation problem. Lozano provides an excellent survey of
combinatorial approaches to instruction scheduling and register allocation [Lozano 2019].

Shobaki et al. [2013, 2019, 2020] presented a B&B algorithm for solving the RP-aware instruc-
tion scheduling problem. In the experimental evaluation, we compare the proposed ACO algo-
rithm with that B&B algorithm. B&B is an exact technique for solving combinatorial optimization
problems by conducting an exhaustive search of the solution space. The exhaustive search may
complete in reasonable time on many instances if powerful pruning techniques are used to prune
non-promising sub-spaces as early as possible. Shobaki et al. successfully applied this technique to
RP-aware instruction scheduling and showed that it can in some cases produce a significant per-
formance improvement relative to the greedy heuristics used in production compilers. However,
that B&B algorithm times out on thousands of instances in SEPC CPU2006.

Rawat et al. [2018] describe a source-level re-ordering algorithm to minimize RP for stencil
computation on the GPU. Using a pattern-specific approach, they report speedups in the range of
1.22x to 2.43x for NVCC and 1.15x to 2.08x for LLVM. These results show the significant impact of
RP-aware scheduling on GPU performance.

ACO was introduced in 1992 by Marco Dorigo in his doctoral thesis [Dorigo 1992] and later
published (as Ant Colony System) in the first issue of IEEE Transactions on Evolutionary Com-
putation [Dorigo and Gambardella 1997]. The technique was originally applied to the TSP. Our
proposed algorithm is based on the ACO proposed by Gambardella and Dorigo for the SOP [2000].
Using an ACO approach to solve other scheduling problems was studied by Ferrandi et al. [2010]
and Wang et al. [2007]. Both explored the use of ACO for operation and resource scheduling, a
somewhat more general problem of scheduling resources in software systems. They both noted
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the applicability to compilers but did not actually implement their algorithms in compilers. Those
works, however, focused on minimizing the schedule length (exploiting ILP) without considering
RP. To our knowledge, our proposed algorithm is the first ACO algorithm for RP-aware instruction
scheduling.

More direct applications of ACO to compiler optimization have been proposed by Lintzmayer
et al. [2012] and de Souza Xavier et al. [2018]. Lintzmayer et al. used an ACO approach to do graph
coloring register allocation, and de Souza Xavier et al. used ACO to do design space exploration.
Both reported good results.

The pre-allocation scheduling problem addressed in this paper is a multi-objective optimiza-
tion problem (MOOP). Researchers have used various approaches to MOOPs. A common ap-
proach is to compute a weighted sum of the different objectives, thus reducing the problem from
a multi-objective problem to a single-objective problem. This approach has been used in a num-
ber of ACO applications [Alaya 2007, Infante 2010]. Another approach that has been used in ACO
applications is the Tchebycheff weighted metric approach that is based on identifying an optimum
for each objective, forming an idealized (utopian) solution and then finding the nearest feasible
solution to the idealized solution [Mu 2019]. A third approach to MOOPs is searching for Pareto
optimal solutions. A solution to a MOOP is pareto optimal if no objective can be improved without
degrading at least one other objective.

Researchers have used multiple techniques to adapt ACO to solving MOOPs. Whereas some
researchers used a single pheromone table as in a standard ACO algorithm, other researchers used
multiple pheromone tables, usually one per objective [Gambardella 1999, Doerner 2004, Infante
2010]. Some algorithms keep track of the Pareto optimal solutions found [Liu 2019, Mu 2019], and
others limit pheromone table updates to favor those solutions that are Pareto optimal [Alaya 2007].
Reviews of various ACO approaches to solving MOOPs can be found in the papers of Leguizamén
[2010] and Ning [2019].

4 ALGORITHM DESCRIPTION

ACO is inspired by the way ants utilize pheromones to construct trails. In ACO, artificial ants
traverse paths in a graph in a probabilistic manner. The quality of a generated path determines the
amount of pheromone deposited on each of the arcs that constitute that path. Subsequent ants then
select the sequence of nodes they visit based on the amount of pheromone on each possible arc as
well as a problem-specific heuristic, which we call the guiding heuristic. It is also customary to
simulate the natural gradual dissipation of pheromone.

4.1 ACO Applied to Instruction Scheduling

Our proposed algorithm is based on the ACO algorithm proposed by Gambardella and Dorigo
[2000] for the SOP. This particular version of ACO was chosen because of the similarities between
instruction scheduling and the SOP. In both problems, the input is a DDG representing precedence
constraints, and the objective is finding an order that minimizes a certain cost function. However,
the RP-aware instruction scheduling problem is more complex than the SOP, because it is a MOOP.
In our single-pass approach, using a weighted sum of two objectives (the RP cost and the sched-
ule length) adds more complexity to the problem, while in our two-pass approach, the additional
complexity arises from treating RP as a constraint in the second pass. Another complexity in both
approaches is the presence of latency constraints.

The algorithm generates a large number of candidate schedules. Each candidate schedule is a
complete sequence of instructions for the given scheduling region. Whenever a better candidate
schedule is found, it is saved as the best schedule found so far. The algorithm terminates when a
certain number of iterations N have been performed without finding an improvement of the best
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schedule. This number of iterations is called the termination condition. The termination condi-
tion is used to control the amount of time given to the ACO algorithm to find a good solution. In the
context of compiler instruction scheduling, the termination condition is used to control compile
time. In the experimental evaluation, we show how the termination condition affects performance.

ACO uses a pheromone table to guide the construction of candidate schedules. The pheromone
table is a two-dimensional table with n rows and n columns, where n is the number of instructions
in the current scheduling region. For any two instructions i and j, the value j; in the pheromone
table is the amount of pheromone placed on the arc between instructions i and j. If j is a root node
in the DDG, a pseudo-instruction iy is used in the pheromone table instead of i.

A candidate schedule is initially empty. It is built by selecting one instruction at a time until the
schedule is complete. At each step during schedule construction, the next instruction is selected
from the ready list, which is a list of the unscheduled instructions that have had all of their de-
pendencies satisfied. The ready list is updated each time an instruction is added to the schedule,
as scheduling an instruction may make some of its dependents ready.

The choice of the next instruction to select (i.e., the next link that an ant traverses) is done
randomly, but with a bias that takes into account both the values in the pheromone table and the
guiding heuristic. For each instruction i, 7 is the value of the guiding heuristic for i. ; is encoded as
anumber in the range [1, 2] with larger values representing higher priorities. Our implementation
supports multiple guiding heuristics as detailed in Section 4.2. Each instruction i in the ready list
is assigned a score 7; = 759, where [is the previous instruction selected. Then the next instruction
is selected using one of two methods:

—First method with probability s/n: The next instruction is selected through biased random
selection, where the probability of selecting an instruction from the ready list is proportional
to its 7. In population-based optimization algorithms, this approach is commonly referred
to as fitness-proportional selection.

—Second method with probability 1-s/n: The next instruction is the instruction with the max-
imum ;.

In the above probabilities, s is an adjustable parameter used to control the balance between ex-
ploitation and exploration. The value s represents the average number of instructions selected
through biased random selection (exploration) as opposed to strict pheromone-based selection (ex-
ploitation). For example, if n is 100 and s is 20, 20% of the selections will be made based on biased
randomness (exploration) and 80% of the selections will be made based on the highest pheromone
value (exploitation). In population-based optimization systems, exploration refers to using indi-
viduals in the population (in this case artificial ants) to examine previously untested possibilities,
while exploitation refers to using individuals in the population to continue examining possible
solutions that are similar to the better solutions that have been discovered so far. Experimentally,
s = 10 for any n gave better results than any other setting that we tried.

Each iteration simulates a certain number of ants, and each ant generates a candidate schedule.
As shown in the experimental evaluation, we experimented with multiple settings of the number
of ants per iteration. At the end of each iteration, the pheromone table is updated based on the
best schedule in that iteration (the iteration winner). In this update, the pheromone on each link
(i, j) in the iteration’s best schedule is incremented according to the following formula:

_ Cbest
Tij + = max((l k*Cheur) (dmax dmm)s 0) + dmm (2)

where Cpegt is the cost of the iteration’s best schedule, Cpeyr is the cost of the initial heuristic sched-
ule, dpin and dy,ay are the minimum and maximum amounts of pheromone that can be deposited,
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and k is a tuning parameter. Experimentally, the best results were obtained with k = 1.5, dpin = 1,
and dpay = 6.

It is important to note here that in the second pass of the two-pass version of our algorithm, the
iteration’s best schedule is selected from the schedules that satisfy the occupancy constraint. If no
schedule in a given iteration satisfies the occupancy constraint, no pheromone table update will
take place at the end of that iteration.

In order to simulate the decay of pheromones over time, the following formula is applied to each
link in the pheromone table at the end of each iteration:

Tj = min(max(fij(l - ,0), 7-'min)a Tmax) (3)

where p is the decay rate, 7in and 7.y are the minimum and maximum amounts of pheromone
that a link in the table can have. Experimentally, the best results were obtained with p = 0.1,

Tmin = 1, Tmax = 8.

4.2 Heuristics

In the proposed ACO algorithm, various heuristics are used to both construct the initial solution
and guide the ACO search, including the Critical-Path (CP) heuristic [Cooper and Torczon 2011]
and the Last Use Count (LUC) heuristic described in previous work [Shobaki et al. 2015].

The CP heuristic is a commonly used heuristic for minimizing schedule length (exploiting ILP).
The CP of an instruction is the length of the longest path between the instruction and a leaf node
in the DDG. Thus, the CP measures the length of the dependence chain below an instruction.
When multiple instructions are ready, selecting the instruction with the longest dependence chain
below it increases the chances of hiding long latencies and consequently minimizing the schedule
length.

The LUC heuristic is an intuitive heuristic for minimizing register pressure. The LUC of an
instruction is the number of live ranges that the instruction closes. When multiple instructions
are ready, selecting the instruction that closes the maximum number of live ranges is likely to
minimize register pressure.

Both the CP and LUC are greedy heuristics that are not guaranteed to produce optimal solutions,
even if we consider a single objective (schedule length or RP). Of course, the problem of optimizing
two conflicting objectives is much more complex than the problem of minimizing one objective.

LLVM’s scheduling algorithm is a list scheduling algorithm [Cooper and Torczon 2011] that is
based on maintaining a ready list of instructions and selecting the next instruction to add to the
schedule according to certain priority schemes, including schemes that are similar to LUC and
CP. The LLVM algorithm gives higher priority to reducing register pressure, and thus its behavior
tends to be similar to that of the LUC heuristic, that is, it produces low-RP schedules that can be
too long. The AMD algorithm is based on the LLVM algorithm. It extends the LLVM algorithm
to produce better schedules for an AMD GPU by balancing RP and ILP. It also involves multiple
AMD-GPU-specific enhancements.

5 EXPERIMENTAL RESULTS

The proposed ACO algorithm was implemented in the LLVM compiler as an alternative pre-
allocation scheduler. In this section, we present the results of our experimental evaluation. The
proposed ACO algorithm was compared to the exact B&B algorithm proposed in previous work
[Shobaki et al. 2013, 2019]. To show the importance of RP awareness, the evaluation also includes
the CP algorithm that only considers ILP and does not consider RP.
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Table 1. Machine Configurations and Benchmarks

Architecture Processor Benchmarks | LLVM Version oS

X86 Intel(R) Core (TM) i9-9900X @ 3.50 GHz FP2017 LLVM 7.0 Ubuntu 18.04.5

ARM Broadcom BCM2711 Cortex A-72 @600 FP2017 LLVM 7.0 Ubuntu 20.04.1 LTS
MHz (underclocked)

Cross compilation was done on an Intel
Core i7-7700K processor @ 4.2 GHz

AMD GPU AMD Radeon RX Vega 64 GPU @ 1.63 GHz | PlaidML roc-ocl-2.4.0 Ubuntu 18.04.5

Compilation was done on an AMD Ryzen
Threadripper 1950X processor

5.1 Experimental Setup

The ACO scheduler and the B&B scheduler were implemented in LLVM as alternative schedulers
to LLVM’s machine-level pre-allocation scheduler. Three target architectures are included in the
evaluation: x86-64, ARM, and an AMD GPU. For x86 and ARM, both algorithms are evaluated
relative to LLVM’s generic scheduler, while for the AMD GPU, the algorithms are evaluated relative
to AMD’s production scheduling algorithm, which is an extension of the LLVM algorithm. For the
CPU targets, the single-pass version of the algorithm was used, while for the GPU target, the
two-pass version was used.

The hardware and software configurations and the benchmarks used for each target architecture
are shown in Table 1. The benchmarks used in the evaluation are SPECrate 2017 Floating Point!
(FP2017) for CPU targets and PlaidML for the GPU target. The clock speed for the ARM target was
reduced to 600 MHz to avoid the thermal throttling that caused random variation in execution
times. The —O3 optimization level was used in all tests. At this optimization level, LLVM invokes
a global greedy register allocator.

As shown in the next subsections, we experimented with different settings for the termination
condition and the number of ants per iteration in the ACO algorithm. However, the base settings
were as follows. On CPU targets, the termination condition was set to 50 iterations, and the number
of ants was set to 10 ants per iteration. On the GPU target, the termination condition was set to 10 in
the occupancy pass and to 5 in the ILP pass, and the number of ants was set to 10 in the occupancy
pass and to 40 in the ILP pass. For the B&B algorithm, the time limit was set to 10ms/instruction
for the CPU targets and 1ms/instruction in each pass for the GPU target.

For CPU targets, the LUC heuristic was used both as an initial heuristic and as a guiding heuris-
tic. For the GPU target, LUC was used as an initial heuristic and as a guiding heuristic in the
occupancy pass, and CP was used as the guiding heuristic in the ILP pass.

5.2 Benchmark Statistics

Table 2 shows some statistics about the benchmarks used in our experimental evaluation. In FP
2017, there are 12 benchmarks that have tens of thousands of functions. Each function is divided
into scheduling regions. In most cases, a scheduling region is a basic block, but in some cases, LLVM
may divide a basic block into multiple scheduling regions based on target-specific considerations.
The total number of scheduling regions is 1,123,793. Each scheduling region is an instance of the
scheduling problem.

The average instance size in FP2017 is 7.1 instructions, which indicates that there are many
small instances that can be easily scheduled optimally. However, the last row in the table shows

IThe wrf benchmark was excluded due to a run-time error that was seen even with the base LLVM compiler.
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Table 2. Benchmark Statistics

Register-Pressure-Aware Instruction Scheduling Using Ant Colony Optimization

STAT FP2017 | PlaidML
Number of benchmarks 12 13
Number of functions/kernels 66,422 3,814
Number of scheduling regions 1,123,793 | 16,682
Avg. scheduling regions per function 16.9 4.4
Avg. Instructions per scheduling region 7.1 49
Max. Instructions per scheduling region 6193 921
Table 3. Reductions in the RP Cost Functions

ALGORITHM PERP SLIL APRP

B&B 2.38% 43.00% 17.94%

ACO 1.11% 39.93% 18.98%

CP —18.96% | —140.76% | —23.15%

23:11

that there are large instances with up to 6,193 instructions, which is quite large for an NP-hard
problem.

In PlaidML, there are 13 benchmarks that have 3,814 kernels and 16,682 scheduling regions. The
average region size is 49 instructions, which is significantly larger than the average region size
in FP2017. This is attributed to the fact the GPU applications have, on average, more straight-line
code and fewer conditionals.

5.3 Register-Pressure Cost

The experiments in this section focus on register-pressure reduction. On the CPU targets, ILP is
ignored by setting all latencies to one. On the GPU target, latencies are naturally ignored in the
occupancy pass.

Table 3 shows the percentage reductions in the different RP cost functions produced by each
algorithm under study relative to the base algorithm. For PERP and SLIL, the base algorithm is
LLVM’s scheduling algorithm, and for APRP, the base algorithm is AMD’s scheduling algorithm.
The PERP and SLIL results are for the Intel x86 target, while the APRP results are for the AMD
GPU target. The numbers in the table are the percentage reductions in the overall RP cost across
all the scheduling regions in each benchmark suite. Recall that PERP and SLIL are used to compile
FP2017 for CPU targets and APRP is used to compile PlaidML for the GPU target.

The first observation about the results in Table 3 is that the reductions in the SLIL cost function
are greater in magnitude than the reductions in the PERP cost function. This is attributed to the
fact that the SLIL cost function captures any reduction in live interval overlapping, whether the
RP is above the physical limit (the number of physical registers in the target machine) or not. On
the other hand, PERP accounts only for RP reductions above the physical limit. Therefore, all the
reductions in PERP are expected to cause reductions in spill code, while not all the reductions in
SLIL are expected to cause reductions in spill code. The reductions in APRP are greater than the
reductions in the PERP, because the average scheduling region size in PlaidML is greater than the
average region size in FP2017 (see Table 2).

The numbers in Table 3 show that ACO and B&B generally give comparable reductions in all
RP cost functions. B&B gives greater reductions in PERP and SLIL, but ACO gives a greater re-
duction in APRP. As expected, the CP algorithm, which maximizes ILP without considering RP,
significantly increases all RP cost functions relative to the base algorithms. CP is included in our
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Table 4(a). Instance-level ACO vs B&B comparison in FP2017 using SLIL on Intel

x86

DESCRIPTION COUNT Percentage
1. Total instances passed to B&B and ACO | 561,131
2. Optimal by both (easy) 511,491 | 91.2% of total
3. Hard instances 49,640 8.8% of total
4. Optimal by B&B only 37,738 | 76% of hard
5. B&B timeouts 11,902 24% of hard
6. B&B timeouts with ACO and B&B equal 815 7% of timeouts
7. B&B timeouts with B&B better 6,552 55% of timeouts
8. B&B timeouts with ACO better 4,535 38% of timeouts

Table 4(b). Difference in SLIL Cost Relative to B&B
ALGORITHM Difference in SLIL cost relative to optimal B&B
ACO 6.44%
LLVM 175.2%
CP 396.2%

experimental evaluation for sanity checking. It shows that the base algorithms have good perfor-
mance and that both ACO and B&B perform significantly better than good base algorithms.

Table 4(a) shows a comparison between ACO and B&B at the instance level in FP2017 using
the SLIL cost function on Intel x86. Each instance is a scheduling region in FP2017. After filtering
out the trivial instances that were solved optimally by the heuristic, 561,131 instances were passed
to the search algorithm (B&B or ACO). Row 2 shows that 91.2% of these instances were solved
optimally by both algorithms (easy instances). The remaining 8.8% of the instances are considered
hard instances. Although the hard instances constitute only 8.8% of the total number of instances,
they are likely to have a higher impact on performance than the easy instances, because hard
instances tend to be larger scheduling regions with more substantial code. Given a set of scheduling
regions with the same execution frequency, larger scheduling regions are likely to have a higher
impact on a program’s performance.

Row 4 in Table 4(a) shows that 76% of the hard instances were solved optimally by B&B but
not by ACO (ACO gave larger cost values). The last three rows show a comparison between ACO
and B&B on the 11,902 instances on which B&B times out (the hardest instances). Row 6 shows
that both algorithms produced the same results for 7% of these timeouts. Row 7 shows that B&B
produced better results for 55% of the timeouts, and Row 8 shows that ACO produced better results
for 38% of the timeouts. Instances that time out tend to be larger instances. This result shows that
ACO has an advantage over B&B on thousands of hard instances that the B&B algorithm could
not solve optimally within the time limit.

Table 4(b) shows the percentage difference in SLIL cost between each of ACO, LLVM and CP
relative to B&B on the 549,229 instances that were solved optimally by B&B. The results in the
table show that the costs produced by ACO are much closer to optimal than the costs produced
by the other two scheduling algorithms. It should be noted here that differences in SLIL do not
necessarily lead to differences in spilling, as different schedules with a peak RP below the physical
limit may have different SLIL costs. To better understand this, the interested reader is referred to
the paper that introduces the SLIL cost function [Shobaki et al. 2019].

Table 5 shows the impact of the termination condition on the performance of the ACO algo-
rithm on Intel x86 using FP2017. The table shows the reduction in SLIL relative to LLVM for ACO
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Table 5. Impact of the Termination Condition

TERMINATION CONDITION REDUCTION IN SLIL 4
10 37.39% > 40
c
25 39.02% c 39
38
50 39.93% g
S 37
100 40.53% E % 100 150

Termination condition

with termination conditions of 10, 25, 50, and 100 iterations without an improvement. Ten ants
per iteration were used. The results in this table show that increasing the termination condition
value results in measurable reductions in SLIL, but even with a termination condition of 10, the
ACO algorithm produces a significant reduction in SLIL relative to LLVM. In practice, a larger
termination condition value increases compile time. Therefore, the objective is achieving the best
execution-time results using the minimum termination condition value.

5.4 Spills Generated by the Register Allocator

In this subsection we study the impact of the RP reductions reported in the previous subsection
on the amount of spilling. The target processor is Intel x86 and the benchmarks are FP2017. The
SLIL cost function is used in this experiment, as previous work showed that SLIL gives a stronger
correlation with the amount of spill code [Shobaki et al. 2019]. Similar to the previous subsection,
ILP is ignored.

Unlike the instruction scheduler, which operates on one scheduling region at a time, the register
allocator at higher optimization levels in many production compilers, including LLVM, operates
on a whole function (global register allocation). This further complicates the already complex rela-
tion between the RP of the schedules and the number of spills generated by the register allocator.
For example, a global register allocator is designed to avoid generating spills in basic blocks with
higher execution frequencies (inside loops) and favor spilling in basic blocks with lower execu-
tion frequencies (outside loops). The instruction scheduler is not aware of execution frequencies.
Consequently, the instruction scheduler may minimize RP within a low-frequency block, but the
register allocator may still generate significant spill code in that block to avoid spilling in blocks
with higher frequencies.

Due to the complexity of the relation between RP and the number of spills, the impact of the
scheduler’s RP reduction must be studied using a fairly large dataset to establish statistical signif-
icance. In this paper, we use a metric that was introduced in previous work [Shobaki et al. 2015]
for experimentally evaluating the effectiveness of a scheduling algorithm at minimizing spilling.
This metric is an experimental lower bound on the size of the gap between the performance of
the algorithm under study and optimal performance. An experimental upper bound on the opti-
mal sum of spills for a large set of functions is computed by applying multiple algorithms to each
function, taking the minimum number of spills per function across all algorithms (best result) and
then summing these minima over all functions. For a given set of functions F and a given set of
algorithms A, the Sum of Minima (SOM) is:

SOM (F, A) = Z min (spills (f. a)) (4)
F
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Table 6. Spill-Code Statistics for FP2017

STAT VALUE
Total functions 66,422
Functions with spills 12,096 (18.2%)
Sum of minima (SOM) 256,738
Avg. spills per function 3.9

Avg. spills per spilling function 21.2

Table 7. Optimality Gaps

60000
. Optimality %Funcs | Max
Algorith
goritam Gap at Min Extra Spills a 50000
(T
O 40000
Z
14,677 = 30000
0, @©
B&B (5.72%) 80.70% 239 £
B 20000
15,196 o
0,
ACO (5.92%) 78.87% 368 10000 l l I
17,733 0
LLVM (6.91%) 76:36% 355 B&B ACO LLVM CcpP
50,800 i i i
g o m Optimality Gap by Algorithm
Cp (19.79%) 72.60% 4,444

where spills(f; a) is the number of spills generated by the register allocator when algorithm aeA is
used to schedule the regions in function feF. As explained in previous work [Shobaki et al. 2015],
the SOM is an upper bound on the optimal sum of spills across the given function set F.

To evaluate the performance of a given algorithm on a given set of functions F, we compute the
difference between the sum of spills produced by that algorithm on F and SOM(F, A). For a given
algorithm a in a set of algorithms A, the difference between a’s spill sum and the SOM is

ExtraSpills (a, A) = Z spills (f, a) — SOM (F, A) (5)
F
ExtraSpills(a, A) is a lower bound on the size of the gap between the number of spills produced by
algorithm a and the optimal number of spills. In the results below, ExtraSpills is also referred to as
the optimality gap.

Each algorithm under study was applied to all the functions in FP2017, and the number of spills
generated by LLVM’s register allocator at —O3 was used to evaluate the scheduling algorithms’
effectiveness at reducing RP. Table 6 shows the spill-code statistics in FP2017. The third row shows
that 18% of the functions in FP2017 have spills, and the fourth row shows that the SOM is 256,738
spills. This SOM was computed using 13 algorithms, including the proposed ACO algorithm, the
B&B algorithm with different parameter values as well as a collection of heuristics.

Table 7 shows the spill statistics for the algorithms under study. The second column in the
table shows the optimality gap, which is the number of extra spills produced by each algorithm
relative to the SOM. The third column shows the percentage of functions in which each algorithm
produced the same number of spills as the minimum number produced by any algorithm in that
function. The last column shows the maximum number of extra spills relative to the SOM that
each algorithm produced in any function (the worst-case). The extra spills for B&B and ACO are
approximately the same. Both B&B and ACO produced thousands of spills less than those produced
by the LLVM scheduler. As expected, the CP algorithm, which does not take RP into account,
produced an excessive amount of spilling. In the worst case, CP produced 4,444 extra spills in

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 23. Publication date: January 2022.



Register-Pressure-Aware Instruction Scheduling Using Ant Colony Optimization 23:15

Table 8. Comparison between ACO and B&B on Occupancy in PlaidML

Algorithm B&B ACO
Average occupancy 7.79 7.82
%Improvement relative to AMD 6.6% 7.0%
Kernels with better occupancy 218 (5.7%) 339 (8.9%)

one function. Comparing the results in Table 7 with those in Table 3 shows a strong correlation
between the SLIL cost and the amount of spilling.

Although the correlation between the scheduling cost and the amount of spilling is strong,
it is not perfect. For example, ACO’s optimality gap is significantly smaller than LLVM’s, but
LLVM’s worst-case behavior on any instance (last column) is slightly better than ACO’s worst-case
behavior. This less-than-perfect correlation is attributed to the complexity of the relation between
instruction scheduling and register allocation. In a production compiler, instruction scheduling
and register allocation are two different NP-hard problems that are solved separately (due to the
complexity of solving them simultaneously), and each problem is solved in a different scope. The
scope of the instruction scheduler is a scheduling region (usually a basic block), while the scope of
the register allocator is a whole function. Since the problem is NP-hard, the register allocator may
produce sub-optimal solutions for many instances. Due to this sub-optimality, the register allocator
may generate too many spills in a code section in which the scheduler has actually minimized RP.

We note here that although the reduction in spilling produced by the proposed ACO algorithm
relative to LLVM is significant, it is still limited. This is due to the fact that the LLVM scheduler
for Intel x86 is heavily biased towards minimizing RP. The execution-time results in Section 5.6
show that the proposed ACO algorithm achieves a better balance between RP and ILP, and thus
produces better execution-time results than the LLVM algorithm.

5.5 GPU Occupancy and Schedule Length

On the GPU target, the main purpose of reducing RP is increasing occupancy rather than reducing
spilling. Furthermore, reducing schedule length is important for a GPU target, because a GPU
does not have out-of-order execution within a thread. In this section, we study the impact of the
proposed ACO algorithm and the B&B algorithm on occupancy and schedule length.

Table 8 shows a comparison between the occupancies produced by ACO and B&B on the
PlaidML benchmarks. On average, ACO gives a slightly better occupancy than B&B (7.82 com-
pared to 7.79). Both algorithms give significantly higher average occupancies than the AMD algo-
rithm (ACO is 7.0% better and B&B is 6.6% better). ACO gives a better occupancy than B&B on 339
kernels (8.9% of the kernels), while B&B gives a better occupancy than ACO on 218 kernels (5.7%
of the kernels). On the rest of the kernels, both algorithms give the same occupancy. These results
show that ACO performs significantly better than B&B in the occupancy pass.

Before we compare the performance of the proposed ACO algorithm with that of the B&B algo-
rithm in the ILP pass, we study the effect of the termination condition and the number of ants on
the schedule length produced by the ACO algorithm in that pass. Table 9 shows the average sched-
ule length across all the scheduling regions in PlaidML using different termination conditions and
different numbers of ants per iteration. Recall that the base setting used in this paper for the ILP
pass is 40 ants per iteration and a termination condition of 5 iterations without improvement. The
base setting is shown in boldface in the table.

The results in Table 9 show that increasing the termination condition and the number of ants
beyond the base setting produces a significantly better average schedule length. With a termina-
tion condition of 50 iterations and 800 ants per iteration, an average schedule length of 151.89 is
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Table 9. Schedule Length Dependence on the Number of Ants and the Termination Condition

Term'ir.lation Number Avg. 180.00

Condition of Ants Sched. Length %o 175.00

5 10 178.73 QC) 170.00

5 40 165.16 ~ 165.00

5 50 164.12 E 160.00

5 100 160.91 A 155.00

5 200 158.75 & 150.00

50 10 163.10 < 10 50 100 200 800
50 50 159.49 Number of Ants
50 100 157.66 «=@==Termination condition 5
50 200 155.69 «=@==Termination condition 50
50 800 151.89

Table 10(a). Comparison between Base ACO and B&B on Schedule Length in PlaidML

Algorithm B&B ACO
Average schedule length 150.4 165.2
%Improvement relative to AMD 6.65% —2.88%
Regions with better schedule length (won) 4,200 318
Avg. size of regions won 116.8 230.4
Avg. win margin 74.4 208.4

Table 10(b). Comparison between Many-Ant ACO and B&B on Schedule Length in PlaidML

ACO
Algorithm B&B many ants
Average schedule length 150.4 151.9
Z%Improvement relative to AMD 6.65% 5.60%
Regions with better schedule length (won) 2,381 350
Avg. size of regions won 164.1 2324
Avg. win margin 63.1 357.9

achieved. As shown in Section 5.7 this setting results in an extremely large compile time. How-
ever, this result is still interesting, because it indicates that much better performance of the ACO
algorithm can possibly be achieved in the future by developing a parallel version of the algorithm
that runs on a massively parallel processor. The ACO algorithm is naturally parallelizable, because
each ant independently constructs a different schedule. This suggests that it should be possible to
use a massively parallel processor to run many ants in parallel and produce a significantly better
schedule in much less compile time than that of the current sequential algorithm. Parallelizing the
ACO algorithm is beyond the scope of the current paper.

Table 10 compares the performance of ACO with B&B in the ILP pass. Table 10(a) shows the
comparison for the ACO algorithm with the base setting (termination condition of 5 and 40 ants),
while Table 10(b) shows the comparison for the many-ant setting (termination condition of 50
and 800 ants). Comparing the average schedule lengths in Row 2 shows that the B&B algorithm
gives a substantially better schedule length than the ACO algorithm with the base setting. This is
attributed to the fact that the search in the ILP pass is constrained by maintaining the best APRP
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found in the occupancy pass. This constraint allows the B&B algorithm to search the solution space
faster, because B&B has the capability to backtrack as soon as the APRP exceeds the target APRP.
On the other hand, the ACO algorithm does not backtrack and can only terminate the current ant
as soon as the APRP exceeds the target.

Table 10(b) shows that increasing the number of ants narrows the gap between the ACO algo-
rithm and the B&B algorithm. With 800 ants and a termination condition of 50 iterations, the ACO
algorithm produces approximately the same average schedule length as the B&B algorithm.

The fourth row in each table shows the number of scheduling regions that each algorithm won,
that is, the number of regions for which each algorithm produced a better schedule. The last two
rows show the average size of the regions won by each algorithm and the average win margin.
Although B&B wins more regions than ACO, the regions won by ACO are, on average, much
larger, and ACO wins by larger margins, which is a great advantage of the ACO algorithm relative
to the B&B algorithm. This is attributed to the fact that the B&B algorithm systematically explores
the solution space, while the ACO algorithm has a degree of randomness that allows it to explore
non-adjacent solutions. On larger solution spaces, the B&B is more likely to get trapped in a small
sub-space, while the randomness of ACO allows it to explore solutions in many different sub-
spaces. This result suggests that a hybrid algorithm that combines the advantages of B&B and
ACO is likely to give better results than either algorithm can give individually. We plan to explore
such a hybrid algorithm in future work.

5.6 Execution Times

The statistics reported in the previous subsections show that the proposed ACO algorithm im-
proves important compile-time metrics that affect a program’s performance, including the amount
of spilling, GPU occupancy, and schedule length. In this section, we study the impact of these fac-
tors on the actual execution times of CPU and GPU programs.

It is important to note here that the relation between the compile-time metrics reported in the
previous subsections and the execution time is fairly complicated. The scheduler’s objective is bal-
ancing ILP and RP, but these are only two out of many factors that affect the execution time. The
execution time depends on a complex combination of many different factors, some of which cannot
be modeled accurately during compilation. Examples of such factors include memory bandwidth,
caching performance, and structural hazards in the processor’s pipeline. In practice, each compiler
optimization pass is designed to improve one or two factors that affect performance and uses cer-
tain heuristics to minimize the negative side effects on other factors. Clearly, we can’t expect such
heuristics to totally eliminate negative side effects, because some of the factors that affect perfor-
mance are hard to model accurately and the interactions among the different optimizations are
hard to predict. Therefore, the negative side effects of a compiler optimization are often unavoid-
able in practice, and the execution times reported in the current section cannot be fully explained
based only on the two factors that are controlled by the scheduling algorithm.

To achieve execution-time improvements with minimum increase in compile time for the CPU
targets, the ACO algorithm and the B&B algorithm were applied only to the hot functions in each
benchmark. A hot function is a function in which the program spends a significant percentage of
its execution time. In this experimental evaluation, the Perf tool [Perf] was used to profile the
benchmarks and identify hot functions. Every function in which a benchmark spends 2% or more
of its execution time was considered hot. For the GPU target, the ACO and the B&B algorithms
were applied to all the GPU kernels in each benchmark.

For the CPU targets, SPEC rate tests were run using eight threads on Intel x86 and one thread
on ARM. One thread was used on ARM, because the machine has limited memory. The register
pressure weight in Equation (1) was set to 100 for both targets.
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Table 11. FP2017 on Intel Percentage Increase in Execution Speed Relative to LLVM’s Default Scheduler

BENCHMARK B&B ACO CP
503.bwaves_r 0.00% 2.03% 1.35%
507.cactuBSSN_r 2.85% 3.13% -33.33%
508.namd_r 2.17% 3.26% 3.53%
510.parest_r 0.78% 1.56% 1.30%
511.povray_r 0.00% -1.96% -1.38%
519.]lbm_r 0.00% 0.00% 0.00%
526.blender_r 2.05% 2.05% -2.74%
527.cam4 r 0.46% 2.97% 0.23%
538.imagick_r 1.21% -0.60% 1.01%
544.nab_r 1.22% 0.61% 0.81%
549.fotonik3d_r 0.00% 1.00% -0.25%
554.roms_r -0.61% -0.31% -0.31%

Geo-mean 0.84% 1.13% -3.05%
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Tables 11, 12, and 13 show the percentage gains in execution speed produced by the proposed
ACO algorithm, the B&B algorithm, and the CP algorithm relative to the base algorithm for the
Intel, ARM, and AMD GPU targets, respectively. For FP2017, the execution speed is measured by
the SPECrate score, while for PlaidML, the execution speed is measured by tiles per second. For the
CPU targets, the gains are relative to the LLVM scheduling algorithm, while for the GPU target,
the gains are relative to AMD’s production scheduling algorithm. Positive numbers in the tables
indicate performance gains, and negative numbers indicate regressions. Usually, there is random
variation in execution time. The numbers in the tables are based on the median of three runs. The
last row in each table shows the geometric-mean improvement for each algorithm across the entire
benchmark suite.

Overall, the proposed ACO algorithm and the B&B algorithm give significant performance gains
relative to the base algorithms on all three targets. The proposed ACO algorithm gives a slightly
greater performance gain on Intel and the AMD GPU and a slightly smaller gain on ARM. The CP
algorithm that does not consider RP gives significant performance regressions on all three targets.
It gives a particularly large regression on cactuBSSN_r in FP2017 and large regressions on most
PlaidML benchmarks.

The ACO algorithm with the base setting produces a geometric-mean improvement of 1.13% on
Intel, 1.25% on ARM, and 7.14% on the AMD GPU. The performance gains achieved using the ACO
and the B&B algorithms on the GPU target are much more significant than the performance gains
achieved on the CPU target. This is attributed to the fact that the impact of RP and ILP on GPU

EB&B W ACO mCP

=\
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Table 12. FP2017 on ARM Percentage Increase in Execution Speed Relative to LLVM’s Default Scheduler

BENCHMARK B&B ACO CP

503.bwaves_r 1.97% 1.64% 1.31%

507.cactuBSSN_r 4.28% 7.07% -30.41%

508.namd_r 1.72% -1.23% 0.98%

510.parest_r 3.91% 3.01% 4.06%

511.povray_r 1.03% 2.27% 1.24%

519.lbm_r 1.13% 0.19% 0.94%

526.blender_r 4.66% 2.76% 6.74%

527.cam4_r 0.79% 0.59% 0.99%

538.imagick r -0.83% -2.08% -1.66%

544.nab_r 0.00% 0.20% 0.59%

549.fotonik3d_r 0.00% 0.00% 0.00%

554.roms_r 1.50% 0.86% 0.21%

Geo-mean 1.67% 1.25% 1.75%
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performance is higher than their impact on CPU performance. RP determines the GPU occupancy,
and increasing occupancy generally has a much higher impact on performance than reducing
spilling. Reducing spilling will have a high impact on performance only if a scheduling algorithm
makes substantial reductions in spilling in a sufficiently hot region in the code. ILP also has a higher
impact on GPU performance, because the GPU does not perform out-of-order execution within a
thread, while the Intel and ARM processors used in our evaluation are out-of-order processors.

With the many-ant setting, the performance gain on the AMD GPU increases to 7.66%, compared
to 7.14% with the base setting. Although the difference in the geometric-mean gain between the
many-ant setting and the base setting is limited, the differences on some individual benchmarks are
significant. The many-ant setting gives worse results than the base setting on three benchmarks,
which is attributed to negative side effects on unmodeled factors, such as caching and hardware
details.

In the previous section, it was shown that the ACO algorithm gives better average occupancy
than the B&B algorithm while the B&B algorithm gives a much better average schedule length.
The results in Table 13 show that the execution-time performance of the ACO algorithm is slightly
better than the B&B algorithm even with the base setting. This is consistent with the fact that
occupancy has a higher impact on performance than ILP.

It is important to note here that ACO and B&B are intelligent search algorithms that con-
sider multiple solutions, while the LLVM and AMD algorithms are greedy algorithms. ACO itera-
tively finds solutions that give better values of an explicit cost function, while a greedy algorithm
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Table 13. PlaidML on AMD GPU Percentage Increase in Execution Speed Relative to
AMD’s Default Scheduler

BENCHMARK B&B ACO ACO CP
base many ants

densenet121 3.56% 4.05% 5.37% -12.13%
densenet169 3.85% 5.31% 6.52% -14.80%
densenet201 4.05% 5.06% 5.82% -15.95%
inception_resnet_v2 16.30% 18.83% 18.79% -2.42%
inception_v3 15.42% 17.67% 17.29% 8.44%
Mobilenet 3.68% 5.98% 3.92% -12.69%
nasnet_large 4.11% 6.13% 6.56% 1.93%
nasnet_mobile 4.25% 2.55% 5.74% -0.51%
resnet50 6.02% 6.09% 7.13% -12.90%
vgglé 7.35% 8.16% 8.18% -11.12%
vggl9 6.77% 7.97% 8.35% -12.00%
Xception 3.90% 4.65% 4.69% -5.05%
imdb_lstm 1.60% 1.80% 2.43% 1.83%

Geo-mean 6.13% 7.14% 7.66% -7.02%
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Table 14. Compile Times in Seconds
Benchmarks LLVM | B&B | ACO | ACO many ants
X86 FP2017 (hot only) 1055 2040 | 1526 N/A
ARM FP2017 (hot only) 1016 2014 | 2565 N/A
AMD GPU PlaidML 256 496 588 37,239

constructs a single solution by adding one instruction at a time based on certain priority schemes.
If a greedy algorithm makes a bad decision, it does not backtrack to consider other options. The
results in this section show that it is hard to optimize two conflicting objectives (RP and ILP) us-
ing a greedy algorithm like the LLVM and the AMD algorithms, while ACO and B&B can balance
these two conflicting objectives, because they are guided by an explicit cost function and consider
multiple solutions.

5.7 Compile Times

Table 14 shows the total compile times taken to generate the executables used to produce the
results reported in the previous subsection. Recall that for the CPU targets, ACO and B&B were
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applied only to the hot functions in FP2017, while for the GPU targets, ACO and B&B were applied
to all the GPU kernels in each benchmark. The table also shows the compile times for the base
compilers.

The results in the table show that both the ACO algorithm and the B&B algorithm increase the
compile time by significant amounts. However, these compile times are still reasonable for such
computationally expensive algorithms, given that the LLVM and the AMD scheduling algorithms
are greedy algorithms. The settings of the B&B and ACO algorithm were chosen to give roughly
the same compile times. Because each algorithm has a different nature, it is practically impossible
to find a combination of settings that gives exactly the same compile time for both algorithms. The
different nature of each technique requires a different kind of termination condition. The termina-
tion condition for B&B is either completing the exhaustive search or using a certain time budget,
whichever happens first. On the other hand, the termination condition for ACO is performing a
certain number of iterations without making any further improvement. It would not be reasonable
to use such a termination condition for B&B, because B&B is always guaranteed to explore new
solutions. Similarly, it would not be reasonable to use a time limit as a termination condition for
ACO, because ACO does not prove optimality. So, ACO may find an optimal solution within a
small fraction of the time limit, and then spend the rest of the allowed time repeatedly exploring
the same solutions. Given these different natures, it is not possible to find a setting that ensures
that both algorithms use the same amount of time to process a given set of programs.

In spite of the difficulty of fairly ensuring that both algorithms are given the same amount of
time, the results show that each algorithm has an advantage over the other. The results in Table 4
show that B&B can compute provably optimal solutions, while ACO computes better solutions
than B&B for thousands of instances that B&B times out on. Therefore, both algorithms are worth
further exploration in the future. In future work, it would be interesting to explore a hybrid algo-
rithm that combines the advantages of both B&B and ACO.

Finally, we note that the compile times reported in the Table 14 should be viewed as upper
bounds, because our current implementation is a research prototype that involves significant
overhead.

6 CONCLUSIONS AND FUTURE WORK

This paper presents an ACO algorithm for the register-pressure-aware instruction scheduling
problem, based on the ACO technique proposed by Gambardella and Dorigo [2000] for solving the
SOP. The proposed ACO algorithm outperforms LLVM’s algorithm on x86 and ARM and outper-
forms AMD’s algorithm on the AMD GPU. It gives geometric-mean improvements of 1.13% and
1.25% on x86 and ARM, respectively, relative to LLVM’s scheduler and 7.14% relative to AMD’s
scheduler on the AMD GPU. The improvement on the GPU target is much more substantial, be-
cause, for the reasons explained in the paper, both RP and ILP have a higher impact on GPU
performance than on CPU performance.

The proposed ACO algorithm is compared to a B&B algorithm. Each algorithm has its own ad-
vantages. The B&B algorithm has the advantage of producing exact solutions when it terminates
within the given time limit, while the ACO algorithm has the advantage of producing better so-
lutions than the B&B algorithm for many of the large instances that the B&B algorithm times out
on. In terms of execution time, the two algorithms give approximately the same results with the
settings used in our experiments. Both algorithms are worth further investigation in future work.

In the future, we plan on developing parallel versions of both algorithms and on exploring a
hybrid algorithm that combines the strengths of both algorithms. Furthermore, we are currently
exploring an RP-aware version of the graph transformations proposed by Heffernan et al. [2005,
2006] to tighten the solution space before invoking a B&B or an ACO scheduling algorithm.
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