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Abstract

This paper presents graph transformation algorithms for
register-pressure-aware instruction scheduling. The pro-
posed transformations add edges to the data dependence
graph (DDG) to eliminate solutions that are either redundant
or sub-optimal. Register-pressure-aware instruction schedul-
ing aims at balancing two conflicting objectives: maximizing
instruction-level parallelism (ILP) and minimizing register
pressure (RP). Graph transformations have been previously
proposed for the problem of maximizing ILP without consid-
ering RP, which is a problem of limited practical value. In
the current paper, we extend that work by proposing graph
transformations for the RP minimization objective, which
is an important objective in practice. Various cost functions
are considered for representing RP, and we show that the
proposed transformations preserve optimality with respect
to each of them. The proposed transformations are used to re-
duce the size of the solution space before applying a Branch-
and-Bound (B&B) algorithm that exhaustively searches for
an optimal solution. The proposed transformations and the
B&B algorithm were implemented in the LLVM compiler,
and their performance was evaluated experimentally on a
CPU target and a GPU target. The SPEC CPU2017 floating-
point benchmarks were used on the CPU and the PlaidML
benchmarks were used on the GPU. The results show that the
proposed transformations significantly reduce the compile
time while giving approximately the same execution-time
performance.
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1 Introduction

Register allocation and instruction scheduling are two im-
portant and closely related compiler optimizations. The in-
struction order computed in the pre-allocation instruction
scheduling pass determines register pressure (RP), which is
the number of virtual registers with overlapping live ranges
that cannot be assigned to the same physical register. If RP
exceeds the number of physical registers on the target ma-
chine, the register allocator must spill some virtual registers
to memory by adding load and store instructions (spill code)
that may slow the program. Spilling is common in code gen-
erated for CPUs, especially compute-intensive code.

On a Graphics Processing Unit (GPU), spilling is rare and
extremely expensive. However, RP determines the GPU oc-
cupancy, which is the number of thread groups that are
executed in parallel. When each thread uses fewer registers,
the GPU can run more threads in parallel. Occupancy usually
has a high impact on the execution time of a GPU program.

In addition to minimizing RP, a pre-allocation instruction
scheduling algorithm must exploit Instruction-Level Paral-
lelism (ILP). ILP is exploited by executing more instructions
in parallel to hide latencies, and thus minimize the schedule
length. However, a higher degree of ILP tends to increase
RP, as more registers are needed to hold the results of the
instructions that are executed in parallel. Thus, maximizing
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ILP and minimizing RP are two conflicting objectives that
must be balanced in pre-allocation scheduling.

The problem of balancing ILP and RP in pre-allocation
instruction scheduling is a fundamental problem in code
generation and optimization. Optimizing either ILP or RP
alone is NP-hard [4]. Current production compilers solve the
RP-aware instruction scheduling problem using heuristics.
However, recent research on both CPUs [18, 26] and GPUs
[23, 25] has shown that these heuristics may produce sub-
optimal schedules that significantly degrade performance.

To produce more precise solutions, combinatorial tech-
niques have been recently proposed for instruction sched-
uling [1, 14, 18, 20, 25, 26, 28]. Although these techniques
produce better schedules, they are much slower than the
heuristics used in production compilers. Therefore, further
algorithmic enhancements are needed to make combinato-
rial techniques fast enough for production compilers. In the
current paper, we propose one such enhancement.

The proposed enhancement is a set of graph transforma-
tions (GTs) that modify the Data Dependence Graph (DDG)
to reduce the size of the solution space before invoking a
combinatorial algorithm. The proposed GTs reduce the solu-
tion space size by adding edges that eliminate redundant or
sub-optimal solutions but still preserve at least one optimal
solution. Such transformations are called optimal transforma-
tions. A transformation is optimal if every optimal solution to
the modified DDG is also an optimal solution to the original
DDG. In this paper, we present a set of sufficient conditions
under which adding an edge between two instructions in the
DDG is an optimal transformation. The GTs presented in this
paper are based on dominance relations. A set of solutions A
dominates a set of solutions B if the best solution in A is at
least as good as the best solution in B.

In previous work, Heffernan and Wilken [10] described a
DDG transformation algorithm that preserves ILP optimality,
that is, the optimal schedule length for the transformed DDG
is equal to the optimal schedule length for the original DDG.
In our work, we present the register-pressure counterpart
of the Heffernan-Wilken algorithm. Instead of proving opti-
mality with respect to schedule length, we prove optimality
with respect to RP, or more specifically, with respect to the
RP cost functions defined in the paper.

The Heffernan-Wilken algorithm may be used only if RP
can be ignored. In practice, RP can rarely be ignored, and that
limits the practical value of those ILP-only GTs. On many
target architectures, including GPUs and out-of-order CPUs
with limited registers, minimizing RP is more important than
minimizing schedule length [23, 25]. Therefore, the proposed
RP-optimal GTs can play an important role in deploying
combinatorial algorithms in production compilers.

On some target architectures, such as GPUs, both ILP and
RP make a significant impact on performance. In this paper,
we describe a straightforward way of combining the ILP-
optimal transformations of Heffernan and Wilken and our
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proposed RP-optimal transformations to solve a formulation
of the scheduling problem that balances ILP and RP.

The graph transformations proposed in the current paper
are applied in a pre-processing step to the Branch-and-Bound
(B&B) algorithm proposed by Shobaki et al. [25] for solving
the RP-aware scheduling problem. This B&B algorithm is
based on a two-pass formulation in which RP is minimized
in the first pass, and schedule length is minimized in the
second pass with the best RP found in the first pass used as
a constraint. In the first pass, we pre-process the DDG using
the proposed RP-optimal GTs, and in the second pass, we
pre-process the DDG using a combination of our RP-optimal
GTs and the ILP-optimal GTs of Heffernan and Wilken.

The proposed GTs and the B&B algorithm of Shobaki et
al. were implemented in the LLVM compiler [16], and their
performance was evaluated on an Intel x86 processor and
an AMD GPU. The benchmarks used in the evaluation were
the SPECspeed CPU2017 floating-point benchmarks [30] on
the Intel target and the PlaidML benchmarks [13] on the
AMD GPU target. The results show that the proposed GTs
significantly reduce the compile time while still producing
approximately the same execution time. On the Intel target,
the proposed GTs reduce the number of instances that the
B&B algorithm times out on by 45% and speedup the sched-
uling of the instances that do not time out by 84%. This leads
to reducing the compile time by 13% while still producing
approximately the same execution time.

2 Background

The proposed GTs are used to solve the RP-aware instruction
scheduling problem. The scope is limited to local instruction
scheduling, that is, instruction scheduling within a basic block.
A basic block is a straight-line piece of code with no branches
out of it except at the end of the block and no branches into
it except at the beginning of the block [4]. The input to the
instruction scheduler is a data dependence graph (DDG), in
which nodes represent instructions, edges represent depen-
dencies, and edge weights represent latencies. The output
is a schedule, which is an assignment of a machine cycle to
each instruction in the input sequence.

An example DDG is shown in Figure 1a. The predeces-
sor/successor relations among the DDG nodes play an im-
portant role in the proposed GTs. If there is an edge from
Node x to Node y in a DDG, x is an immediate predecessor
of y and y is an immediate successor of x. For a given node
i in the DDG, IPred(i) is the set of immediate predecessors
of i, excluding i itself, and ISucc(i) is the set of immediate
successors of i, excluding i itself.

If there is a path (consisting of one or more edges) from
node x to node y in a DDG, x is a predecessor of y and y is
a successor of x. For a given node i in a DDG, Pred(i) is the
set of predecessors of i, excluding i itself, and Succ(i) is the
set of successors of i, excluding i itself. The predecessor and
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Figure 1. (a) A DDG example from Shobaki et al. [26]. (b) Def and Use sets. (c) Predecessor and Successor sets. (d) First schedule
with PRP = 3 and SLIL = 15. (e) Second schedule with PRP = 3 and SLIL = 13.

successor sets of each instruction in the DDG of Figure 1a
are shown in Figure 1c.

Before applying the proposed GTs, we compute the tran-
sitive closure of the DDG and store in each node its prede-
cessor/successor relation with other nodes in two different
forms. The first form is a list of predecessors and a list of
successors. The second form is two bit vectors for each node
i that indicate if any other node j is a predecessor or a suc-
cessor of i. If j is neither a predecessor nor a successor of i,
then nodes i and j are independent instructions.

In RP-aware scheduling, the objective is finding a schedule
that achieves the best possible balance between schedule
length and RP. The schedule length is the number of cycles
in the schedule, and RP is modeled using one of the cost
functions described below.

The number of cycles in the schedule depends on the ma-
chine model. Our implementation of the proposed algorithm
supports a general machine model. The experimental results,
however, were produced using a simple machine model, in
which the processor can issue one instruction of any type
in each cycle. This simple model still captures instruction
latencies, and, based on past experience, that appears to be
the most important factor that affects performance.

In the pre-allocation scheduling phase, registers in the
code are virtual registers. Each register has a specific data
type. Register pressure computation is based on the Def and
Use sets of the scheduled instructions. For a given instruction
i, Def (i) is the set of registers that i defines, and Use(i) is
the set of registers that i uses. Usually, RP is analyzed for
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each register type separately. For a given instruction i and a
given register type T, Defr (i) is the set of registers of type
T that i defines, and User (i) is the set of registers of type T
that i uses. The Def and Use sets of each instruction in the
DDG of Figure 1a are shown in Figure 1b.

An instruction can have an arbitrary number of Defs and
Uses. It is also useful to track for each register R, Users(R),
which is the set of instructions that use R.

Given an instruction schedule, the register pressure for a
given data type at a given point in the schedule is the number
of registers of that type that are live at that point. A register
is live at a given point if it has been defined, but at least one
instruction that uses it has not been scheduled at that point.

In previous work, two different approaches have been
used to solve the RP-aware scheduling problem: a single-
pass approach [26, 28] and a two-pass approach [25]. In the
single-pass approach, a weighted sum of schedule length
and RP is optimized in a single pass.

On some targets, minimizing RP is much more important
than minimizing schedule length. In theory, this can be cap-
tured in the single-pass approach by setting the weight of RP
relative to schedule length to a sufficiently high value. Ex-
perimentally, however, it has been found that an extremely
high RP weight results in a very slow algorithm [25].

That led to introducing a two-pass approach in which RP
is minimized in the first pass as a primary objective and ILP is
maximized in the second pass as a secondary objective [25].
In the first pass, ILP is totally ignored by setting all latencies
to one. This allows the algorithm to focus on minimizing
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RP in this pass. In the second pass, latencies are considered
and the algorithm searches for a minimum-length schedule
among all the schedules that maintain the best RP found in
the first pass. In this work, we use the two-pass approach
due to the importance of RP minimization on the target
processors.

2.1 Register-Pressure Cost Functions

In previous work, multiple cost functions were proposed for
representing RP during scheduling, including the peak excess
register pressure (PERP) [28], the sum of live interval lengths
(SLIL) [26], and the adjusted peak register pressure (APRP)
[25]. These cost functions are defined next.

The peak register pressure (PRP) of a given data type in a
given schedule is the maximum value of that type’s RP at
any point in the schedule. The PERP of a given data type is
the difference between that type’s PRP and the number of
physical registers of that type on the target machine.

Assuming that the code is in Static Single Assignment
(SSA) form [4], each virtual register in a basic block has a live
interval that consists of one definition and one or more uses.
Therefore, each live interval has one defining instruction and
one or more using instructions. The live interval length (LIL)
is the number of instructions in the instruction sequence that
starts with the definition and ends with the last use. The SLIL
is the sum of live interval lengths for all virtual registers in
a given schedule. Since live interval overlapping makes live
intervals longer, a larger SLIL indicates more overlapping
among live intervals, and thus higher RP.

The DDG in Figure 1a consists of six instructions. Instruc-
tions A, B, C and D define virtual registers R4, R, Rc, and Rp,
respectively. Each virtual register is used by one instruction,
except Rp, which is used by instructions E and F. The table
in Figure 1b shows the Def and Use sets of each instruction.

The tables in Figure 1d and Figure 1e show two different
schedules. The third column in each left-hand-side table
shows the registers that are live at each point, and the fourth
column shows the RP. The peak RP for both schedules is 3.
If the target machine has 2 physical registers, the PERP will
be 1 for both schedules.

The tables on the right sides of Figure 1d and Figure 1le
show the calculation of the SLIL. The second column in each
table shows the instructions that constitute the live interval
for each register, and the third column shows the LIL. For
example, the live interval for R4 in schedule 1 consists of
Instructions A, B, D and E, and thus has a LIL of 4. The
optimal LIL for R4 is 2 (A followed immediately by E).

Although both schedules have the same PERP, the SLIL
is 15 for schedule 1 and 13 for schedule 2. This example
shows that SLIL captures live interval overlaps that are not
captured by PERP. SLIL captures the overlaps among all
intervals, while PERP captures only the overlaps that lead
to the peak pressure. In a high-pressure region, the peak-
pressure point is not the only point at which the register
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allocator inserts spills. Therefore, minimizing SLIL is more
likely to minimize spilling than minimizing PERP.

On a GPU, multiple PRP values may give the same occu-
pancy. To model this, the adjusted peak register pressure
(APRP) step function was introduced [25]. The APRP of a
given PRP value x is the maximum PRP that gives the same
occupancy as x. For example, on the AMD GPU used in
this work, a PRP of 24 vector general-purpose registers (VG-
PRs) or less gives the maximum occupancy of 10 wavefronts,
while PRP values in the range [25-28] give an occupancy of
9 wavefronts (a wavefront is a group of GPU threads that
must be executed in lockstep). Therefore, PRP values in the
range [1-24] are mapped to an APRP of 24 and PRP values
in the range [25-28] are mapped to an APRP of 28.

3 Previous Work

Most previous work on instruction scheduling focused on
scheduling for ILP, but some recent work addressed the RP-
aware scheduling problem. Heuristic algorithms for balanc-
ing ILP and RP were proposed by Goodman and Hsu [8],
Govindarajan et al. [9], Touati [31] and Barany and Krall [1].

In more recent work, some researchers proposed combi-
natorial approaches that compute exact solutions. Kessler
[14] proposed a dynamic-programming solution. Barany and
Krall [1] proposed an integer-programming solution. Ma-
lik [20] proposed a constraint-programming solution, and
Domagala et al. [5] used constraint programming to inte-
grate RP-aware scheduling and loop unrolling. Lozano et al.
[17, 18] used constraint programming to solve the integrated
scheduling and allocation problem. Lozano provides a survey
of combinatorial approaches to instruction scheduling and
register allocation [19].

Shobaki et al. [25, 26, 28] presented a B&B algorithm for
solving the RP-aware instruction scheduling problem. B&B
is an exact method for solving combinatorial optimization
problems by conducting an exhaustive search of the solution
space with some pruning techniques that make it possible
to complete the search within reasonable time in most cases.
In our work, we use the proposed GTs to pre-process the
DDG before each pass of the two-pass scheduling algorithm
proposed by Shobaki et al. [25].

Rawat et al. [23] describe an algorithm to minimize RP for
stencil computation on the GPU. Their results show a signif-
icant impact of RP-aware scheduling on GPU performance.

The most related work on GTs for instruction scheduling
in compilers is the work of Heffernan and Wilken [10, 11],
who describe a GT algorithm that preserves ILP optimal-
ity. The algorithm presented in the current paper is the RP
counterpart of the algorithm of Heffernan and Wilken. In
an earlier paper, Wilken et al. describe various techniques
for pre-processing the DDG before applying an integer-
programming algorithm for solving the instruction schedul-
ing problem [32].
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The GT algorithm of Heffernan and Wilken is a gener-
alization of the work of Ramamoorthy et al. [22] that was
later extended by Chou and Chung [3]. The work of Ra-
mamoorthy et al. is limited to zero-latency dependencies.
Chou and Chung present a more general approach that ac-
counts for latency constraints. The approach of Chou and
Chung is based on a generation tree that enumerates possible
solutions. Unlike our work, Chou and Chung do not use
dominance relations to pre-process the DDG; they use them
to prune inferior solutions within their enumerative search.
Dominance relations for scheduling problems have also been
proposed by Klein [15] and Dorndrof et al. [6].

Fernandez and Lang [7] describe an enumeration-based
scheduler in which the DDG is transformed iteratively. Edges
are added to the graph until all nodes are partitioned into
completely ordered sets called chains.

Govindarajan et al. [9] propose a technique that adds edges
to a DDG during scheduling to minimize register usage. The
added edges create chains of instructions, called lineages,
each of which is allocated a single register. Inagaki et al. [12]
extend the technique of Govindarajan et al. and use that to
minimizes register usage in a list scheduling framework with
limited backtracking.

In addition to compiler instruction scheduling, graph trans-
formations have been proposed for other combinatorial op-
timization problems, including the sequential ordering prob-
lem [21], the vehicle routing problem [2], and task scheduling
in an operating system [29].

4 Algorithm Description
4.1 Register-Pressure Superiority

In this sub-section, we consider the problem of scheduling
for the sole objective of minimizing RP. This is the problem
solved in the first pass of the two-pass approach described
above. An optimal transformation in this context is a trans-
formation that preserves optimality with respect to each of
the RP cost functions described above, namely PERP, SLIL,
and APRP. More specifically, we seek a set of sufficient con-
ditions under which we can insert an edge between two
instructions such that an optimal solution to the modified
DDG is also an optimal solution to original DDG.

To prove that adding an edge from Instruction x to Instruc-
tion y preserves both correctness and RP optimality, we must
show that there exists at least one optimal schedule in which
x appears before y. In this case, x is said to be RP-superior to
y.

The approach that we take to proving superiority is based
on a swapping argument. We first assume that there is an
optimal schedule in which y appears before x and then show
that swapping x and y will produce a correct schedule of cost
less than or equal to the cost of the original schedule. This
implies that for every optimal schedule in which y appears
before x, there exists a corresponding optimal schedule in
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Figure 2. Schedules before and after swapping x and y.

which x appears before y. Therefore, if we eliminate all the
schedules in which y appears before x and limit our search
to the schedules in which x appears before y, we will not
miss an optimal schedule.

To illustrate our swapping argument, consider the example
in Figure 2, which shows two schedules. The first schedule
is a general optimal schedule in which Instruction y appears
before Instruction x, and the second schedule is the schedule
that results from swapping x and y. The two instructions x
and y are assumed to be of the same type. For example, both
are integer arithmetic instructions.

For simplicity, we assume in this example that each instruc-
tion uses one register and defines another register. Specifi-
cally, Instruction x uses Register A and defines Register B,
and Instruction y uses Register C and defines Register D.
The graph shows the instructions that define A and C, and
two instructions that use B and D. The graph also shows the
live ranges of registers A, B, C, and D, assuming that every
register use in the graph is the last use of that register.

First, we give a sufficient condition for the correctness
(legality) of the swap. The swap moves x to an earlier position
in the schedule. This will be legal if all the instructions that
x depends on (Pred(x)) have been scheduled before that
position. Since the original schedule is assumed to be legal,
all the instructions that y depends on (Pred(y)) have been
scheduled before that position. Therefore, if Pred(x) is a
subset of Pred(y), moving x to y’s original position will also
be legal. With a similar argument about the set of instructions
that depend on y (Succ(y)), we conclude that if Succ(y) is a
subset of Succ(x), moving y to x’s original position in the
schedule will still be legal. Therefore, the swap will be legal
under the following sufficient condition:

Pred(x) C Pred(y) and Succ(y) € Succ(x)

Secondly, we give sufficient conditions for preserving RP
optimality. The general idea is that the swap will extend
(lengthen) some live ranges and reduce (shorten) other live
ranges. As explained below, the amount of every live range
extension or reduction will be exactly equal to the distance
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between x and y in the schedule. Therefore, the swap is
guaranteed to preserve optimality if, for every register type,
the number of live ranges that will get extended is less than
or equal to the number of live ranges that may get reduced.

It is important to note here that when counting live range
extensions and reductions, we must count every possible
extension but can count only guaranteed reductions. In other
words, we must compute a lower bound (LB) on the number
of reductions and an upper bound (UB) on the number of
extensions. If the difference between the LB and the UB is
non-negative, the swap will not increase RP at any point
between x and y. If RP cannot increase at any point between
x and y, none of the three cost functions (PERP, APRP, or
SLIL) will increase after the swap.

We first consider the extensions and reductions that result
from moving definitions. Assuming that the code is in SSA
form, every live range has a unique definition. Moving x to
an earlier position will extend the live range of every register
that is defined by x. For example, see the extension of B’s
live range in Figure 2. On the other hand, moving y to a later
position will reduce the live range of every register that is
defined by y. For example, see the reduction of D’s live range
in Figure 2.

Unlike moving a definition, which always extends or re-
duces a live range (assuming SSA form), moving a use will
not necessarily extend or reduce a live range. Moving a reg-
ister use will change the register’s live range length only if
that use is the last use of that register. Since our objective is
computing a LB on the number of reductions and an UB on
the number of extensions, moving a register use to an earlier
position cannot be counted as a reduction unless we prove
that it is the last use. On the other hand, moving a register
use to a later position must be counted as an extension unless
we prove that it is not the last use.

Moving x to an earlier position will reduce the live range
of a register that is used by x if x is the last user of that
register. For example, in Figure 2, if x is the last user of
Register A, the live range of A will get reduced after the
swap. In general, x is necessarily the last user of Register
R if every other instruction that uses R (if any) is in the
predecessor list of x (Pred(x)). However, this can be relaxed
further by allowing the instructions that use R to be in the
predecessor list of y (recall that Pred(x) C Pred(y)). Since
the only change that we make to the original schedule is
swapping x and y, with all other instructions remaining in
the same positions, a predecessor of y, which must appear
before y in the original schedule, will appear before x after
the swap, and thus x will still be the last user of R.

Therefore, to count the live ranges that will get reduced
after the swap, we examine every register R in Use(x), and
then scan the list of instructions that use R. If every element
in that list is in Pred(y), that register’s live range is counted
as a reduced live range. The set of registers constructed for
any register type T using this procedure is called UseShortr.
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Formally, UseShortr is defined as the set of registers R of
type T such that for every instruction i € Users(R),i €
Pred(y) U {x}.

Recall that before applying the GT algorithms, we compute
the transitive closure of the DDG and store in each node i,
among other things, two bit vectors that make it possible to
determine in O(1) time if any other node j is a predecessor
or a successor of i.

We next consider the live range extension that may result
from moving y to a later position. Moving y to a later position
will extend the live range of a register R in Use(y) if y is the
last user of R. Therefore, the live range of every register R
in Use(y) must be counted as an extended live range unless
we prove that y cannot be the last user of R. y cannot be
the last user of R if at least one instruction that uses R is in
Succ(y). However, this can be relaxed further by allowing
R to be used by an instruction in Succ(x). Again, since we
are swapping x and y while keeping all other instructions in
their positions, a successor i of x, which must appear after x
in the original schedule, must appear after y after the swap.
Thus, if i uses R, y cannot be the last user of R.

Therefore, to count the live ranges that may get extended
after the swap, we examine every register in Use(y), and for
each register, we scan the list of instructions that use it. If at
least one element in that list is in Succ(x), that register’s live
range is not counted as an extended live range. The set of reg-
ister live ranges that is constructed using this procedure for
any register type T is called UseLongy. Formally, UseLong;
is defined as the set of registers R of type T satisfying:

1. R € User(y),
2. R ¢ User(x),
3. For every instruction i € Users(R),i ¢ Succ(x).

Putting all the above ideas together leads to the following
theorem.

Theorem 1. Given a DDG, adding a zero-latency edge from x
toy in that DDG is a register-pressure optimal transformation
if nodes x and y satisfy the following conditions:
1. Nodes x and y are independent nodes in the DDG,
. Type(x) = Type(y),
. Pred(x) C Pred(y),
. Succ(y) € Succ(x),
. For each register type T,

G W N

NumLong; < NumShortr

where
NumLong; = |UseLongy| + [Defr(x)|
NumShortr = |Defr(y)| + |[UseShortr|

The proof of Theorem 1 is omitted for space limitations.

4.2 Algorithm

Based on the above theorem, we have developed the follow-
ing algorithm for checking RP superiority and adding edges
to the DDG.
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1: procedure RP-SUPERIOR-NODE-ALGORITHM(G)

2 for all instruction A € V(G) do

3 for all instruction B € V(G) do

4 if A and B are independent then

5 if IS-RP-SUPERIOR(A, B) then

6 Add latency-zero edge (A, B) to E(G)

7 REMOVE-REDUNDANT-EDGES(G, A, B)
8 else if IS-RP-SUPERIOR(B, A) then

9: Add latency-zero edge (B, A) to E(G)
10: REMOVE-REDUNDANT-EDGES(G, B, A)
11: procedure IS-RP-SUPERIOR(A, B)

12 if Type(A) # Type(B) then return false

13 if Pred(A) ¢ Pred(B) then return false

14 if Succ(B) ¢ Succ(A) then return false

15:  LENGTHENED-COUNT <« Array of zeros with length number-of-register-

types.
16:  for all register R € Use(B) do
17: if R ¢ Use(A) and YC € Users(R) — {A, B}, C ¢ Succ(A) then
18: increment LENGTHENED-COUNT (Type(R))
19:  for all register R € Use(A) do
20: if YN € Users(R), N € Pred(B) U {A} and N # B then
21: decrement LENGTHENED-COUNT (Type(R))
22:  for all register R € Def (A) do
23: increment LENGTHENED-COUNT (Type(R))
24:  for all register R € Def (B) do
25: decrement LENGTHENED-COUNT (Type(R))
26: for all C € LENGTHENED-COUNT do
27: if C > 0 then return false
28: return true

29: procedure REMOVE-REDUNDANT-EDGES(G, A, B)
30:  for all node P € Pred(A) U {A} do

31: for all node S € ISucc(P) do
32: if (P,S) # (A,B) and S € Succ(B) U {B} then
33: remove (A, B) from E(G)

4.3 Combining RP and ILP

As mentioned above, the approach used in this work is a
two-pass approach. In the first pass (the RP pass), the RP-
only conditions described in the previous sub-sections are
applied, because only RP is considered in this pass. In the
second pass (the ILP pass), however, both RP and ILP are
considered. Therefore, the conditions for adding edges to the
DDG must preserve both RP optimality and ILP optimality.
Such conditions can be derived by simply combining the RP-
only conditions proposed in the current paper with the ILP-
only conditions described by Heffernan and Wilken [10]. In
other words, an edge can be added from Node x to Node y in
the DDG if x and y satisfy both the RP superiority conditions
stated in Theorem 1 and the ILP superiority conditions given
by Heffernan and Wilken. This implies that the edges added
in the second pass (the ILP pass) will be fewer than the edges
added in the first pass, because in the second pass, two sets
of conditions must be satisfied, while in the first pass, only
one set of conditions must be satisfied.

For example, using the setup described in Section 5 for
the SLIL cost function, 2,131,387 edges were added in the
first pass. In the second pass, 627,715 edges satisfied the ILP
conditions of Heffernan and Wilken, but only 315,221 (50.2%)
edges satisfied both the ILP conditions and the RP conditions.

4.4 Integrating Graph Transformations with B&B

The proposed GT algorithms were implemented and used to
preprocess the DDG before it is input to the two-pass B&B
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scheduling algorithm described by Shobaki et al. [25]. In the
first pass, each scheduling region is first scheduled using a
heuristic, and then a LB on the RP cost is computed. If the
heuristic cost is equal to the LB, the schedule is already RP
optimal. Otherwise, the region is passed to the B&B algo-
rithm to search for an optimal schedule within a certain time
limit. If no optimal schedule is found within the time limit,
the best schedule found is taken.

In the first pass, only the RP GTs are applied after con-
structing the heuristic schedule if it is not optimal. Since GTs
often cause the LB algorithm to compute a tighter LB, the
LB is recomputed after applying the GTs. If the recomputed
LB is equal to the cost of the heuristic schedule, the heuris-
tic schedule is optimal, and B&B is not invoked. This is an
added benefit of applying GTs. If optimality is not proven,
the modified DDG is passed to the B&B scheduler.

The best schedule found in the first pass, whether it is
optimal or not, is input into the second pass, after inserting
enough stalls to satisfy the latency constraints. In the second
pass, the B&B algorithm searches for the shortest schedule
that maintains the best RP found in the first pass. The com-
bined RP-ILP graph transformations are applied to the DDG
immediately after setting up the input schedule.

5 Experimental Results

5.1 Experimental Setup

The proposed GT algorithm was implemented together with

the two-pass B&B scheduling algorithm proposed by Shobaki

et al. [25] in the LLVM compiler, and the modified LLVM

compiler was applied to a CPU target and a GPU target.
The CPU target is an Intel Core i7-7700K processor run-

ning at 4.2GHz. For this target, LLVM 7.1.0 was used, and the

Table 1. Benchmark statistics

Stat FP2017 | Plaidbench
1 | Number of benchmarks 8 13
Number of
2 functions/kernels 10233 3814
3 Number of 464970 16 682
scheduling regions
4 Avg. schedghng regions 45.44 437
per function/kernel
5 Avg. Instr.uctlon.s 7 88 47.02
per scheduling region
6 Max. Inst¥uct10n.s 5197 919
per scheduling region
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evaluation was done using the floating-point benchmarks in
SPECspeed! CPU 2017 (FP2017 for short) [30].

The GPU target is an AMD Radeon RX Vega 64 GPU run-
ning at 1.63 GHz. For this target, we used the LLVM in roc-
ocl-2.4.0, and the evaluation was done using the PlaidML
benchmarks [13]. Compilation was done on an AMD Ryzen
Threadripper 1950X processor.

On the Intel target, a time limit of 5ms/instruction was
used in each pass of the B&B algorithm. For example, a sched-
uling region with 100 instructions was given a limit of 500ms.
On the AMD GPU target, the time limit was 20ms/instruction
in the first pass and 2ms/instruction in the second pass. The
initial heuristic schedule was computed using the Last Use
Count (LUC) heuristic [27]. The -03 optimization level was
used in all tests. Table 1 shows interesting statistics about
the benchmarks used in the experiments.

5.2 Effect of Graph Transformations

To evaluate the effectiveness of the proposed GTs, the bench-
marks were compiled using the modified LLVM compiler
with and without GTs. For the Intel target, the SLIL and the
PERP cost functions were used. Table 2 shows the statistics
for SLIL and Table 3 shows the same statistics for PERP.

First, we comment on the results in Table 2. Table 2a shows
the low-level statistics in each pass individually, and Table
2b shows the high-level statistics including both passes. For
each pass, the first column shows the value of the stat when
GTs are disabled, the second column shows the correspond-
ing value when GTs are enabled, and the third column shows
the percentage improvement from applying GTs.

In the first pass, Row 1 shows that with GTs, 18% fewer
scheduling regions were passed to B&B, because applying
GTs resulted in tighter LBs. Row 2 shows that applying GTs
reduced the number of regions that timed out from 8734 to
4805, a 45% reduction. Row 3 shows that using GTs reduced
the solution time for the scheduling regions that were solved
only with GTs enabled by 78%. Rows 4 and 5 show that ap-
plying GTs greatly sped up the scheduling of the regions that
were solved optimally with and without GTs. Row 5 shows
that GTs reduced the number of tree nodes enumerated by
the B&B algorithm in scheduling these regions by 86%, and
Row 4 shows that this sped up the B&B search by 84%.

Rows 6 and 7 show that these improvements reduced the
B&B time by 30% and the total scheduling time in the first
pass by 29%. Row 8 shows that using GTs did not only reduce
the number of timeouts and speedup the search, but it also
reduced the overall SLIL cost across all regions by 4%.

The right-hand-side of Table 2a shows the same statistics
collected in the second pass. Recall that in the second pass,

lwrf and pop2 were excluded due to runtime errors that were seen even
with the base LLVM compiler. imagick was excluded from the execution-
time results due to a large regression when GTs are disabled. When GTs
are enabled, this regression was not present, but the reason behind this
regression is believed to be unrelated to GTs or to scheduling at all.
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we apply the combined RP and ILP GTs, which are much
more restrictive than the RP-only GTs. In the combined GTs,
an edge is added if it is both RP-optimal and ILP-optimal.
This explains why the percentage improvements achieved
by applying GTs in this pass are generally smaller than the
corresponding percentage improvements in the first pass.
However, the percentage improvements in the second pass
are still substantial.

Table 2b shows the high-level statistics across both passes.
These statistics show that the overall effect of applying GTs
in both passes is reducing the total scheduling time by 16%,
which leads to reducing the total compile time by 13%. Row
3 shows that applying GTs reduces the total number of spills
by 0.6% but increases the total schedule length by 0.3%. The
slight increase in schedule length is attributed to the fact
that when the B&B algorithm finds a schedule with a lower
RP in the first pass, that imposes a stronger constraint on
the search for a shorter schedule in the second pass.

It is noted that with the use of B&B scheduling, the total
compile time is dominated by the scheduling time. This sug-
gests that in practice, B&B should be selectively applied to
the hot regions not to all regions. B&B scheduling is applied
to all regions in this subsection only to maximize statisti-
cal significance. The experiments of the next subsection are
based on the more practical choice of applying B&B only to
the hot scheduling regions in FP2017.

Table 3 shows that similar significant improvements were
obtained for PERP. Note that the difference in Row 1 is zero,
because there is currently no known lower-bound algorithm
for PERP. It is also noted that applying GTs in the second
pass changed the search in a way that took 1.6% more time
but resulted in a total schedule length that is 3% better.

Table 4 shows the results for the PlaidML benchmarks
on the AMD GPU. On PlaidML, GTs were applied only to
the first pass, as they had limited effect on the second pass.
Table 4a shows the stats for the first pass. A total of 340
regions were passed to B&B. Row 2 shows that GTs reduced
the number of timeouts from 203 to 165, an 18% reduction.
Row 3 shows that, in addition to reducing the number of
timeouts, GTs resulted in a 9% reduction in the solution time
of the instances that were solved optimally with and without
GT. Row 4 shows that this reduction in time is consistent
with approximately the same percentage reduction in the
number of tree nodes explored. The overall effect of all the
above reductions is a 2.1% reduction in B&B time (Row 5)
and a 1.9% in the total scheduling time in the first pass. Row
7 shows that, in addition to reducing compile time, solving
more instances to optimality reduced the APRP cost by 11%.

Table 4b shows that the reductions in APRP improved
occupancy on 40 kernels. For 39 kernels, the occupancy in-
creased from 8 to 9, and for one other kernel, it increased
from 2 to 3. There is one regression from 10 to 9 on one
kernel. Regressions in occupancy are unavoidable, because
the correlation between APRP and occupancy is strong but
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Table 2. Stats for FP2017 using SLIL. (a) Low-level stats. (b) High-level stats across both passes.

(@)
First pass Second pass
Stat Without GT With GT % imp. | Without GT ~ With GT % imp.
1 | Number of regions passed to B&B 231077 188407 18 91189 87681 4
2 Number of regions timed out 8734 4805 45 13999 12540 10
3| Solution time for GT-only-opt (s) 537 120 78 172 67 61
4 B&B time for both-opt (s) 335 54 84 194 107 45
5 Tree nodes for both-opt 199165 481 27010889 86 | 103979881 50507289 51
6 Total B&B time (s) 2292 1602 30 2800 2607 7
7 | Total scheduling time in this pass (s) 2386 1701 29 2912 2743 6
8 Total relative RP cost 8693209000 8347881000 4 - - -
9 Total schedule length - - - 602 429 598 058 0.7
(b)
\ Stat | Without GT With GT % imp.
1 Total compile time (s) 7055 6129 13
2 | Total scheduling time in both passes (s) 5484 4622 16
3 Total number of spills 155863 154913 0.6
4 Total schedule length 686945 689337 -0.3
Table 3. Stats for FP2017 using PERP. (a) Low-level stats. (b) High-level stats across both passes.
(2)
First pass Second pass
Stat Without GT With GT % imp. | Without GT With GT % imp.
1 | Number of regions passed to B&B 4164 4164 0 79 337 79337 0
2 Number of regions timed out 2180 861 61 366 276 25
3 | Solution time for GT-only-opt (s) 236 39 84 25 14 46
4 B&B time for both-opt (s) 37 3 91 21 16 25
5 Tree nodes for both-opt 55552021 3755061 93 5863493 4146002 29
6 Total B&B time (s) 894 661 26 359 343 5
7 | Total scheduling time in this pass (s) 965 736 24 456 464 -1.6
8 Total relative RP cost 115840000 115792000 0.04 - - -
9 Total schedule length - - - 104930 101688 3
(b)
| Stat | Without GT With GT % imp.
1 Total compile time (s) 2539 2259 11
2 | Total scheduling time in both passes (s) 1468 1213 17
3 Total number of spills 163448 163527  -0.05
4 Total schedule length 128663 125908 2

not perfect. APRP is the scheduler’s estimate of RP, while the
occupancy depends on the actual number of registers used,
which is determined by the register allocation algorithm.
Since register allocation is NP-hard, the register allocation
algorithm may produce sub-optimal results in some cases.

5.3 Execution Times

For the execution-time tests on FP2017, B&B scheduling was
applied only to the hot functions. Before we present the
execution-time results, we show in Table 5 the high-level
statistics for the hot scheduling regions using SLIL. Rows
1 and 2 show that GTs reduced the total compile time by
1.0% and the total scheduling time by 1.2%. The total number
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Table 4. Stats for Plaidbench. (a) Low-level stats for the first pass. (b) Number of kernels with altered occupancies.

(@

Table 5. Stats for FP2017 using SLIL on hot functions.

Totalled stat Wl(t;},ll?ut With GT % imp.

1 | Compile time (s) 1336 1323 1.0
Scheduling time

2 in both passes (s) 810 800 12

3 | Number of spills 19 842 19 842 0

4 | Weighted spills 2.023¢9  1.858e9 8

5| Schedule length 102681 102866 -0.2

of spills is the same, but the total weighted spill count is
reduced by 8%. The weighted spill count is a weighted sum
that accounts for the statically estimated execution frequency
of each spill. In Table 6, it is shown that this 8% reduction in
the weighted spill count results in a slight improvement of
the execution time when GTs are enabled.

Table 6 shows the percentage gain in FP2017 execution
speed using B&B scheduling with and without GTs relative
to LLVM’s generic scheduler. Table 7 shows the percent-
age gains in PlaidML execution speed relative to AMD’s
production scheduler. Each test was run five times, and the
percentage gains in the table are based on the median scores.

It is noted that the performance gains achieved using a
B&B scheduler on the AMD GPU are significantly greater
than the gains achieved on the Intel CPU. On the AMD GPU,
a geometric-mean improvement of 8% is achieved, while the
geometric-mean improvement on Intel is 1.2% without GTs
and 1.7% with GTs. This is attributed to the fact that both RP
and ILP have a higher impact on GPU performance than on
CPU performance. On the GPU, RP determines occupancy,
while on the CPU it affects spilling. The impact of occupancy
on GPU performance is generally higher than the impact of
spilling on CPU performance. Spilling significantly affects
performance only if there is a substantial amount of spilling
in hot code. Furthermore, compiler scheduling for ILP has
a higher impact on GPU performance, because the GPU is
in-order, while the Intel processor is out-of-order.

(b)

Stat Without GT With GT % imp. Change in occupancy
1 | Number of regions passed to B&B 340 340 0 Without GT With GT Count
2 Number of regions timed out 203 165 18 1 8 9 39
3 B&B time for both-opt (s) 132 121 9 2 2 3 1
4 Tree nodes for both-opt 129398534 116204157 10 3 10 9 1
5 Total B&B time (s) 1178 1154 2.1
6 | Total scheduling time in this pass (s) 1180 1157 1.9
7 Total relative RP cost 33080 29340 11

Table 6. Percentage gain in FP2017 speed relative to LLVM.

Benchmark B&B without GT B&B with GT
1 603.bwaves_s 0.8% 0.8%
2 | 607.cactuBSSN_s 2.5% 3.2%
3 619.lbm_s 4.3% 4.5%
4 627.cam4_s 0.2% 0.6%
5 644.nab_s -0.2% 0.4%
6 | 649.fotonik3d_s 0.8% 2.1%
7 654.roms_s -0.3% 0.1%
8 Geo-mean 1.2% 1.7%

Table 7. Percentage gain in PlaidML speed relative to AMD.

B&B .

Benchmark without GT B&B with GT
1 densenet121 4.5% 4.4%
2 densenet169 5.0% 5.0%
3 densenet201 4.5% 4.6%
4 | inception_resnet_v2 19.5% 19.2%
5 inception_v3 18.8% 18.7%
6 mobilenet 4.8% 4.8%
7 nasnet_large 8.3% 8.3%
8 nasnet_mobile 7.4% 7.4%
9 resnet50 7.8% 6.9%
10 vgel6 9.4% 9.4%
11 vggl9 8.9% 8.9%
12 xception 6.6% 6.6%
13 imdb_lstm 1.8% 1.9%
14 Geo-mean 8.1% 8.0%

The results in the previous section show that applying
GTs significantly reduces compile time. The results in Tables
6 and 7 show that this reduction in compile time is achieved
without degrading the execution-time performance. In fact,
on FP2017, the execution time is slightly better with GTs.
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Table 8. Hot scheduling regions in Cactus with a time limit
of 220 ms/instruction in the first pass.

Stat Without GT With GT % imp.
Regions
1 passed to B&B 326 326 0
Regions
2 timed out 41 36 12
Solution time for
3 | GT-only-opt (ms) 34545 40 999
g | Treenodes for 6074425 1033118 83
both-opt
B&B time for
5| bothopt (ms) 9198 1704 81
6 | Total spill count 6 605 6509 1

5.4 Longer Time Limits

To shed more light on the performance of the proposed GTs,
a study was performed on the Cactus benchmark using a sig-
nificantly longer time limit. Cactus was chosen, because the
hot functions in Cactus have many hard-to-schedule regions
with extremely high register pressure. The register allocator
generates thousands of spills in Cactus’s hot functions.
Cactus was compiled using the modified compiler with
B&B scheduling applied only to the hot functions with a
time limit of 220 ms/instruction in the first pass. Table 8
shows the statistics of this experiment with and without GTs.
Row 1 shows that the hot functions in Cactus have a total
of 326 scheduling regions. Row 2 shows that applying GTs
resulted in optimally scheduling five regions that timed out
without GTs. Row 3 shows that the total scheduling time
for these five regions is 34 545 ms without GTs and 40 ms
with GTs, a 99.9% reduction. Rows 4 and 5 show that for
the regions that were scheduled optimally with and without
GTs, applying GTs reduced the number of enumerated tree
nodes by 83% and the B&B time by 81%. Row 6 shows that
using GTs resulted in reducing the number of spills by 96.
Table 9 shows more details about the five scheduling re-
gions that timed out without GTs but were solved to op-
timality with GTs. The scheduling times for these regions
are thousands of milliseconds without GTs. Applying GTs
reduces the scheduling time to a few milliseconds for four
regions and to 29 ms for the fifth region. Solving these five
regions to optimality led to discovering zero-cost schedules
for four of them. These results show that GTs can potentially
have a high impact on the B&B scheduling of some regions.
The authors believe that the proposed GTs had a high
positive impact on some but not all hard scheduling regions,
because for many hard regions, the B&B scheduler may get
trapped in a solution sub-space that does not have better
schedules. Such trapping may happen if bad decisions are
made in the earlier steps of the exploration (at the shallower
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Table 9. Hot scheduling regions in Cactus solved with GTs.

Solution time SLIL cost
Region | Without With GT | Without .
Sigze GT (ms) (ms) GT With GT
1 32 6613 3 21000 0
2 30 6170 3 17 000 0
3 60 12798 29 178 000 177 000
4 21 4201 4 11000 0
5 24 4851 2 5000 0

nodes in the tree). The solution to such a problem is the
parallelization of the B&B search, as that makes it possible to
explore multiple sub-spaces in parallel and focus the search
on the most promising sub-spaces.

We are currently working on parallelizing the B&B search.
We believe that a combination of parallelization and GTs
can solve many of the currently unsolvable instances of the
scheduling problem.

6 Conclusions and Future Work

In this paper, we present RP-optimal graph transformations
that reduce the size of the solution space of a B&B algorithm
for solving the RP-aware instruction scheduling problem.
The proposed transformations reduce the number of time-
outs by 45% and speed up the scheduling of the instances
that do not time out by 84%.

For future work, we plan on exploring a dynamic version
of the proposed transformations as a pruning technique in
B&B. A dynamic version can potentially relax the restrictive
conditions for the combined RP and ILP GTs. Additionally,
we plan on investigating an iterative version of the RP GTs,
wherein added edges can enable the addition of more edges.
Furthermore, we plan on using the proposed GTs with a par-
allel version of the B&B algorithm and with an Ant Colony
Optimization algorithm that we have recently developed for
solving the RP-aware scheduling problem [24].
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