
Graph Transformations for Register-Pressure-Aware
Instruction Scheduling

Ghassan Shobaki

California State University, Sacramento

Sacramento, California, USA

ghassan.shobaki@csus.edu

Justin Bassett

California State University, Sacramento

Sacramento, California, USA

jbassett@csus.edu

Mark Heffernan

Google

USA

meheff@google.com

Austin Kerbow

California State University, Sacramento

Sacramento, California, USA

Austin.Kerbow@amd.com

Abstract
This paper presents graph transformation algorithms for

register-pressure-aware instruction scheduling. The pro-

posed transformations add edges to the data dependence

graph (DDG) to eliminate solutions that are either redundant

or sub-optimal. Register-pressure-aware instruction schedul-

ing aims at balancing two conflicting objectives: maximizing

instruction-level parallelism (ILP) and minimizing register

pressure (RP). Graph transformations have been previously

proposed for the problem of maximizing ILP without consid-

ering RP, which is a problem of limited practical value. In

the current paper, we extend that work by proposing graph

transformations for the RP minimization objective, which

is an important objective in practice. Various cost functions

are considered for representing RP, and we show that the

proposed transformations preserve optimality with respect

to each of them. The proposed transformations are used to re-

duce the size of the solution space before applying a Branch-

and-Bound (B&B) algorithm that exhaustively searches for

an optimal solution. The proposed transformations and the

B&B algorithm were implemented in the LLVM compiler,

and their performance was evaluated experimentally on a

CPU target and a GPU target. The SPEC CPU2017 floating-

point benchmarks were used on the CPU and the PlaidML

benchmarks were used on the GPU. The results show that the

proposed transformations significantly reduce the compile

time while giving approximately the same execution-time

performance.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CC ’22, April 02–03, 2022, Seoul, South Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9183-2/22/04.

https://doi.org/10.1145/3497776.3517771

CCS Concepts: • Software and its engineering→ Com-
pilers; • Computing methodologies → Discrete space
search.

Keywords: instruction scheduling, register-pressure reduc-

tion, branch and bound, graph transformations, dominance

ACM Reference Format:
Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Ker-

bow. 2022. Graph Transformations for Register-Pressure-Aware

Instruction Scheduling. In Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction (CC ’22), April
02–03, 2022, Seoul, South Korea. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3497776.3517771

1 Introduction
Register allocation and instruction scheduling are two im-

portant and closely related compiler optimizations. The in-

struction order computed in the pre-allocation instruction

scheduling pass determines register pressure (RP), which is

the number of virtual registers with overlapping live ranges

that cannot be assigned to the same physical register. If RP

exceeds the number of physical registers on the target ma-

chine, the register allocator must spill some virtual registers

to memory by adding load and store instructions (spill code)

that may slow the program. Spilling is common in code gen-

erated for CPUs, especially compute-intensive code.

On a Graphics Processing Unit (GPU), spilling is rare and

extremely expensive. However, RP determines the GPU oc-

cupancy, which is the number of thread groups that are

executed in parallel. When each thread uses fewer registers,

the GPU can run more threads in parallel. Occupancy usually

has a high impact on the execution time of a GPU program.

In addition to minimizing RP, a pre-allocation instruction

scheduling algorithm must exploit Instruction-Level Paral-

lelism (ILP). ILP is exploited by executing more instructions

in parallel to hide latencies, and thus minimize the schedule

length. However, a higher degree of ILP tends to increase

RP, as more registers are needed to hold the results of the

instructions that are executed in parallel. Thus, maximizing

41

https://orcid.org/0000-0001-8727-671X
https://orcid.org/0000-0002-8353-0626
https://orcid.org/0000-0002-1509-5781
https://orcid.org/0000-0001-7314-5516
https://doi.org/10.1145/3497776.3517771
https://doi.org/10.1145/3497776.3517771

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

ILP and minimizing RP are two conflicting objectives that

must be balanced in pre-allocation scheduling.

The problem of balancing ILP and RP in pre-allocation

instruction scheduling is a fundamental problem in code

generation and optimization. Optimizing either ILP or RP

alone is NP-hard [4]. Current production compilers solve the

RP-aware instruction scheduling problem using heuristics.

However, recent research on both CPUs [18, 26] and GPUs

[23, 25] has shown that these heuristics may produce sub-

optimal schedules that significantly degrade performance.

To produce more precise solutions, combinatorial tech-

niques have been recently proposed for instruction sched-

uling [1, 14, 18, 20, 25, 26, 28]. Although these techniques

produce better schedules, they are much slower than the

heuristics used in production compilers. Therefore, further

algorithmic enhancements are needed to make combinato-

rial techniques fast enough for production compilers. In the

current paper, we propose one such enhancement.

The proposed enhancement is a set of graph transforma-

tions (GTs) that modify the Data Dependence Graph (DDG)

to reduce the size of the solution space before invoking a

combinatorial algorithm. The proposed GTs reduce the solu-

tion space size by adding edges that eliminate redundant or

sub-optimal solutions but still preserve at least one optimal

solution. Such transformations are called optimal transforma-
tions. A transformation is optimal if every optimal solution to

the modified DDG is also an optimal solution to the original

DDG. In this paper, we present a set of sufficient conditions

under which adding an edge between two instructions in the

DDG is an optimal transformation. The GTs presented in this

paper are based on dominance relations. A set of solutions 𝐴

dominates a set of solutions 𝐵 if the best solution in 𝐴 is at

least as good as the best solution in 𝐵.

In previous work, Heffernan and Wilken [10] described a

DDG transformation algorithm that preserves ILP optimality,

that is, the optimal schedule length for the transformed DDG

is equal to the optimal schedule length for the original DDG.

In our work, we present the register-pressure counterpart

of the Heffernan-Wilken algorithm. Instead of proving opti-

mality with respect to schedule length, we prove optimality

with respect to RP, or more specifically, with respect to the

RP cost functions defined in the paper.

The Heffernan-Wilken algorithm may be used only if RP

can be ignored. In practice, RP can rarely be ignored, and that

limits the practical value of those ILP-only GTs. On many

target architectures, including GPUs and out-of-order CPUs

with limited registers, minimizing RP is more important than

minimizing schedule length [23, 25]. Therefore, the proposed

RP-optimal GTs can play an important role in deploying

combinatorial algorithms in production compilers.

On some target architectures, such as GPUs, both ILP and

RP make a significant impact on performance. In this paper,

we describe a straightforward way of combining the ILP-

optimal transformations of Heffernan and Wilken and our

proposed RP-optimal transformations to solve a formulation

of the scheduling problem that balances ILP and RP.

The graph transformations proposed in the current paper

are applied in a pre-processing step to the Branch-and-Bound

(B&B) algorithm proposed by Shobaki et al. [25] for solving

the RP-aware scheduling problem. This B&B algorithm is

based on a two-pass formulation in which RP is minimized

in the first pass, and schedule length is minimized in the

second pass with the best RP found in the first pass used as

a constraint. In the first pass, we pre-process the DDG using

the proposed RP-optimal GTs, and in the second pass, we

pre-process the DDG using a combination of our RP-optimal

GTs and the ILP-optimal GTs of Heffernan and Wilken.

The proposed GTs and the B&B algorithm of Shobaki et

al. were implemented in the LLVM compiler [16], and their

performance was evaluated on an Intel x86 processor and

an AMD GPU. The benchmarks used in the evaluation were

the SPECspeed CPU2017 floating-point benchmarks [30] on

the Intel target and the PlaidML benchmarks [13] on the

AMD GPU target. The results show that the proposed GTs

significantly reduce the compile time while still producing

approximately the same execution time. On the Intel target,

the proposed GTs reduce the number of instances that the

B&B algorithm times out on by 45% and speedup the sched-

uling of the instances that do not time out by 84%. This leads

to reducing the compile time by 13% while still producing

approximately the same execution time.

2 Background
The proposed GTs are used to solve the RP-aware instruction

scheduling problem. The scope is limited to local instruction
scheduling, that is, instruction scheduling within a basic block.
A basic block is a straight-line piece of code with no branches

out of it except at the end of the block and no branches into

it except at the beginning of the block [4]. The input to the

instruction scheduler is a data dependence graph (DDG), in

which nodes represent instructions, edges represent depen-

dencies, and edge weights represent latencies. The output

is a schedule, which is an assignment of a machine cycle to

each instruction in the input sequence.

An example DDG is shown in Figure 1a. The predeces-

sor/successor relations among the DDG nodes play an im-

portant role in the proposed GTs. If there is an edge from

Node 𝑥 to Node 𝑦 in a DDG, 𝑥 is an immediate predecessor
of 𝑦 and 𝑦 is an immediate successor of 𝑥 . For a given node

𝑖 in the DDG, IPred(𝑖) is the set of immediate predecessors

of 𝑖 , excluding 𝑖 itself, and ISucc(𝑖) is the set of immediate

successors of 𝑖 , excluding 𝑖 itself.

If there is a path (consisting of one or more edges) from

node 𝑥 to node 𝑦 in a DDG, 𝑥 is a predecessor of 𝑦 and 𝑦 is

a successor of 𝑥 . For a given node 𝑖 in a DDG, Pred(𝑖) is the
set of predecessors of 𝑖 , excluding 𝑖 itself, and Succ(𝑖) is the
set of successors of 𝑖 , excluding 𝑖 itself. The predecessor and

42

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

(a)

𝐴

𝐸

𝐶

𝐷

𝐹

𝐵

(b)

Instr.

Regs

Defined

Regs Used

𝐶 𝑅𝐶 None

𝐴 𝑅𝐴 None

𝐵 𝑅𝐵 None

𝐷 𝑅𝐷 𝑅𝐶
𝐸 None 𝑅𝐴, 𝑅𝐷
𝐹 None 𝑅𝐵, 𝑅𝐷

(c)

Instr. Pred(𝑋) IPred(𝑋) Succ(𝑋) ISucc(𝑋)
𝐴 ∅ ∅ {𝐸} {𝐸}
𝐵 ∅ ∅ {𝐹 } {𝐹 }
𝐶 ∅ ∅ {𝐷, 𝐸, 𝐹 } {𝐷}
𝐷 {𝐶} {𝐶} {𝐸, 𝐹 } {𝐸, 𝐹 }
𝐸 {𝐴,𝐶, 𝐷} {𝐴, 𝐷} ∅ ∅
𝐹 {𝐵,𝐶, 𝐷} {𝐵, 𝐷} ∅ ∅

(d)

Cycle Instr. Live Regs RP

1 𝐶 𝑅𝐶 1

2 𝐴 𝑅𝐶 , 𝑅𝐴 2

3 𝐵 𝑅𝐶 , 𝑅𝐴, 𝑅𝐵 3

4 𝐷 𝑅𝐴, 𝑅𝐵, 𝑅𝐷 3

5 𝐸 𝑅𝐵, 𝑅𝐷 2

6 𝐹 None 0

Virtual

Reg.

Instrs.

in LI

LIL

𝑅𝐴 𝐴, 𝐵, 𝐷 , 𝐸 4

𝑅𝐵 𝐵, 𝐷 , 𝐸, 𝐹 4

𝑅𝐶 𝐶 , 𝐴, 𝐵, 𝐷 4

𝑅𝐷 𝐷 , 𝐸, 𝐹 3

SLIL 15

(e)

Cycle Instr. Live Regs RP

1 𝐶 𝑅𝐶 1

2 𝐷 𝑅𝐷 1

3 𝐴 𝑅𝐷 , 𝑅𝐴 2

4 𝐵 𝑅𝐷 , 𝑅𝐴, 𝑅𝐵 3

5 𝐸 𝑅𝐷 , 𝑅𝐵 2

6 𝐹 None 0

Virtual

Reg.

Instrs.

in LI

LIL

𝑅𝐴 𝐴, 𝐵, 𝐸 3

𝑅𝐵 𝐵, 𝐸, 𝐹 3

𝑅𝐶 𝐶 , 𝐷 2

𝑅𝐷
𝐷 , 𝐴, 𝐵,

𝐸, 𝐹
5

SLIL 13

Figure 1. (a) A DDG example from Shobaki et al. [26]. (b) Def and Use sets. (c) Predecessor and Successor sets. (d) First schedule

with PRP = 3 and SLIL = 15. (e) Second schedule with PRP = 3 and SLIL = 13.

successor sets of each instruction in the DDG of Figure 1a

are shown in Figure 1c.

Before applying the proposed GTs, we compute the tran-
sitive closure of the DDG and store in each node its prede-

cessor/successor relation with other nodes in two different

forms. The first form is a list of predecessors and a list of

successors. The second form is two bit vectors for each node

𝑖 that indicate if any other node 𝑗 is a predecessor or a suc-

cessor of 𝑖 . If 𝑗 is neither a predecessor nor a successor of 𝑖 ,

then nodes 𝑖 and 𝑗 are independent instructions.
In RP-aware scheduling, the objective is finding a schedule

that achieves the best possible balance between schedule

length and RP. The schedule length is the number of cycles

in the schedule, and RP is modeled using one of the cost

functions described below.

The number of cycles in the schedule depends on the ma-

chine model. Our implementation of the proposed algorithm

supports a general machine model. The experimental results,

however, were produced using a simple machine model, in

which the processor can issue one instruction of any type

in each cycle. This simple model still captures instruction

latencies, and, based on past experience, that appears to be

the most important factor that affects performance.

In the pre-allocation scheduling phase, registers in the

code are virtual registers. Each register has a specific data

type. Register pressure computation is based on the Def and

Use sets of the scheduled instructions. For a given instruction

𝑖 , Def (𝑖) is the set of registers that 𝑖 defines, and Use(𝑖) is
the set of registers that 𝑖 uses. Usually, RP is analyzed for

each register type separately. For a given instruction 𝑖 and a

given register type 𝑇 , Def𝑇 (𝑖) is the set of registers of type
𝑇 that 𝑖 defines, and Use𝑇 (𝑖) is the set of registers of type 𝑇
that 𝑖 uses. The Def and Use sets of each instruction in the

DDG of Figure 1a are shown in Figure 1b.

An instruction can have an arbitrary number of Defs and

Uses. It is also useful to track for each register 𝑅, Users(𝑅),
which is the set of instructions that use 𝑅.

Given an instruction schedule, the register pressure for a

given data type at a given point in the schedule is the number

of registers of that type that are live at that point. A register

is live at a given point if it has been defined, but at least one

instruction that uses it has not been scheduled at that point.

In previous work, two different approaches have been

used to solve the RP-aware scheduling problem: a single-

pass approach [26, 28] and a two-pass approach [25]. In the

single-pass approach, a weighted sum of schedule length

and RP is optimized in a single pass.

On some targets, minimizing RP is much more important

than minimizing schedule length. In theory, this can be cap-

tured in the single-pass approach by setting the weight of RP

relative to schedule length to a sufficiently high value. Ex-

perimentally, however, it has been found that an extremely

high RP weight results in a very slow algorithm [25].

That led to introducing a two-pass approach in which RP

is minimized in the first pass as a primary objective and ILP is

maximized in the second pass as a secondary objective [25].

In the first pass, ILP is totally ignored by setting all latencies

to one. This allows the algorithm to focus on minimizing

43

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

RP in this pass. In the second pass, latencies are considered

and the algorithm searches for a minimum-length schedule

among all the schedules that maintain the best RP found in

the first pass. In this work, we use the two-pass approach

due to the importance of RP minimization on the target

processors.

2.1 Register-Pressure Cost Functions
In previous work, multiple cost functions were proposed for

representing RP during scheduling, including the peak excess
register pressure (PERP) [28], the sum of live interval lengths
(SLIL) [26], and the adjusted peak register pressure (APRP)
[25]. These cost functions are defined next.

The peak register pressure (PRP) of a given data type in a

given schedule is the maximum value of that type’s RP at

any point in the schedule. The PERP of a given data type is

the difference between that type’s PRP and the number of

physical registers of that type on the target machine.

Assuming that the code is in Static Single Assignment

(SSA) form [4], each virtual register in a basic block has a live

interval that consists of one definition and one or more uses.

Therefore, each live interval has one defining instruction and

one or more using instructions. The live interval length (LIL)

is the number of instructions in the instruction sequence that

starts with the definition and ends with the last use. The SLIL

is the sum of live interval lengths for all virtual registers in

a given schedule. Since live interval overlapping makes live

intervals longer, a larger SLIL indicates more overlapping

among live intervals, and thus higher RP.

The DDG in Figure 1a consists of six instructions. Instruc-

tions𝐴, 𝐵,𝐶 and𝐷 define virtual registers𝑅𝐴,𝑅𝐵 ,𝑅𝐶 , and𝑅𝐷 ,

respectively. Each virtual register is used by one instruction,

except 𝑅𝐷 , which is used by instructions 𝐸 and 𝐹 . The table

in Figure 1b shows the Def and Use sets of each instruction.

The tables in Figure 1d and Figure 1e show two different

schedules. The third column in each left-hand-side table

shows the registers that are live at each point, and the fourth

column shows the RP. The peak RP for both schedules is 3.

If the target machine has 2 physical registers, the PERP will

be 1 for both schedules.

The tables on the right sides of Figure 1d and Figure 1e

show the calculation of the SLIL. The second column in each

table shows the instructions that constitute the live interval

for each register, and the third column shows the LIL. For

example, the live interval for 𝑅𝐴 in schedule 1 consists of

Instructions 𝐴, 𝐵, 𝐷 and 𝐸, and thus has a LIL of 4. The

optimal LIL for 𝑅𝐴 is 2 (𝐴 followed immediately by 𝐸).

Although both schedules have the same PERP, the SLIL

is 15 for schedule 1 and 13 for schedule 2. This example

shows that SLIL captures live interval overlaps that are not

captured by PERP. SLIL captures the overlaps among all

intervals, while PERP captures only the overlaps that lead

to the peak pressure. In a high-pressure region, the peak-

pressure point is not the only point at which the register

allocator inserts spills. Therefore, minimizing SLIL is more

likely to minimize spilling than minimizing PERP.

On a GPU, multiple PRP values may give the same occu-

pancy. To model this, the adjusted peak register pressure

(APRP) step function was introduced [25]. The APRP of a

given PRP value 𝑥 is the maximum PRP that gives the same

occupancy as 𝑥 . For example, on the AMD GPU used in

this work, a PRP of 24 vector general-purpose registers (VG-

PRs) or less gives the maximum occupancy of 10 wavefronts,

while PRP values in the range [25–28] give an occupancy of

9 wavefronts (a wavefront is a group of GPU threads that

must be executed in lockstep). Therefore, PRP values in the

range [1–24] are mapped to an APRP of 24 and PRP values

in the range [25–28] are mapped to an APRP of 28.

3 Previous Work
Most previous work on instruction scheduling focused on

scheduling for ILP, but some recent work addressed the RP-

aware scheduling problem. Heuristic algorithms for balanc-

ing ILP and RP were proposed by Goodman and Hsu [8],

Govindarajan et al. [9], Touati [31] and Barany and Krall [1].

In more recent work, some researchers proposed combi-

natorial approaches that compute exact solutions. Kessler

[14] proposed a dynamic-programming solution. Barany and

Krall [1] proposed an integer-programming solution. Ma-

lik [20] proposed a constraint-programming solution, and

Domagala et al. [5] used constraint programming to inte-

grate RP-aware scheduling and loop unrolling. Lozano et al.

[17, 18] used constraint programming to solve the integrated

scheduling and allocation problem. Lozano provides a survey

of combinatorial approaches to instruction scheduling and

register allocation [19].

Shobaki et al. [25, 26, 28] presented a B&B algorithm for

solving the RP-aware instruction scheduling problem. B&B

is an exact method for solving combinatorial optimization

problems by conducting an exhaustive search of the solution

space with some pruning techniques that make it possible

to complete the search within reasonable time in most cases.

In our work, we use the proposed GTs to pre-process the

DDG before each pass of the two-pass scheduling algorithm

proposed by Shobaki et al. [25].

Rawat et al. [23] describe an algorithm to minimize RP for

stencil computation on the GPU. Their results show a signif-

icant impact of RP-aware scheduling on GPU performance.

The most related work on GTs for instruction scheduling

in compilers is the work of Heffernan and Wilken [10, 11],

who describe a GT algorithm that preserves ILP optimal-

ity. The algorithm presented in the current paper is the RP

counterpart of the algorithm of Heffernan and Wilken. In

an earlier paper, Wilken et al. describe various techniques

for pre-processing the DDG before applying an integer-

programming algorithm for solving the instruction schedul-

ing problem [32].

44

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

The GT algorithm of Heffernan and Wilken is a gener-

alization of the work of Ramamoorthy et al. [22] that was

later extended by Chou and Chung [3]. The work of Ra-

mamoorthy et al. is limited to zero-latency dependencies.

Chou and Chung present a more general approach that ac-

counts for latency constraints. The approach of Chou and

Chung is based on a generation tree that enumerates possible

solutions. Unlike our work, Chou and Chung do not use

dominance relations to pre-process the DDG; they use them

to prune inferior solutions within their enumerative search.

Dominance relations for scheduling problems have also been

proposed by Klein [15] and Dorndrof et al. [6].

Fernandez and Lang [7] describe an enumeration-based

scheduler in which the DDG is transformed iteratively. Edges

are added to the graph until all nodes are partitioned into

completely ordered sets called chains.
Govindarajan et al. [9] propose a technique that adds edges

to a DDG during scheduling to minimize register usage. The

added edges create chains of instructions, called lineages,
each of which is allocated a single register. Inagaki et al. [12]

extend the technique of Govindarajan et al. and use that to

minimizes register usage in a list scheduling framework with

limited backtracking.

In addition to compiler instruction scheduling, graph trans-

formations have been proposed for other combinatorial op-

timization problems, including the sequential ordering prob-

lem [21], the vehicle routing problem [2], and task scheduling

in an operating system [29].

4 Algorithm Description
4.1 Register-Pressure Superiority
In this sub-section, we consider the problem of scheduling

for the sole objective of minimizing RP. This is the problem

solved in the first pass of the two-pass approach described

above. An optimal transformation in this context is a trans-

formation that preserves optimality with respect to each of

the RP cost functions described above, namely PERP, SLIL,

and APRP. More specifically, we seek a set of sufficient con-

ditions under which we can insert an edge between two

instructions such that an optimal solution to the modified

DDG is also an optimal solution to original DDG.

To prove that adding an edge from Instruction 𝑥 to Instruc-

tion𝑦 preserves both correctness and RP optimality, we must

show that there exists at least one optimal schedule in which

𝑥 appears before 𝑦. In this case, 𝑥 is said to be RP-superior to
𝑦.

The approach that we take to proving superiority is based

on a swapping argument. We first assume that there is an

optimal schedule in which 𝑦 appears before 𝑥 and then show

that swapping 𝑥 and𝑦 will produce a correct schedule of cost

less than or equal to the cost of the original schedule. This

implies that for every optimal schedule in which 𝑦 appears

before 𝑥 , there exists a corresponding optimal schedule in

Def A

Def C

Use C, Def D

Use A, Def B

Use B

Use D

𝑥

𝑦
𝐿𝐶

𝐿𝐴

𝐿𝐵

𝐿𝐷

Before

Def A

Def C

Use A, Def B

Use C, Def D

Use B

Use D

𝑦

𝑥

𝐿𝐶

𝐿𝐴

𝐿𝐵

𝐿𝐷

After

Figure 2. Schedules before and after swapping 𝑥 and 𝑦.

which 𝑥 appears before 𝑦. Therefore, if we eliminate all the

schedules in which 𝑦 appears before 𝑥 and limit our search

to the schedules in which 𝑥 appears before 𝑦, we will not

miss an optimal schedule.

To illustrate our swapping argument, consider the example

in Figure 2, which shows two schedules. The first schedule

is a general optimal schedule in which Instruction 𝑦 appears

before Instruction 𝑥 , and the second schedule is the schedule

that results from swapping 𝑥 and 𝑦. The two instructions 𝑥

and 𝑦 are assumed to be of the same type. For example, both

are integer arithmetic instructions.

For simplicity, we assume in this example that each instruc-

tion uses one register and defines another register. Specifi-

cally, Instruction 𝑥 uses Register 𝐴 and defines Register 𝐵,

and Instruction 𝑦 uses Register 𝐶 and defines Register 𝐷 .

The graph shows the instructions that define 𝐴 and 𝐶 , and

two instructions that use 𝐵 and 𝐷 . The graph also shows the

live ranges of registers 𝐴, 𝐵, 𝐶 , and 𝐷 , assuming that every

register use in the graph is the last use of that register.

First, we give a sufficient condition for the correctness

(legality) of the swap. The swapmoves𝑥 to an earlier position

in the schedule. This will be legal if all the instructions that

𝑥 depends on (Pred(𝑥)) have been scheduled before that

position. Since the original schedule is assumed to be legal,

all the instructions that 𝑦 depends on (Pred(𝑦)) have been
scheduled before that position. Therefore, if Pred(𝑥) is a
subset of Pred(𝑦), moving 𝑥 to 𝑦’s original position will also

be legal.With a similar argument about the set of instructions

that depend on 𝑦 (Succ(𝑦)), we conclude that if Succ(𝑦) is a
subset of Succ(𝑥), moving 𝑦 to 𝑥 ’s original position in the

schedule will still be legal. Therefore, the swap will be legal

under the following sufficient condition:

Pred(𝑥) ⊆ Pred(𝑦) and Succ(𝑦) ⊆ Succ(𝑥)

Secondly, we give sufficient conditions for preserving RP

optimality. The general idea is that the swap will extend

(lengthen) some live ranges and reduce (shorten) other live

ranges. As explained below, the amount of every live range

extension or reduction will be exactly equal to the distance

45

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

between 𝑥 and 𝑦 in the schedule. Therefore, the swap is

guaranteed to preserve optimality if, for every register type,

the number of live ranges that will get extended is less than

or equal to the number of live ranges that may get reduced.

It is important to note here that when counting live range

extensions and reductions, we must count every possible

extension but can count only guaranteed reductions. In other

words, we must compute a lower bound (LB) on the number

of reductions and an upper bound (UB) on the number of

extensions. If the difference between the LB and the UB is

non-negative, the swap will not increase RP at any point

between 𝑥 and 𝑦. If RP cannot increase at any point between

𝑥 and 𝑦, none of the three cost functions (PERP, APRP, or

SLIL) will increase after the swap.

We first consider the extensions and reductions that result

from moving definitions. Assuming that the code is in SSA

form, every live range has a unique definition. Moving 𝑥 to

an earlier position will extend the live range of every register

that is defined by 𝑥 . For example, see the extension of 𝐵’s

live range in Figure 2. On the other hand, moving 𝑦 to a later

position will reduce the live range of every register that is

defined by𝑦. For example, see the reduction of𝐷’s live range

in Figure 2.

Unlike moving a definition, which always extends or re-

duces a live range (assuming SSA form), moving a use will

not necessarily extend or reduce a live range. Moving a reg-

ister use will change the register’s live range length only if

that use is the last use of that register. Since our objective is

computing a LB on the number of reductions and an UB on

the number of extensions, moving a register use to an earlier

position cannot be counted as a reduction unless we prove

that it is the last use. On the other hand, moving a register

use to a later position must be counted as an extension unless

we prove that it is not the last use.

Moving 𝑥 to an earlier position will reduce the live range

of a register that is used by 𝑥 if 𝑥 is the last user of that

register. For example, in Figure 2, if 𝑥 is the last user of

Register 𝐴, the live range of 𝐴 will get reduced after the

swap. In general, 𝑥 is necessarily the last user of Register

𝑅 if every other instruction that uses 𝑅 (if any) is in the

predecessor list of 𝑥 (Pred(𝑥)). However, this can be relaxed

further by allowing the instructions that use 𝑅 to be in the

predecessor list of 𝑦 (recall that Pred(𝑥) ⊆ Pred(𝑦)). Since
the only change that we make to the original schedule is

swapping 𝑥 and 𝑦, with all other instructions remaining in

the same positions, a predecessor of 𝑦, which must appear

before 𝑦 in the original schedule, will appear before 𝑥 after

the swap, and thus 𝑥 will still be the last user of 𝑅.

Therefore, to count the live ranges that will get reduced

after the swap, we examine every register 𝑅 in Use(𝑥), and
then scan the list of instructions that use 𝑅. If every element

in that list is in Pred(𝑦), that register’s live range is counted
as a reduced live range. The set of registers constructed for

any register type 𝑇 using this procedure is called UseShort𝑇 .

Formally, UseShort𝑇 is defined as the set of registers 𝑅 of

type 𝑇 such that for every instruction 𝑖 ∈ Users(𝑅), 𝑖 ∈
Pred(𝑦) ∪ {𝑥}.

Recall that before applying the GT algorithms, we compute

the transitive closure of the DDG and store in each node 𝑖 ,

among other things, two bit vectors that make it possible to

determine in O(1) time if any other node 𝑗 is a predecessor

or a successor of 𝑖 .

We next consider the live range extension that may result

frommoving𝑦 to a later position. Moving𝑦 to a later position

will extend the live range of a register 𝑅 in Use(𝑦) if 𝑦 is the

last user of 𝑅. Therefore, the live range of every register 𝑅

in Use(𝑦) must be counted as an extended live range unless

we prove that 𝑦 cannot be the last user of 𝑅. 𝑦 cannot be

the last user of 𝑅 if at least one instruction that uses 𝑅 is in

Succ(𝑦). However, this can be relaxed further by allowing

𝑅 to be used by an instruction in Succ(𝑥). Again, since we
are swapping 𝑥 and 𝑦 while keeping all other instructions in

their positions, a successor 𝑖 of 𝑥 , which must appear after 𝑥

in the original schedule, must appear after 𝑦 after the swap.

Thus, if 𝑖 uses 𝑅, 𝑦 cannot be the last user of 𝑅.

Therefore, to count the live ranges that may get extended

after the swap, we examine every register in Use(𝑦), and for

each register, we scan the list of instructions that use it. If at

least one element in that list is in Succ(𝑥), that register’s live
range is not counted as an extended live range. The set of reg-

ister live ranges that is constructed using this procedure for

any register type 𝑇 is called UseLong𝑇 . Formally, UseLong𝑇

is defined as the set of registers 𝑅 of type 𝑇 satisfying:

1. 𝑅 ∈ Use𝑇 (𝑦),
2. 𝑅 ∉ Use𝑇 (𝑥),
3. For every instruction 𝑖 ∈ Users(𝑅), 𝑖 ∉ Succ(𝑥).
Putting all the above ideas together leads to the following

theorem.

Theorem 1. Given a DDG, adding a zero-latency edge from 𝑥

to 𝑦 in that DDG is a register-pressure optimal transformation
if nodes 𝑥 and 𝑦 satisfy the following conditions:

1. Nodes 𝑥 and 𝑦 are independent nodes in the DDG,
2. Type(𝑥) = Type(𝑦),
3. Pred(𝑥) ⊆ Pred(𝑦),
4. Succ(𝑦) ⊆ Succ(𝑥),
5. For each register type 𝑇 ,

NumLong𝑇 ≤ NumShort𝑇

where
NumLong𝑇 = |UseLong𝑇 | + |Def𝑇 (𝑥) |
NumShort𝑇 = |Def𝑇 (𝑦) | + |UseShort𝑇 |

The proof of Theorem 1 is omitted for space limitations.

4.2 Algorithm
Based on the above theorem, we have developed the follow-

ing algorithm for checking RP superiority and adding edges

to the DDG.

46

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

1: procedure RP-SUPERIOR-NODE-ALGORITHM(G)

2: for all instruction𝐴 ∈ 𝑉 (𝐺) do
3: for all instruction 𝐵 ∈ 𝑉 (𝐺) do
4: if 𝐴 and 𝐵 are independent then
5: if IS-RP-SUPERIOR(A, B) then
6: Add latency-zero edge (𝐴, 𝐵) to 𝐸 (𝐺)
7: REMOVE-REDUNDANT-EDGES(G, A, B)

8: else if IS-RP-SUPERIOR(B, A) then
9: Add latency-zero edge (𝐵,𝐴) to 𝐸 (𝐺)
10: REMOVE-REDUNDANT-EDGES(G, B, A)

11: procedure IS-RP-SUPERIOR(A, B)
12: if Type(𝐴) ≠ Type(𝐵) then return false

13: if Pred(𝐴) ⊈ Pred(𝐵) then return false

14: if Succ(𝐵) ⊈ Succ(𝐴) then return false

15: LENGTHENED-COUNT← Array of zeros with length number-of-register-

types.

16: for all register 𝑅 ∈ Use(𝐵) do
17: if 𝑅 ∉ Use(𝐴) and ∀𝐶 ∈ Users(𝑅) − {𝐴, 𝐵 },𝐶 ∉ Succ(𝐴) then
18: increment LENGTHENED-COUNT(Type(𝑅))
19: for all register 𝑅 ∈ Use(𝐴) do
20: if ∀𝑁 ∈ Users(𝑅), 𝑁 ∈ Pred(𝐵) ∪ {𝐴} and 𝑁 ≠ 𝐵 then
21: decrement LENGTHENED-COUNT(Type(𝑅))
22: for all register 𝑅 ∈ Def (𝐴) do
23: increment LENGTHENED-COUNT(Type(𝑅))
24: for all register 𝑅 ∈ Def (𝐵) do
25: decrement LENGTHENED-COUNT(Type(𝑅))
26: for all𝐶 ∈ LENGTHENED-COUNT do
27: if 𝐶 > 0 then return false

28: return true

29: procedure REMOVE-REDUNDANT-EDGES(G, A, B)

30: for all node 𝑃 ∈ Pred(𝐴) ∪ {𝐴} do
31: for all node 𝑆 ∈ ISucc(𝑃) do
32: if (𝑃, 𝑆) ≠ (𝐴, 𝐵) and 𝑆 ∈ Succ(𝐵) ∪ {𝐵 } then
33: remove (𝐴, 𝐵) from 𝐸 (𝐺)

4.3 Combining RP and ILP
As mentioned above, the approach used in this work is a

two-pass approach. In the first pass (the RP pass), the RP-

only conditions described in the previous sub-sections are

applied, because only RP is considered in this pass. In the

second pass (the ILP pass), however, both RP and ILP are

considered. Therefore, the conditions for adding edges to the

DDG must preserve both RP optimality and ILP optimality.

Such conditions can be derived by simply combining the RP-

only conditions proposed in the current paper with the ILP-

only conditions described by Heffernan and Wilken [10]. In

other words, an edge can be added from Node 𝑥 to Node 𝑦 in

the DDG if 𝑥 and 𝑦 satisfy both the RP superiority conditions

stated in Theorem 1 and the ILP superiority conditions given

by Heffernan and Wilken. This implies that the edges added

in the second pass (the ILP pass) will be fewer than the edges

added in the first pass, because in the second pass, two sets

of conditions must be satisfied, while in the first pass, only

one set of conditions must be satisfied.

For example, using the setup described in Section 5 for

the SLIL cost function, 2,131,387 edges were added in the

first pass. In the second pass, 627,715 edges satisfied the ILP

conditions of Heffernan andWilken, but only 315,221 (50.2%)

edges satisfied both the ILP conditions and the RP conditions.

4.4 Integrating Graph Transformations with B&B
The proposed GT algorithms were implemented and used to

preprocess the DDG before it is input to the two-pass B&B

scheduling algorithm described by Shobaki et al. [25]. In the

first pass, each scheduling region is first scheduled using a

heuristic, and then a LB on the RP cost is computed. If the

heuristic cost is equal to the LB, the schedule is already RP

optimal. Otherwise, the region is passed to the B&B algo-

rithm to search for an optimal schedule within a certain time

limit. If no optimal schedule is found within the time limit,

the best schedule found is taken.

In the first pass, only the RP GTs are applied after con-

structing the heuristic schedule if it is not optimal. Since GTs

often cause the LB algorithm to compute a tighter LB, the

LB is recomputed after applying the GTs. If the recomputed

LB is equal to the cost of the heuristic schedule, the heuris-

tic schedule is optimal, and B&B is not invoked. This is an

added benefit of applying GTs. If optimality is not proven,

the modified DDG is passed to the B&B scheduler.

The best schedule found in the first pass, whether it is

optimal or not, is input into the second pass, after inserting

enough stalls to satisfy the latency constraints. In the second

pass, the B&B algorithm searches for the shortest schedule

that maintains the best RP found in the first pass. The com-

bined RP-ILP graph transformations are applied to the DDG

immediately after setting up the input schedule.

5 Experimental Results
5.1 Experimental Setup
The proposed GT algorithm was implemented together with

the two-pass B&B scheduling algorithm proposed by Shobaki

et al. [25] in the LLVM compiler, and the modified LLVM
compiler was applied to a CPU target and a GPU target.

The CPU target is an Intel Core i7-7700K processor run-

ning at 4.2GHz. For this target, LLVM 7.1.0 was used, and the

Table 1. Benchmark statistics

Stat FP2017 Plaidbench

1 Number of benchmarks 8 13

2

Number of

functions/kernels

10 233 3 814

3

Number of

scheduling regions

464 970 16 682

4

Avg. scheduling regions

per function/kernel

45.44 4.37

5

Avg. Instructions

per scheduling region

7.88 47.02

6

Max. Instructions

per scheduling region

5 197 919

47

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

evaluation was done using the floating-point benchmarks in

SPECspeed
1
CPU 2017 (FP2017 for short) [30].

The GPU target is an AMD Radeon RX Vega 64 GPU run-

ning at 1.63 GHz. For this target, we used the LLVM in roc-

ocl-2.4.0, and the evaluation was done using the PlaidML

benchmarks [13]. Compilation was done on an AMD Ryzen

Threadripper 1950X processor.

On the Intel target, a time limit of 5ms/instruction was

used in each pass of the B&B algorithm. For example, a sched-

uling region with 100 instructions was given a limit of 500ms.

On the AMDGPU target, the time limit was 20ms/instruction

in the first pass and 2ms/instruction in the second pass. The

initial heuristic schedule was computed using the Last Use

Count (LUC) heuristic [27]. The -O3 optimization level was

used in all tests. Table 1 shows interesting statistics about

the benchmarks used in the experiments.

5.2 Effect of Graph Transformations
To evaluate the effectiveness of the proposed GTs, the bench-

marks were compiled using the modified LLVM compiler

with and without GTs. For the Intel target, the SLIL and the

PERP cost functions were used. Table 2 shows the statistics

for SLIL and Table 3 shows the same statistics for PERP.

First, we comment on the results in Table 2. Table 2a shows

the low-level statistics in each pass individually, and Table

2b shows the high-level statistics including both passes. For

each pass, the first column shows the value of the stat when

GTs are disabled, the second column shows the correspond-

ing value when GTs are enabled, and the third column shows

the percentage improvement from applying GTs.

In the first pass, Row 1 shows that with GTs, 18% fewer

scheduling regions were passed to B&B, because applying

GTs resulted in tighter LBs. Row 2 shows that applying GTs

reduced the number of regions that timed out from 8734 to

4805, a 45% reduction. Row 3 shows that using GTs reduced

the solution time for the scheduling regions that were solved

only with GTs enabled by 78%. Rows 4 and 5 show that ap-

plying GTs greatly sped up the scheduling of the regions that

were solved optimally with and without GTs. Row 5 shows

that GTs reduced the number of tree nodes enumerated by

the B&B algorithm in scheduling these regions by 86%, and

Row 4 shows that this sped up the B&B search by 84%.

Rows 6 and 7 show that these improvements reduced the

B&B time by 30% and the total scheduling time in the first

pass by 29%. Row 8 shows that using GTs did not only reduce

the number of timeouts and speedup the search, but it also

reduced the overall SLIL cost across all regions by 4%.

The right-hand-side of Table 2a shows the same statistics

collected in the second pass. Recall that in the second pass,

1
wrf and pop2 were excluded due to runtime errors that were seen even

with the base LLVM compiler. imagick was excluded from the execution-

time results due to a large regression when GTs are disabled. When GTs

are enabled, this regression was not present, but the reason behind this

regression is believed to be unrelated to GTs or to scheduling at all.

we apply the combined RP and ILP GTs, which are much

more restrictive than the RP-only GTs. In the combined GTs,

an edge is added if it is both RP-optimal and ILP-optimal.

This explains why the percentage improvements achieved

by applying GTs in this pass are generally smaller than the

corresponding percentage improvements in the first pass.

However, the percentage improvements in the second pass

are still substantial.

Table 2b shows the high-level statistics across both passes.

These statistics show that the overall effect of applying GTs

in both passes is reducing the total scheduling time by 16%,

which leads to reducing the total compile time by 13%. Row

3 shows that applying GTs reduces the total number of spills

by 0.6% but increases the total schedule length by 0.3%. The

slight increase in schedule length is attributed to the fact

that when the B&B algorithm finds a schedule with a lower

RP in the first pass, that imposes a stronger constraint on

the search for a shorter schedule in the second pass.

It is noted that with the use of B&B scheduling, the total

compile time is dominated by the scheduling time. This sug-

gests that in practice, B&B should be selectively applied to

the hot regions not to all regions. B&B scheduling is applied

to all regions in this subsection only to maximize statisti-

cal significance. The experiments of the next subsection are

based on the more practical choice of applying B&B only to

the hot scheduling regions in FP2017.

Table 3 shows that similar significant improvements were

obtained for PERP. Note that the difference in Row 1 is zero,

because there is currently no known lower-bound algorithm

for PERP. It is also noted that applying GTs in the second

pass changed the search in a way that took 1.6% more time

but resulted in a total schedule length that is 3% better.

Table 4 shows the results for the PlaidML benchmarks

on the AMD GPU. On PlaidML, GTs were applied only to

the first pass, as they had limited effect on the second pass.

Table 4a shows the stats for the first pass. A total of 340

regions were passed to B&B. Row 2 shows that GTs reduced

the number of timeouts from 203 to 165, an 18% reduction.

Row 3 shows that, in addition to reducing the number of

timeouts, GTs resulted in a 9% reduction in the solution time

of the instances that were solved optimally with and without

GT. Row 4 shows that this reduction in time is consistent

with approximately the same percentage reduction in the

number of tree nodes explored. The overall effect of all the

above reductions is a 2.1% reduction in B&B time (Row 5)

and a 1.9% in the total scheduling time in the first pass. Row

7 shows that, in addition to reducing compile time, solving

more instances to optimality reduced the APRP cost by 11%.

Table 4b shows that the reductions in APRP improved

occupancy on 40 kernels. For 39 kernels, the occupancy in-

creased from 8 to 9, and for one other kernel, it increased

from 2 to 3. There is one regression from 10 to 9 on one

kernel. Regressions in occupancy are unavoidable, because

the correlation between APRP and occupancy is strong but

48

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

Table 2. Stats for FP2017 using SLIL. (a) Low-level stats. (b) High-level stats across both passes.

(a)

First pass Second pass

Stat Without GT With GT % imp. Without GT With GT % imp.

1 Number of regions passed to B&B 231 077 188 407 18 91 189 87 681 4

2 Number of regions timed out 8 734 4 805 45 13 999 12 540 10

3 Solution time for GT-only-opt (s) 537 120 78 172 67 61

4 B&B time for both-opt (s) 335 54 84 194 107 45

5 Tree nodes for both-opt 199 165 481 27 010 889 86 103 979 881 50 507 289 51

6 Total B&B time (s) 2 292 1 602 30 2 800 2 607 7

7 Total scheduling time in this pass (s) 2 386 1 701 29 2 912 2 743 6

8 Total relative RP cost 8 693 209 000 8 347 881 000 4 – – –

9 Total schedule length – – – 602 429 598 058 0.7

(b)

Stat Without GT With GT % imp.

1 Total compile time (s) 7 055 6 129 13

2 Total scheduling time in both passes (s) 5 484 4 622 16

3 Total number of spills 155 863 154 913 0.6

4 Total schedule length 686 945 689 337 -0.3

Table 3. Stats for FP2017 using PERP. (a) Low-level stats. (b) High-level stats across both passes.

(a)

First pass Second pass

Stat Without GT With GT % imp. Without GT With GT % imp.

1 Number of regions passed to B&B 4 164 4 164 0 79 337 79 337 0

2 Number of regions timed out 2 180 861 61 366 276 25

3 Solution time for GT-only-opt (s) 236 39 84 25 14 46

4 B&B time for both-opt (s) 37 3 91 21 16 25

5 Tree nodes for both-opt 55 552 021 3 755 061 93 5 863 493 4 146 002 29

6 Total B&B time (s) 894 661 26 359 343 5

7 Total scheduling time in this pass (s) 965 736 24 456 464 -1.6

8 Total relative RP cost 115 840 000 115 792 000 0.04 – – –

9 Total schedule length – – – 104 930 101 688 3

(b)

Stat Without GT With GT % imp.

1 Total compile time (s) 2 539 2 259 11

2 Total scheduling time in both passes (s) 1 468 1 213 17

3 Total number of spills 163 448 163 527 -0.05

4 Total schedule length 128 663 125 908 2

not perfect. APRP is the scheduler’s estimate of RP, while the

occupancy depends on the actual number of registers used,

which is determined by the register allocation algorithm.

Since register allocation is NP-hard, the register allocation

algorithm may produce sub-optimal results in some cases.

5.3 Execution Times
For the execution-time tests on FP2017, B&B scheduling was

applied only to the hot functions. Before we present the

execution-time results, we show in Table 5 the high-level

statistics for the hot scheduling regions using SLIL. Rows

1 and 2 show that GTs reduced the total compile time by

1.0% and the total scheduling time by 1.2%. The total number

49

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

Table 4. Stats for Plaidbench. (a) Low-level stats for the first pass. (b) Number of kernels with altered occupancies.

(a)

Stat Without GT With GT % imp.

1 Number of regions passed to B&B 340 340 0

2 Number of regions timed out 203 165 18

3 B&B time for both-opt (s) 132 121 9

4 Tree nodes for both-opt 129 398 534 116 204 157 10

5 Total B&B time (s) 1 178 1 154 2.1

6 Total scheduling time in this pass (s) 1 180 1 157 1.9

7 Total relative RP cost 33 080 29 340 11

(b)

Change in occupancy

Without GT With GT Count

1 8 9 39

2 2 3 1

3 10 9 1

Table 5. Stats for FP2017 using SLIL on hot functions.

Totalled stat

Without

GT

With GT % imp.

1 Compile time (s) 1 336 1 323 1.0

2

Scheduling time

in both passes (s)

810 800 1.2

3 Number of spills 19 842 19 842 0

4 Weighted spills 2.023e9 1.858e9 8

5 Schedule length 102 681 102 866 -0.2

of spills is the same, but the total weighted spill count is

reduced by 8%. The weighted spill count is a weighted sum

that accounts for the statically estimated execution frequency

of each spill. In Table 6, it is shown that this 8% reduction in

the weighted spill count results in a slight improvement of

the execution time when GTs are enabled.

Table 6 shows the percentage gain in FP2017 execution

speed using B&B scheduling with and without GTs relative

to LLVM’s generic scheduler. Table 7 shows the percent-

age gains in PlaidML execution speed relative to AMD’s

production scheduler. Each test was run five times, and the

percentage gains in the table are based on the median scores.

It is noted that the performance gains achieved using a

B&B scheduler on the AMD GPU are significantly greater

than the gains achieved on the Intel CPU. On the AMD GPU,

a geometric-mean improvement of 8% is achieved, while the

geometric-mean improvement on Intel is 1.2% without GTs

and 1.7% with GTs. This is attributed to the fact that both RP

and ILP have a higher impact on GPU performance than on

CPU performance. On the GPU, RP determines occupancy,

while on the CPU it affects spilling. The impact of occupancy

on GPU performance is generally higher than the impact of

spilling on CPU performance. Spilling significantly affects

performance only if there is a substantial amount of spilling

in hot code. Furthermore, compiler scheduling for ILP has

a higher impact on GPU performance, because the GPU is

in-order, while the Intel processor is out-of-order.

Table 6. Percentage gain in FP2017 speed relative to LLVM.

Benchmark B&B without GT B&B with GT

1 603.bwaves_s 0.8% 0.8%

2 607.cactuBSSN_s 2.5% 3.2%

3 619.lbm_s 4.3% 4.5%

4 627.cam4_s 0.2% 0.6%

5 644.nab_s -0.2% 0.4%

6 649.fotonik3d_s 0.8% 2.1%

7 654.roms_s -0.3% 0.1%

8 Geo-mean 1.2% 1.7%

Table 7. Percentage gain in PlaidML speed relative to AMD.

Benchmark

B&B

without GT

B&B with GT

1 densenet121 4.5% 4.4%

2 densenet169 5.0% 5.0%

3 densenet201 4.5% 4.6%

4 inception_resnet_v2 19.5% 19.2%

5 inception_v3 18.8% 18.7%

6 mobilenet 4.8% 4.8%

7 nasnet_large 8.3% 8.3%

8 nasnet_mobile 7.4% 7.4%

9 resnet50 7.8% 6.9%

10 vgg16 9.4% 9.4%

11 vgg19 8.9% 8.9%

12 xception 6.6% 6.6%

13 imdb_lstm 1.8% 1.9%

14 Geo-mean 8.1% 8.0%

The results in the previous section show that applying

GTs significantly reduces compile time. The results in Tables

6 and 7 show that this reduction in compile time is achieved

without degrading the execution-time performance. In fact,

on FP2017, the execution time is slightly better with GTs.

50

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

Table 8. Hot scheduling regions in Cactus with a time limit

of 220 ms/instruction in the first pass.

Stat Without GT With GT % imp.

1

Regions

passed to B&B

326 326 0

2

Regions

timed out

41 36 12

3

Solution time for

GT-only-opt (ms)

34 545 40 99.9

4

Tree nodes for

both-opt

6 074 425 1 033 118 83

5

B&B time for

both-opt (ms)

9 198 1 704 81

6 Total spill count 6 605 6 509 1

5.4 Longer Time Limits
To shed more light on the performance of the proposed GTs,

a study was performed on the Cactus benchmark using a sig-

nificantly longer time limit. Cactus was chosen, because the

hot functions in Cactus have many hard-to-schedule regions

with extremely high register pressure. The register allocator

generates thousands of spills in Cactus’s hot functions.

Cactus was compiled using the modified compiler with

B&B scheduling applied only to the hot functions with a

time limit of 220 ms/instruction in the first pass. Table 8

shows the statistics of this experiment with and without GTs.

Row 1 shows that the hot functions in Cactus have a total

of 326 scheduling regions. Row 2 shows that applying GTs

resulted in optimally scheduling five regions that timed out

without GTs. Row 3 shows that the total scheduling time

for these five regions is 34 545 ms without GTs and 40 ms

with GTs, a 99.9% reduction. Rows 4 and 5 show that for

the regions that were scheduled optimally with and without

GTs, applying GTs reduced the number of enumerated tree

nodes by 83% and the B&B time by 81%. Row 6 shows that

using GTs resulted in reducing the number of spills by 96.

Table 9 shows more details about the five scheduling re-

gions that timed out without GTs but were solved to op-

timality with GTs. The scheduling times for these regions

are thousands of milliseconds without GTs. Applying GTs

reduces the scheduling time to a few milliseconds for four

regions and to 29 ms for the fifth region. Solving these five

regions to optimality led to discovering zero-cost schedules

for four of them. These results show that GTs can potentially

have a high impact on the B&B scheduling of some regions.

The authors believe that the proposed GTs had a high

positive impact on some but not all hard scheduling regions,

because for many hard regions, the B&B scheduler may get

trapped in a solution sub-space that does not have better

schedules. Such trapping may happen if bad decisions are

made in the earlier steps of the exploration (at the shallower

Table 9. Hot scheduling regions in Cactus solved with GTs.

Solution time SLIL cost

Region

Size

Without

GT (ms)

With GT

(ms)

Without

GT

With GT

1 32 6 613 3 21 000 0

2 30 6 170 3 17 000 0

3 60 12 798 29 178 000 177 000

4 21 4 201 4 11 000 0

5 24 4 851 2 5 000 0

nodes in the tree). The solution to such a problem is the

parallelization of the B&B search, as that makes it possible to

explore multiple sub-spaces in parallel and focus the search

on the most promising sub-spaces.

We are currently working on parallelizing the B&B search.

We believe that a combination of parallelization and GTs

can solve many of the currently unsolvable instances of the

scheduling problem.

6 Conclusions and Future Work
In this paper, we present RP-optimal graph transformations

that reduce the size of the solution space of a B&B algorithm

for solving the RP-aware instruction scheduling problem.

The proposed transformations reduce the number of time-

outs by 45% and speed up the scheduling of the instances

that do not time out by 84%.

For future work, we plan on exploring a dynamic version

of the proposed transformations as a pruning technique in

B&B. A dynamic version can potentially relax the restrictive

conditions for the combined RP and ILP GTs. Additionally,

we plan on investigating an iterative version of the RP GTs,

wherein added edges can enable the addition of more edges.

Furthermore, we plan on using the proposed GTs with a par-

allel version of the B&B algorithm and with an Ant Colony

Optimization algorithm that we have recently developed for

solving the RP-aware scheduling problem [24].

Acknowledgments
This work was supported in part by the US National Sci-

ence Foundation (NSF) through Award No. 1911235. The

authors thank the GPU-compute compiler team at Advanced

Micro Devices (AMD) for providing technical consultation

and donating the machine that was used to generate the

GPU results in this paper. The authors also thank Patrick

Brannan and Lynne Koropp for the technical support that

they provided and Vang Thao for the help that he provided

on the experimental setup. Finally, we thank the anonymous

reviewers for their constructive comments and suggestions

that led to improving the final paper.

51

CC ’22, April 02–03, 2022, Seoul, South Korea Ghassan Shobaki, Justin Bassett, Mark Heffernan, and Austin Kerbow

References
[1] Gergö Barany and Andreas Krall. 2013. Optimal and Heuristic Global

Code Motion for Minimal Spilling. In Proceedings of the 22nd Inter-
national Conference on Compiler Construction (Rome, Italy) (CC’13).
Springer-Verlag, Berlin, Heidelberg, 21–40. https://doi.org/10.1007/
978-3-642-37051-9_2

[2] Beck J.C., Prosser P., Selensky E. 2002. Graph Transformations for

the Vehicle Routing and Job Shop Scheduling Problems. In Lecture
Notes in Computer Science (ICGT 2002, Vol. 2505), Corradini A., Ehrig
H., Kreowski H.J., Rozenberg G. (Ed.). Springer, Berlin, Heidelberg,

60–74. https://doi.org/10.1007/3-540-45832-8_7
[3] Hong-Chich Chou and Chung-Ping Chung. 1995. An Optimal Instruc-

tion Scheduler for Superscalar Processor. IEEE Trans. Parallel Distrib.
Syst. 6, 3 (mar 1995), 303–313. https://doi.org/10.1109/71.372778

[4] Keith Cooper and Linda Torczon. 2011. Engineering a Compiler (2 ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[5] Łukasz Domagała, Duco van Amstel, Fabrice Rastello, and P. Sadayap-

pan. 2016. Register Allocation and Promotion through Combined

Instruction Scheduling and Loop Unrolling. In Proceedings of the 25th
International Conference on Compiler Construction (Barcelona, Spain)

(CC 2016). Association for Computing Machinery, New York, NY, USA,

143–151. https://doi.org/10.1145/2892208.2892219
[6] Ulrich Dorndorf, Toàn Phan Huy, and Erwin Pesch. 1999. A survey of

interval capacity consistency tests for time-and resource-constrained

scheduling. In Project Scheduling. Springer, 213–238. https://doi.org/
10.1007/978-1-4615-5533-9_10

[7] E. B. Fernandez and T. Lang. 1976. Scheduling as a Graph Transforma-

tion. IBM Journal of Research and Development 20, 6 (1976), 551–559.
https://doi.org/10.1147/rd.206.0551

[8] J. R. Goodman and W.-C. Hsu. 1988. Code Scheduling and Register

Allocation in Large Basic Blocks. In Proceedings of the 2nd International
Conference on Supercomputing (St. Malo, France) (ICS ’88). Association
for Computing Machinery, New York, NY, USA, 442–452. https://doi.
org/10.1145/55364.55407

[9] R. Govindarajan, Hongbo Yang, José Nelson Amaral, Chihong Zhang,

and Guang R. Gao. 2003. Minimum Register Instruction Sequencing to

Reduce Register Spills in Out-of-Order Issue Superscalar Architectures.

IEEE Trans. Comput. 52, 1 (Jan. 2003), 4–20. https://doi.org/10.1109/
TC.2003.1159750

[10] Mark Heffernan and Kent Wilken. 2005. Data-Dependency Graph

Transformations for Instruction Scheduling. J. of Scheduling 8, 5 (Oct.

2005), 427–451. https://doi.org/10.1007/s10951-005-2862-8
[11] Mark Heffernan, Kent Wilken, and Ghassan Shobaki. 2006. Data-

Dependency Graph Transformations for Superblock Scheduling. In

Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 39). IEEE Computer Society, USA, 77–88.

https://doi.org/10.1109/MICRO.2006.16
[12] Tatsushi Inagaki, Hideaki Komatsu, and Toshio Nakatani. 2003. Inte-

grated Prepass Scheduling for a Java Just-In-Time Compiler on the

IA-64 Architecture. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Op-
timization (San Francisco, California, USA) (CGO ’03). IEEE Computer

Society, USA, 159–168.

[13] Intel. 2017. PlaidML machine learning benchmarks. https:
//github.com/plaidml/plaidbench#intel-corporation-machine-
learning-benchmarks

[14] Christoph W. Kessler. 1998. Scheduling Expression DAGs for Minimal

Register Need. Computer Languages 24, 1 (1998), 33–53. https://doi.
org/10.1016/S0096-0551(98)00002-2

[15] Robert Klein. 2001. Scheduling of Resource Constrained Projects. Kluwer
Academic Publishers, USA.

[16] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:

Feedback-Directed and Runtime Optimization (Palo Alto, California)

(CGO ’04). IEEE Computer Society, USA, 75. https://doi.org/10.1109/
CGO.2004.1281665

[17] Roberto Castañeda Lozano. 2018. Constraint-Based Register Allocation
and Instruction Scheduling. Ph.D. Dissertation. KTH Royal Institute of

Technology.

[18] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell,

and Christian Schulte. 2019. Combinatorial Register Allocation and

Instruction Scheduling. ACM Trans. on Programming Languages and
Systems 41, 3, Article 17 (July 2019), 53 pages. https://doi.org/10.1145/
3332373

[19] Roberto Castañeda Lozano and Christian Schulte. 2019. Survey on

Combinatorial Register Allocation and Instruction Scheduling. Com-
put. Surveys 52, 3, Article 62 (June 2019), 50 pages. https://doi.org/10.
1145/3200920

[20] Abid Malik. 2008. Constraint Programming Techniques for Optimal
Instruction Scheduling. Ph.D. Dissertation. University of Waterloo.

[21] R. Montemanni, D. H. Smith, and L. M. Gambardella. 2008. A Heuristic

Manipulation Technique for the Sequential Ordering Problem. Comput.
Oper. Res. 35, 12 (dec 2008), 3931–3944. https://doi.org/10.1016/j.cor.
2007.05.003

[22] C. V. Ramamoorthy, K. M. Chandy, and Mario J. Gonzalez. 1972. Op-

timal Scheduling Strategies in a Multiprocessor System. IEEE Trans.
Comput. C-21, 2 (1972), 137–146. https://doi.org/10.1109/TC.1972.
5008918

[23] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,

Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Regis-

ter Optimizations for Stencils on GPUs. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery,

New York, NY, USA, 168–182. https://doi.org/10.1145/3178487.3178500
[24] Ghassan Shobaki, Vahl Scott Gordon, Paul McHugh, Theodore Dubois,

and Austin Kerbow. 2022. Register-Pressure-Aware Instruction Sched-

uling Using Ant Colony Optimization. ACM Trans. Archit. Code Optim.
19, 2, Article 23 (jan 2022), 23 pages. https://doi.org/10.1145/3505558

[25] Ghassan Shobaki, Austin Kerbow, and Stanislav Mekhanoshin. 2020.

Optimizing Occupancy and ILP on the GPU Using a Combinatorial

Approach. In Proceedings of the 18th ACM/IEEE International Sympo-
sium on Code Generation and Optimization (San Diego, CA, USA) (CGO
2020). Association for Computing Machinery, New York, NY, USA,

133–144. https://doi.org/10.1145/3368826.3377918
[26] Ghassan Shobaki, Austin Kerbow, Christopher Pulido, and William

Dobson. 2019. Exploring an Alternative Cost Function for Com-

binatorial Register-Pressure-Aware Instruction Scheduling. ACM
Trans. Archit. Code Optim. 16, 1, Article 1 (Feb. 2019), 30 pages.

https://doi.org/10.1145/3301489
[27] Ghassan Shobaki, Laith Sakka, Najm Eldeen Abu Rmaileh, and Hasan

Al-Hamash. 2015. Experimental Evaluation of Various Register-

Pressure-Reduction Heuristics. Softw. Pract. Exper. 45, 11 (Nov. 2015),
1497–1517. https://doi.org/10.1002/spe.2297

[28] Ghassan Shobaki, Maxim Shawabkeh, and Najm Eldeen Abu Rmaileh.

2013. Preallocation Instruction Scheduling with Register Pressure

Minimization Using a Combinatorial Optimization Approach. ACM
Trans. Archit. Code Optim. 10, 3, Article 14 (Sept. 2013), 31 pages. https:
//doi.org/10.1145/2512432

[29] Oliver Sinnen. 2014. Reducing the solution space of optimal task

scheduling. Computers &Operations Research 43 (2014), 201–214. https:
//doi.org/10.1016/j.cor.2013.09.004

[30] Standard Performance Evaluation Corporation. 2017. SPEC CPU 2017.

https://www.spec.org/cpu2017/
[31] Sid-Ahmed-Ali Touati. 2005. Register Saturation in Instruction Level

Parallelism. Intl. Journal of Parallel Prog. 33, 4 (Aug. 2005), 393–449.
https://doi.org/10.1007/s10766-005-6466-x

52

https://doi.org/10.1007/978-3-642-37051-9_2
https://doi.org/10.1007/978-3-642-37051-9_2
https://doi.org/10.1007/3-540-45832-8_7
https://doi.org/10.1109/71.372778
https://doi.org/10.1145/2892208.2892219
https://doi.org/10.1007/978-1-4615-5533-9_10
https://doi.org/10.1007/978-1-4615-5533-9_10
https://doi.org/10.1147/rd.206.0551
https://doi.org/10.1145/55364.55407
https://doi.org/10.1145/55364.55407
https://doi.org/10.1109/TC.2003.1159750
https://doi.org/10.1109/TC.2003.1159750
https://doi.org/10.1007/s10951-005-2862-8
https://doi.org/10.1109/MICRO.2006.16
https://github.com/plaidml/plaidbench#intel-corporation-machine-learning-benchmarks
https://github.com/plaidml/plaidbench#intel-corporation-machine-learning-benchmarks
https://github.com/plaidml/plaidbench#intel-corporation-machine-learning-benchmarks
https://doi.org/10.1016/S0096-0551(98)00002-2
https://doi.org/10.1016/S0096-0551(98)00002-2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3332373
https://doi.org/10.1145/3332373
https://doi.org/10.1145/3200920
https://doi.org/10.1145/3200920
https://doi.org/10.1016/j.cor.2007.05.003
https://doi.org/10.1016/j.cor.2007.05.003
https://doi.org/10.1109/TC.1972.5008918
https://doi.org/10.1109/TC.1972.5008918
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1145/3505558
https://doi.org/10.1145/3368826.3377918
https://doi.org/10.1145/3301489
https://doi.org/10.1002/spe.2297
https://doi.org/10.1145/2512432
https://doi.org/10.1145/2512432
https://doi.org/10.1016/j.cor.2013.09.004
https://doi.org/10.1016/j.cor.2013.09.004
https://www.spec.org/cpu2017/
https://doi.org/10.1007/s10766-005-6466-x

Graph Transformations for Register-Pressure-Aware Instruction Scheduling CC ’22, April 02–03, 2022, Seoul, South Korea

[32] Kent Wilken, Jack Liu, and Mark Heffernan. 2000. Optimal Instruction

Scheduling Using Integer Programming. SIGPLAN Not. 35, 5 (may

2000), 121–133. https://doi.org/10.1145/358438.349318

53

https://doi.org/10.1145/358438.349318

	Abstract
	1 Introduction
	2 Background
	2.1 Register-Pressure Cost Functions

	3 Previous Work
	4 Algorithm Description
	4.1 Register-Pressure Superiority
	4.2 Algorithm
	4.3 Combining RP and ILP
	4.4 Integrating Graph Transformations with B&B

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Effect of Graph Transformations
	5.3 Execution Times
	5.4 Longer Time Limits

	6 Conclusions and Future Work
	Acknowledgments
	References

