
ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.1 (1-13)

Journal of Parallel and Distributed Computing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

A parallel branch-and-bound algorithm with history-based domination
and its application to the sequential ordering problem

Taspon Gonggiatgul, Ghassan Shobaki, Pınar Muyan-Özçelik

Department of Computer Science, California State University, 6000 J street, Sacramento, 95819, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 March 2022
Received in revised form 10 September
2022
Accepted 11 October 2022
Available online xxxx

Keywords:
Parallel branch-and-bound
Sequential ordering problem
Combinatorial optimization
NP-complete problems
History domination

In this paper, we describe the first parallel Branch-and-Bound (B&B) algorithm with a history-based
domination technique. Although history-based domination substantially speeds up a B&B search, it
makes parallelization much more challenging. Our algorithm is the first parallel exact algorithm for the
Sequential Ordering Problem using a pure B&B approach. To effectively explore the solution space, we
have developed three novel parallelization techniques: thread restart, parallel history domination, and
history-table memory management. The proposed algorithm was experimentally evaluated using the
SOPLIB and TSPLIB benchmarks on multi-core processors. Using 32 threads with a time limit of one
hour, the algorithm gives geometric-mean speedups of 72x and 20x on the medium-difficulty SOPLIB
and TSPLIB instances, respectively. On the hard instances, it solves 12 instances that the sequential
algorithm does not solve, with geometric-mean speedups of 16x on SOPLIB and 32x on TSPLIB. Super-
linear speedups up to 366x are seen on 16 instances.

 2022 Published by Elsevier Inc.
1. Introduction

In this paper, we show how to effectively parallelize a Branch-
and-Bound (B&B) algorithm that has a history-based domination
technique on a multicore processor. Although history-based domi-
nation substantially speeds up a B&B search, it creates great chal-
lenges in parallelizing the algorithm. The proposed parallel B&B
algorithm is applied to the Sequential Ordering Problem (SOP). To
the best of our knowledge, the proposed algorithm is the first par-
allel B&B algorithm that includes history-based domination and is
the first parallel exact algorithm for solving the SOP using a pure
B&B approach.

The SOP is a generalization of the Traveling Salesman Problem
(TSP), which is a well-known NP-hard combinatorial optimization
problem. Given a weighted graph and a dependence graph repre-
senting precedence constraints among the vertices, the objective
in the SOP is finding a minimum-cost Hamiltonian path in the
weighted graph that satisfies the precedence constraints in the de-
pendence graph.

Precedence constraints make developing a parallel B&B algo-
rithm more challenging, because they make it harder to estimate
and balance thread loads. Parallel B&B algorithms for optimiza-
tion problems with precedence constraints are understudied in

E-mail address: tagonggiatgul@ucdavis.edu (T. Gonggiatgul).
Please cite this article as: T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik, A parallel br
the sequential ordering problem, Journal of Parallel and Distributed Computing, https://

https://doi.org/10.1016/j.jpdc.2022.10.007
0743-7315/ 2022 Published by Elsevier Inc.
the literature. We believe that the parallelization techniques pre-
sented in this paper are general enough to be applicable to many
precedence-constrained combinatorial optimization problems.

The proposed parallel algorithm is a pool-based algorithm that
consists of a collection of techniques that we designed to effec-
tively search the solution space using multiple parallel threads. The
techniques used in our algorithm include three novel techniques:
thread restart (Section 4.2), parallel history-based domination (Sec-
tion 5.1), and history table memory management (Section 5.2).
In addition to developing these new techniques, we have experi-
mented with multiple methods for assigning global-pool nodes to
threads (Section 3.4) and balancing the load by work stealing (Sec-
tion 4.1) [35].

The proposed parallel algorithm is based on the sequential B&B
algorithm that was originally proposed by Shobaki and Jamal [46]
and later enhanced by Jamal et al. [30] for solving the SOP. This se-
quential algorithm includes a history-based domination technique
that stores information about previously explored sub-problems in
a history table and uses that information to speedup the process-
ing of similar sub-problems. That technique was a generalization
of the history-based domination technique that was originally in-
troduced by Shobaki and Wilken [47] for solving the compiler
instruction scheduling problem. Although this history technique is
an effective technique that greatly reduces the size of the search
tree, it makes parallelizing the algorithm much more challenging.
anch-and-bound algorithm with history-based domination and its application to
doi.org/10.1016/j.jpdc.2022.10.007

130

131

132

https://doi.org/10.1016/j.jpdc.2022.10.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:tagonggiatgul@ucdavis.edu
https://doi.org/10.1016/j.jpdc.2022.10.007

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.2 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
These challenges and the techniques that we have developed to
tackle them are discussed in Section 5.

What distinguishes parallel search algorithms like B&B from
other types of parallel computation is the possibility of achieving
super-linear speedup (also known as acceleration anomaly [34,16])
relative to the sequential algorithm, that is, a speedup ratio that is
greater than the number of parallel threads. Super-linear speedup
is possible in search algorithms, because the performance is highly
dependent on the search order, and the search order of the paral-
lel algorithm can be better than that of the sequential algorithm.
The search order has a high impact on performance, because the
best solution found so far is dependent on this order, and the de-
gree of pruning at any given point depends on the value of the
best solution at the point.

When history-based domination is used, super-linear speedup
becomes even more likely. Within the same time period, a paral-
lel algorithm can explore different sub-spaces simultaneously. This
does not only increase the chances of finding a better best so-
lution, but it also stores more diverse information in the history
table, thus increasing the chances of applying history-based prun-
ing. However, filling the history table at a faster rate makes it more
challenging to use the available space to store the most useful
information in the table. The contributions of this paper may be
summarized as:

1. We propose the first parallel B&B algorithm with history-based
domination. The algorithm includes three novel techniques
that we have developed as well as our experimentation-based
versions of two known techniques.

2. We apply the proposed algorithm to the SOP, which is an
NP-hard sequencing problem with precedence constraints, and
thus we provide insights into the understudied area of parallel
B&B algorithms for precedence-constrained sequencing prob-
lems.

3. We present a thorough experimental evaluation of the pro-
posed parallel algorithm on the whole SOPLIB and TSPLIB
benchmark suites. The results show that with our paralleliza-
tion techniques, super-linear speedup is not an anomaly; it
can be achieved on many instances. We report super-linear
speedup ratios that are much greater than the number of
threads, with the highest ratio being 366 on a 32-core pro-
cessor.

2. Previous work

The SOP was introduced by Escudero [17]. Various sequen-
tial algorithms using both heuristic and exact approaches have
been proposed for solving the SOP. Heuristic approaches use dif-
ferent techniques, including ant colony optimization [19,50,20],
particle swarm optimization [2], and the Lin-Kernighan-Helsgaun
algorithm [28]. On the other hand, exact approaches use vari-
ous methods such as the Lagrangian relaxation [18], cutting plane
[5,25], branch-and-cut [6,26], branch-and-bound [38,46,30], con-
straint programming [32], and dynamic programming [37,44].

Parallel algorithms have also been proposed for solving the SOP.
Guerriero and Mancini [27] propose a heuristic parallel rollout al-
gorithm. Exact parallel algorithms for the SOP are understudied.
The only work that we are aware of on exact parallel algorithms
for the SOP is the recent work of Salii and Sheka [45], who pro-
pose a hybrid algorithm combining dynamic programming with
a Morin-Marsten B&B scheme (DPBB). In contrast, our proposed
parallel algorithm is based on a pure B&B approach. Since our algo-
rithm does not use dynamic programming, it does not have a strict
memory restriction. Our history table management technique de-
scribed in Section 5.2 is an adaptive technique that is designed to
make the best use of available memory. To the best of our knowl-
2

edge, no previous parallel algorithm for solving the SOP using a
pure B&B approach has been proposed.

However, various parallel B&B algorithms have been proposed
for solving other optimization problems, such as the Traveling
Salesman Problem (TSP) [41,52,16], Maximum-Clique [35], 01-
Knapsack [31,33], Blocking Job Shop Scheduling [14], Optimal
Batch Plants Design [9], Quadratic Assignment [7,13,22], N-Queens
[22], and Flow-Shop Scheduling [22,15,24,11,23]. These algorithms
are run on different parallel architectures, including multiproces-
sors [41], processor networks [52,16], distributed/shared memory
parallel systems [8], multi-core CPUs [35,24,9], clusters [9], FPGAs
[15], and GPUs [9,23,33]. Some previous papers propose parallel
B&B algorithms on a hybrid platform with a combination of multi-
core CPUs and GPUs [11,22,14]. Bader et al. [7] discuss how the
design of parallel B&B algorithms is influenced by the nature of
the computational platform.

Gmys et al. [24] indicate that B&B can be parallelized in dif-
ferent ways, including parallelizing the tree search, parallelizing
child-node evaluation, and parallelizing lower bound computation.
Janakiram et al. [31] concurrently explore multiple search trees
that use a different selection operator.

A survey of early parallel B&B algorithms was conducted by
Gendron and Crainic [21]. In a later paper, Crainic et al. [13]
present various parallelization strategies for B&B and review
frameworks that help implement these strategies. A more recent
survey of these frameworks and other multi-core CPU B&B ap-
proaches is provided by Gmys [22]. These frameworks ease the
development but cannot provide the high performance that cus-
tom algorithms achieve as indicated by Herrera et al. [29].

Previous work on parallel B&B algorithms for precedence-
constrained problems like the SOP is quite limited. Among the
above-mentioned algorithms, only Dabah et al. [14] propose a par-
allel B&B approach for a precedence-constrained problem, which is
Blocking Job Shop Scheduling.

Anderson et al. [1] use tree estimation to develop a restart
technique for achieving a better search order in B&B. However,
the work of Anderson et al. was within a sequential algorithm.
Archibald et al. [4] propose a parallel restart algorithm that restarts
the search from the beginning if no progress has been made.
Archibald et al. [3] also propose a technique for avoiding a poor
parallel search order by forcing a sequential ordering on a thread.
Chu et al. [12] propose a parallel restart algorithm that focuses
the search on the most promising sub-spaces. In Section 4.2 of
the current paper, we describe a parallel restart algorithm that uti-
lizes multiple threads to balance focusing the search on the most
promising sub-spaces with exploring new sub-spaces.

Morrison et al. [40] provide a list of B&B approaches that
use memory-based and nonmemory-based dominance relations.
Tomazella and Nagano [51] provide a list of dominance rules used
in B&B algorithms for flowshop scheduling problems. Those tech-
niques were used in sequential B&B algorithms. In the current
paper, we present a parallel version of the history-based domina-
tion technique proposed by Shobaki and Jamal [46].

3. Basic algorithm description

3.1. Problem description

An instance of the Sequential Ordering Problem (SOP) consists
of a cost graph G = (V , E) and a precedence graph P = (V , R) de-
fined on the same set of vertices V , as well as a start vertex s and
a final vertex f that both belong to V .

The cost graph is a complete directed weighted graph G =

(V , E) in which each edge (i, j) in E is assigned a weight w(i, j).
A path in the graph is a sequence of edges from E . The cost of a
path is the sum of the weights of the edges that constitute that

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.3 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Fig. 1. Example SOP instance.

path. A Hamiltonian path is a path that visits every vertex in the
graph exactly once. A Hamiltonian path is guaranteed to exist in a
complete graph.

The precedence graph P = (V , R) is a directed graph in which
an edge (x, y) in R indicates that vertex x must appear before ver-
tex y in any feasible path. If the precedence constraints in P imply
that vertex n cannot appear immediately after vertex m in any fea-
sible path, the weight of edge (m,n) in G will be irrelevant, and we
follow the convention of setting this weight to −1.

The SOP is the problem of finding a minimum-cost Hamilto-
nian path in G that starts with s, ends with f , and satisfies the
precedence constraints imposed by P .

A small example of a SOP instance is shown in Fig. 1, includ-
ing the cost graph (Fig. 1a) and the precedence graph (Fig. 1b).
Since in this instance, the edge weight is the same in either direc-
tion (w(i, j) =w(j, i) for every i and j), the graph is drawn as an
undirected graph. Assuming that the start vertex is A and the fi-
nal vertex is D, there will be only two feasible Hamiltonian paths,
namely 〈A, B, C, D〉 of cost 15, and 〈A, C, B, D〉 of cost 21. There-
fore, the solution to this SOP instance is 〈A, B, C, D〉, because it is
the feasible Hamiltonian path with the lowest cost.

3.2. Sequential algorithm summary

The proposed parallel algorithm is based on the sequential
B&B algorithm that was originally proposed by Shobaki and Jamal
[46] and later enhanced by Jamal et al. [30]. The enhanced algo-
rithm uses a lower bound (LB) based on relaxing the SOP into a
Minimum-Cost Perfect Matching (MCPM) problem and then solv-
ing it using the dynamic Hungarian algorithm [36].

The sequential algorithm used in our work is based on the en-
hanced B&B algorithm proposed by Jamal et al. with Best-First
Search (BestFS) [43] used to explore the solution space. BestFS is
used because it experimentally gave better results for the SOP. The
sequential algorithm is summarized in this sub-section. The details
may be found in the original papers [46,30].

The sequential algorithm is based on a B&B approach that
exhaustively explores the solution space by constructing an enu-
meration tree. Each leaf in the tree represents a complete feasible
solution, and each internal node represents a partial solution. A
solution is constructed incrementally by adding one vertex to the
current partial solution. At each tree node, a partial path has been
constructed by selecting a sequence of vertices. The subproblem to
be solved at that node is finding the optimal order for the remain-
ing vertices. The LBs of all possible next vertices at that node are
computed and the vertex with the lowest LB is added to the cur-
rent partial path. The feasible solutions in a subproblem’s solution
space (subspace) are the leaves of the sub-tree below that node. In
this paper, tree nodes, subproblems, and subspaces are used inter-
changeably.

To speed up the search, pruning techniques are applied at each
node. If a pruning technique indicates that no better solution than
the current best solution can be found below the current node,
the algorithm backtracks to the previous node, thus pruning the
sub-tree below the current node.
3

The two pruning techniques used in the sequential B&B algo-
rithm are history-based domination and the MCPM LB. History
domination stores information about previously visited nodes in a
history table and then uses them to quickly process similar nodes
that are visited later. Two tree nodes are similar if their partial so-
lutions (prefix paths) are permutations of the same set of vertices
and they end with the same vertex. For example, a tree node with
a prefix path 〈A, B, C, D〉 is similar to a tree node with a prefix
path 〈A, C, B, D〉, because the nodes’ partial paths are two differ-
ent permutations of the same set of vertices {A, B, C, D} and they
both end with Vertex D . The history table is implemented as a
hash table. The second pruning technique is relaxing the SOP into
a MCPM problem and then solving it using the dynamic Hungarian
algorithm that runs in O (n2) time [36]. History domination is al-
ways applied before the dynamic Hungarian algorithm, because it
is much faster.

3.3. Parallel algorithm overview

The proposed parallel B&B algorithm is a pool-based algorithm,
in which Breadth-First-Search (BFS) is initially used to split the
problem into smaller subproblems that are stored in a global pool.
The subproblems (tree nodes) in the global pool are then assigned
to threads using the scheme described in Section 3.4. Each thread
explores the sub-tree below its assigned tree node in a BestFS
order as in the sequential algorithm. When a thread completes ex-
ploring its assigned tree node, it is assigned a new node from the
global pool. If the global pool is empty, a thread that has com-
pleted exploring its assigned node will steal part of the load of an
active thread. The details are described in the next subsections.

3.4. Global-pool initial assignment

As mentioned above, BFS is used to split the tree nodes and
store them in a global pool. First, the children of the root node
(Depth 1) are placed in the pool. If the number of children is less
than the number of threads, all the children will be split, and
the nodes in the global pool will then be the root node’s grand-
children (Depth 2). Splitting continues until we reach a depth at
which the number of nodes in the pool is greater than or equal to
the number of threads. Splitting is done for all the nodes at each
depth to ensure that all the nodes in the global pool are always at
the same depth.

Global pool nodes are assigned to threads in a manner that
ensures diversity [35]. By diversity, we mean covering as many pri-
mary subspaces as possible and distributing the threads among the
covered primary subspaces as fairly as possible. A primary sub-
space is a subspace that corresponds to an immediate child of the
root node. If the number of threads is greater than the number of
primary subspaces, threads are divided among primary subspaces
as fairly as possible. Within each primary subspace, nodes are as-
signed to threads in ascending LB order. Nodes with smaller LBs
are assigned first, because a smaller LB for a given node indicates
that the subspace below that node is more promising.

Hence, our initial node assignment treats diversity as a primary
criterion and LBs as a secondary criterion. We have experimented
with both treating diversity as a primary criterion and treating the
LB as a primary criterion, and the results were, on average, about
the same. Two examples of tree splitting and global-pool initial
assignment with four threads are shown in Fig. 2. Each leaf node
is labeled by its LB.

In Fig. 1.a, the root node is initially split into five nodes: Nodes
A through E. Since the number of nodes at that depth is greater
than the number of threads, no further splitting is needed. Fur-
thermore, since there are four threads and five primary subspaces,
the most promising subspaces (based on LBs) will be assigned to

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.4 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 2. Node splitting and global-pool initial assignment example.
threads, and the subspace of Node C, which has the highest LB,
will not be assigned to any thread at that point.

In Fig. 1.b, the initial splitting only gives two nodes. Therefore,
all the nodes at Depth 1 are split to produce five nodes at Depth
2. Since at that depth, the number of nodes is greater than the
number of threads, no further splitting is needed. With two pri-
mary subspaces and four threads, each primary supspace will be
covered by two threads. Within each primary subspace, nodes are
assigned in ascending LB order. The first primary subspace (the
sub-tree below Node A) has two nodes, and these are assigned to
Threads 1 and 2. The second primary subspace (the sub-tree below
Node B) has three nodes. The nodes with the smaller LBs (Nodes
E and F) are assigned to Threads 3 and 4. Node G, which has the
largest LB in that subspace, will not be assigned to a thread at that
point. Nodes that are not initially assigned to threads remain in
the global pool to be assigned later to the threads that complete
exploring their assigned subspaces.

4. Load balancing and reassignment

4.1. Work stealing

Balancing the load among threads is necessary for utilizing all
threads, and thus maximizing the speedup delivered by a parallel
algorithm. Load balancing is particularly challenging in B&B, be-
cause the time taken by a thread to process a given subspace (tree
node) depends on the number of feasible solutions (tree leaves) in
that subspace and the degree of pruning that takes place while ex-
ploring it. The number of feasible solutions depends on precedence
constraints, and the problem of counting the number of feasible
solutions in the presence of precedence constraints is intractable
[10]. The degree of pruning depends on the structure of the as-
signed subproblem, the quality of the solutions in its subspace, the
search order and the effectiveness of the pruning techniques. Due
to this combination of factors, it is not possible to predict the time
that a thread will take to process a given tree node. Some threads
may complete much faster than others. To address this problem,
we have developed a dynamic load balancing technique.

On a high level, our approach to load balancing is based on
the work-stealing strategy proposed by McCreesh and Prosser [35].
However, the low-level algorithmic details are based on our exper-
imentation with alternative implementation methods. The details
are as follows.

If a thread completes processing its assigned node, it becomes
temporarily idle. An idle thread checks the global pool. If the global
pool is non-empty, one of the nodes in the pool will be assigned
to the idle thread. If the global pool is empty, the idle thread will
steal work from one of the active threads.
4

Work stealing is implemented in our algorithm by maintaining
a local pool of unprocessed tree nodes in each thread. Each thread’s
local pool holds the nodes that have been visited but have not
been processed yet. Recall that within each thread, nodes are pro-
cessed in a BestFS manner. At a given tree node, the LBs of that
node’s children are computed, and the child with the lowest LB
(the most promising child) is explored first. The rest of the chil-
dren are inserted into the thread’s local pool to be used for work
stealing.

When an idle thread requests work stealing, it steals work from
a victim thread. A victim thread is randomly selected from the ac-
tive threads that have non-empty local pools. We experimented
with multiple schemes for selecting the victim thread, and ran-
dom selection gave the best results. Once the victim thread has
been selected, the idle thread takes a certain number of nodes
from the victim thread’s local pool. This number is computed us-
ing the formula k(1 − p), where k is the number of available
nodes in the victim thread’s local pool, and p is the density of
precedence constraints in the given instance. When the density
of precedence constraints is higher, threads are likely to com-
plete exploring stolen nodes faster, and thus more threads are
likely to become idle within a given period of time. Therefeore,
the precedence-constriant density is used in the above equation to
limit the number of nodes stolen by a single idle thread and make
it possible to satisfy the needs of more idle threads.

Ideally, the stolen nodes should have a sufficiently high load to
keep the stealing thread active for a long period of time and avoid
invoking work stealing too frequently. For the reasons explained
above, it is not possible to precisely estimate the amount of time
that will be taken to process a given node. Therefore, we chose
to use the depth of a tree node as a simple indicator of the time
needed to process a node, and a node is inserted into the local
pool only if its depth is less than a certain threshold. The threshold
is chosen based on experimentation.

The search is complete when the global pool and all local pools
are empty, and when every thread has completely explored its as-
signed tree nodes, including unstolen nodes in its local pool.

4.2. Search order and thread restart

The order in which a B&B algorithm searches the solution space
is an important factor that greatly affects the search speed. For
an NP-hard problem, we shouldn’t expect to find a perfect search
order. However, some heuristics may be used to achieve a good
search order that causes the algorithm to visit better subspaces
earlier. In our sequential algorithm, the heuristic used to determine
the search order is the MCPM LB.

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.5 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
If the search order of a parallel B&B algorithm is better than
the sequential search order, super-linear speedup may be achieved,
while if the parallel search order is worse, the speedup will be
low. In the worst case, a poor parallel search order may cause the
parallel algorithm to run slower that than the sequential algorithm
(detrimental anomaly [34,16]).

The search order of our parallel algorithm is inherently differ-
ent than that of the sequential algorithm, because the sequential
algorithm strictly uses BestFS, while the parallel algorithm uses a
combination of BFS and BestFS and includes a work-stealing tech-
nique that reassigns nodes to threads. Initially, the search order of
the parallel algorithm is determined by the scheme used to assign
global-pool nodes to threads.

Our experimental investigation has shown that a good scheme
for assigning global-pool nodes to threads is not enough for
achieving the best search order. A dynamic and adaptive technique
is needed to guide the search. To maximize the benefit from par-
allelization, the parallel algorithm should intelligently take advan-
tage of the information that becomes available about how promis-
ing each subspace is. Focusing the search on the most promising
subspaces can greatly improve the parallel search order, and thus
increase the chances of achieving super-linear speedup. In addition
to focusing on the most promising subspaces known so far, the
parallel algorithm should use some threads to explore new sub-
spaces, as that may lead to discovering more promising subspaces.

To accomplish this, we designed a dynamic thread restart tech-
nique that uses multiple threads to balance the exploitation of
promisingness information and the exploration of new subspaces.
Our technique is, to some extent, similar to the restart technique
proposed by Chu et al. [12]. However, the technique of Chu et al.
uses different criteria for reassigning loads to threads. Their criteria
are based on solution-density estimates and user-defined confi-
dence, while our criteria are based on the LBs and the number
of updates made to the global best solution.

Although our restart technique focuses on the most promis-
ing subspaces, it does not ignore other subspaces. It continues
to search other promising subspaces and also explores new sub-
spaces. Balancing exploitation and exploration is a unique feature
that distinguishes our algorithm from previous parallel combinato-
rial algorithms, including the algorithm of Chu et al. [12].

The proposed algorithm temporarily abandons non-promising
subspaces by moving the corresponding nodes back to the global
pool. Then, the algorithm assigns the threads which were process-
ing non-promising subspaces to either most promising subspaces
or new subspaces that have not been explored yet.

In the proposed restart algorithm, there are two modes of oper-
ation: the pre-update mode and the normal mode. The modes differ
in the way promising subspaces are identified. Initially, the algo-
rithm is in the pre-update node, and it switches to the normal
mode as soon as the first update is made to the global best solu-
tion.

In the pre-update mode, two global variables are used to track
the lowest LB in any active thread and the depth at which this LB
is found. The depth is updated whenever the same LB is found at
a greater depth. Then, the number of updates that a thread makes
to the depth of the lowest LB is used as a metric to measure how
promising a thread’s subspace is. The rational is that the LB of a
given subspace is a good indicator of how promising that subspace
is, and that a tighter LB is a stronger indicator of promisingness.
Since the LBs found at greater depths are tighter, finding the low-
est LB at a greater depth below a given node indicates a more
promising subspace below that node.

Once a thread makes an update to the global best solution, the
restart algorithm switches to the normal mode, in which the num-
ber of updates to the global best solution is used as the metric for
measuring how promising a thread’s sub-space is. Experimentally,
5

this metric has been found to be the best indicator of promising-
ness.

In both modes, the number of updates (either to the depth of
the lowest LB or to the global best solution) is measured within
a certain period of time, called the sampling period. Each period
defines a restart cycle. The search in the next restart cycle focuses
on the most promising subspaces in the current restart cycle by
assigning more threads to them.

In the pre-update mode, the threads assigned to the most
promising subspaces share the computation of the LB, while in
the normal mode, they share the search in those subspaces. This
was based on the experimental observation that in the pre-update
mode, the best use of parallelism is sharing the computation of the
LBs in the most promising subspaces.

In both modes, each thread is classified into one of the follow-
ing categories based on the number of updates that it made to
either the best solution or to the depth of the lowest LB in the
current sampling period.

Non-Promising: The thread did not make any update.
Promising: The thread made at least one update.
Most Promising: The thread is one of the top k threads in

terms of the number of updates made to the best solution or to
the depth of the lowest LB. Ties are broken in favor of the thread
that made the most recent update. Usually, the most promising
threads make multiple updates.

The parameter k is the number of most-promising subspaces
that the search will focus on in the next cycle. Experimentally, the
best results were achieved by setting k to four when the number
of threads is 32, to two when the number of threads is 16, and to
one when the number of threads is 8.

In the normal mode, promising threads continue to explore
their subspaces in the next cycle. The most promising threads
place part of their loads (some of the nodes that they have not
explored) in the global pool, and these nodes are labeled promis-
ing. So, the global pool will have promising nodes and unexplored
nodes (nodes that have never been assigned to threads).

Non-promising threads temporarily abandon their current nodes,
move the current contents of their local pools to the global pool,
and then take new nodes from the global pool. Some of the non-
promising threads are assigned to promising nodes from the global
pool, while the rest of the non-promising threads are assigned to
unexplored nodes. If the global pool does not have any promising
nodes, all non-promising threads will be assigned to unexplored
nodes. Experimentally, the best results were obtained by assigning
50% of the non-promising threads to promising nodes (exploita-
tion) and the other 50% to unexplored nodes (exploration).

Fig. 3 shows an example of thread restart in the normal mode.
In this example, the total number of threads is eight, and k is set to
one. The box representing each thread shows the number of global
solution updates that the thread made during the sampling period.
Threads 2, 4, 5, and 6 will be labeled “non-promising”, because
they did not make any updates to the global solution. Threads 1, 3,
and 8 will be labeled “promising”, because each of them made at
least one update, and Thread 7 will be labeled “most promising”,
because it ranks first in terms of the number of updates.

Thread 7 will then place part of its load in the global pool’s
“promising” section. Assuming 50% exploitation and 50% explo-
ration, two of the nonpromising threads (Threads 5 and 6) will be
assigned to the promising nodes shared by Thread 7, and the other
two (Threads 2 and 4) will be assigned to unexplored nodes from
the global pool. Threads 1, 3, and 8, which are labeled “promising”,
will continue to explore their current subspaces.

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.6 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 3. Thread restart example.
Fig. 4. Thread stop and resume example.

5. Parallelization of history domination

5.1. Thread stop/resume technique

When the enumeration tree is explored in parallel, multiple
threads may explore the same sub-tree below similar tree nodes,
which is redundant work that should be avoided if possible. Ide-
ally, only the sub-tree below the most dominant tree node (the
node with the lowest prefix cost) need to be explored. In real-
ity, however, this ideal goal cannot be achieved exactly. In this
subsection, we describe the algorithm that we have developed to
minimize the overlap in exploring similar subspaces.

An example is shown in Fig. 4. In this example, tree Nodes 3
and 9 are similar, because their partial paths (〈A, B, C〉 and 〈B, A,
C〉) are two different permutations of the same set of vertices (the
set {A, B, C}) and both partial paths end with the same vertex (ver-
tex C). Both Nodes 3 and 9 have the same sub-tree below them.
The objective is to explore this sub-tree only once, or at least, avoid
completely exploring it twice. In this case Node 9 dominates Node
3, because the prefix cost of Node 9 (the cost of partial path 〈B, A,
C〉) is less than the prefix cost of Node 3 (the cost of partial path
〈A, B, C〉). Suppose that Node 3 is assigned to Thread 1 and Node
9 is assigned to Thread 2. In general, we cannot control the order
in which Threads 1 and 2 are executed. So, both orders must be
considered.

First, assume that Thread 2 starts executing before Thread 1.
When Thread 1 starts executing, the sub-tree below Node 3 will
be considered for exploration. As part of that consideration, our
algorithm will search the history table for a node that is similar
to Node 3, and Node 9 will be found. Applying the domination
condition (comparing the prefix costs of Node 3 and Node 9) will
show that Node 9 dominates Node 3. In this case, the right action
to take is obvious. The sub-tree below a dominated node does not
need to be explored. Therefore, our parallel algorithm will simply
prune Node 3 and then assign a different node to Thread 1.
6

Now, assume that Thread 1 starts executing before Thread 2.
When Thread 2 starts executing, the algorithm will search the his-
tory table for a node that is similar to Node 9, and Node 3 will
be found. Applying the domination condition will show that the
current node (Node 9) dominates the history node (Node 3). The
right action in this case will depend on whether the exploration of
the sub-tree below the dominated node (Node 3) has been com-
pleted or is still active. If it is still active, our parallel algorithm
will stop Thread 1, because it is exploring a sub-tree below a dom-
inated tree node. Implementing this thread stopping is non-trivial.
It requires special data structures and low-level algorithmic details
that are described next.

Every entry in the history table has a flag that indicates
whether the exploration of the sub-tree below the correspond-
ing tree node has been completed or is still active. This flag is set
to active, when the algorithm starts exploring the sub-tree and is
changed to completed when the algorithm backtracks to that node
after exploring of all of its children. It should be noted that because
of the reassignment techniques described in the previous section,
different children may be explored by different threads, and this
further complicates the implementation.

The implementation requires an active-tree data structure that
links parents with their children even if they are processed by dif-
ferent threads. At a given point, a node is active if the sub-tree
below it is currently being explored by one or more threads. Each
active node has a link to the corresponding history entry along
with its exploration state (whether the sub-tree below it has been
fully explored). Due to work stealing, it is possible for the children
of an active node to be explored by different threads. So, the ac-
tive tree structure is used to update the history entry’s exploration
flag during the parallel exploration of the search tree.

A thread that is about to explore the sub-tree below a dominant
node (Node 9 in our example) sends a stop request if the history
entry of the dominated node is labeled active. The stop request
is stored in a stop-request buffer. Each stop request contains the
prefix of the history node (so that it can be found in the table)
and the latest prefix cost (the prefix cost of the dominant node
that is about to be explored).

Each active thread periodically checks the stop-request buffer
for a similar prefix. If a thread finds a stop request with a similar
prefix and a better prefix cost, it will invoke the stopping proce-
dure to stop exploring its current sub-tree. The stopping procedure
backtracks to the root of the sub-tree being explored (the domi-
nated node). It also involves checking the global and local pools
for any children of the dominated node and deleting them.

Stopping a thread that is exploring a dominated node is a pow-
erful technique that allows the algorithm to avoid unnecessary
exploration. However, stopping the exploration of the dominated
node is not enough to minimize redundancy. A more efficient al-
gorithm should take advantage of the pruning that has taken place
while exploring the sub-tree below the dominated node. Some or
all of that pruning may still be valid in the sub-tree below the
dominant node. If we can prove that every pruning that has taken
place below the dominated node is still valid below the dominant

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.7 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
node, the exploration of the dominant node may pick up from
where the exploration of the dominated node left off, instead of
re-exploring the whole sub-tree from scratch.

In Fig. 4, the prefix cost of the dominant node (Node 9) is bet-
ter than the prefix cost of the dominated node (Node 3) by 2
(100–98). This implies that every LB in the sub-tree below Node
9 is less than the LB of the corresponding node in the sub-tree be-
low Node 3 by 2. So, if the LBs of Nodes 4 and 5 are 705 and 701
respectively, the LBs of Nodes 10 and 11 will be 703 and 699, re-
spectively. Assuming that the global best cost when Nodes 4 and 5
were explored was 700, whether Nodes 10 and 11 can be pruned
will depend on the global best cost when Nodes 10 and 11 are ex-
plored. If that best cost is 699 or less, both Nodes 10 an 11 can
be pruned, while if that best cost remains 700, Node 10 can be
pruned but Node 11 cannot.

Keeping track of the LBs of all the nodes that have been ex-
plored below the dominated node would require an excessive
amount of memory, because the number of nodes in a sub-tree
is an exponential function of the sub-tree’s height. However, stor-
ing the lowest LB that was used in any pruning below a history
node makes it possible to reuse pruning information with minimal
additional memory. Every LB-based pruning that has taken place
in the sub-tree below the dominated node will still be valid in
the sub-tree below the dominant node if the following condition
is satisfied:

LBmin − imp ≥ best

where LBmin is the minimum LB used for any pruning below the
dominated node, imp is the prefix cost improvement (prefix cost
of the dominated node minus prefix cost of the dominant node),
best is the current best cost. This technique is referred to as the
thread resume technique. To implement this technique, the lowest
LB used for pruning is propagated up the active tree and stored in
the history entries for the sub-tree nodes.

The thread that is about to explore the dominant node sends a
resume request and waits until it receives information about the
current position of the exploration of the dominated node. The
current position is represented by the current node’s partial solu-
tion. Once this information has been received, the waiting thread
can use it to prune any redundant sub-trees until its current par-
tial solution matches the stopped thread’s partial solution.

5.2. History table memory management

The history table is implemented as an array of buckets. Each
bucket has a list of history entries, and each history entry is a
pair that consists of a key and a history node. The history node
contains atomic data including the cost of the corresponding prefix
path, the LB at that node, and the ID of the thread that is currently
exploring the sub-tree below that node. The main data structures
used to implement the history table are shown in Fig. 5.

When many threads explore the solution space in parallel,
nodes will be inserted in the history table at a faster rate. This
has the advantage of providing more history information, and thus
enabling more pruning. However, this advantage comes at the cost
of increasing the table size at a faster rate, and thus exhausting
memory in less time. Moreover, adding more entries to the history
table results in more collisions, and that slows the search.

Ideally, the objective is using the available memory to store the
most useful entries in the history table. A history table entry is
a previously explored tree node. Two factors that determine the
usefullness of an explored tree node are the node’s depth and the
size of the sub-tree that was enumerated below that node. A shal-
lower node is more useful, because it makes it possible to prune
a similar node earlier. A node with a larger sub-tree below it is
7

Fig. 5. Simple illustration of the history table data structures.

more useful, because pruning based on that node will save more
computation. To maximize useful entries in the history table, the
algorithm sets a restriction on the nodes inserted into the history
table after a certain percentage of the available memory has been
used. Experimentally, the setting that gave the best results was 80%
of available memory. When that percentage is used, the algorithm
inserts a node in the history table only if the depth of the explored
sub-tree below it is greater than zero. When available memory is
used completely, no more nodes are inserted into the history table.

5.3. Memory access and protection

The proposed parallel algorithm uses four main shared data
structures, namely, the global pool, the global best solution found
so far, the history table, and a local pool for each thread. These
data structures are implemented using the C++ standard library.
Locks and atomic variables from the C++ standard multi-threading
library are used to synchronize access to these shared data struc-
tures, and various techniques are implemented to minimize the
waiting time on locks as described below.

The global pool is locked during reading and writing to avoid
conflicts when multiple threads try to access it at the same time.
The local pool of each thread is also read-protected and write-
protected during work stealing.

The best solution found so far is only write-protected, since
reading an older value of the best solution does not affect correct-
ness and only minimally affects performance. If a thread reads an
older value of the best cost found so far, it may miss a pruning op-
portunity at the current node, but it will, most likely, make up for
the missed opportunity within a short period of time by reading
the updated value at the next node. Since reading the best solu-
tion occurs much more frequently than writing (updating), limiting
locking to write accesses can give a significant performance gain.

The history table is both read-protected and write-protected. In
the history table, every x adjacent buckets are protected by a lock
during reading (history node retrieval) and writing (history node
insertion), where x is a parameter that is currently set to 10. An

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.8 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 1
Instance classification.

Benchmark
Suite

Total
Instances

Easy
Instances

Medium
Instances

Hard
Instances

SOPLIB 48 13 19 16
TSPLIB 41 12 5 24

entry in the table is implemented as an atomic structure rather
than a lock-protected structure to reduce the synchronization over-
head during concurrent reads to the entry. This also reduces the
overhead of acquiring locks via system calls. In addition to atomic
structures, we have experimented with basic locks and reader-
writer locks, and atomic structures gave the best results.

To minimize the system-call overhead, history table entries are
allocated in blocks instead of allocating one entry at a time. This
block-based allocation is managed by a memory allocation module,
which is a small handwritten software layer that manages access
to dynamically allocated memory with minimal system calls. This
module allocates blocks of frequently allocated objects, such as his-
tory entries, and returns one object from that block to a requesting
thread. When the current block is used completely, the memory
allocation module allocates a new block, and so on. In the paral-
lel algorithm, each thread has its own memory allocation module
instead of having one global module for the entire program. This
decision was made to minimize the synchronization cost. A shared
global allocation module must be protected with a lock, and the
time spent waiting on that lock may cause a significant perfor-
mance degradation.

6. Experimental results

6.1. Experimental setup

The proposed parallel algorithm was tested on both the TSPLIB
[42] and the SOPLIB [39] benchmark suites. Two different ma-
chines were used: the main machine that is owned by our group
and has a 32-core AMD Threadripper 2990WX processor with
128 GB of memory and an AWS machine (c6g.8xlarge) that has
a 32-core Graviton 2 ARM processor with 64 GB of memory. The
operating system on both machines is Ubuntu 20.04.

The AWS machine has faster memory, while the main machine
has larger memory capacity. The AWS machine was used for the
shorter tests that measure speedup, while the main machine was
used for the longer tests that measure cost improvements. As ex-
plained in Subsection 5.2, when a parallel B&B algorithm with
history domination is run for a longer period of time, more mem-
ory is needed due to the growth of the history table.

The TSPLIB and SOPLIB instances were classified into easy,
medium, and hard based on the sequential algorithm’s running
time. An easy instance is an instance that the sequential algo-
rithm solves within 10 seconds. A medium-difficulty instance is
an instance that the sequential algorithm solves in more than 10
seconds but in less than an hour. An instance that the sequen-
tial algorithm cannot solve within an hour is classified as a hard
instance. Easy instances are not considered in this paper, as a par-
allel algorithm is not needed to solve these instances. The number
of instances that belong to each difficulty category is shown in Ta-
ble 1. The instances that the parallel algorithm could not solve in
an hour on the AWS machine were run on the main machine using
a time limit of five hours.

On both machines, the depth constraint for inserting nodes into
the history table was triggered once 80% of memory is used. The
sampling period for the restart algorithm was set to 200 seconds
for TSPLIB and 25 seconds for SOPLIB. The depth threshold for in-
serting nodes into the local pool was set to 250 levels for SOPLIB
8

Table 2
Speedup of medium-difficulty instances.

SOPLIB 8 Threads 16 Threads 32 Threads

Geo-mean speedup 27.8 42.9 71.9
Maximum speedup 88.9 187.9 366.3
Minimum speedup 5.6 9.7 15.8
Super-linear speedups 17 16 13

TSPLIB 8 Threads 16 Threads 32 Threads

Geo-mean speedup 7.3 13.4 19.5
Maximum speedup 27.1 61.3 116.2
Minimum speedup 3.7 6.4 7.1
Super-linear speedups 1 1 1

and 150 levels for TSPLIB. We also note that only the thread stop-
ping part of the algorithm described in Section 5.1 was used in the
experimental evaluation, as the thread resume part did not work
effectively due to the high overhead of tracking LBs.

6.2. Medium-difficulty instances

The proposed parallel algorithm was applied to the medium-
difficulty instances in SOPLIB and TSPLIB using 8, 16, and 32
threads with a time limit of one hour on the AWS machine. The
speedup delivered by the proposed parallel algorithm relative to
the sequential algorithm is shown in Table 2.

On SOPLIB, the geometric-mean speedup of the parallel algo-
rithm relative to the sequential algorithm is super-linear for any
number of threads. For example, with 32 threads, the geo-mean
speedup across the medium SOPLIB instances is 71.9, which is
super-linear, and the maximum speedup is 366.3. These results
confirm the hypothesis that a parallel algorithm with history dom-
ination and a dynamic restart technique can deliver super-linear
speedup on many instances. Out of 19 medium SOPLIB instances,
superlinear speedup was achieved on 13 instances with 32 threads,
on 16 instances with 16 threads, and on 17 instances with 8
threads.

The results in Table 2 show that there were some instances
on which the speedup was lower than expected. For example,
the lowest speedup with 32 threads is 15.8, which is significant
but much smaller than the number of threads. This is primarily
attributed to the search order. As explained in Section 4.2, it is un-
likely to find a way of ensuring that the parallel search order is
always at least as good as the sequential search order.

Comparing the geometric-mean speedup for the different num-
bers of threads shows that the proposed algorithm scales up very
well when the number of threads is increased. The geometric-
mean speedup is 27.8 with 8 threads, 42.9 with 16 threads, and
71.9 with 32 threads. The increase in the geometric-mean speedup
is not perfectly proportional to the number of threads, because the
overhead of our parallelization techniques increases as the number
of threads is increased. For example, when the number of threads
is increased, more threads will be requesting work stealing and
thread restart. As a result, more time will be spent handling these
requests and the threads will be spending more time waiting on
the locks that protect shared variables.

The speedup ratios for the medium-difficulty TSPLIB instances
in Table 2 are not as high as the SOPLIB speedup ratios. However,
the TSPLIB speedup ratios scale up better than the SOPLIB speedup
ratios, and superlinear speedup is achieved on one instance with
32, 16, and 8 threads.

6.3. Hard instances

The proposed algorithm was applied to the hard SOPLIB and
TSPLIB instances using 8, 16, and 32 threads. The Speedup mea-
surement tests with a one-hour time limit were run on the AWS

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.9 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 6. Cumulative plots for the instances that are solved within an hour.
machine, while the cost-comparison tests and the 5-hour tests
were run on the main machine. Recall that the AWS machine has
faster memory, while the main machine has larger memory capac-
ity. Table 3 shows the number of instances solved in each case.

With a time limit of one hour, the parallel algorithm with 32
threads solved 10 out of 16 hard SOPLIB instances and two out
of 24 hard TSPLIB instances. Recall that these hard instances are
the instances that the sequential algorithm could not solve on the
same machine within an hour.

Fig. 6 shows the cumulative plots for all the instances (includ-
ing medium and hard instances) that are solved optimally by the
parallel algorithm within an hour. For example, the SOPLIB plot
shows that the parallel algorithm solves much more instances than
the sequential algorithm within the first 28 seconds. At the end of
the one-hour period, the parallel algorithm solves 12 more SOPLIB
instances than the sequential algorithm.

To further test the power of the proposed parallel algorithm,
the hard instances that the parallel algorithm could not solve with
32-threads within an hour on the AWS machine were run on the
main machine with a time limit of five hours. The results are
shown in the last row in Table 3, with a five-hour time limit,
the parallel algorithm solved 14 out of 16 hard SOPLIB instances
and four out of 24 hard TSPLIB instances. Two SOPLIB instances
and 20 TSPLIB instances remain unsolved. The number of unsolved
TSPLIB instances is significantly greater than the number of un-
solved SOPLIB instances, because most hard TSPLIB instances are
less precedence constrained, and thus have larger solution spaces
to explore.

Table 4 shows the speedup delivered by the parallel algorithm
relative to the sequential algorithm with a time limit of one hour.
Since, by definition, the sequential algorithm times out on hard
instances, only a LB on the speedup can be computed for these in-
stances. The ratio between the one-hour time limit and the parallel
execution time is a LB on the actual speedup, because the sequen-
tial solution time is not known exactly but is certainly greater than
the time limit.

On SOPLIB, the geometric-mean speedup LB is 4.5 with 8
threads, 8.4 with 16 threads, and 15.6 with 32 threads. This shows
that the algorithm scales up very well on these instances. The
highest speedup LB is 269.9, which shows the great potential of
the proposed parallel algorithm.

On TSPLIB, the geometric-mean speedup ratios are significantly
higher than the SOPLIB ratios, and the scaling is excellent. The
largest speedup on the hard TSPLIB instances with 32 threads is
49.7, which is super-linear.

It is noted in Table 3 that some hard instances are not solved
to optimality by the proposed algorithm. To study the effect of the
parallel algorithm on these unsolved instances, we compared the
final cost computed by the parallel algorithm with that computed
9

Table 3
Hard instances solved by the parallel algorithm.

SOPLIB TSPLIB

Total hard instances 16 24
Solved by 8 threads in one hour 6 2
Solved by 16 threads in one hour 8 2
Solved by 32 threads in one hour 10 2
Solved by 32 threads in five hours 14 4

Table 4
Speedup lower bounds on hard instances.

SOPLIB 8 Threads 16 Threads 32 Threads

Geo-mean speedup LB 4.5 8.4 15.6
Maximum speedup LB 233.6 217.1 269.9
Minimum speedup LB 1.1 1.9 3.7
Super-linear speedups 1 1 1

TSPLIB 8 Threads 16 Threads 32 Threads

Geo-mean speedup LB 7.3 16.9 31.6
Maximum speedup LB 10.7 27.1 49.7
Minimum speedup LB 5.0 10.5 20.0
Super-linear speedups 1 1 1

Table 5
Effect of the parallel algorithm on timed out hard instances.

Instance
Group

Instances
Studied

Instances
Improved

Instances
Regressed

Instances with
No Improvement

SOPLIB 6 5 1 0
TSPLIB 21 20 0 1

by the sequential algorithm. Tables 5 and 6 show the results of this
comparison for the hard instances that the parallel algorithm with
32 threads could not solve within an hour.

The results in Table 5 show that although the parallel algorithm
times out on 27 hard instances, it finds better solutions than the
sequential algorithm on 25 instances. Table 6 shows that on SO-
PLIB, the average improvement is 14.5%, and the best improvement
on any instance is 28.6%, while on TSPLIB, the average improve-
ment is 4.8%, and the best improvement is 15.5%.

A slight regression of 0.4% is seen on one SOPLIB instance. This
is attributed to the search order. As explained in Section 4.2, our
restart algorithm is designed to achieve a better search order than
the sequential algorithm, but, due to the heuristic nature of the
algorithm, achieving a better search order is not guaranteed in all
cases. These results show that a better search order is achieved on
most but not all instances.

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.10 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 6
Cost improvement by the parallel algorithm on timed out hard instances.

Instance Group Avg Cost
Improvement [%]

Max Cost
Improvement [%]

Min Cost
Improvement [%]

SOPLIB 14.5 28.6 −0.4
TSPLIB 4.8 15.5 0.0

Table 7
Random variation in the solution times of medium instances.

Instance
Group

Random Variation
in Geo-mean [%]

Highest Random
Variation [%]

Lowest Random
Variation [%]

SOPLIB 3.4 22.0 0.1
TSPLIB 1.1 14.4 1.1

Table 8
Effect of thread restart on the speedup of medium SOPLIB instances.

SOPLIB Restart
Enabled

Restart
Disabled

Speedup
Improvement

Instances studied 6 6
Geo-mean speedup 21.9 14.5 51.0%
Maximum speedup 46.3 18.7 147.5%
Minimum speedup 15.8 7.8 102.6%

6.4. Random variation

In this sub-section, we study random variation in the proposed
algorithm’s solution time. Random variation is inherent to parallel
algorithms, due to race conditions among threads and operation
system intervention. To measure the amount of random variation
in the solution times of the proposed algorithm, the algorithm
with 32 threads was applied to the medium SOPLIB and TSPLIB
instances 3 times on the AWS machine. Table 7 shows the per-
centage random variation in aggregate (the geo-mean) and at the
instance level (the highest and lowest percentage variation on any
instance). The percentage random variation is defined as the dif-
ference between the highest reading and the lowest reading as a
percentage of the lowest reading.

At the instance level, the maximum random variation on any
instance (the worst case) is 22.0%. In aggregate, random variation
in the geo-mean is 3.4% for SOPLIB and 1.1% for TSPLIB. Random
variation in the geo-mean is limited because random variations on
individual instances tend to average out (positive variations can-
cel negative variations). It is important to emphasize here that the
amount of random variation in the results is so limited that all the
super-linear speedups reported in this paper would still be ob-
tained even if the test was repeated many times.

6.5. Effect of thread restart

To test the effectiveness of the thread restart technique de-
scribed in Section 4.2, we applied the proposed algorithm with
thread restart disabled to two sets of instances. The first set is the
set of medium-difficulty SOPLIB instances on which thread restart
is activated, and the second set is the set of hard instances that
the parallel algorithm could not close in an hour. In this test, we
used 32 threads and a time limit of one hour.

Table 8 shows the speedup delivered by the parallel algo-
rithm relative to the sequential algorithm with and without thread
restart on the studied medium SOPLIB instances. The results show
that enabling the thread restart technique increases the geometric-
mean speedup on these instances by 51.0%, the maximum speedup
by 147.5% and the minimum speedup by 102.6%.

Tables 9 and 10 show the effect of the thread restart tech-
nique on the hard instances that the parallel algorithm could not
close within an hour. Table 9 shows that the thread restart tech-
10
Table 9
Effect of thread restart on timed out hard instances.

Instance
Group

Instances
Studied

Instances
Improved

Instances
Regressed

Instances with
No Improvement

SOPLIB 6 3 2 1
TSPLIB 21 14 5 2

Table 10
Effect of thread restart on the final cost of timed out hard instances.

Instance
Group

Avg Cost
Improvement [%]

Max Cost
Improvement [%]

Min Cost
Improvement [%]

SOPLIB 6.7 16.3 −0.5
TSPLIB 0.7 8.4 −5.0

Table 11
Effect of thread stop on the speedup of medium instances.

SOPLIB Stop Enabled Stop Disabled Speedup Imp

Geo-mean speedup 71.9 42.9 67.6%
Maximum speedup 366.3 112.3 226.2%
Minimum speedup 15.8 14.1 12.1%

TSPLIB Stop Enabled Stop Disabled Speedup Imp

Geo-mean speedup 19.5 18.7 4.3%
Maximum speedup 116.2 84.7 37.2%
Minimum speedup 7.1 7.1 0%

nique improved the final cost for a total of 17 out of 27 timed out
hard instances. Seven instances were negatively affected by the al-
gorithm, while three instances were not affected. Regressions on
some instances are unavoidable due to the heuristic nature of the
technique. As explained earlier, it is possible to find a heuristic
technique that gives a better search order in most cases, but it is
unlikely to find a technique that gives a better search order in all
cases.

The cost improvements achieved when the thread restart tech-
nique is enabled are shown in Table 10. The results in this table
show that the thread restart technique produces better final costs
on average. The average cost improvement is 6.7% on SOPLIB and
0.7% on TSPLIB. The best improvement is 16.3% on SOPLIB and 8.4%
on TSPLIB.

6.6. Effect of thread stop

To test the effectiveness of the thread stop technique described
in Section 5.1, the parallel algorithm with 32 threads and a one-
hour time limit was applied to all the medium-difficulty instances
with thread stop disabled. Table 11 shows the speedup delivered
by the parallel algorithm relative to the sequential algorithm on
the medium instances in SOPLIB and TSPLIB with and without
thread stop. The last column in each table shows the percentage
improvement in speedup when thread stop is enabled.

On SOPLIB, enabling the thread stop technique increases the
geometric-mean speedup by 67.6% and increases the highest
speedup by 226.2%. On TSPLIB, enabling thread stop increases
the geometric-mean speedup by 4.3% and increases the highest
speedup by 37.2%. These results clearly show the effectiveness of
the thread stop algorithm.

6.7. Optimality proving vs solution improving

To test the optimality-proving performance, as opposed to the
solution improving performance, of the proposed algorithm, we
ran a test on the medium-difficulty instances with the optimal
solution fed as an initial solution into the sequential and the par-
allel algorithm. Table 12 shows the improvements made by the

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.11 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 12
Improvement with an optimal initial solution.

SOPLIB Geo-mean Max Min

Improvement
Solution Time 45.6 140.4 10.0
Enumerated Nodes 9.9 46.9 1.0
Node Processing Speed 4.6 21.0 0.2

TSPLIB Geo-mean Max Min

Improvement
Solution Time 21.0 59.5 8.9
Enumerated Nodes 1.0 1.7 0.8
Node Processing Speed 21.5 36.1 10.8

parallel algorithm with 32 threads relative to the sequential al-
gorithm in three different metrics: the total solution time, the
number of enumerated nodes, and the node processing speed (de-
fined as nodes processed per second). The improvements in the
table are shown as ratios (sequential-to-parallel ratio for the first
two metrics where smaller is better, and parallel-to-sequential ra-
tio for the third metric where larger is better). The experiment was
performed on the AWS machine.

Overall, the results in Table 12 show that the proposed algo-
rithm delivers significant improvements relative to the sequential
algorithm even when the initial solution is optimal in both cases
(parallel and sequential). For example, on average, the parallel al-
gorithm proved the optimality of the initial solution 45.6 times
faster than the sequential algorithm on the SOPLIB instances. Some
speedup comes from the search order, but significant improve-
ment in node processing speed is also achieved. On average, the
improvement in the total solution time is approximately equal to
the product of the improvement in enumerated nodes and the im-
provement in node processing speed.

It is important to note that when the parallel algorithm makes
a greater improvement (reduction) in the number of enumerated
nodes, the improvement in node processing speed will be smaller,
because when the parallel algorithm makes more aggressive prun-
ing, it will be processing shallower nodes. Shallower nodes take
more time to process, as the LBs need to be computed for larger
sub-graphs. Therefore, node processing speeds are comparable only
when the number of enumerated nodes is about the same. This is
the case for the TSPLIB instances, where the number of enumer-
ated nodes is, on average, the same for both the parallel and the
sequential algorithm. In that case, the node processing speed of
the parallel algorithm is 21 times faster than the node process-
ing speed of the sequential algorithm. This is a reasonably good
speedup, considering the overhead of the parallel algorithm, espe-
cially shared-memory contention, cache conflicts and waiting on
locks.

7. Conclusions and future work

In this paper, we propose a parallel B&B algorithm with history-
based domination and apply it to the SOP. The proposed algorithm
with 32 threads solves 10 SOPLIB instances and two TSPLIB in-
stances that the sequential algorithm does not solve in an hour.
It gives super-linear speedup on 16 instances with a maximum
speedup of 366x on a 32-core processor.

In future work, we will continue to work on enhancing the pro-
posed parallel algorithm, and we will explore a GPU version of it.
Furthermore, we plan on extending the proposed parallel approach
to solve the instruction scheduling problem in compilers [48,49],
which is somewhat similar to the SOP but involves additional chal-
lenges and complexities.
11
Table 13
Effect of the percentage of stolen load on performance.

Benchmarks Geo-mean Speedup

25% 50% 100% Dynamic

SOPLIB 61.2 55.1 51.2 71.9
TSPLIB 20.4 20.0 20.0 19.5

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the US National Science
Foundation (NSF) Award No 1911235. This work benefited from
technical discussions with Jafar Jamal and Jeffrey Byrnes. The au-
thors also thank Patrick Brannan and Lynne Koropp for the tech-
nical support that they provided. Finally, we thank the anonymous
reviewers for their thorough and insightful comments that greatly
improved the final version of this paper.

Appendix A. Work stealing

To study the relation between the amount of stolen load and
performance, the parallel algorithm was applied to the medium-
difficulty instances on the AWS machine with a time limit of one
hour using three different percentages of stolen load: 25%, 50%
and 100%. The results are shown in Table 13. The table shows the
geometric-mean speedup achieved using the parallel algorithm for
each percentage of stolen load.

The results in the table show that on SOPLIB, stealing all the
load gives the worst overall results. By examining the individual in-
stances, we observed that there is a relation between an instance’s
precedence-constraint density and the load percentage that gives
the best results for that instance. When the density of precedence
constraints is higher, stealing fewer nodes gives better results. This
is attributed to the fact that with a higher precedence density,
work stealing occurs more frequently, and thus more threads are
likely to become idle and request work stealing at about the same
time. In this case, better performance is achieved when a victim
thread’s load is distributed among multiple idle threads instead of
giving all of that load to one idle thread.

Based on this observation, we experimented with dynamically
setting the percentage of stolen load based on an instance’s density
of precedence constraints. As shown in the last column of Table 13,
this gave better results on than any fixed percentage on SOPLIB.
This is the scheme that was used to generate the results in the
paper. On TSPLIB, performance is not sensitive to the percentage
of stolen nodes. Approximately the same results are achieved using
any percentage of stolen load.

Appendix B. Thread restart period

We experimented with the effect of the restart period on the
performance of the restart technique. The test was performed on
the hard instances that could not be solved within an hour by the
proposed parallel algorithm with 32 threads on the main machine.
Table 14 shows the percentage improvement in the overall best
cost found within an hour using thread restart periods of 25s, 50s,

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.12 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
Table 14
Cost improvement of the restart algorithm with different restart periods.

Benchmarks Cost improvement

25 s 50 s 100 s 200 s

SOPLIB 6.7% 5.9% 5.2% 3.9%
TSPLIB 0.0% −0.1% −0.5% 0.7%

Table 15
Cost improvement of the restart algorithm with different percentages of exploita-
tion.

Benchmarks Cost Improvement

20% 50% 80%

Exploitation Exploitation Exploitation
SOPLIB 4.4% 6.7% 6.9%
TSPLIB −0.6% 0.7% −0.3%

100s, and 200s. The cost improvements in the table are relative to
the costs obtained with thread restart disabled.

On SOPLIB, using a short restart period of 25s gives the best
overall results, while on TSPLIB, the longest period of 200s gives
the best overall results. This is attributed to the fact that updates
to the best solution happen at a much higher rate in SOPLIB. When
updates to the best solution happen infrequently, a longer restart
period is needed to identify the most promising supspaces.

Appendix C. Balancing exploitation and exploration

Table 15 shows the results of our experimentation with the bal-
ance between exploitation and exploration in the restart technique.
The test was performed on all the instances that the parallel al-
gorithm with 32 threads could not solve within an hour on the
main machine using three different percentages of exploitation:
20%, 50%, 80%). The cost improvements in the table are relative
to the costs obtained with thread restart disabled.

The results in the table show that dividing the threads equally
between exploitation and exploration gives the best overall results.
On SOPLIB, however, doing exploitation in 80% of the threads gives
slightly better results.

References

[1] D. Anderson, G. Hendel, P.L. Bodic, M. Viernickel, Clairvoyant restarts in branch-
and-bound search using online tree-size estimation, in: Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, pp. 1427–1434.

[2] D. Anghinolfi, R. Montemanni, M. Paolucci, L. Gambardella, A hybrid particle
swarm optimization approach for the sequential ordering problem, Comput.
Oper. Res. 38 (2011) 1076–1085.

[3] B. Archibald, P. Maier, C. McCreesh, R. Stewart, P. Trinder, Replicable parallel
branch and bound search, J. Parallel Distrib. Comput. 113 (2018) 92–114.

[4] B. Archibald, F. Dunlop, R. Hoffmann, C. McCreesh, P. Prosser, J. Trimble, Se-
quential and parallel solution-biased search for subgraph algorithms, in: Inte-
gration of Constraint Programming, Artificial Intelligence, and Operations Re-
search, 2019, pp. 20–38.

[5] N. Ascheuer, L. Escudero, M. Grötschel, M. Stoer, A cutting plane approach to
the sequential ordering problem (with applications to job scheduling in manu-
facturing), SIAM J. Optim. 3 (1993) 25–42.

[6] N. Ascheuer, M. Jünger, G. Reinelt, A branch & cut algorithm for the asymmetric
traveling salesman problem with precedence constraints, Comput. Optim. Appl.
17 (2000) 61–84.

[7] D. Bader, W. Hart, C. Phillips, Parallel algorithm design for branch and bound,
in: Tutorials on Emerging Methodologies and Applications in Operations Re-
search, in: International Series in Operations Research & Management Science,
vol. 76, 2005.

[8] L. Barreto, M. Bauer, Parallel branch and bound algorithm - a comparison be-
tween serial, OpenMP and MPI implementations, J. Phys. Conf. Ser. 256 (2010).

[9] A. Borisenko, S. Gorlatch, Optimal batch plants design on parallel systems: a
comparative study, in: IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2019, pp. 549–558.

[10] G. Brightwell, P. Winkler, Counting linear extensions is #p-complete, in: Pro-
ceedings of the ACM Symposium on Theory of Computing, 1991, pp. 175–181.
12
[11] I. Chakroun, N. Melab, Towards a heterogeneous and adaptive parallel branch-
and-bound algorithm, J. Comput. Syst. Sci. 81 (2015) 72–84.

[12] G. Chu, C. Schulte, P.J. Stuckey, Confidence-based work stealing in parallel con-
straint programming, in: Principles and Practice of Constraint Programming,
2009, pp. 226–241.

[13] T. Crainic, B. Le Cun, C. Roucairol, Parallel branch-and-bound algorithms, in:
Parallel Combinatorial Optimization, 2006, pp. 1–28.

[14] A. Dabah, A. Bendjoudi, A. AitZai, D. El-Baz, N. Taboudjemat, Hybrid multi-
core CPU and GPU-based b&b approaches for the blocking job shop scheduling
problem, J. Parallel Distrib. Comput. 117 (2018) 73–86.

[15] M. Daouri, F. Escobar, X. Chang, C. Valderrama, A hardware architecture for
the branch and bound flow-shop scheduling algorithm, in: 2015 Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP International Symposium
on System-on-Chip (SoC), 2015, pp. 1–4.

[16] A. de Bruin, G. Kindervater, H. Trienekens, Asynchronous parallel branch and
bound and anomalies, in: Parallel Algorithms for Irregularly Structured Prob-
lems, in: Lecture Notes in Computer Science, vol. 980, 1995, pp. 363–377.

[17] L. Escudero, An inexact algorithm for the sequential ordering problem, Eur. J.
Oper. Res. 37 (1988) 236–249.

[18] L. Escudero, M. Guignard, K. Malik, A Lagrangian relax-and-cut approach for the
sequential ordering problem with precedence relationships, Ann. Oper. Res. 50
(1994) 219–237.

[19] L. Gambardella, M. Dorigo, An ant colony system hybridized with a new lo-
cal search for the sequential ordering problem, INFORMS J. Comput. 12 (2000)
237–255.

[20] L. Gambardella, R. Montemanni, D. Weyland, An enhanced ant colony system
for the sequential ordering problem, in: Operations Research Proceedings 2011,
2012, pp. 355–360.

[21] B. Gendron, T. Crainic, Parallel branch-and-bound algorithms: survey and syn-
thesis, Oper. Res. 42 (1994) 1042–1066.

[22] J. Gmys, Heterogeneous cluster computing for many-task exact optimiza-
tion - Application to permutation problems, Ph.D. thesis, Université de Mons
(UMONS); Université de Lille, 2017.

[23] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, A GPU-based branchand-bound al-
gorithm using integer-vector-matrix data structure, Parallel Comput. 59 (2016)
119–139.

[24] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, A computationally efficient branch-
and-bound algorithm for the permutation flow-shop scheduling problem, Eur.
J. Oper. Res. 284 (2020) 814–833.

[25] L. Gouveia, P. Pesneau, On extended formulations for the precedence con-
strained asymmetric traveling salesman problem, Networks 48 (2006) 77–89.

[26] L. Gouveia, M. Ruthmair, Load-dependent and precedence-based models for
pickup and delivery problems, Comput. Oper. Res. 63 (2015) 56–71.

[27] F. Guerriero, M. Mancini, A cooperative parallel rollout algorithm for the se-
quential ordering problem, Parallel Comput. 29 (2003) 663–677.

[28] K. Helsgaun, An extension of the Lin-Kernighan-Helsgaun TSP Solver for con-
strained traveling salesman and vehicle routing problems, Technical Report,
Roskilde Universitet, 2017.

[29] J. Herrera, J. Salmerón, E. Hendrix, R. Asenjo, L. Casado, On parallel branch and
bound frameworks for global optimization, J. Glob. Optim. 69 (2017) 547–560.

[30] J. Jamal, G. Shobaki, V. Papapanagiotou, L. Gambardella, R. Montemanni, Solving
the sequential ordering problem using branch and bound, in: IEEE Symposium
Series on Computational Intelligence, 2017, pp. 1–9.

[31] V. Janakiram, E. Gehringer, D. Agrawal, R. Mehrotra, A randomized parallel
branch-and-bound algorithm, Int. J. Parallel Program. 17 (1988) 277–301.

[32] J. Kinable, A. Ciré, W. van Hoeve, Hybrid optimization methods for time-
dependent sequencing problems, Eur. J. Oper. Res. 259 (2017) 887–897.

[33] M.E. Lalami, D. El-Baz, GPU implementation of the branch and bound method
for knapsack problems, in: IEEE International Parallel and Distributed Process-
ing Symposium Workshops PhD Forum, 2012, pp. 1769–1777.

[34] G. Li, B. Wah, Coping with anomalies in parallel branch-and-bound algorithms,
IEEE Trans. Comput. C-35 (1986) 568–573.

[35] C. McCreesh, P. Prosser, The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound, ACM Trans. Par-
allel Comput. 2 (2015) 8:1–8:27.

[36] G. Mills-Tettey, A. Stentz, M. Dias, The dynamic Hungarian algorithm for the
assignment problem with changing costs, Technical Report, Carnegie Mellon
University, 2007.

[37] A. Mingozzi, L. Bianco, S. Ricciardelli, Dynamic programming strategies for the
traveling salesman problem with time window and precedence constraints,
Oper. Res. 45 (1997) 365–377.

[38] M. Mojana, R. Montemanni, G. Caro, L. Gambardella, A branch and bound ap-
proach for the sequential ordering problem, in: Proceedings of the Interna-
tional Conference on Applied Operational Research, in: Lecture Notes in Man-
agement Science, vol. 4, 2012, pp. 266–273.

[39] R. Montemanni, D. Smith, L. Gambardella, A heuristic manipulation technique
for the sequential ordering problem, Comput. Oper. Res. 35 (2008) 3931–3944.

[40] D. Morrison, S. Jacobson, J. Sauppe, E. Sewell, Branch-and-bound algorithms: a
survey of recent advances in searching, branching, and pruning, Discrete Optim.
19 (2016) 79–102.

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.13 (1-13)

T. Gonggiatgul, G. Shobaki and P. Muyan-Özçelik Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
[41] J. Pekny, D. Miller, A parallel branch and bound algorithm for solving large
asymmetric traveling salesman problems, Math. Program. 55 (1992) 17–33.

[42] G. Reinelt, TSPLIB—a traveling salesman problem library, INFORMS J. Comput. 3
(1991) 376–384.

[43] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 4th edition,
Pearson, 2020.

[44] Y. Salii, Revisiting dynamic programming for precedence-constrained traveling
salesman problem and its time-dependent generalization, Eur. J. Oper. Res. 272
(2019) 32–42.

[45] Y. Salii, A. Sheka, Improving dynamic programming for travelling salesman
with precedence constraints: parallel Morin–Marsten bounding, Optim. Meth-
ods Softw. (2020) 1–27.

[46] G. Shobaki, J. Jamal, An exact algorithm for the sequential ordering problem
and its application to switching energy minimization in compilers, Comput.
Optim. Appl. 61 (2015) 343–372.

[47] G. Shobaki, K. Wilken, Optimal superblock scheduling using enumeration, in:
Proceedings of the 37th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2004, pp. 283–293.

[48] G. Shobaki, M. Shawabkehand, N. Rmaileh, Preallocation instruction schedul-
ing with register pressure minimization using a combinatorial optimization
approach, ACM Trans. Archit. Code Optim. 10 (2013) 31.

[49] G. Shobaki, A. Kerbow, S. Mekhanoshin, Optimizing occupancy and ILP
on the GPU using a combinatorial approach, in: Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Optimization,
2020, pp. 133–144.

[50] R. Skinderowicz, An improved ant colony system for the sequential ordering
problem, Comput. Oper. Res. 86 (2017) 1–17.

[51] C. Tomazella, M. Nagano, A comprehensive review of branch-and-bound algo-
rithms: guidelines and directions for further research on the flowshop schedul-
ing problem, Expert Syst. Appl. 158 (2020) 113556.

[52] S. Tschoke, R. Lubling, B. Monien, Solving the traveling salesman problem
with a distributed branch-and-bound algorithm on a 1024 processor network,
in: Proceedings of the International Parallel Processing Symposium, 1995,
pp. 182–189.

Taspon Gonggiatgul is a research assistant at Cal-
ifornia State University, Sacramento. He received a
bachelor’s degree in Computer Engineering from Uni-
versity of California, Davis. He is interested in the
parallization of combinatorial optimization algorithms
along with other topics in the area of embedded sys-
tems.
13
Ghassan Shobaki is an Associate Professor in the
Computer Science (CS) dept. at California State Uni-
versity, Sacramento. He received his Ph.D and Master
of Science degrees in CS from the University of Cali-
fornia, Davis in 2002 and 2006, respectively. He also
holds a Master of Science degree in Electrical Engi-
neering (EE) from the University of Houston and a
B.Sc degree in EE from the University of Jordan.

Dr. Shobaki’s research interests are in the areas of
compiler optimizations, combinatorial optimization algorithms and paral-
lel computing. He is generally interested in developing exact or precise
algorithms for solving NP-hard combinatorial optimization problems. More
specifically, he is interested in applying combinatorial optimization tech-
niques to compiler optimization problems and studying their performance
compared to the heuristic approaches used in production compilers.

Pınar Muyan-Özçelik is an Associate Professor at
the Department of Computer Science of the Califor-
nia State University, Sacramento. She earned her Ph.D
degree in Computer Science from the University of
California, Davis. She received her MSc degree from
the Department of Computer Science at the University
of British Columbia and completed her B.Sc degree in
Computer Engineering at the Ege University. She is
interested in the parallelization of combinatorial opti-

mization algorithms and benchmarking autonomous driving systems. She
also conducts research on the use of GPU computing in various domains
such as compiler optimizations, electric power systems, automotive com-
puting, embedded systems, and medical imaging.

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.14 (1-13)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Sponsor names
Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

US National Science Foundation, country=United States, grants=1911235

ARTICLE IN PRESS
JID:YJPDC AID:4635 /FLA [m5G; v1.327] P.15 (1-13)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Highlights

• We propose the first parallel B&B algorithm that involves a history-based domination technique.
• The proposed algorithm includes three novel parallelization techniques: thread restart, parallel history-based domination, and

history-table memory management.
• The proposed algorithm is the first parallel B&B algorithm for the Sequential Ordering Problem, which is an NP-hard sequencing

problem with precedence constraints.
• We present a thorough experimental evaluation of the proposed parallel algorithm on SOPLIB and TSPLIB. The results show that

super-linear speedup is not an anomaly; it can be achieved on many instances. We report a speedup ratio as high as 285 on a
32-core processor.

	A parallel branch-and-bound algorithm with history-based domination and its application to the sequential ordering problem
	1 Introduction
	2 Previous work
	3 Basic algorithm description
	3.1 Problem description
	3.2 Sequential algorithm summary
	3.3 Parallel algorithm overview
	3.4 Global-pool initial assignment

	4 Load balancing and reassignment
	4.1 Work stealing
	4.2 Search order and thread restart

	5 Parallelization of history domination
	5.1 Thread stop/resume technique
	5.2 History table memory management
	5.3 Memory access and protection

	6 Experimental results
	6.1 Experimental setup
	6.2 Medium-difficulty instances
	6.3 Hard instances
	6.4 Random variation
	6.5 Effect of thread restart
	6.6 Effect of thread stop
	6.7 Optimality proving vs solution improving

	7 Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Work stealing
	Appendix B Thread restart period
	Appendix C Balancing exploitation and exploration
	References

