

A parallel branch-and-bound algorithm with history-based domination and its application to the sequential ordering problem

Taspon Gonggiatgul, Ghassan Shobaki, Pınar Muyan-Özçelik

Department of Computer Science, California State University, 6000 J street, Sacramento, 95819, CA, USA

ARTICLE INFO

Article history:

Received 24 March 2022

Received in revised form 10 September 2022

Accepted 11 October 2022

Available online xxxx

Keywords:

Parallel branch-and-bound

Sequential ordering problem

Combinatorial optimization

NP-complete problems

History domination

ABSTRACT

In this paper, we describe the first parallel Branch-and-Bound (B&B) algorithm with a history-based domination technique. Although history-based domination substantially speeds up a B&B search, it makes parallelization much more challenging. Our algorithm is the first parallel exact algorithm for the Sequential Ordering Problem using a pure B&B approach. To effectively explore the solution space, we have developed three novel parallelization techniques: thread restart, parallel history domination, and history-table memory management. The proposed algorithm was experimentally evaluated using the SOPLIB and TSPLIB benchmarks on multi-core processors. Using 32 threads with a time limit of one hour, the algorithm gives geometric-mean speedups of 72x and 20x on the medium-difficulty SOPLIB and TSPLIB instances, respectively. On the hard instances, it solves 12 instances that the sequential algorithm does not solve, with geometric-mean speedups of 16x on SOPLIB and 32x on TSPLIB. Super-linear speedups up to 366x are seen on 16 instances.

© 2022 Published by Elsevier Inc.

1. Introduction

In this paper, we show how to effectively parallelize a Branch-and-Bound (B&B) algorithm that has a history-based domination technique on a multicore processor. Although history-based domination substantially speeds up a B&B search, it creates great challenges in parallelizing the algorithm. The proposed parallel B&B algorithm is applied to the Sequential Ordering Problem (SOP). To the best of our knowledge, the proposed algorithm is the first parallel B&B algorithm that includes history-based domination and is the first parallel exact algorithm for solving the SOP using a pure B&B approach.

The SOP is a generalization of the Traveling Salesman Problem (TSP), which is a well-known NP-hard combinatorial optimization problem. Given a weighted graph and a dependence graph representing precedence constraints among the vertices, the objective in the SOP is finding a minimum-cost Hamiltonian path in the weighted graph that satisfies the precedence constraints in the dependence graph.

Precedence constraints make developing a parallel B&B algorithm more challenging, because they make it harder to estimate and balance thread loads. Parallel B&B algorithms for optimization problems with precedence constraints are understudied in

the literature. We believe that the parallelization techniques presented in this paper are general enough to be applicable to many precedence-constrained combinatorial optimization problems.

The proposed parallel algorithm is a pool-based algorithm that consists of a collection of techniques that we designed to effectively search the solution space using multiple parallel threads. The techniques used in our algorithm include three novel techniques: thread restart (Section 4.2), parallel history-based domination (Section 5.1), and history table memory management (Section 5.2). In addition to developing these new techniques, we have experimented with multiple methods for assigning global-pool nodes to threads (Section 3.4) and balancing the load by work stealing (Section 4.1) [35].

The proposed parallel algorithm is based on the sequential B&B algorithm that was originally proposed by Shobaki and Jamal [46] and later enhanced by Jamal et al. [30] for solving the SOP. This sequential algorithm includes a history-based domination technique that stores information about previously explored sub-problems in a history table and uses that information to speedup the processing of similar sub-problems. That technique was a generalization of the history-based domination technique that was originally introduced by Shobaki and Wilken [47] for solving the compiler instruction scheduling problem. Although this history technique is an effective technique that greatly reduces the size of the search tree, it makes parallelizing the algorithm much more challenging.

E-mail address: tagonggiatgul@ucdavis.edu (T. Gonggiatgul).

<https://doi.org/10.1016/j.jpdc.2022.10.007>

0743-7315/© 2022 Published by Elsevier Inc.

1 These challenges and the techniques that we have developed to
 2 tackle them are discussed in Section 5.

3 What distinguishes parallel search algorithms like B&B from
 4 other types of parallel computation is the possibility of achieving
 5 *super-linear speedup* (also known as acceleration anomaly [34,16])
 6 relative to the sequential algorithm, that is, a speedup ratio that is
 7 greater than the number of parallel threads. Super-linear speedup
 8 is possible in search algorithms, because the performance is highly
 9 dependent on the search order, and the search order of the parallel
 10 algorithm can be better than that of the sequential algorithm.
 11 The search order has a high impact on performance, because the
 12 best solution found so far is dependent on this order, and the de-
 13 gree of pruning at any given point depends on the value of the best
 14 solution at the point.

15 When history-based domination is used, super-linear speedup
 16 becomes even more likely. Within the same time period, a parallel
 17 algorithm can explore different sub-spaces simultaneously. This
 18 does not only increase the chances of finding a better best so-
 19 lution, but it also stores more diverse information in the history
 20 table, thus increasing the chances of applying history-based prun-
 21 ing. However, filling the history table at a faster rate makes it more
 22 challenging to use the available space to store the most useful
 23 information in the table. The contributions of this paper may be
 24 summarized as:

- 1 We propose the first parallel B&B algorithm with history-based
 2 domination. The algorithm includes three novel techniques
 3 that we have developed as well as our experimentation-based
 4 versions of two known techniques.
- 2 We apply the proposed algorithm to the SOP, which is an
 3 NP-hard sequencing problem with precedence constraints, and
 4 thus we provide insights into the understudied area of parallel
 5 B&B algorithms for precedence-constrained sequencing prob-
 6 lems.
- 3 We present a thorough experimental evaluation of the pro-
 4 posed parallel algorithm on the whole SOPLIB and TSPLIB
 5 benchmark suites. The results show that with our paralleliza-
 6 tion techniques, super-linear speedup is not an anomaly; it
 7 can be achieved on many instances. We report super-linear
 8 speedup ratios that are much greater than the number of
 9 threads, with the highest ratio being 366 on a 32-core pro-
 10 cessor.

4.2 Previous work

46 The SOP was introduced by Escudero [17]. Various sequen-
 47 tial algorithms using both heuristic and exact approaches have
 48 been proposed for solving the SOP. Heuristic approaches use dif-
 49 ferent techniques, including ant colony optimization [19,50,20],
 50 particle swarm optimization [2], and the Lin-Kernighan-Helsgaun
 51 algorithm [28]. On the other hand, exact approaches use vari-
 52 ous methods such as the Lagrangian relaxation [18], cutting plane
 53 [5,25], branch-and-cut [6,26], branch-and-bound [38,46,30], con-
 54 straint programming [32], and dynamic programming [37,44].

55 Parallel algorithms have also been proposed for solving the SOP.
 56 Guerriero and Mancini [27] propose a heuristic parallel rollout al-
 57 gorithm. Exact parallel algorithms for the SOP are understudied.
 58 The only work that we are aware of on exact parallel algorithms
 59 for the SOP is the recent work of Salii and Sheka [45], who pro-
 60 pose a hybrid algorithm combining dynamic programming with
 61 a Morin-Marsten B&B scheme (DPBB). In contrast, our proposed
 62 parallel algorithm is based on a pure B&B approach. Since our al-
 63 gorithm does not use dynamic programming, it does not have a strict
 64 memory restriction. Our history table management technique de-
 65 scribed in Section 5.2 is an adaptive technique that is designed to
 66 make the best use of available memory. To the best of our knowl-

67 edge, no previous parallel algorithm for solving the SOP using a
 68 pure B&B approach has been proposed.

69 However, various parallel B&B algorithms have been proposed
 70 for solving other optimization problems, such as the Traveling
 71 Salesman Problem (TSP) [41,52,16], Maximum-Clique [35], 01-
 72 Knapsack [31,33], Blocking Job Shop Scheduling [14], Optimal
 73 Batch Plants Design [9], Quadratic Assignment [7,13,22], N-Queens
 74 [22], and Flow-Shop Scheduling [22,15,24,11,23]. These algorithms
 75 are run on different parallel architectures, including multiproces-
 76 sors [41], processor networks [52,16], distributed/shared memory
 77 parallel systems [8], multi-core CPUs [35,24,9], clusters [9], FPGAs
 78 [15], and GPUs [9,23,33]. Some previous papers propose parallel
 79 B&B algorithms on a hybrid platform with a combination of multi-
 80 core CPUs and GPUs [11,22,14]. Bader et al. [7] discuss how the
 81 design of parallel B&B algorithms is influenced by the nature of
 82 the computational platform.

83 Gmys et al. [24] indicate that B&B can be parallelized in dif-
 84 ferent ways, including parallelizing the tree search, parallelizing
 85 child-node evaluation, and parallelizing lower bound computa-
 86 tion. Janakiram et al. [31] concurrently explore multiple search trees
 87 that use a different selection operator.

88 A survey of early parallel B&B algorithms was conducted by
 89 Gendron and Crainic [21]. In a later paper, Crainic et al. [13]
 90 present various parallelization strategies for B&B and review
 91 frameworks that help implement these strategies. A more recent
 92 survey of these frameworks and other multi-core CPU B&B ap-
 93 proaches is provided by Gmys [22]. These frameworks ease the
 94 development but cannot provide the high performance that cus-
 95 tom algorithms achieve as indicated by Herrera et al. [29].

96 Previous work on parallel B&B algorithms for precedence-
 97 constrained problems like the SOP is quite limited. Among the
 98 above-mentioned algorithms, only Dabah et al. [14] propose a par-
 99 allel B&B approach for a precedence-constrained problem, which is
 100 Blocking Job Shop Scheduling.

101 Anderson et al. [1] use tree estimation to develop a restart
 102 technique for achieving a better search order in B&B. However,
 103 the work of Anderson et al. was within a sequential algorithm.
 104 Archibald et al. [4] propose a parallel restart algorithm that restarts
 105 the search from the beginning if no progress has been made.
 106 Archibald et al. [3] also propose a technique for avoiding a poor
 107 parallel search order by forcing a sequential ordering on a thread.
 108 Chu et al. [12] propose a parallel restart algorithm that focuses
 109 the search on the most promising sub-spaces. In Section 4.2 of
 110 the current paper, we describe a parallel restart algorithm that util-
 111 izes multiple threads to balance focusing the search on the most
 112 promising sub-spaces with exploring new sub-spaces.

113 Morrison et al. [40] provide a list of B&B approaches that
 114 use memory-based and nonmemory-based dominance relations.
 115 Tomazella and Nagano [51] provide a list of dominance rules used
 116 in B&B algorithms for flowshop scheduling problems. Those tech-
 117 niques were used in sequential B&B algorithms. In the current
 118 paper, we present a parallel version of the history-based domina-
 119 tion technique proposed by Shobaki and Jamal [46].

3. Basic algorithm description

3.1. Problem description

121 An instance of the Sequential Ordering Problem (SOP) consists
 122 of a cost graph $G = (V, E)$ and a precedence graph $P = (V, R)$ de-
 123 fined on the same set of vertices V , as well as a start vertex s and
 124 a final vertex f that both belong to V .

125 The cost graph is a complete directed weighted graph $G =$
 126 (V, E) in which each edge (i, j) in E is assigned a weight $w(i, j)$.
 127 A path in the graph is a sequence of edges from E . The cost of a
 128 path is the sum of the weights of the edges that constitute that

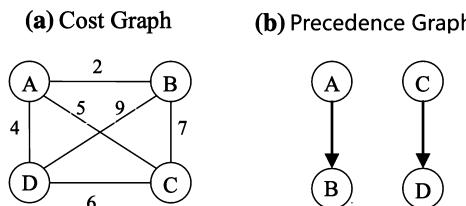


Fig. 1. Example SOP instance.

path. A Hamiltonian path is a path that visits *every* vertex in the graph exactly once. A Hamiltonian path is guaranteed to exist in a complete graph.

The precedence graph $P = (V, R)$ is a directed graph in which an edge (x, y) in R indicates that vertex x must appear before vertex y in any *feasible path*. If the precedence constraints in P imply that vertex n cannot appear immediately after vertex m in any feasible path, the weight of edge (m, n) in G will be irrelevant, and we follow the convention of setting this weight to -1 .

The SOP is the problem of finding a minimum-cost Hamiltonian path in G that starts with s , ends with f , and satisfies the precedence constraints imposed by P .

A small example of a SOP instance is shown in Fig. 1, including the cost graph (Fig. 1a) and the precedence graph (Fig. 1b). Since in this instance, the edge weight is the same in either direction ($w(i, j) = w(j, i)$ for every i and j), the graph is drawn as an undirected graph. Assuming that the start vertex is A and the final vertex is D , there will be only two feasible Hamiltonian paths, namely $\langle A, B, C, D \rangle$ of cost 15, and $\langle A, C, B, D \rangle$ of cost 21. Therefore, the solution to this SOP instance is $\langle A, B, C, D \rangle$, because it is the feasible Hamiltonian path with the lowest cost.

3.2. Sequential algorithm summary

The proposed parallel algorithm is based on the sequential B&B algorithm that was originally proposed by Shobaki and Jamal [46] and later enhanced by Jamal et al. [30]. The enhanced algorithm uses a lower bound (LB) based on relaxing the SOP into a Minimum-Cost Perfect Matching (MCPM) problem and then solving it using the dynamic Hungarian algorithm [36].

The sequential algorithm used in our work is based on the enhanced B&B algorithm proposed by Jamal et al. with Best-First Search (BestFS) [43] used to explore the solution space. BestFS is used because it experimentally gave better results for the SOP. The sequential algorithm is summarized in this sub-section. The details may be found in the original papers [46,30].

The sequential algorithm is based on a B&B approach that exhaustively explores the solution space by constructing an *enumeration tree*. Each leaf in the tree represents a complete feasible solution, and each internal node represents a partial solution. A solution is constructed incrementally by adding one vertex to the current partial solution. At each tree node, a partial path has been constructed by selecting a sequence of vertices. The subproblem to be solved at that node is finding the optimal order for the remaining vertices. The LBs of all possible next vertices at that node are computed and the vertex with the lowest LB is added to the current partial path. The feasible solutions in a subproblem's solution space (subspace) are the leaves of the sub-tree below that node. In this paper, tree nodes, subproblems, and subspaces are used interchangeably.

To speed up the search, pruning techniques are applied at each node. If a pruning technique indicates that no better solution than the current best solution can be found below the current node, the algorithm backtracks to the previous node, thus pruning the sub-tree below the current node.

The two pruning techniques used in the sequential B&B algorithm are history-based domination and the MCPM LB. History domination stores information about previously visited nodes in a history table and then uses them to quickly process *similar* nodes that are visited later. Two tree nodes are similar if their partial solutions (prefix paths) are permutations of the same set of vertices and they end with the same vertex. For example, a tree node with a prefix path $\langle A, B, C, D \rangle$ is similar to a tree node with a prefix path $\langle A, C, B, D \rangle$, because the nodes' partial paths are two different permutations of the same set of vertices $\{A, B, C, D\}$ and they both end with Vertex D . The history table is implemented as a hash table. The second pruning technique is relaxing the SOP into a MCPM problem and then solving it using the dynamic Hungarian algorithm that runs in $O(n^2)$ time [36]. History domination is always applied before the dynamic Hungarian algorithm, because it is much faster.

3.3. Parallel algorithm overview

The proposed parallel B&B algorithm is a pool-based algorithm, in which Breadth-First-Search (BFS) is initially used to split the problem into smaller subproblems that are stored in a global pool. The subproblems (tree nodes) in the global pool are then assigned to threads using the scheme described in Section 3.4. Each thread explores the sub-tree below its assigned tree node in a BestFS order as in the sequential algorithm. When a thread completes exploring its assigned tree node, it is assigned a new node from the global pool. If the global pool is empty, a thread that has completed exploring its assigned node will steal part of the load of an active thread. The details are described in the next subsections.

3.4. Global-pool initial assignment

As mentioned above, BFS is used to split the tree nodes and store them in a global pool. First, the children of the root node (Depth 1) are placed in the pool. If the number of children is less than the number of threads, all the children will be split, and the nodes in the global pool will then be the root node's grandchildren (Depth 2). Splitting continues until we reach a depth at which the number of nodes in the pool is greater than or equal to the number of threads. Splitting is done for all the nodes at each depth to ensure that all the nodes in the global pool are always at the same depth.

Global pool nodes are assigned to threads in a manner that ensures *diversity* [35]. By diversity, we mean covering as many *primary subspaces* as possible and distributing the threads among the covered primary subspaces as fairly as possible. A primary subspace is a subspace that corresponds to an immediate child of the root node. If the number of threads is greater than the number of primary subspaces, threads are divided among primary subspaces as fairly as possible. Within each primary subspace, nodes are assigned to threads in ascending LB order. Nodes with smaller LBs are assigned first, because a smaller LB for a given node indicates that the subspace below that node is more promising.

Hence, our initial node assignment treats diversity as a primary criterion and LBs as a secondary criterion. We have experimented with both treating diversity as a primary criterion and treating the LB as a primary criterion, and the results were, on average, about the same. Two examples of tree splitting and global-pool initial assignment with four threads are shown in Fig. 2. Each leaf node is labeled by its LB.

In Fig. 1.a, the root node is initially split into five nodes: Nodes A through E. Since the number of nodes at that depth is greater than the number of threads, no further splitting is needed. Furthermore, since there are four threads and five primary subspaces, the most promising subspaces (based on LBs) will be assigned to

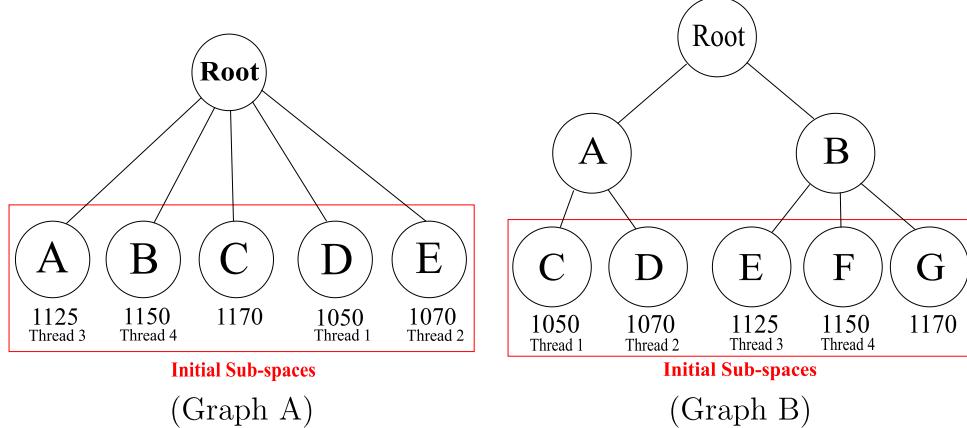


Fig. 2. Node splitting and global-pool initial assignment example.

threads, and the subspace of Node C, which has the highest LB, will not be assigned to any thread at that point.

In Fig. 1.b, the initial splitting only gives two nodes. Therefore, all the nodes at Depth 1 are split to produce five nodes at Depth 2. Since at that depth, the number of nodes is greater than the number of threads, no further splitting is needed. With two primary subspaces and four threads, each primary supspace will be covered by two threads. Within each primary subspace, nodes are assigned in ascending LB order. The first primary subspace (the sub-tree below Node A) has two nodes, and these are assigned to Threads 1 and 2. The second primary subspace (the sub-tree below Node B) has three nodes. The nodes with the smaller LBs (Nodes E and F) are assigned to Threads 3 and 4. Node G, which has the largest LB in that subspace, will not be assigned to a thread at that point. Nodes that are not initially assigned to threads remain in the global pool to be assigned later to the threads that complete exploring their assigned subspaces.

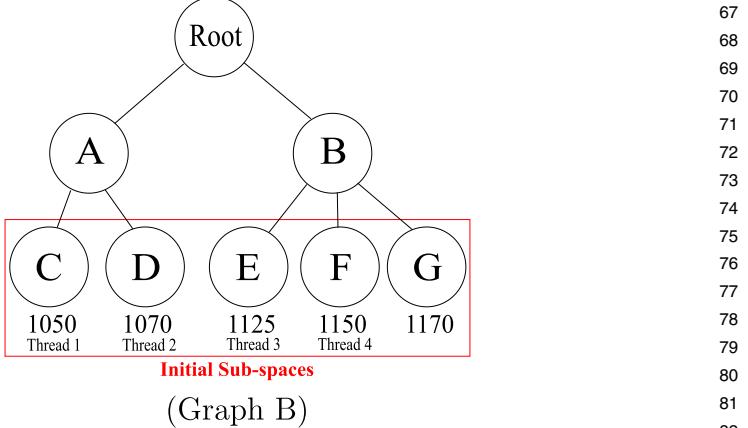
4. Load balancing and reassignment

4.1. Work stealing

Balancing the load among threads is necessary for utilizing all threads, and thus maximizing the speedup delivered by a parallel algorithm. Load balancing is particularly challenging in B&B, because the time taken by a thread to process a given subspace (tree node) depends on the number of feasible solutions (tree leaves) in that subspace and the degree of pruning that takes place while exploring it. The number of feasible solutions depends on precedence constraints, and the problem of counting the number of feasible solutions in the presence of precedence constraints is intractable [10]. The degree of pruning depends on the structure of the assigned subproblem, the quality of the solutions in its subspace, the search order and the effectiveness of the pruning techniques. Due to this combination of factors, it is not possible to predict the time that a thread will take to process a given tree node. Some threads may complete much faster than others. To address this problem, we have developed a dynamic load balancing technique.

On a high level, our approach to load balancing is based on the work-stealing strategy proposed by McCreesh and Prosser [35]. However, the low-level algorithmic details are based on our experimentation with alternative implementation methods. The details are as follows.

If a thread completes processing its assigned node, it becomes temporarily *idle*. An idle thread checks the global pool. If the global pool is non-empty, one of the nodes in the pool will be assigned to the idle thread. If the global pool is empty, the idle thread will steal work from one of the active threads.



Work stealing is implemented in our algorithm by maintaining a *local pool* of unprocessed tree nodes in each thread. Each thread's local pool holds the nodes that have been visited but have not been processed yet. Recall that within each thread, nodes are processed in a BestFS manner. At a given tree node, the LBs of that node's children are computed, and the child with the lowest LB (the most promising child) is explored first. The rest of the children are inserted into the thread's local pool to be used for work stealing.

When an idle thread requests work stealing, it steals work from a victim thread. A victim thread is randomly selected from the active threads that have non-empty local pools. We experimented with multiple schemes for selecting the victim thread, and random selection gave the best results. Once the victim thread has been selected, the idle thread takes a certain number of nodes from the victim thread's local pool. This number is computed using the formula $k(1 - p)$, where k is the number of available nodes in the victim thread's local pool, and p is the density of precedence constraints in the given instance. When the density of precedence constraints is higher, threads are likely to complete exploring stolen nodes faster, and thus more threads are likely to become idle within a given period of time. Therefore, the precedence-constraint density is used in the above equation to limit the number of nodes stolen by a single idle thread and make it possible to satisfy the needs of more idle threads.

Ideally, the stolen nodes should have a sufficiently high load to keep the stealing thread active for a long period of time and avoid invoking work stealing too frequently. For the reasons explained above, it is not possible to precisely estimate the amount of time that will be taken to process a given node. Therefore, we chose to use the depth of a tree node as a simple indicator of the time needed to process a node, and a node is inserted into the local pool only if its depth is less than a certain threshold. The threshold is chosen based on experimentation.

The search is complete when the global pool and all local pools are empty, and when every thread has completely explored its assigned tree nodes, including unstolen nodes in its local pool.

4.2. Search order and thread restart

The order in which a B&B algorithm searches the solution space is an important factor that greatly affects the search speed. For an NP-hard problem, we shouldn't expect to find a perfect search order. However, some heuristics may be used to achieve a good search order that causes the algorithm to visit better subspaces earlier. In our sequential algorithm, the heuristic used to determine the search order is the MCPM LB.

1 If the search order of a parallel B&B algorithm is better than
 2 the sequential search order, super-linear speedup may be achieved,
 3 while if the parallel search order is worse, the speedup will be
 4 low. In the worst case, a poor parallel search order may cause the
 5 parallel algorithm to run slower than the sequential algorithm
 6 (*detrimental anomaly* [34,16]).

7 The search order of our parallel algorithm is inherently different
 8 than that of the sequential algorithm, because the sequential
 9 algorithm strictly uses BestFS, while the parallel algorithm uses a
 10 combination of BFS and BestFS and includes a work-stealing tech-
 11 nique that reassigns nodes to threads. Initially, the search order of
 12 the parallel algorithm is determined by the scheme used to assign
 13 global-pool nodes to threads.

14 Our experimental investigation has shown that a good scheme
 15 for assigning global-pool nodes to threads is not enough for
 16 achieving the best search order. A dynamic and adaptive technique
 17 is needed to guide the search. To maximize the benefit from par-
 18 allelization, the parallel algorithm should intelligently take advan-
 19 tage of the information that becomes available about how promis-
 20 ing each subspace is. Focusing the search on the most promising
 21 subspaces can greatly improve the parallel search order, and thus
 22 increase the chances of achieving super-linear speedup. In addition
 23 to focusing on the most promising subspaces known so far, the
 24 parallel algorithm should use some threads to explore new sub-
 25 spaces, as that may lead to discovering more promising subspaces.

26 To accomplish this, we designed a dynamic thread restart tech-
 27 nique that uses multiple threads to balance the exploitation of
 28 promisingness information and the exploration of new subspaces.
 29 Our technique is, to some extent, similar to the restart technique
 30 proposed by Chu et al. [12]. However, the technique of Chu et al.
 31 uses different criteria for reassigning loads to threads. Their criteria
 32 are based on solution-density estimates and user-defined confi-
 33 dence, while our criteria are based on the LBs and the number
 34 of updates made to the global best solution.

35 Although our restart technique focuses on the most promising
 36 subspaces, it does not ignore other subspaces. It continues
 37 to search other promising subspaces and also explores new sub-
 38 spaces. Balancing exploitation and exploration is a unique feature
 39 that distinguishes our algorithm from previous parallel combinator-
 40 ial algorithms, including the algorithm of Chu et al. [12].

41 The proposed algorithm temporarily abandons non-promising
 42 subspaces by moving the corresponding nodes back to the global
 43 pool. Then, the algorithm assigns the threads which were process-
 44 ing non-promising subspaces to either most promising subspaces
 45 or new subspaces that have not been explored yet.

46 In the proposed restart algorithm, there are two modes of oper-
 47 ation: the *pre-update* mode and the *normal mode*. The modes differ
 48 in the way promising subspaces are identified. Initially, the algo-
 49 rithm is in the pre-update mode, and it switches to the normal
 50 mode as soon as the first update is made to the global best solu-
 51 tion.

52 In the pre-update mode, two global variables are used to track
 53 the lowest LB in any active thread and the depth at which this LB
 54 is found. The depth is updated whenever the same LB is found at
 55 a greater depth. Then, the number of updates that a thread makes
 56 to the depth of the lowest LB is used as a metric to measure how
 57 promising a thread's subspace is. The rational is that the LB of a
 58 given subspace is a good indicator of how promising that subspace
 59 is, and that a tighter LB is a stronger indicator of promisingness.
 60 Since the LBs found at greater depths are tighter, finding the low-
 61 est LB at a greater depth below a given node indicates a more
 62 promising subspace below that node.

63 Once a thread makes an update to the global best solution, the
 64 restart algorithm switches to the normal mode, in which the num-
 65 ber of updates to the global best solution is used as the metric for
 66 measuring how promising a thread's sub-space is. Experimentally,

67 this metric has been found to be the best indicator of promising-
 68 ness.

69 In both modes, the number of updates (either to the depth of
 70 the lowest LB or to the global best solution) is measured within
 71 a certain period of time, called *the sampling period*. Each period
 72 defines a *restart cycle*. The search in the next restart cycle focuses
 73 on the most promising subspaces in the current restart cycle by
 74 assigning more threads to them.

75 In the pre-update mode, the threads assigned to the most
 76 promising subspaces share the computation of the LB, while in
 77 the normal mode, they share the search in those subspaces. This
 78 was based on the experimental observation that in the pre-update
 79 mode, the best use of parallelism is sharing the computation of the
 80 LBs in the most promising subspaces.

81 In both modes, each thread is classified into one of the follow-
 82 ing categories based on the number of updates that it made to
 83 either the best solution or to the depth of the lowest LB in the
 84 current sampling period.

85 **Non-Promising:** The thread did not make any update.

86 **Promising:** The thread made at least one update.

87 **Most Promising:** The thread is one of the top k threads in
 88 terms of the number of updates made to the best solution or to
 89 the depth of the lowest LB. Ties are broken in favor of the thread
 90 that made the most recent update. Usually, the most promising
 91 threads make multiple updates.

92 The parameter k is the number of most-promising subspaces
 93 that the search will focus on in the next cycle. Experimentally, the
 94 best results were achieved by setting k to four when the number
 95 of threads is 32, to two when the number of threads is 16, and to
 96 one when the number of threads is 8.

97 In the normal mode, promising threads continue to explore
 98 their subspaces in the next cycle. The most promising threads
 99 place part of their loads (some of the nodes that they have not
 100 explored) in the global pool, and these nodes are labeled *promis-
 101 ing*. So, the global pool will have promising nodes and unexplored
 102 nodes (nodes that have never been assigned to threads).

103 Non-promising threads temporarily abandon their current nodes,
 104 move the current contents of their local pools to the global pool,
 105 and then take new nodes from the global pool. Some of the non-
 106 promising threads are assigned to promising nodes from the global
 107 pool, while the rest of the non-promising threads are assigned to
 108 unexplored nodes. If the global pool does not have any promising
 109 nodes, all non-promising threads will be assigned to unexplored
 110 nodes. Experimentally, the best results were obtained by assigning
 111 50% of the non-promising threads to promising nodes (exploita-
 112 tion) and the other 50% to unexplored nodes (exploration).

113 Fig. 3 shows an example of thread restart in the normal mode.
 114 In this example, the total number of threads is eight, and k is set to
 115 one. The box representing each thread shows the number of global
 116 solution updates that the thread made during the sampling period.
 117 Threads 2, 4, 5, and 6 will be labeled “non-promising”, because
 118 they did not make any updates to the global solution. Threads 1, 3,
 119 and 8 will be labeled “promising”, because each of them made at
 120 least one update, and Thread 7 will be labeled “most promising”,
 121 because it ranks first in terms of the number of updates.

122 Thread 7 will then place part of its load in the global pool's
 123 “promising” section. Assuming 50% exploitation and 50% explo-
 124 ration, two of the nonpromising threads (Threads 5 and 6) will be
 125 assigned to the promising nodes shared by Thread 7, and the other
 126 two (Threads 2 and 4) will be assigned to unexplored nodes from
 127 the global pool. Threads 1, 3, and 8, which are labeled “promising”,
 128 will continue to explore their current subspaces.

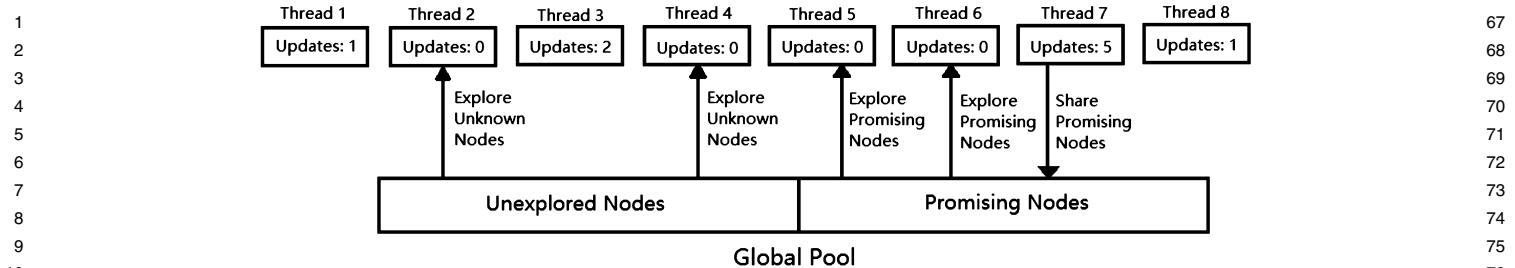


Fig. 3. Thread restart example.

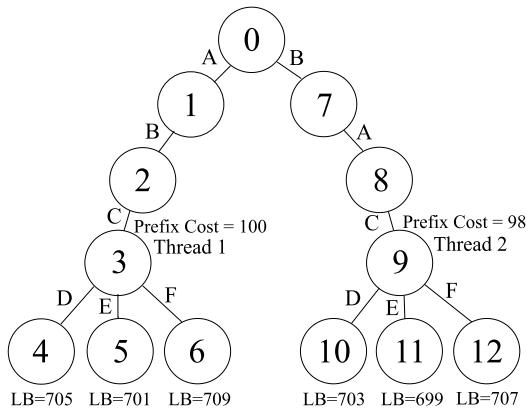


Fig. 4. Thread stop and resume example.

5. Parallelization of history domination

5.1. Thread stop/resume technique

When the enumeration tree is explored in parallel, multiple threads may explore the same sub-tree below similar tree nodes, which is redundant work that should be avoided if possible. Ideally, only the sub-tree below the most dominant tree node (the node with the lowest prefix cost) need to be explored. In reality, however, this ideal goal cannot be achieved exactly. In this subsection, we describe the algorithm that we have developed to minimize the overlap in exploring similar subspaces.

An example is shown in Fig. 4. In this example, tree Nodes 3 and 9 are similar, because their partial paths ($\langle A, B, C \rangle$ and $\langle B, A, C \rangle$) are two different permutations of the same set of vertices (the set $\{A, B, C\}$) and both partial paths end with the same vertex (vertex C). Both Nodes 3 and 9 have the same sub-tree below them. The objective is to explore this sub-tree only once, or at least, avoid completely exploring it twice. In this case Node 9 dominates Node 3, because the prefix cost of Node 9 (the cost of partial path $\langle B, A, C \rangle$) is less than the prefix cost of Node 3 (the cost of partial path $\langle A, B, C \rangle$). Suppose that Node 3 is assigned to Thread 1 and Node 9 is assigned to Thread 2. In general, we cannot control the order in which Threads 1 and 2 are executed. So, both orders must be considered.

First, assume that Thread 2 starts executing before Thread 1. When Thread 1 starts executing, the sub-tree below Node 3 will be considered for exploration. As part of that consideration, our algorithm will search the history table for a node that is similar to Node 3, and Node 9 will be found. Applying the domination condition (comparing the prefix costs of Node 3 and Node 9) will show that Node 9 dominates Node 3. In this case, the right action to take is obvious. The sub-tree below a dominated node does not need to be explored. Therefore, our parallel algorithm will simply prune Node 3 and then assign a different node to Thread 1.

Now, assume that Thread 1 starts executing before Thread 2. When Thread 2 starts executing, the algorithm will search the history table for a node that is similar to Node 9, and Node 3 will be found. Applying the domination condition will show that the current node (Node 9) dominates the history node (Node 3). The right action in this case will depend on whether the exploration of the sub-tree below the dominated node (Node 3) has been completed or is still active. If it is still active, our parallel algorithm will stop Thread 1, because it is exploring a sub-tree below a dominated tree node. Implementing this thread stopping is non-trivial. It requires special data structures and low-level algorithmic details that are described next.

Every entry in the history table has a flag that indicates whether the exploration of the sub-tree below the corresponding tree node has been completed or is still active. This flag is set to *active*, when the algorithm starts exploring the sub-tree and is changed to *completed* when the algorithm backtracks to that node after exploring of all its children. It should be noted that because of the reassignment techniques described in the previous section, different children may be explored by different threads, and this further complicates the implementation.

The implementation requires an active-tree data structure that links parents with their children even if they are processed by different threads. At a given point, a node is active if the sub-tree below it is currently being explored by one or more threads. Each active node has a link to the corresponding history entry along with its exploration state (whether the sub-tree below it has been fully explored). Due to work stealing, it is possible for the children of an active node to be explored by different threads. So, the active tree structure is used to update the history entry's exploration flag during the parallel exploration of the search tree.

A thread that is about to explore the sub-tree below a dominant node (Node 9 in our example) sends a stop request if the history entry of the dominated node is labeled *active*. The stop request is stored in a stop-request buffer. Each stop request contains the prefix of the history node (so that it can be found in the table) and the latest prefix cost (the prefix cost of the dominant node that is about to be explored).

Each active thread periodically checks the stop-request buffer for a similar prefix. If a thread finds a stop request with a similar prefix and a better prefix cost, it will invoke the stopping procedure to stop exploring its current sub-tree. The stopping procedure backtracks to the root of the sub-tree being explored (the dominated node). It also involves checking the global and local pools for any children of the dominated node and deleting them.

Stopping a thread that is exploring a dominated node is a powerful technique that allows the algorithm to avoid unnecessary exploration. However, stopping the exploration of the dominated node is not enough to minimize redundancy. A more efficient algorithm should take advantage of the pruning that has taken place while exploring the sub-tree below the dominated node. Some or all of that pruning may still be valid in the sub-tree below the dominant node. If we can prove that every pruning that has taken place below the dominated node is still valid below the dominant

1 node, the exploration of the dominant node may pick up from
2 where the exploration of the dominated node left off, instead of
3 re-exploring the whole sub-tree from scratch.

In Fig. 4, the prefix cost of the dominant node (Node 9) is better than the prefix cost of the dominated node (Node 3) by 2 (100–98). This implies that every LB in the sub-tree below Node 9 is less than the LB of the corresponding node in the sub-tree below Node 3 by 2. So, if the LBs of Nodes 4 and 5 are 705 and 701 respectively, the LBs of Nodes 10 and 11 will be 703 and 699, respectively. Assuming that the global best cost when Nodes 4 and 5 were explored was 700, whether Nodes 10 and 11 can be pruned will depend on the global best cost when Nodes 10 and 11 are explored. If that best cost is 699 or less, both Nodes 10 and 11 can be pruned, while if that best cost remains 700, Node 10 can be pruned but Node 11 cannot.

16 Keeping track of the LBs of all the nodes that have been ex-
 17 plored below the dominated node would require an excessive
 18 amount of memory, because the number of nodes in a sub-tree
 19 is an exponential function of the sub-tree's height. However, stor-
 20 ing the lowest LB that was used in any pruning below a history
 21 node makes it possible to reuse pruning information with minimal
 22 additional memory. Every LB-based pruning that has taken place
 23 in the sub-tree below the dominated node will still be valid in
 24 the sub-tree below the dominant node if the following condition
 25 is satisfied:

$$LB_{min} - imp \geq best$$

where LB_{min} is the minimum LB used for any pruning below the dominated node, imp is the prefix cost improvement (prefix cost of the dominated node minus prefix cost of the dominant node), $best$ is the current best cost. This technique is referred to as the *thread resume* technique. To implement this technique, the lowest LB used for pruning is propagated up the active tree and stored in the history entries for the sub-tree nodes.

The thread that is about to explore the dominant node sends a resume request and waits until it receives information about the current position of the exploration of the dominated node. The current position is represented by the current node's partial solution. Once this information has been received, the waiting thread can use it to prune any redundant sub-trees until its current partial solution matches the stopped thread's partial solution.

5.2. History table memory management

The history table is implemented as an array of buckets. Each bucket has a list of history entries, and each history entry is a pair that consists of a key and a history node. The history node contains atomic data including the cost of the corresponding prefix path, the LB at that node, and the ID of the thread that is currently exploring the sub-tree below that node. The main data structures used to implement the history table are shown in Fig. 5.

When many threads explore the solution space in parallel, nodes will be inserted in the history table at a faster rate. This has the advantage of providing more history information, and thus enabling more pruning. However, this advantage comes at the cost of increasing the table size at a faster rate, and thus exhausting memory in less time. Moreover, adding more entries to the history table results in more collisions, and that slows the search.

Ideally, the objective is using the available memory to store the most useful entries in the history table. A history table entry is a previously explored tree node. Two factors that determine the usefulness of an explored tree node are the node's depth and the size of the sub-tree that was enumerated below that node. A shallower node is more useful, because it makes it possible to prune a similar node earlier. A node with a larger sub-tree below it is

```

typedef pair<Bitvector,Int> Key;
typedef pair<Key,HistoryNode*> Entry;
typedef list<Entry> Bucket;

struct Content {
    int PrefixCost;
    int LowerBound;
};

struct HistoryNode {
    atomic<data> Content;
    atomic<bool> Explored;
    atomic<int> ActiveTID;
};

class HistoryTable {
    private:
        size_t TableSize;
        vector<Bucket*> Map;
        vector<Lock> TableLock;
        vector<MemModule> MemAllocator;
    public:
        void InitializeTable(size_t TableSize, size_t ThreadCount);
        void InsertNode(Key& Val, node& CurrentNode);
        HistoryNode* RetrieveNode(Key& Val);
};

```

Fig. 5. Simple illustration of the history table data structures.

more useful, because pruning based on that node will save more computation. To maximize useful entries in the history table, the algorithm sets a restriction on the nodes inserted into the history table after a certain percentage of the available memory has been used. Experimentally, the setting that gave the best results was 80% of available memory. When that percentage is used, the algorithm inserts a node in the history table only if the depth of the explored sub-tree below it is greater than zero. When available memory is used completely, no more nodes are inserted into the history table.

5.3. Memory access and protection

The proposed parallel algorithm uses four main shared data structures, namely, the global pool, the global best solution found so far, the history table, and a local pool for each thread. These data structures are implemented using the C++ standard library. Locks and atomic variables from the C++ standard multi-threading library are used to synchronize access to these shared data structures, and various techniques are implemented to minimize the waiting time on locks as described below.

The global pool is locked during reading and writing to avoid conflicts when multiple threads try to access it at the same time. The local pool of each thread is also read-protected and write-protected during work stealing.

The best solution found so far is only write-protected, since reading an older value of the best solution does not affect correctness and only minimally affects performance. If a thread reads an older value of the best cost found so far, it may miss a pruning opportunity at the current node, but it will, most likely, make up for the missed opportunity within a short period of time by reading the updated value at the next node. Since reading the best solution occurs much more frequently than writing (updating), limiting locking to write accesses can give a significant performance gain.

The history table is both read-protected and write-protected. In the history table, every x adjacent buckets are protected by a lock during reading (history node retrieval) and writing (history node insertion), where x is a parameter that is currently set to 10. An

1 **Table 1**
2 Instance classification.

Benchmark Suite	Total Instances	Easy Instances	Medium Instances	Hard Instances
SOPLIB	48	13	19	16
TSPLIB	41	12	5	24

8 entry in the table is implemented as an atomic structure rather
9 than a lock-protected structure to reduce the synchronization over-
10 head during concurrent reads to the entry. This also reduces the
11 overhead of acquiring locks via system calls. In addition to atomic
12 structures, we have experimented with basic locks and reader-
13 writer locks, and atomic structures gave the best results.

14 To minimize the system-call overhead, history table entries are
15 allocated in blocks instead of allocating one entry at a time. This
16 block-based allocation is managed by a memory allocation module,
17 which is a small handwritten software layer that manages access
18 to dynamically allocated memory with minimal system calls. This
19 module allocates blocks of frequently allocated objects, such as his-
20 tory entries, and returns one object from that block to a requesting
21 thread. When the current block is used completely, the memory
22 allocation module allocates a new block, and so on. In the parallel
23 algorithm, each thread has its own memory allocation module
24 instead of having one global module for the entire program. This
25 decision was made to minimize the synchronization cost. A shared
26 global allocation module must be protected with a lock, and the
27 time spent waiting on that lock may cause a significant perfor-
28 mance degradation.

30 6. Experimental results

31 6.1. Experimental setup

32 The proposed parallel algorithm was tested on both the TSPLIB
33 [42] and the SOPLIB [39] benchmark suites. Two different ma-
34 chines were used: the *main machine* that is owned by our group
35 and has a 32-core AMD Threadripper 2990WX processor with
36 128 GB of memory and an AWS machine (c6g.8xlarge) that has
37 a 32-core Graviton 2 ARM processor with 64 GB of memory. The
38 operating system on both machines is Ubuntu 20.04.

39 The AWS machine has faster memory, while the main machine
40 has larger memory capacity. The AWS machine was used for the
41 shorter tests that measure speedup, while the main machine was
42 used for the longer tests that measure cost improvements. As ex-
43 plained in Subsection 5.2, when a parallel B&B algorithm with
44 history domination is run for a longer period of time, more mem-
45 ory is needed due to the growth of the history table.

46 The TSPLIB and SOPLIB instances were classified into *easy*,
47 *medium*, and *hard* based on the sequential algorithm's running
48 time. An easy instance is an instance that the sequential algo-
49 rithm solves within 10 seconds. A medium-difficulty instance is
50 an instance that the sequential algorithm solves in more than 10
51 seconds but in less than an hour. An instance that the sequen-
52 tial algorithm cannot solve within an hour is classified as a hard
53 instance. Easy instances are not considered in this paper, as a par-
54 allel algorithm is not needed to solve these instances. The number
55 of instances that belong to each difficulty category is shown in Ta-
56 ble 1. The instances that the parallel algorithm could not solve in
57 an hour on the AWS machine were run on the main machine using
58 a time limit of five hours.

59 On both machines, the depth constraint for inserting nodes into
60 the history table was triggered once 80% of memory is used. The
61 sampling period for the restart algorithm was set to 200 seconds
62 for TSPLIB and 25 seconds for SOPLIB. The depth threshold for
63 inserting nodes into the local pool was set to 250 levels for SOPLIB

64 **Table 2**
65 Speedup of medium-difficulty instances.

SOPLIB	8 Threads	16 Threads	32 Threads
Geo-mean speedup	27.8	42.9	71.9
Maximum speedup	88.9	187.9	366.3
Minimum speedup	5.6	9.7	15.8
Super-linear speedups	17	16	13

TSPLIB	8 Threads	16 Threads	32 Threads
Geo-mean speedup	7.3	13.4	19.5
Maximum speedup	27.1	61.3	116.2
Minimum speedup	3.7	6.4	7.1
Super-linear speedups	1	1	1

66 and 150 levels for TSPLIB. We also note that only the thread stop-
67 ping part of the algorithm described in Section 5.1 was used in the
68 experimental evaluation, as the thread resume part did not work
69 effectively due to the high overhead of tracking LBs.

70 6.2. Medium-difficulty instances

71 The proposed parallel algorithm was applied to the medium-
72 difficulty instances in SOPLIB and TSPLIB using 8, 16, and 32
73 threads with a time limit of one hour on the AWS machine. The
74 speedup delivered by the proposed parallel algorithm relative to
75 the sequential algorithm is shown in Table 2.

76 On SOPLIB, the geometric-mean speedup of the parallel algo-
77 rithm relative to the sequential algorithm is super-linear for any
78 number of threads. For example, with 32 threads, the geo-mean
79 speedup across the medium SOPLIB instances is 71.9, which is
80 super-linear, and the maximum speedup is 366.3. These results
81 confirm the hypothesis that a parallel algorithm with history dom-
82 ination and a dynamic restart technique can deliver super-linear
83 speedup on many instances. Out of 19 medium SOPLIB instances,
84 superlinear speedup was achieved on 13 instances with 32 threads,
85 on 16 instances with 16 threads, and on 17 instances with 8
86 threads.

87 The results in Table 2 show that there were some instances
88 on which the speedup was lower than expected. For example,
89 the lowest speedup with 32 threads is 15.8, which is significant
90 but much smaller than the number of threads. This is primarily
91 attributed to the search order. As explained in Section 4.2, it is un-
92 likely to find a way of ensuring that the parallel search order is
93 always at least as good as the sequential search order.

94 Comparing the geometric-mean speedup for the different num-
95 bers of threads shows that the proposed algorithm scales up very
96 well when the number of threads is increased. The geometric-
97 mean speedup is 27.8 with 8 threads, 42.9 with 16 threads, and
98 71.9 with 32 threads. The increase in the geometric-mean speedup
99 is not perfectly proportional to the number of threads, because the
100 overhead of our parallelization techniques increases as the number
101 of threads is increased. For example, when the number of threads
102 is increased, more threads will be requesting work stealing and
103 thread restart. As a result, more time will be spent handling these
104 requests and the threads will be spending more time waiting on
105 the locks that protect shared variables.

106 The speedup ratios for the medium-difficulty TSPLIB instances
107 in Table 2 are not as high as the SOPLIB speedup ratios. However,
108 the TSPLIB speedup ratios scale up better than the SOPLIB speedup
109 ratios, and superlinear speedup is achieved on one instance with
110 32, 16, and 8 threads.

111 6.3. Hard instances

112 The proposed algorithm was applied to the hard SOPLIB and
113 TSPLIB instances using 8, 16, and 32 threads. The Speedup mea-
114 surement tests with a one-hour time limit were run on the AWS

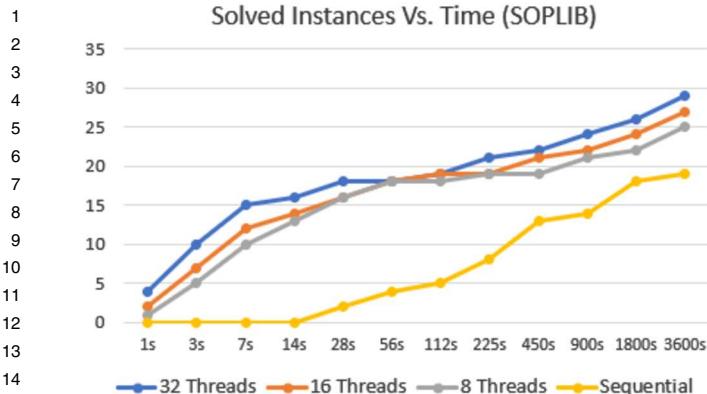
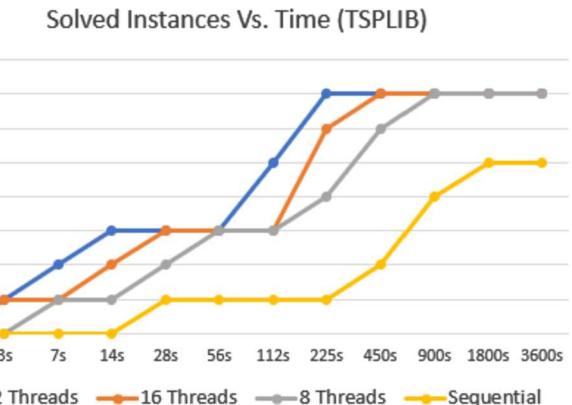


Fig. 6. Cumulative plots for the instances that are solved within an hour.



machine, while the cost-comparison tests and the 5-hour tests were run on the main machine. Recall that the AWS machine has faster memory, while the main machine has larger memory capacity. Table 3 shows the number of instances solved in each case.

With a time limit of one hour, the parallel algorithm with 32 threads solved 10 out of 16 hard SOPLIB instances and two out of 24 hard TSPLIB instances. Recall that these hard instances are the instances that the sequential algorithm could not solve on the same machine within an hour.

Fig. 6 shows the cumulative plots for all the instances (including medium and hard instances) that are solved optimally by the parallel algorithm within an hour. For example, the SOPLIB plot shows that the parallel algorithm solves much more instances than the sequential algorithm within the first 28 seconds. At the end of the one-hour period, the parallel algorithm solves 12 more SOPLIB instances than the sequential algorithm.

To further test the power of the proposed parallel algorithm, the hard instances that the parallel algorithm could not solve with 32-threads within an hour on the AWS machine were run on the main machine with a time limit of five hours. The results are shown in the last row in Table 3, with a five-hour time limit, the parallel algorithm solved 14 out of 16 hard SOPLIB instances and four out of 24 hard TSPLIB instances. Two SOPLIB instances and 20 TSPLIB instances remain unsolved. The number of unsolved TSPLIB instances is significantly greater than the number of unsolved SOPLIB instances, because most hard TSPLIB instances are less precedence constrained, and thus have larger solution spaces to explore.

Table 4 shows the speedup delivered by the parallel algorithm relative to the sequential algorithm with a time limit of one hour. Since, by definition, the sequential algorithm times out on hard instances, only a LB on the speedup can be computed for these instances. The ratio between the one-hour time limit and the parallel execution time is a LB on the actual speedup, because the sequential solution time is not known exactly but is certainly greater than the time limit.

On SOPLIB, the geometric-mean speedup LB is 4.5 with 8 threads, 8.4 with 16 threads, and 15.6 with 32 threads. This shows that the algorithm scales up very well on these instances. The highest speedup LB is 269.9, which shows the great potential of the proposed parallel algorithm.

On TSPLIB, the geometric-mean speedup ratios are significantly higher than the SOPLIB ratios, and the scaling is excellent. The largest speedup on the hard TSPLIB instances with 32 threads is 49.7, which is super-linear.

It is noted in Table 3 that some hard instances are not solved to optimality by the proposed algorithm. To study the effect of the parallel algorithm on these unsolved instances, we compared the final cost computed by the parallel algorithm with that computed

Table 3
Hard instances solved by the parallel algorithm.

	SOPLIB	TSPLIB
Total hard instances	16	24
Solved by 8 threads in one hour	6	2
Solved by 16 threads in one hour	8	2
Solved by 32 threads in one hour	10	2
Solved by 32 threads in five hours	14	4

Table 4
Speedup lower bounds on hard instances.

SOPLIB	8 Threads	16 Threads	32 Threads
Geo-mean speedup LB	4.5	8.4	15.6
Maximum speedup LB	233.6	217.1	269.9
Minimum speedup LB	1.1	1.9	3.7
Super-linear speedups	1	1	1

TSPLIB	8 Threads	16 Threads	32 Threads
Geo-mean speedup LB	7.3	16.9	31.6
Maximum speedup LB	10.7	27.1	49.7
Minimum speedup LB	5.0	10.5	20.0
Super-linear speedups	1	1	1

Table 5
Effect of the parallel algorithm on timed out hard instances.

Instance Group	Instances Studied	Instances Improved	Instances Regressed	Instances with No Improvement
SOPLIB	6	5	1	0
TSPLIB	21	20	0	1

by the sequential algorithm. Tables 5 and 6 show the results of this comparison for the hard instances that the parallel algorithm with 32 threads could not solve within an hour.

The results in Table 5 show that although the parallel algorithm times out on 27 hard instances, it finds better solutions than the sequential algorithm on 25 instances. Table 6 shows that on SOPLIB, the average improvement is 14.5%, and the best improvement on any instance is 28.6%, while on TSPLIB, the average improvement is 4.8%, and the best improvement is 15.5%.

A slight regression of 0.4% is seen on one SOPLIB instance. This is attributed to the search order. As explained in Section 4.2, our restart algorithm is designed to achieve a better search order than the sequential algorithm, but, due to the heuristic nature of the algorithm, achieving a better search order is not guaranteed in all cases. These results show that a better search order is achieved on most but not all instances.

1 **Table 6**

2 Cost improvement by the parallel algorithm on timed out hard instances.

Instance Group	Avg Cost Improvement [%]	Max Cost Improvement [%]	Min Cost Improvement [%]
SOPLIB	14.5	28.6	-0.4
TSPLIB	4.8	15.5	0.0

8 **Table 7**

9 Random variation in the solution times of medium instances.

Instance Group	Random Variation in Geo-mean [%]	Highest Random Variation [%]	Lowest Random Variation [%]
SOPLIB	3.4	22.0	0.1
TSPLIB	1.1	14.4	1.1

16 **Table 8**

17 Effect of thread restart on the speedup of medium SOPLIB instances.

SOPLIB	Restart Enabled	Restart Disabled	Speedup Improvement
Instances studied	6	6	
Geo-mean speedup	21.9	14.5	51.0%
Maximum speedup	46.3	18.7	147.5%
Minimum speedup	15.8	7.8	102.6%

25

6.4. Random variation

27 In this sub-section, we study random variation in the proposed
28 algorithm's solution time. Random variation is inherent to parallel
29 algorithms, due to race conditions among threads and operation
30 system intervention. To measure the amount of random variation
31 in the solution times of the proposed algorithm, the algorithm
32 with 32 threads was applied to the medium SOPLIB and TSPLIB
33 instances 3 times on the AWS machine. Table 7 shows the per-
34 centage random variation in aggregate (the geo-mean) and at the
35 instance level (the highest and lowest percentage variation on any
36 instance). The percentage random variation is defined as the dif-
37 ference between the highest reading and the lowest reading as a
38 percentage of the lowest reading.

39 At the instance level, the maximum random variation on any
40 instance (the worst case) is 22.0%. In aggregate, random variation
41 in the geo-mean is 3.4% for SOPLIB and 1.1% for TSPLIB. Random
42 variation in the geo-mean is limited because random variations on
43 individual instances tend to average out (positive variations can-
44 cel negative variations). It is important to emphasize here that the
45 amount of random variation in the results is so limited that all the
46 super-linear speedups reported in this paper would still be ob-
47 tained even if the test was repeated many times.

50

6.5. Effect of thread restart

51 To test the effectiveness of the thread restart technique de-
52 scribed in Section 4.2, we applied the proposed algorithm with
53 thread restart disabled to two sets of instances. The first set is the
54 set of medium-difficulty SOPLIB instances on which thread restart
55 is activated, and the second set is the set of hard instances that
56 the parallel algorithm could not close in an hour. In this test, we
57 used 32 threads and a time limit of one hour.

58 Table 8 shows the speedup delivered by the parallel algo-
59 rithm relative to the sequential algorithm with and without thread
60 restart on the studied medium SOPLIB instances. The results show
61 that enabling the thread restart technique increases the geometric-
62 mean speedup on these instances by 51.0%, the maximum speedup
63 by 147.5% and the minimum speedup by 102.6%.

64 Tables 9 and 10 show the effect of the thread restart tech-
65 nique on the hard instances that the parallel algorithm could not
66 close within an hour. Table 9 shows that the thread restart tech-

67 **Table 9**

68 Effect of thread restart on timed out hard instances.

Instance Group	Instances Studied	Instances Improved	Instances Regressed	Instances with No Improvement
SOPLIB	6	3	2	1
TSPLIB	21	14	5	2

73 **Table 10**

74 Effect of thread restart on the final cost of timed out hard instances.

Instance Group	Avg Cost Improvement [%]	Max Cost Improvement [%]	Min Cost Improvement [%]
SOPLIB	6.7	16.3	-0.5
TSPLIB	0.7	8.4	-5.0

81 **Table 11**

82 Effect of thread stop on the speedup of medium instances.

SOPLIB	Stop Enabled	Stop Disabled	Speedup Imp
Geo-mean speedup	71.9	42.9	67.6%
Maximum speedup	366.3	112.3	226.2%
Minimum speedup	15.8	14.1	12.1%
TSPLIB	Stop Enabled	Stop Disabled	Speedup Imp
Geo-mean speedup	19.5	18.7	4.3%
Maximum speedup	116.2	84.7	37.2%
Minimum speedup	7.1	7.1	0%

93 nique improved the final cost for a total of 17 out of 27 timed out
94 hard instances. Seven instances were negatively affected by the al-
95 gorithm, while three instances were not affected. Regressions on
96 some instances are unavoidable due to the heuristic nature of the
97 technique. As explained earlier, it is possible to find a heuristic
98 technique that gives a better search order in most cases, but it is
99 unlikely to find a technique that gives a better search order in all
100 cases.

101 The cost improvements achieved when the thread restart tech-
102 nique is enabled are shown in Table 10. The results in this table
103 show that the thread restart technique produces better final costs
104 on average. The average cost improvement is 6.7% on SOPLIB and
105 0.7% on TSPLIB. The best improvement is 16.3% on SOPLIB and 8.4%
106 on TSPLIB.

108

6.6. Effect of thread stop

111 To test the effectiveness of the thread stop technique described
112 in Section 5.1, the parallel algorithm with 32 threads and a one-
113 hour time limit was applied to all the medium-difficulty instances
114 with thread stop disabled. Table 11 shows the speedup delivered
115 by the parallel algorithm relative to the sequential algorithm on
116 the medium instances in SOPLIB and TSPLIB with and without
117 thread stop. The last column in each table shows the percentage
118 improvement in speedup when thread stop is enabled.

119 On SOPLIB, enabling the thread stop technique increases the
120 geometric-mean speedup by 67.6% and increases the highest
121 speedup by 226.2%. On TSPLIB, enabling thread stop increases
122 the geometric-mean speedup by 4.3% and increases the highest
123 speedup by 37.2%. These results clearly show the effectiveness of
124 the thread stop algorithm.

125

6.7. Optimality proving vs solution improving

128 To test the optimality-proving performance, as opposed to the
129 solution improving performance, of the proposed algorithm, we
130 ran a test on the medium-difficulty instances with the optimal
131 solution fed as an initial solution into the sequential and the par-
132 allel algorithm. Table 12 shows the improvements made by the

1 **Table 12**

2 Improvement with an optimal initial solution.

3 SOPLIB	4 Geo-mean	5 Max	6 Min
7 Improvement			
8 Solution Time	45.6	140.4	10.0
9 Enumerated Nodes	9.9	46.9	1.0
10 Node Processing Speed	4.6	21.0	0.2
11 TSPLIB	12 Geo-mean	13 Max	14 Min
15 Improvement			
16 Solution Time	21.0	59.5	8.9
17 Enumerated Nodes	1.0	1.7	0.8
18 Node Processing Speed	21.5	36.1	10.8

parallel algorithm with 32 threads relative to the sequential algorithm in three different metrics: the total solution time, the number of enumerated nodes, and the node processing speed (defined as nodes processed per second). The improvements in the table are shown as ratios (sequential-to-parallel ratio for the first two metrics where smaller is better, and parallel-to-sequential ratio for the third metric where larger is better). The experiment was performed on the AWS machine.

Overall, the results in Table 12 show that the proposed algorithm delivers significant improvements relative to the sequential algorithm even when the initial solution is optimal in both cases (parallel and sequential). For example, on average, the parallel algorithm proved the optimality of the initial solution 45.6 times faster than the sequential algorithm on the SOPLIB instances. Some speedup comes from the search order, but significant improvement in node processing speed is also achieved. On average, the improvement in the total solution time is approximately equal to the product of the improvement in enumerated nodes and the improvement in node processing speed.

It is important to note that when the parallel algorithm makes a greater improvement (reduction) in the number of enumerated nodes, the improvement in node processing speed will be smaller, because when the parallel algorithm makes more aggressive pruning, it will be processing shallower nodes. Shallower nodes take more time to process, as the LBs need to be computed for larger sub-graphs. Therefore, node processing speeds are comparable only when the number of enumerated nodes is about the same. This is the case for the TSPLIB instances, where the number of enumerated nodes is, on average, the same for both the parallel and the sequential algorithm. In that case, the node processing speed of the parallel algorithm is 21 times faster than the node processing speed of the sequential algorithm. This is a reasonably good speedup, considering the overhead of the parallel algorithm, especially shared-memory contention, cache conflicts and waiting on locks.

7. Conclusions and future work

In this paper, we propose a parallel B&B algorithm with history-based domination and apply it to the SOP. The proposed algorithm with 32 threads solves 10 SOPLIB instances and two TSPLIB instances that the sequential algorithm does not solve in an hour. It gives super-linear speedup on 16 instances with a maximum speedup of 366x on a 32-core processor.

In future work, we will continue to work on enhancing the proposed parallel algorithm, and we will explore a GPU version of it. Furthermore, we plan on extending the proposed parallel approach to solve the instruction scheduling problem in compilers [48,49], which is somewhat similar to the SOP but involves additional challenges and complexities.

1 **Table 13**

2 Effect of the percentage of stolen load on performance.

3 Benchmarks	4 Geo-mean Speedup			
	5 25%	6 50%	7 100%	8 Dynamic
9 SOPLIB	10 61.2	11 55.1	12 51.2	13 71.9
14 TSPLIB	15 20.4	16 20.0	17 20.0	18 19.5

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the US National Science Foundation (NSF) Award No 1911235. This work benefited from technical discussions with Jafar Jamal and Jeffrey Byrnes. The authors also thank Patrick Brannan and Lynne Koropp for the technical support that they provided. Finally, we thank the anonymous reviewers for their thorough and insightful comments that greatly improved the final version of this paper.

Appendix A. Work stealing

To study the relation between the amount of stolen load and performance, the parallel algorithm was applied to the medium-difficulty instances on the AWS machine with a time limit of one hour using three different percentages of stolen load: 25%, 50% and 100%. The results are shown in Table 13. The table shows the geometric-mean speedup achieved using the parallel algorithm for each percentage of stolen load.

The results in the table show that on SOPLIB, stealing all the load gives the worst overall results. By examining the individual instances, we observed that there is a relation between an instance's precedence-constraint density and the load percentage that gives the best results for that instance. When the density of precedence constraints is higher, stealing fewer nodes gives better results. This is attributed to the fact that with a higher precedence density, work stealing occurs more frequently, and thus more threads are likely to become idle and request work stealing at about the same time. In this case, better performance is achieved when a victim thread's load is distributed among multiple idle threads instead of giving all of that load to one idle thread.

Based on this observation, we experimented with dynamically setting the percentage of stolen load based on an instance's density of precedence constraints. As shown in the last column of Table 13, this gave better results than any fixed percentage on SOPLIB. This is the scheme that was used to generate the results in the paper. On TSPLIB, performance is not sensitive to the percentage of stolen nodes. Approximately the same results are achieved using any percentage of stolen load.

Appendix B. Thread restart period

We experimented with the effect of the restart period on the performance of the restart technique. The test was performed on the hard instances that could not be solved within an hour by the proposed parallel algorithm with 32 threads on the main machine. Table 14 shows the percentage improvement in the overall best cost found within an hour using thread restart periods of 25s, 50s,

1 **Table 14**

2 Cost improvement of the restart algorithm with different restart periods.

Benchmarks	Cost improvement			
	25 s	50 s	100 s	200 s
SOPLIB	6.7%	5.9%	5.2%	3.9%
TSPLIB	0.0%	-0.1%	-0.5%	0.7%

9 **Table 15**

10 Cost improvement of the restart algorithm with different percentages of exploitation.

Benchmarks	Cost Improvement		
	20%	50%	80%
SOPLIB	4.4%	6.7%	6.9%
TSPLIB	-0.6%	0.7%	-0.3%

18 100s, and 200s. The cost improvements in the table are relative to
19 the costs obtained with thread restart disabled.20 On SOPLIB, using a short restart period of 25s gives the best
21 overall results, while on TSPLIB, the longest period of 200s gives
22 the best overall results. This is attributed to the fact that updates
23 to the best solution happen at a much higher rate in SOPLIB. When
24 updates to the best solution happen infrequently, a longer restart
25 period is needed to identify the most promising subspaces.27

Appendix C. Balancing exploitation and exploration

29 Table 15 shows the results of our experimentation with the
30 balance between exploitation and exploration in the restart technique.
31 The test was performed on all the instances that the parallel al-
32 gorithm with 32 threads could not solve within an hour on the
33 main machine using three different percentages of exploitation:
34 20%, 50%, 80%). The cost improvements in the table are relative
35 to the costs obtained with thread restart disabled.36 The results in the table show that dividing the threads equally
37 between exploitation and exploration gives the best overall results.
38 On SOPLIB, however, doing exploitation in 80% of the threads gives
39 slightly better results.41

References

- [1] D. Anderson, G. Hendel, P.L. Bodic, M. Viernickel, Clairvoyant restarts in branch-and-bound search using online tree-size estimation, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 1427–1434.
- [2] D. Anghinolfi, R. Montemanni, M. Paolucci, L. Gambardella, A hybrid particle swarm optimization approach for the sequential ordering problem, *Comput. Oper. Res.* 38 (2011) 1076–1085.
- [3] B. Archibald, P. Maier, C. McCreesh, R. Stewart, P. Trinder, Replicable parallel branch and bound search, *J. Parallel Distrib. Comput.* 113 (2018) 92–114.
- [4] B. Archibald, F. Dunlop, R. Hoffmann, C. McCreesh, P. Prosser, J. Trimble, Sequential and parallel solution-biased search for subgraph algorithms, in: Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 2019, pp. 20–38.
- [5] N. Ascheuer, L. Escudero, M. Grötschel, M. Stoer, A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing), *SIAM J. Optim.* 3 (1993) 25–42.
- [6] N. Ascheuer, M. Jünger, G. Reinelt, A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints, *Comput. Optim. Appl.* 17 (2000) 61–84.
- [7] D. Bader, W. Hart, C. Phillips, Parallel algorithm design for branch and bound, in: Tutorials on Emerging Methodologies and Applications in Operations Research, in: International Series in Operations Research & Management Science, vol. 76, 2005.
- [8] L. Barreto, M. Bauer, Parallel branch and bound algorithm - a comparison between serial, OpenMP and MPI implementations, *J. Phys. Conf. Ser.* 256 (2010).
- [9] A. Borisenko, S. Gorlatch, Optimal batch plants design on parallel systems: a comparative study, in: IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp. 549–558.
- [10] G. Brightwell, P. Winkler, Counting linear extensions is #p-complete, in: Proceedings of the ACM Symposium on Theory of Computing, 1991, pp. 175–181.
- [11] I. Chakroun, N. Melab, Towards a heterogeneous and adaptive parallel branch-and-bound algorithm, *J. Comput. Syst. Sci.* 81 (2015) 72–84.
- [12] G. Chu, C. Schulte, P.J. Stuckey, Confidence-based work stealing in parallel constraint programming, in: Principles and Practice of Constraint Programming, 2009, pp. 226–241.
- [13] T. Crainic, B. Le Cun, C. Roucairol, Parallel branch-and-bound algorithms, in: Parallel Combinatorial Optimization, 2006, pp. 1–28.
- [14] A. Dabah, A. Bendjoudi, A. AitZai, D. El-Baz, N. Taboudjemat, Hybrid multicore CPU and GPU-based b&b approaches for the blocking job shop scheduling problem, *J. Parallel Distrib. Comput.* 117 (2018) 73–86.
- [15] M. Daouri, F. Escobar, X. Chang, C. Valderrama, A hardware architecture for the branch and bound flow-shop scheduling algorithm, in: 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP International Symposium on System-on-Chip (SoC), 2015, pp. 1–4.
- [16] A. de Bruin, G. Kindervater, H. Trienekens, Asynchronous parallel branch and bound and anomalies, in: Parallel Algorithms for Irregularly Structured Problems, in: Lecture Notes in Computer Science, vol. 980, 1995, pp. 363–377.
- [17] L. Escudero, An inexact algorithm for the sequential ordering problem, *Eur. J. Oper. Res.* 37 (1988) 236–249.
- [18] L. Escudero, M. Guignard, K. Malik, A Lagrangian relax-and-cut approach for the sequential ordering problem with precedence relationships, *Ann. Oper. Res.* 50 (1994) 219–237.
- [19] L. Gambardella, M. Dorigo, An ant colony system hybridized with a new local search for the sequential ordering problem, *INFORMS J. Comput.* 12 (2000) 237–255.
- [20] L. Gambardella, R. Montemanni, D. Weyland, An enhanced ant colony system for the sequential ordering problem, in: Operations Research Proceedings 2011, 2012, pp. 355–360.
- [21] B. Gendron, T. Crainic, Parallel branch-and-bound algorithms: survey and synthesis, *Oper. Res.* 42 (1994) 1042–1066.
- [22] J. Gmys, Heterogeneous cluster computing for many-task exact optimization - Application to permutation problems, Ph.D. thesis, Université de Mons (UMONS); Université de Lille, 2017.
- [23] J. Gmys, M. Mezzmaz, N. Melab, D. Tuyttens, A GPU-based branch-and-bound algorithm using integer-vector-matrix data structure, *Parallel Comput.* 59 (2016) 119–139.
- [24] J. Gmys, M. Mezzmaz, N. Melab, D. Tuyttens, A computationally efficient branch-and-bound algorithm for the permutation flow-shop scheduling problem, *Eur. J. Oper. Res.* 284 (2020) 814–833.
- [25] L. Gouveia, P. Pesneau, On extended formulations for the precedence constrained asymmetric traveling salesman problem, *Networks* 48 (2006) 77–89.
- [26] L. Gouveia, M. Ruthmair, Load-dependent and precedence-based models for pickup and delivery problems, *Comput. Oper. Res.* 63 (2015) 56–71.
- [27] F. Guerriero, M. Mancini, A cooperative parallel rollout algorithm for the sequential ordering problem, *Parallel Comput.* 29 (2003) 663–677.
- [28] K. Helsgaun, An extension of the Lin-Kernighan-Helsgaun TSP Solver for constrained traveling salesman and vehicle routing problems, Technical Report, Roskilde Universitet, 2017.
- [29] J. Herrera, J. Salmerón, E. Hendrix, R. Asenjo, L. Casado, On parallel branch and bound frameworks for global optimization, *J. Glob. Optim.* 69 (2017) 547–560.
- [30] J. Jamal, G. Shobaki, V. Papapanagiotou, L. Gambardella, R. Montemanni, Solving the sequential ordering problem using branch and bound, in: IEEE Symposium Series on Computational Intelligence, 2017, pp. 1–9.
- [31] V. Janakiram, E. Gehringer, D. Agrawal, R. Mehrotra, A randomized parallel branch-and-bound algorithm, *Int. J. Parallel Program.* 17 (1988) 277–301.
- [32] J. Kinable, A. Ciré, W. van Hoeve, Hybrid optimization methods for time-dependent sequencing problems, *Eur. J. Oper. Res.* 259 (2017) 887–897.
- [33] M.E. Lalami, D. El-Baz, GPU implementation of the branch and bound method for knapsack problems, in: IEEE International Parallel and Distributed Processing Symposium Workshops PhD Forum, 2012, pp. 1769–1777.
- [34] G. Li, B. Wah, Coping with anomalies in parallel branch-and-bound algorithms, *IEEE Trans. Comput. C-35* (1986) 568–573.
- [35] C. McCreesh, P. Prosser, The shape of the search tree for the maximum clique problem and the implications for parallel branch and bound, *ACM Trans. Parallel Comput.* 2 (2015) 8:1–8:27.
- [36] G. Mills-Tettey, A. Stentz, M. Dias, The dynamic Hungarian algorithm for the assignment problem with changing costs, Technical Report, Carnegie Mellon University, 2007.
- [37] A. Mingozi, L. Bianco, S. Ricciardelli, Dynamic programming strategies for the traveling salesman problem with time window and precedence constraints, *Oper. Res.* 45 (1997) 365–377.
- [38] M. Mojana, R. Montemanni, G. Caro, L. Gambardella, A branch and bound approach for the sequential ordering problem, in: Proceedings of the International Conference on Applied Operational Research, in: Lecture Notes in Management Science, vol. 4, 2012, pp. 266–273.
- [39] R. Montemanni, D. Smith, L. Gambardella, A heuristic manipulation technique for the sequential ordering problem, *Comput. Oper. Res.* 35 (2008) 3931–3944.
- [40] D. Morrison, S. Jacobson, J. Sauppe, E. Sewell, Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning, *Discrete Optim.* 19 (2016) 79–102.

1 [41] J. Pekny, D. Miller, A parallel branch and bound algorithm for solving large
2 asymmetric traveling salesman problems, *Math. Program.* 55 (1992) 17–33.

3 [42] G. Reinelt, TSPLIB—a traveling salesman problem library, *INFORMS J. Comput.* 3
4 (1991) 376–384.

5 [43] S. Russell, P. Norvig, *Artificial Intelligence: A Modern Approach*, 4th edition,
6 Pearson, 2020.

7 [44] Y. Salii, Revisiting dynamic programming for precedence-constrained traveling
8 salesman problem and its time-dependent generalization, *Eur. J. Oper. Res.* 272
9 (2019) 32–42.

10 [45] Y. Salii, A. Sheka, Improving dynamic programming for travelling salesman
11 with precedence constraints: parallel Morin–Marsten bounding, *Optim. Methods
12 Softw.* (2020) 1–27.

13 [46] G. Shobaki, J. Jamal, An exact algorithm for the sequential ordering problem
14 and its application to switching energy minimization in compilers, *Comput.
15 Optim. Appl.* 61 (2015) 343–372.

16 [47] G. Shobaki, K. Wilken, Optimal superbblock scheduling using enumeration, in:
17 Proceedings of the 37th Annual IEEE/ACM International Symposium on Mi-
18 croarchitecture, 2004, pp. 283–293.

19 [48] G. Shobaki, M. Shawabkehand, N. Rmaileh, Preallocation instruction schedul-
20 ing with register pressure minimization using a combinatorial optimization
21 approach, *ACM Trans. Archit. Code Optim.* 10 (2013) 31.

22 [49] G. Shobaki, A. Kerbow, S. Mekhoshin, Optimizing occupancy and ILP
23 on the GPU using a combinatorial approach, in: Proceedings of the 18th
24 ACM/IEEE International Symposium on Code Generation and Optimization,
25 2020, pp. 133–144.

26 [50] R. Skinderowicz, An improved ant colony system for the sequential ordering
27 problem, *Comput. Oper. Res.* 86 (2017) 1–17.

28 [51] C. Tomazella, M. Nagano, A comprehensive review of branch-and-bound algo-
29 rithms: guidelines and directions for further research on the flowshop schedul-
30 ing problem, *Expert Syst. Appl.* 158 (2020) 113556.

31 [52] S. Tschoke, R. Lubling, B. Monien, Solving the traveling salesman problem
32 with a distributed branch-and-bound algorithm on a 1024 processor network,
33 in: Proceedings of the International Parallel Processing Symposium, 1995,
34 pp. 182–189.

Taspon Gonggiatgul is a research assistant at California State University, Sacramento. He received a bachelor's degree in Computer Engineering from University of California, Davis. He is interested in the parallelization of combinatorial optimization algorithms along with other topics in the area of embedded systems.

Ghassan Shobaki is an Associate Professor in the Computer Science (CS) dept. at California State University, Sacramento. He received his Ph.D and Master of Science degrees in CS from the University of California, Davis in 2002 and 2006, respectively. He also holds a Master of Science degree in Electrical Engineering (EE) from the University of Houston and a B.Sc degree in EE from the University of Jordan.

Dr. Shobaki's research interests are in the areas of compiler optimizations, combinatorial optimization algorithms and parallel computing. He is generally interested in developing exact or precise algorithms for solving NP-hard combinatorial optimization problems. More specifically, he is interested in applying combinatorial optimization techniques to compiler optimization problems and studying their performance compared to the heuristic approaches used in production compilers.

Pınar Muyan-Özçelik is an Associate Professor at the Department of Computer Science of the California State University, Sacramento. She earned her Ph.D degree in Computer Science from the University of California, Davis. She received her MSc degree from the Department of Computer Science at the University of British Columbia and completed her B.Sc degree in Computer Engineering at the Ege University. She is interested in the parallelization of combinatorial optimization algorithms and benchmarking autonomous driving systems. She also conducts research on the use of GPU computing in various domains such as compiler optimizations, electric power systems, automotive computing, embedded systems, and medical imaging.

1 Sponsor names 67
23 *Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.*4 **US National Science Foundation**, *country*=United States, *grants*=1911235 70
5

6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

1 **Highlights**

2

3 • We propose the first parallel B&B algorithm that involves a history-based domination technique. 67

4 • The proposed algorithm includes three novel parallelization techniques: thread restart, parallel history-based domination, and 68

5 history-table memory management. 69

6 • The proposed algorithm is the first parallel B&B algorithm for the Sequential Ordering Problem, which is an NP-hard sequencing 70

7 problem with precedence constraints. 71

8 • We present a thorough experimental evaluation of the proposed parallel algorithm on SOPLIB and TSPLIB. The results show that 72

9 super-linear speedup is not an anomaly; it can be achieved on many instances. We report a speedup ratio as high as 285 on a 73

10 32-core processor. 74

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132