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ABSTRACT 
In this paper, an optimization-based dynamic modeling 

method is used for human-robot lifting motion prediction. The 
three-dimensional (3D) human arm model has 13 degrees of 
freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) 
has 10 DOFs. The human arm and robotic arm are built in 
Denavit-Hartenberg (DH) representation. In addition, the 3D 
box is modeled as a floating-base rigid body with 6 global DOFs. 
The interactions between human arm and box, and robot and box 
are modeled as a set of grasping forces which are treated as 
unknowns (design variables) in the optimization formulation. 
The inverse dynamic optimization is used to simulate the lifting 
motion where the summation of joint torque squares of human 
arm is minimized subjected to physical and task constraints. The 
design variables are control points of cubic B-splines of joint 
angle profiles of the human arm, robotic arm, and box, and the 
box grasping forces at each time point. A numerical example is 
simulated for huma-robot lifting with a 10 Kg box. The human 
and robotic arms’ joint angle, joint torque, and grasping force 
profiles are reported. These optimal outputs can be used as 
references to control the human-robot collaborative lifting task. 

Keywords: Motion planning, human-robot interaction, 
sawyer robot, and inverse dynamic optimization, recursive 
Lagrangian equation. 

1. INTRODUCTION
Human-robot lifting is widely used in industry and our daily

life. It has greatly improved the productivity and efficiency in the 
manufacturing industries. In the research field, there is a wide 
range of interest in human-robot collaboration. 

Over the last few decades, researchers developed different 
biomechanical prediction models for lifting [1-7]. Moreover, 
there was significant progress in human-robot interaction 
research. Researchers are now using different learning 
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techniques for predicting and executing the lifting task 
successfully.  The predictive simulations for collaborative lifting 
were utilized to study load sharing problems among robots or 
between human and robot. Sheng et al. [8] proposed a learning 
framework which combines the imitation learning and 
reinforcement learning for human-robot table lifting tasks. 
Evrard et al. [9] presented a probabilistic framework for 
conducting a human-robot collaborative task with the help of a 
human operator. DelPreto and Rus [10] provided a real-time 
interface for human-robot lifting. They have used 
electromyography (EMG) signals to estimate the human's 
intention for controlling collaborative object lifting tasks. 

 This work extends our previous human-human team lifting 
prediction for the 2D skeleton model [7]. Our goal in this study 
is to develop a 3D human-robot lifting prediction model to study 
the human-robot interaction and cause-and-effect. An inverse 
dynamic optimization formulation is proposed to predict the 
collaborative lifting motion and hand grasping forces. The 
human-robot lifting problem is formulated as a nonlinear 
programming (NLP) optimization problem. The objective 
function is defined as the summation of joint torque squares for 
human, which is minimized using an SQP algorithm [11]. The 
optimization results are reported, including the joint angle, joint 
torque, and box grasping forces.  

2. MULTIBODY HUMAN-ROBOT SYSTEM

2.1 Human and box model 
      A 3D human skeletal arm model and a 3D box are considered 
in this work, as shown in Figure 1. The human skeletal arm 
model has 𝑛𝑛ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 13 DOFs. The box has 6 global DOFs, 
including three translations and three rotations. The skeletal arm 
model consists of one physical arm branch and one virtual 
branch, including the global DOFs. The arm model and the box 
are constructed by using the robotic formulation of the DH 
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method [12]. In addition, there are two grasping force vectors (𝐟𝐟1𝑐𝑐 
and 𝐟𝐟2𝑐𝑐) acting on the two bottom edges of the box. In this study, 
human’s anthropometric data are generated from GEBOD™ 
[13], a regression-based utility software based on the measured 
height, weight, and stature. The DH parameters for the human 
arm and box model are described in Table 1 and 2, respectively. 
 

 
 
                    (a)                                        (b) 

FIGURE 1: (a) The 3D human skeletal arm model (with global 
DOFs: 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3) and (b) 3D box model (with global DOFs: 

𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4, 𝑧𝑧5, 𝑧𝑧6) 
 

2.2 Robotic arm model 
A 3D Sawyer robotic arm model is considered in this study, 

as shown in Figure 2. The model has 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 10 DOFs. This 
arm model has one physical branch and one virtual branch, 
including three global DOFs. The robotic arm model is 
constructed using the same DH method.  

 

 
FIGURE 2. 3D robotic arm model (Sawyer robotic arm)  

 
The DH parameters for the robotic arm are described in 

Table 3. The required link lengths of the robotic arm model and 
the Sawyer robot's link mass data are available in the literature 
[14]. Recursive Lagrangian dynamics formulation is used to set 
up the equations of motion (EOM) of the human, robot and box 
systems, and details refer to [7, 15-16].  
 
 

Table 1. DH table for human arm model 
DOF ϴ d a α 

1 𝜋𝜋/2 0 0 𝜋𝜋/2 
2 𝜋𝜋/2 0 0 𝜋𝜋/2 
3 𝜋𝜋/2 L1 0 𝜋𝜋/2 
4 𝜋𝜋/2 0 0 𝜋𝜋/2 
5 𝜋𝜋/2 0 0 𝜋𝜋/2 
6 -𝜋𝜋/2 L2 L3 −𝜋𝜋/2 
7 𝜋𝜋/2 0 0 𝜋𝜋/2 
8 -𝜋𝜋/2 0 0 𝜋𝜋/2 
9 0 -L4 0 𝜋𝜋/2 

10 0 0 0 𝜋𝜋/2 
11 0 L5 0 −𝜋𝜋/2 
12 𝜋𝜋/2 0 0 −𝜋𝜋/2 
13 0 0 -L6 0 

 
Table 2. DH table for box model 

 
Table 3. DH table for robotic arm model 

DOF ϴ d a α 
1 𝜋𝜋/2 0 0 𝜋𝜋/2 
2 𝜋𝜋/2 0 0 𝜋𝜋/2 
3 0 L9 0  0 
4  𝜋𝜋 L1 L2 −𝜋𝜋/2 
5  𝜋𝜋/2 L3 0 −𝜋𝜋/2 
6 0 L4 0 −𝜋𝜋/2 
7 𝜋𝜋 L5 0 −𝜋𝜋/2 
8 0 L6 0 −𝜋𝜋/2 
9  𝜋𝜋 L7 0 −𝜋𝜋/2 
10 -𝜋𝜋/2 L8 0   0 

 
 
3. OPTIMIZATION FORMULATION 
          The human-robot collaborative lifting is predicted by 
solving an NLP problem. Here the box initial and final positions, 
the feet/robot base positions, and the box dimensions and weight 
are given. The total time T for lifting motion is specified. 
 
3.1 Design variables 
         The joint angle profiles are discretized by cubic B-splines. 
The design variables (x) are joint angle control points Phuman, 
Probot, and Pbox for human, robot, and the box, respectively. In 
addition, the grasping forces (𝐟𝐟1𝑐𝑐 and 𝐟𝐟2𝑐𝑐) between human and  
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robot, and box are also treated as unknowns (design variables). 
Thus, 𝐱𝐱 = [𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢1T ,𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2T ,𝐏𝐏𝑏𝑏𝑏𝑏𝑏𝑏T , 𝐟𝐟1𝑐𝑐T, 𝐟𝐟2𝑐𝑐T]T. 
 
3.2 Objective function 

   The dynamics effort [7,17] is used as the objective 
function which is defined as the summation of joint torque 
squares for human. 

 
𝐽𝐽(𝐱𝐱) = ∑ ∫ {𝜏𝜏𝑖𝑖(ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

2 (𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , 𝐟𝐟1𝑐𝑐)}𝑑𝑑𝑑𝑑𝑇𝑇
0  𝑛𝑛ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑖𝑖=3                    (1) 

 
where 𝑇𝑇 is the total time. The total time duration T is a specified 
input parameter. 
 
3.3 Constraints 

   The constraints include (ⅰ) joint angle limits, (ⅱ) torque 
limits, (ⅲ) feet/base contacting position, (ⅳ) box forward, (ⅴ) 
box range of motion, (ⅵ) box grasping, (ⅶ) box global EOM, 
(ⅷ) initial and final box locations, and (ⅸ) static conditions at 
the beginning and end of the motion. Constraints (ⅰ-ⅳ) are 
imposed for both human and robot, and constraints (ⅴ-ⅶ) are 
imposed only for the box. The physical joint angle limits and 
joint torque limits for human and robot are depicted in the 
following equations: 

 
𝐪𝐪ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿 ≤ 𝐪𝐪ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) ≤ 𝐪𝐪ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑈𝑈                                       (2) 
       𝛕𝛕ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿 ≤ 𝛕𝛕ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) ≤ 𝛕𝛕ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑈𝑈                                          (3) 
 

𝐪𝐪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿 ≤ 𝐪𝐪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) ≤ 𝐪𝐪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈                                             (4) 
       𝛕𝛕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿 ≤ 𝛕𝛕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) ≤ 𝛕𝛕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈                                               (5) 
 
where 𝐪𝐪ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐿𝐿  and 𝐪𝐪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿  are the lower joint angle limits, and 
𝐪𝐪ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑈𝑈  and 𝐪𝐪𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈  are the upper joint limits for the human and 
robot arm, respectively. In addition, 𝛕𝛕ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐿𝐿  and 𝛕𝛕ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑈𝑈 are 
human dynamic lower and upper joint torque limits, and  𝛕𝛕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿    
and 𝛕𝛕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑈𝑈  are robot lower and upper limits. Detail formulations 
of all the constraints are referred to [7]. 
 
4. RESULTS 

 
An SQP algorithm in SNOPT [11] is used to solve the NLP 

problem for human-robot lifting. To use the algorithm, cost and 
constraint functions and their gradients need to be calculated. 
𝐏𝐏 = [𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,𝐏𝐏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐏𝐏𝑏𝑏𝑏𝑏𝑏𝑏] = 𝟎𝟎, 𝐟𝐟𝟏𝟏𝒄𝒄 = 𝐟𝐟𝟐𝟐𝒄𝒄 = 𝟏𝟏𝟏𝟏 are used as the 
initial guess for the optimization. There are total 224 design 
variables and 894 nonlinear constraints. The optimal solution is 
obtained in 141.21 seconds on a laptop with an Intel® Core™ i7 
2.11 GHz CPU and 16 GB RAM. The input data to the 
collaborative box-lifting task include box weight 10 Kg, total 
time 1.2 seconds, and initial and final box locations. The task 
parameters are represented in Table 4. 

First, the snapshot of the predicted 3D human-robot arm 
lifting is depicted in Figure 3. The joint angle and joint torque 
profiles for human shoulder flexion, shoulder abduction, and 
elbow flexion are shown in Figures 4 and 5, respectively. 
Similarly, joint angle and joint torque profiles for the robot are 

shown in Figures 6 and 7, respectively. Finally, box grasping 
force profile is presented in Figure 8.  

Table 4. Task parameters for the collaborative box lifting 

 
 

 
FIGURE 3: SNAPSHOTS OF HUMAN-ROBOT LIFTING 

MOTION FOR 10 KG BOX 
 

 

FIGURE 4: HUMAN ARM JOINT ANGLE PROFILES 

Initial and final human feet contact position (m) 0.375 

Initial hand and end-effector (EE) position (m) 0.1 
Initial and final robot base contact position (m) 0.675 
Vertical final hand and EE position (m) 0.6 

Horizontal final hand and EE position (m) 0.3 
Standing distance, L(m) 1.3 

T (s) 1.2 
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FIGURE 5: HUMAN ARM JOINT TORQUE PROFILES 
 

 
FIGURE 6: ROBOT ARM JOINT ANGLE PROFILES 

 

 
FIGURE 7: ROBOT ARM JOINT TORQUE PROFILES 

 
 

 
 

FIGURE 8: BOX GRASPING FORCES FOR HUMAN-
ROBOT LIFTING 

 
5. DISCUSSION 
 

The trajectory of the simulated human-robot lifting motion 
is depicted in Figure 3. It is seen that the initial and final box 
locations are not symmetric because of the given final box 
location. The proposed optimization is able to predict a natural 
collaborative lifting motion. The joint angle profiles of shoulder 
flexion and elbow flexion of the human arm have similar trends 
as shown in Figure 4. In addition, the joint torque profile of 
shoulder flexion has a larger peak value than those of other joints 
as shown in Figure 5. 
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For robot joint angle profiles in Figure 6, all the joints have 
similar trends. These joint angle profiles indicate that all the 
rotational joints of the robot have effects on the collaborative 
lifting. The 2nd and 4th joints of the robot have larger peak torque 
values than those of other joints as depicted in Figure 7. This 
illustrates that every robot joint has different contribution to the 
box lifting. In addition, we need to validate the simulation results 
against the experimental results for robot joint angle profiles and 
joint torque profiles as presented in Figure 6 and Figure 7, 
respectively. 

For box grasping forces, lateral and horizontal grasping 
forces have similar magnitudes but in the opposite directions to 
keep the box in balance as shown in Figure 8. In addition, the 
summation of the vertical grasping forces on both sides are 
approximately equal to the weight of the box. 
 

6. CONCLUSION 
In this study, an inverse dynamic optimization formulation 

was proposed to predict human-robot lifting motion and the 
grasping forces. Reasonable simulation results were obtained. 
DH method and recursive Lagrangian dynamics were used to 
calculate the kinematics and dynamics of the mechanical system 
of human-robot and box. The discretized grasping forces were 
used to model human-robot and box interaction. The NLP 
optimization problem was efficiently solved using a gradient-
based optimizer SNOPT. These results can be used to plan the 
optimal human-robot collaborative lifting motion to prevent 
human injury. For future work, we will first validate the 
simulation results using motion captures, then design a lifting 
database for different box weights like in the literature for human 
team lifting [17]. This database can generate an efficient lifting 
motion for different box weights and locations for human-robot 
manipulations. 
 
ACKNOWLEDGEMENTS 
 
This work is supported by NSF project (Award # 1849279).  
 
 
REFERENCES 

[1] Ayoub, M., 1992, Problems and solutions in manual 
materials handling: the state of the art. Ergonomics, 35(7-8), 
713-728. 

[2] Arisumi, H., Chardonnet, J. R., Kheddar, A., and Yokoi, 
K., 2007, Dynamic lifting motion of humanoid robots, 2007 
IEEE International Conference on Robotics and Automation, 
Roma, Italy, pp. 2661-2667. 

[3] Xiang, Y., Arora, J.S., and Abdel-Malek, K., 2010, 
Physics-based modeling and simulation of human walking: a 
review of optimization-based and other approaches. Structural 
and Multidisciplinary Optimization, 42(1), 1-23. 

[4] Xiang, Y., Arora, J.S., Rahmatalla, S., Marler, T., Bhatt, 
R., Abdel-Malek, K., 2010, Human lifting simulation using a 
multi-objective optimization approach, Multibody System 
Dynamics, 23(4), 431-451. 

[5] Xiang, Y., Arora, J.S., & Abdel-Malek, K. 2012, 3D 
human lifting motion prediction with different performance 
measures. International Journal of Humanoid Robotics, 9(02), 
1250012. 

[6] Song, J., Qu, X., & Chen, C.H., 2016. Simulation of 
lifting motions using a novel multi-objective optimization 
approach.  International Journal of Industrial Ergonomics, 53, 
37-47. 

[7] Xiang, Y., Arefeen, A. 2020, Two-dimensional team 
lifting prediction with floating-base box dynamics and grasping 
force coupling. Multibody System Dynamics, 50, 211–231. 

[8] Sheng, W., Thobbi, A., and Gu, Y., 2015, An integrated 
framework for human–robot collaborative manipulation, IEEE 
Transactions on Cybernetics, 45(10), 2030-2041. 

[9] Evrard, P., Gribovskaya, E., Calinon, S., Billard, A., 
and Kheddar, A., 2009, Teaching physical collaborative tasks: 
object-lifting case study with a humanoid," 2009 9th IEEE-RAS 
International Conference on Humanoid Robots, Paris, France, 
pp. 399-404, doi: 10.1109/ICHR.2009.5379513. 

[10] DelPreto, J., and Rus, D., 2019, Sharing the load: 
human-robot team lifting using muscle activity, in 2019 IEEE 
International Conference on Robotics and Automation (ICRA), 
May 20-24, Montreal, Canada. 

 [11] Gill, P.E., Murray, W., and Saunders, M.A., 2002, 
SNOPT: An SQP algorithm for large-scale constrained 
optimization. SIAM Journal of Optimization, 12(4), 979-1006. 

[12] Denavit, J., and Hartenberg, R.S., 1955, A kinematic 
notation for lower-pair mechanisms based on matrices, Journal 
of Applied Mechanics, 22, 215-221. 

[13] Cheng, H., Obergefell, L., and Rizer, A., 1994, 
Generator   of body (GEBOD) manual, AL/CF-TR-1994-0051, 
Armstrong Laboratory, Wright-Patterson Air Force Base, Ohio. 

[14] Wang Y., Kong X., Yang J., Zhao G., 2020, Motion 
Performance Analysis of the Sawyer Ankle Rehabilitation 
Robot. In: Tan J. (eds) Advances in Mechanical Design. ICMD 
2019. Mechanisms and Machine Science, vol 77. Springer, 
Singapore. 

[15] Xiang, Y., Arora, J.S., Abdel-Malek, K., 2009. 
Optimization-based motion prediction of mechanical systems: a 
sensitivity analysis. Structural and Multidisciplinary 
Optimization, 37(6), 595-608.  

[16] Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, 
K., 2009. Optimization-based dynamic human walking 
prediction: one step formulation. International Journal for 
Numerical Methods in Engineering, 79(6), 667-695.  

[17] Arefeen, A., Xiang, Y., 2020, Two-dimensional team 
lifting prediction with different box weights. Proceedings of the 
ASME 2020 International Design Engineering Technical 
Conferences and Computers and Information in Engineering 
Conference. Volume 9: 40th Computers and Information in 
Engineering Conference (CIE). Virtual, Online. August 17–19, 
2020. V009T09A004. ASME. 


