

1 Original Research

2 A data-driven approach to improving evacuation time estimates

3 during wildfires for communities with part-time residents in the

4 wildland-urban interface

5 Dapeng Li^a
6
7
8
9
10
11 Corresponding author: Dapeng Li, ^{a*} Department of Geography and Geospatial Sciences, South
12 Dakota State University. 109 Wecota Hall, Box 506, 1101 Medary Ave., Brookings, SD 57007,
13 USA; Tel.: +1 605-688-4620; Fax: +1 605-688-4030; E-mail address: dapeng.li@sdstate.edu
14
15

16

Abstract

17 Wildfires pose a significant threat to the residents living in the wildland-urban interface.
18 Computerized modeling of wildfire evacuation could facilitate protective action decision-making
19 and improve wildfire public safety. This study aims to leverage different types of data, traffic
20 simulation model, and geographic information systems to develop a data-driven wildfire
21 evacuation model to improve evacuation time estimates in resort areas. Specifically, we take into
22 account household vehicle ownership data and the occupancy rate of second homes based on a
23 variety of data in model construction. We used the Tahoe Donner neighborhood in Truckee,
24 California in the case study and derived a series of evacuation time estimates. The results indicate
25 that the evacuation time estimates vary significantly with the mean number of vehicles per home
26 and second homes' occupancy rate in resort areas. The proposed method could help incident
27 commanders better understand the dynamics of travel demand of the fire-prone communities with
28 part-time residents during wildfire evacuation and increase their situational awareness.

29 *Keywords:* wildfire evacuation modeling, evacuation time estimates, traffic simulation,
30 geographic information systems, data integration

31

32 A data-driven approach to improving evacuation time estimates during wildfires in resort areas

33 **1 Introduction**

34 Wildfire is a natural hazard that impacts both human communities and the ecosystem in
35 many regions (Moritz et al., 2014). Due to the dry climate and fuel accumulation, wildfire poses a
36 significant threat to the residents who live in the wildland-urban interface (WUI) in the western
37 US (McCaffrey, 2004). Researchers have found a trend of larger and more frequent wildfires in
38 the western US in the past few decades (Dennison, Brewer, Arnold, & Moritz, 2014). For example,
39 in the 2020 fire season, California has experienced several top 20 largest fires in its history: the
40 August Complex Fire, the Santa Clara Unit (SCU) Lightning Complex Fire, the Sonoma–Lake–
41 Napa Unit (LNU) Lightning Complex Fire, the North Complex Fire, and the Creek Fire (CAL
42 FIRE, 2020a). Wildfire has caused significant loss of life and property in the western US in recent
43 fire seasons. For example, the Camp Fire in Butte County, California destroyed 18,804 structures
44 and killed 85 people in November 2018; the North Complex Fire caused a loss of 2,352 structures
45 and 15 lives in August 2020 (CAL FIRE, 2020b). Despite the increasing wildfire risk, the WUI
46 population has been growing rapidly in the past few decades (Radeloff et al., 2018). These trends
47 pose a significant challenge for wildfire management in the US.

48 With the rapid population growth in the WUI, many fire-prone communities that have a
49 limited number of egresses in the American west could have evacuation difficulty during wildfires
50 (Cova & Church, 1997; Cova, Theobald, Norman, & Siebeneck, 2013). When a wildfire
51 approaches a WUI community and threatens life and property, incident commanders (ICs) need to
52 issue protective action recommendations (PARs) to the population at risk. The primary PARs
53 include evacuation and shelter-in-place, and evacuation is the primary PAR in the US (Cova,
54 Drews, Siebeneck, & Musters, 2009). Wildfire evacuation is a complex process, and ICs need to

55 consider a variety of factors such as fire spread, evacuation route systems (ERS), and evacuation
56 traffic before they could make effective PARs (Cova et al., 2017).

57 Traffic simulation has been widely used in wildfire evacuation modeling to improve public
58 safety (Beloglazov, Almashor, Abebe, Richter, & Steer, 2016; Cova & Johnson, 2002; Li, Cova,
59 & Dennison, 2019). Previous research on wildfire evacuation modeling typically focuses on the
60 households in fire-prone WUI communities and assumes that all the dwelling units are occupied
61 by people in the fire season (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison,
62 2019; Wolshon & Marchive, 2007). However, little research has examined how to account for
63 those unoccupied homes in resort areas in wildfire evacuation modeling. We aim to leverage
64 different types of data, traffic simulation model, and geographic information systems (GIS) to
65 develop a data-driven wildfire evacuation model and improve evacuation time estimates (ETEs)
66 for resort areas so as to improve wildfire public safety and increase community resilience.
67 Specifically, a variety of data will be used to more accurately model evacuation travel demand,
68 which makes this study a typical data-driven application in the field of wildfire evacuation. The
69 novelty of this study is as follows. First, we present a data-driven approach to modeling evacuation
70 travel demand in resort areas. Second, we develop a series of evacuation scenarios to test the
71 developed evacuation model.

72 This article has the following implications. First, the wildfire evacuation model constructed
73 in this study could be directly used by emergency managers to develop a better understanding of
74 potential issues during a wildfire evacuation in resort areas. Second, the constructed evacuation
75 model could be used by emergency managers or evacuation practitioners to develop evacuation
76 plans for resort areas. Lastly, the proposed data-driven method in this study could not only make

77 full use of existing data to improve the accuracy of ETEs but also shed light on how to incorporate
78 other types of data to further improve wildfire evacuation modeling.

79 The remainder of this article is organized as follows. Section 2 provides a review of wildfire
80 evacuation modeling literature. The study area and relevant datasets compiled for this study are
81 introduced in Section 3. Section 4 presents the proposed methods, and the results are included in
82 Section 5. Finally, we give a further discussion on the research topic and conclude with future
83 research directions.

84 **2 Background**

85 Traffic simulation was first employed to study evacuation in nuclear power plant
86 emergencies (Sheffi, Mahmassani, & Powell, 1982; Urbanik & Desrosiers, 1981). The classic
87 transport model is characterized by four steps: trip generation, trip distribution, modal split, and
88 assignment (de Dios Ortúzar & Willumsen, 2011). Evacuation is the process of moving the
89 population threatened by a hazard from the risk area to safe places (Lindell, 2013). Traffic
90 simulation has been widely used in evacuation modeling in the past few decades (Pel, Bliemer, &
91 Hoogendoorn, 2012; Sheffi et al., 1982). In the US, private vehicle is the primary transportation
92 mode during mass evacuations (Lindell & Prater, 2007), and Southworth (1991) formulated
93 evacuation modeling as a five-step process: 1) trip generation; 2) departure time modeling; 3)
94 destination selection; 4) route selection; and 5) the setup, analysis, and revision of the plan. With
95 the rapid development of transport modeling, traffic simulation models have been used to study
96 mass evacuations in different types of hazards such as hurricane (Chen & Zhan, 2008; Yin,
97 Murray-Tuite, Ukkusuri, & Gladwin, 2014), wildfire (Beloglazov et al., 2016; Cova & Johnson,
98 2002), and tsunami (Lämmel, Grether, & Nagel, 2010).

99 Traffic simulation models can be divided into macroscopic, mesoscopic, and microscopic
100 models based on the level of detail (Intini, Ronchi, Gwynne, & Pel, 2019; Murray-Tuite &
101 Wolshon, 2013; Pel et al., 2012). Microscopic traffic simulation models can include detailed
102 individual driving behaviors and vehicle movements and have enjoyed great popularity in wildfire
103 evacuation modeling (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison,
104 2019; Steer, Abebe, Almashor, Beloglazov, & Zhong, 2017). Note that the risk area in a wildfire
105 evacuation is usually much smaller than that in a hurricane evacuation. Thus, although microscopic
106 traffic simulation is characterized by heavy computation (Jha, Moore, & Pashaie, 2004), it is still
107 feasible to use it in wildfire evacuation modeling. Recently, the coupling of different computer
108 models such as fires spread, trigger, and traffic simulation models has become a popular trend in
109 wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019; Steer et al.,
110 2017). Additionally, recent research also reveals the importance of incorporating behavioral
111 research into wildfire evacuation modeling (Intini et al., 2019). This trend is also consistent with
112 the notion that we should employ an interdisciplinary approach to modeling evacuation (Trainor,
113 Murray-Tuite, Edara, Fallah-Fini, & Triantis, 2012).

114 Different metrics can be derived from traffic simulations to evaluate evacuation
115 effectiveness, and some popular metrics include total evacuation time, total travel time, total travel
116 distance, and total evacuation exposure (Han, Yuan, & Urbanik, 2007; Yuan & Han, 2009). The
117 total evacuation time is also termed network clearance time, and it usually includes mobilization
118 time, vehicle travel time, and queueing delay time (Southworth & Chin, 1987). ETE has been
119 widely used as a metric to measure evacuation effectiveness in evacuation research (Jha et al.,
120 2004; Lindell, 2008). In a wildfire evacuation, we need to ensure that the evacuees could travel to
121 safe places before the fire approaches the community at risk (Cova, Dennison, Kim, & Moritz,

122 2005; Cova et al., 2017). Additionally, ETE can also be further integrated with the lead time
123 derived from fire spread models to construct some more complex metrics for wildfire evacuation
124 such as the direness score (Cova, Li, Siebeneck, & Drews, 2021). Note that some complex
125 evacuation evaluation metrics such as exposure count rely on fire spread and microscopic traffic
126 simulation models and can be computationally prohibitive if evacuation researchers and
127 practitioners are to consider the randomness of many input parameters.

128 Wildfire evacuation modeling involves the steps summarized by Southworth (1991), and
129 every step could affect the accuracy of the evacuation model. Among these steps, evacuation travel
130 demand modeling plays a significant role in the computation of ETEs. Evacuation travel demand
131 modeling has drawn significant research attention in the past few decades (Lindell, Murray-Tuite,
132 Wolshon, & Baker, 2018; Murray-Tuite & Wolshon, 2013; Pel et al., 2012; Southworth, 1991).
133 However, it is still a challenge to accurately model evacuation travel demand (Jha et al., 2004).
134 One primary reason is that we lack the necessary human movement data (Jha et al., 2004).
135 Although recent data-driven research has revealed that cellphone data could be used to derive
136 human movement patterns at a reasonable cost (Xu et al., 2016), such data has privacy issues and
137 can rarely be acquired for evacuation modeling in the US and many other countries. Note that the
138 methods to model evacuation travel demand could vary from one type of hazard to another. For
139 example, hurricane evacuation usually involves a larger risk area, and evacuation modelers will
140 use larger evacuation zones (e.g., traffic analysis zones, zip code zones, or census tracts/blocks)
141 and relevant socio-economic data to generate evacuation travel demand (Liang, Lam , Qin, & Ju,
142 2015; Wilmot & Meduri, 2005). Since wildfire evacuation usually involves a smaller population
143 when compared with hurricane evacuation, evacuation modelers could use fine-grain household
144 location data to generate evacuation demand (Li, Cova, & Dennison, 2019). In an early study,

145 Cova and Johnson (2002) used a US Geological Survey (USGS) digital orthophoto quad (DOQ)
146 and some CAD data from the local planning agency to manually code a total of 250 home locations
147 and road network for wildfire evacuation modeling in the Emigration Canyon community to the
148 east of Salt Lake City, Utah. Similarly, Wolshon and Marchive (2007) used a total of 753
149 residential parcels to generate evacuation traffic in the Summit Park neighborhood near Salt Lake
150 City, Utah. Another recent study done by Li, Cova, and Dennison (2019) also used 744 residential
151 parcels to generate evacuation traffic and estimate evacuation time for the town of Julian in San
152 Diego County, California. Besides residential parcel data, address point data is also widely
153 available in many municipal, county, and state governments and could also be used to generate
154 trips in wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, Dennison, et al., 2019).
155 Note that it is usually assumed that all the homes are occupied and can be used to generate
156 evacuation travel demand in previous studies (Cova & Johnson, 2002). This assumption will be
157 effective for those WUI communities that are not located in resort areas. However, since there are
158 many second homes in the WUI communities in resort areas, we need to take into account the
159 occupancy rate of these second homes during the fire season so as to better model evacuation travel
160 demand and derive more accurate ETEs. Although the importance of considering second
161 homeowners and tourists in evacuation modeling has been highlighted in previous evacuation
162 literature (Kuligowski, 2021; Urbanik, 2000), relevant research on this topic is scarce. This study
163 will contribute to the evacuation modeling literature by developing a data-driven approach to
164 improving ETEs for resort communities.

165 Different types of data (e.g., high-resolution satellite imagery, the aerial imagery from
166 unmanned aerial vehicles (UAVs), and social media data) have been used in disaster research in
167 the past few years (Yu, Yang, & Li, 2018). The data from various sensors or social media can be

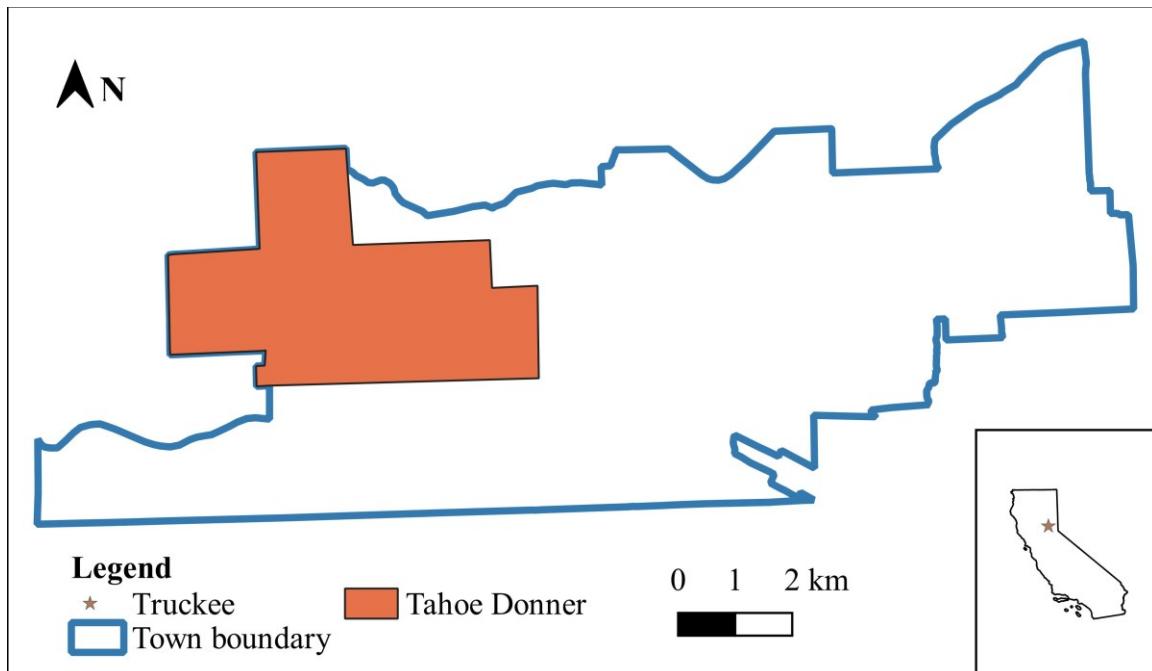
168 generated at a great speed, and such streaming data has been widely used in wildfire evacuation
169 research (Slavkovikj, Verstockt, Van Hoecke, & Van de Walle, 2014; Vieweg, Hughes, Starbird,
170 & Palen, 2010). Although different types of data have been widely used in wildfire evacuation
171 research, little research has been conducted on data-driven wildfire evacuation modeling in resort
172 areas. For example, the occupancy type of the parcels and the occupancy rate of second homes
173 have not been used in previous evacuation modeling studies. This study aims to fill this gap by
174 employing a variety of data to design and implement a wildfire evacuation model for the WUI
175 communities in resort areas.

176 3 Data

177 3.1 Study area

178 Many WUI communities in the western U.S. are located in fire-prone areas and have a
179 limited number of egresses, which places the residents at risk during wildfires (Cova et al., 2013).
180 We used the Tahoe Donner neighborhood in the Town of Truckee, California as our study site.
181 Truckee is an incorporated town with a population of 16,180 (2010 Census) in Nevada County,
182 California. As shown in Figure 1, the town is located in the northern Sierra Nevada, and Tahoe
183 Donner is a high-density neighborhood in the northwestern part of the town. The Mediterranean
184 climate in the Sierra Nevada area is characterized by a wet winter and a dry summer (Van
185 Wagtendonk, 2018). The Tahoe Donner neighborhood is surrounded by a large amount of
186 flammable vegetation. The dry summer, proximity to flammable vegetation, and frequent wildfire
187 ignitions make Tahoe Donner a typical fire-prone community in the American west. In addition,
188 this neighborhood also has many second homes. Since Truckee is close to many attractions (e.g.,
189 Lake Tahoe) and attracts a large number of tourists every year, the occupancy rate of the second
190 homes in this area can vary significantly with time during the fire season. For example, the

191 occupancy rate can be very high on weekends or holidays. Lastly, the Tahoe Donner neighborhood
192 only has two egresses in its ERS. Thus, wildfire poses a significant risk to the local residents in
193 this neighborhood in the fire season. The potential large evacuation travel demand and the limited
194 capacity of the ERS also pose a challenge to emergency managers in wildfire evacuation planning
195 and management.



196
197 Figure 1 The location of the Tahoe Donner neighborhood

198 3.2 Data compilation

199 This study focuses on using a variety of data to design and implement a wildfire evacuation
200 model for WUI communities in resort areas. The primary datasets used in this study are listed in
201 Table 1. Open data usually refers to free, publicly available data and has enjoyed great popularity
202 in scientific research in recent years (Janssen, Charalabidis, & Zuiderwijk, 2012; Molloy, 2011;
203 Murray-Rust, 2008). Note that while most of the data used are open data, four datasets (occupancy
204 type, field survey, evacuation route, and road data) acquired from the Town of Truckee are not

205 open data. The compiled datasets include relevant socio-economic data and the datasets of the built
206 environment (e.g., the ERS). The following subsections provide more details on these datasets.

207 Table 1 The primary datasets compiled for this study

Dataset Name	Source	Year
Parcel occupancy type data	The Town of Truckee	2019
Vehicle ownership data	American Community Survey	2014-2018
Tahoe Donner field survey data	The Town of Truckee	2019-2020
Raw parcel data	Nevada County Assessor's Office	2019
Residential parcel data	Nevada County Assessor's Office	2019
Road data	The Town of Truckee	2019
Road data	OpenStreetMap	2019
Evacuation route data	The Town of Truckee	2019
Neighborhood boundary data	The Town of Truckee	2019
Truckee boundary data	The Town of Truckee	2019

208

209 3.2.1 Socio-economic data

210 Socio-economic data has been widely used to study social vulnerability in disaster research
211 (Cutter, Boruff, & Shirley, 2003). In this study, we employ parcel occupancy and household
212 vehicle ownership data to derive household travel demand in evacuation modeling. The parcel
213 occupancy type dataset was derived based on residential trash and recycling charges from the
214 Town of Truckee. Parcel occupancy type data can be subsequently joined to the residential parcel
215 polygon data through parcel identifications (IDs). The value of this dataset lies in that it will allow
216 evacuation modelers to assign trips for each household based on its occupancy type. This practice
217 will significantly improve the accuracy of the model (especially in resort towns such as Truckee).

218 Another important dataset is the household vehicle ownership data in the comparative
219 housing characteristics dataset (2014 – 2018 estimates) from the American Community Survey
220 (ACS). The vehicle ownership data is listed in Table 2. This dataset can be used to determine the
221 number of trips generated by each household (Li, Cova, & Dennison, 2019). Note that this dataset
222 is open data and is available for most of the areas in the US. The household vehicle ownership data

223 can be used to estimate the mean number of vehicles for each home in Tahoe Donner in subsequent
224 evacuation travel demand modeling.

225 Table 2 The vehicle ownership data from ACS

Number of Vehicles	Occupied Housing Units	Percent
No vehicles available	132	2.2%
1 vehicle available	1,260	20.9%
2 vehicles available	2,514	41.7%
3 or more vehicles available	2,122	35.2%
Total	6,028	100%

226

227 3.2.2 Built-environment-related data

228 Three datasets related to the built environment were compiled from different sources. First,
229 a residential parcel dataset was acquired from the Assessor's Office of Nevada County, CA, and
230 it includes a total of 12,708 residential parcels. Unlike the large-scale evacuations caused by
231 hurricanes, wildfires evacuations usually impact a smaller geographic area. Thus, compared with
232 hurricane evacuation modeling, wildfire evacuation modeling requires finer-grained data to
233 generate evacuation travel demand so that we can study the patterns of evacuation traffic in a
234 smaller study area. High resolution parcel-level data could be used to generate evacuation travel
235 demand at the household level in the WUI (Li, Cova, Dennison, et al., 2019). This dataset can be
236 integrated with other socio-economic data such as household vehicle ownership data to estimate
237 evacuation travel demand in the evacuation model. We employ this dataset to construct the
238 evacuation model because it is more recent and includes the detailed location information that
239 could be used to generate household-level evacuation travel demand in the evacuation model.

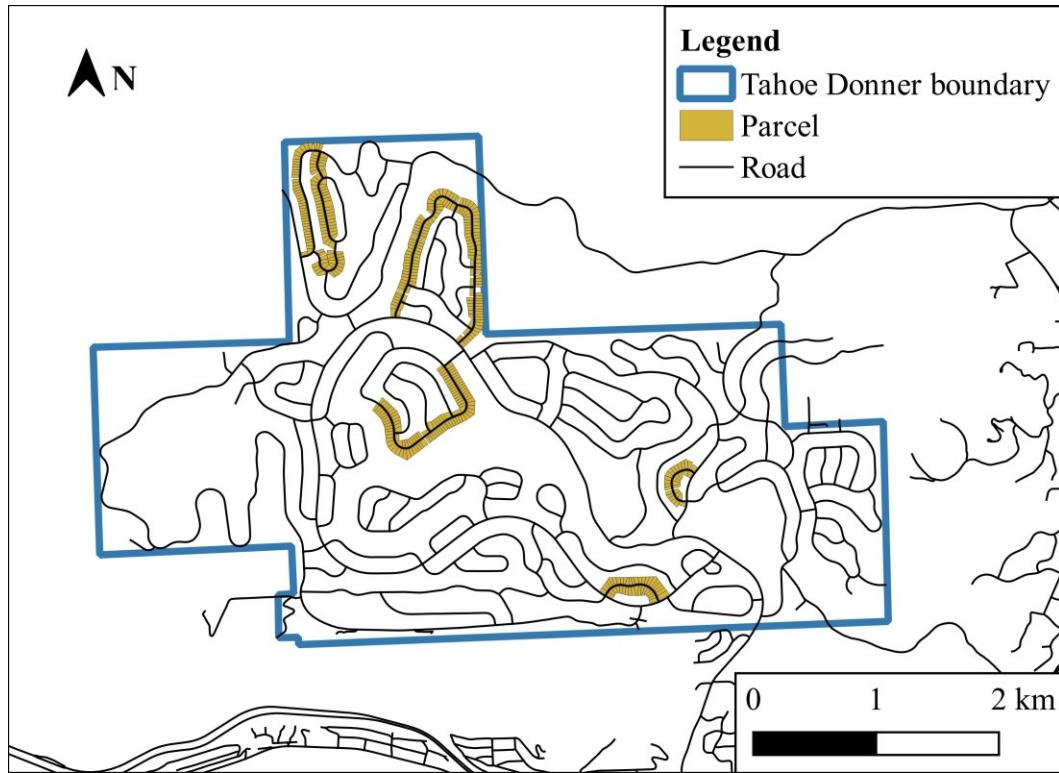
240 Additionally, we also compiled two datasets related to the road network. Specifically, we
241 compiled a road dataset from the Town of Truckee. This road dataset includes the detailed speed
242 limit information for each road. Another road dataset comes from the OpenStreetMap project

243 because MATSim uses OpenStreetMap data as the input road network data. Compared with
244 authoritative data, OpenStreetMap data can often be obsolete and inaccurate (Szwoch, 2019). Thus,
245 we used the speed limit information from the authoritative road data to update the speed limit for
246 each road in the OpenStreetMap road data to improve its quality. Lastly, we also compiled the
247 evacuation route data from the Town of Truckee, and this dataset includes the primary evacuation
248 routes in the local evacuation plan.

249 3.2.3 Field survey data

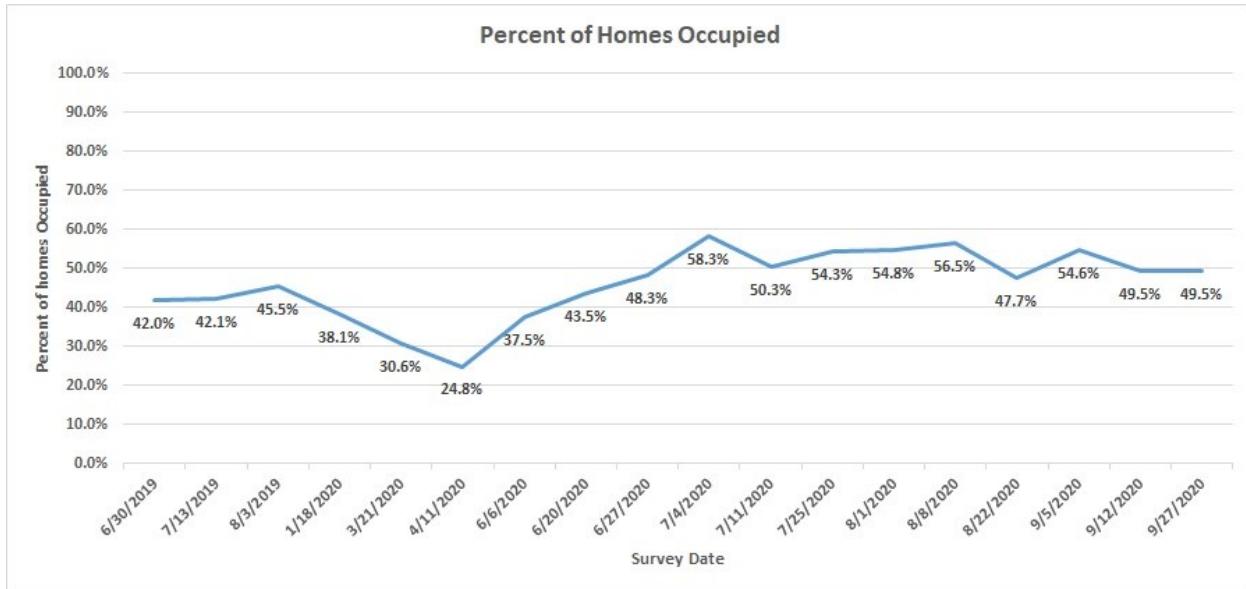
250 A series of field surveys in Tahoe Donner were conducted by local stakeholders from June
251 30th, 2019 to September 27th, 2020 in the Tahoe Donner neighborhood. Specifically, as shown in
252 Figure 2, a total of 395 residences were included in the surveys. The selection of the residences
253 was based on the local stakeholders' knowledge about this area and can be representative of the
254 households in this neighborhood. The surveys were conducted between 6:30 am and 7:15 am on
255 the weekends or holidays, and the local police department counted the number of vehicles for each
256 residence in the map in person during each survey. The occupancy rate and the average number of
257 vehicles of the homes in the sample were recorded in the surveys. As shown in Figure 3, the
258 occupancy rate reaches its peak (58.3%) on July 4th, 2020 (Independence Day). The overall
259 occupancy rate ranges from 37.5% to 58.3% in the fire season, while the average number of
260 vehicles per home ranges from 2.4. to 2.7. Note that the field surveys only provide the overall
261 occupancy rates for all types of residences. The occupancy rate and average number of vehicles
262 from the field surveys can be used to estimate evacuation travel demand.

263



264

Figure 2 The parcels used in the field surveys



265

266

Figure 3 Percent of homes occupied in the field surveys

267 **3.3 Data processing**

268 We used the QGIS software to join parcel occupancy type data to residential parcels based
269 on parcel IDs. Table 3 lists the number of residential parcels for each occupancy type. These
270 summaries were derived in QGIS. Specifically, the residential parcels ($N = 5,859$) are divided into
271 four groups: primary home, second home, vacant parcel, and unknown parcel. Note that 70.5% of
272 the homes in this neighborhood are second homes. Thus, we need to take into account the
273 occupancy rate of the second homes when developing a wildfire evacuation model for Tahoe
274 Donner. We examined the residential parcels without any occupancy type information and found
275 that most of them are mobile homes. Based on the stakeholders' local knowledge, the 205 parcels
276 in the unknown group will be treated as primary homes in evacuation traffic simulation. The data
277 shows that Tahoe Donner is a high-density neighborhood with many second homes.

278 Table 3 The number of homes by occupancy type in Tahoe Donner

Occupancy type	Count	Percent
Primary home	1,229	21.0%
Second home	4,130	70.5%
Vacant	295	5.0%
Unknown	205	3.5%
<i>Total</i>	5,859	100%

279

280 **4 Methods**

281 **4.1 Data-driven evacuation modeling**

282 We employ a data-driven approach to design and implement the evacuation model. The
283 primary goal of this proposed data-driven method is that we leverage a variety of data to improve
284 wildfire evacuation modeling and better mimic the reality. Our proposed method is characterized
285 by the use of a variety of data in different steps. Note that we need to take into account the
286 following three factors in constructing data-driven evacuation models. First, the data used should

287 be able to improve wildfire evacuation modeling. Second, the data should be readily available in
288 local governments or could be acquired from other sources at a relatively low cost, which will
289 ensure that the proposed method could be applied to other fire-prone communities. Additionally,
290 since we employ a microscopic traffic simulator to perform evacuation simulations for different
291 scenarios, it is computationally intensive to process and analyze the large model outputs to derive
292 the ETEs (Graur et al., 2021; Waraich, Charypar, Balmer, & Axhausen, 2015).

293 We use the household vehicle ownership data from ACS to estimate the mean number of
294 vehicles of each household in Tahoe Donner. This ACS dataset includes 6,028 housing units in
295 Truckee, and 2,122 of them have three or more vehicles available. Since we do not know the exact
296 mean number of vehicles for this group, we assume that the mean number of vehicles for this group
297 (n) could range from 3 to 5. Excel was used to perform the calculation. As shown in Table 4, we
298 used 0.5 as the interval to derive a range of values and computed the mean number of vehicles for
299 all the households ($N = 6,028$) accordingly. The final results range from 2.1 to 2.8. Note that if we
300 use $n = 2.1$ to generate trips in the evacuation model, it could be an underestimation of the total
301 evacuation travel demand. Since the likelihood that n is larger than 5 is very small in reality, $n =$
302 2.8 could be considered as the upper bound to be used to generate trips for each household in
303 subsequent evacuation traffic simulation. Although some research has shown that households may
304 not use all the vehicles in the evacuation (Toledo, Marom, Grimberg, & Bekhor, 2018), we assume
305 all vehicles will be used so as to consider the worst case scenarios in evacuation planning.

306 Table 4 The estimated mean number of vehicles based on the household vehicle ownership data

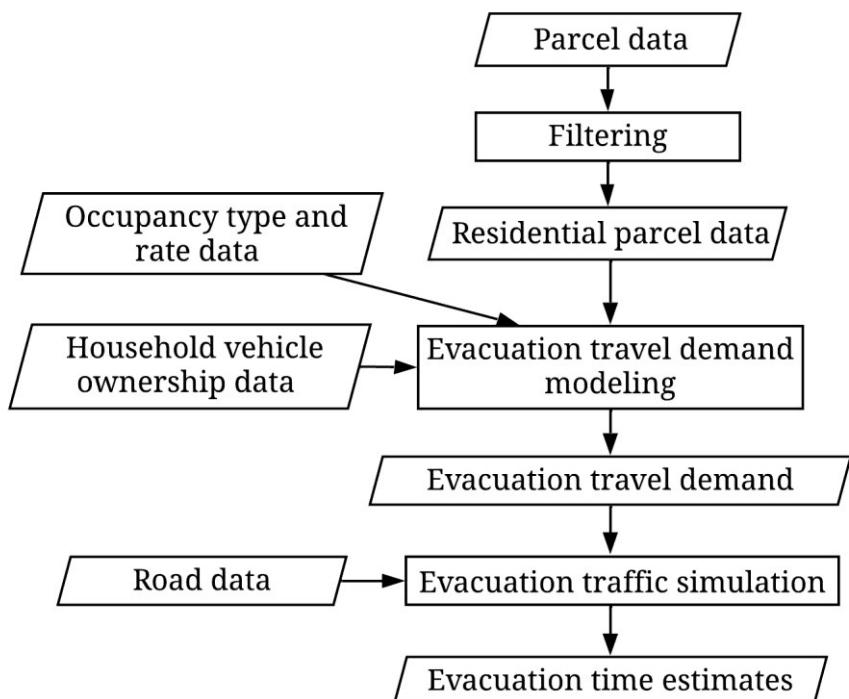
# of Vehicles	# of Vehicles	Count	Percent	Mean Number of Vehicles (n)
No vehicles available	0	132	2.2%	-
1 vehicle available	1	1,260	20.9%	-
2 vehicles available	2	2,514	41.7%	-
3 or more vehicles available	3	2,122	35.2%	2.10
	3.5	2,122	35.2%	2.28

# of Vehicles	# of Vehicles	Count	Percent	Mean Number of Vehicles (n)
	4	2,122	35.2%	2.45
	4.5	2,122	35.2%	2.63
	5	2,122	35.2%	2.80

307

308 We employ a variety of data to implement the evacuation model, and the flowchart of the
 309 whole procedure is shown in Figure 4. First, we derive residential parcels based on parcel type.
 310 Then, we use occupancy type, occupancy rate, and household vehicle ownership data to calculate
 311 evacuation travel demand for the study area. Specifically, as shown in Table 5, we use occupancy
 312 type data to divide the residential parcels into four categories. We employ occupancy rate data to
 313 randomly select a set of second homes as the occupied second homes. Those parcels in the
 314 “unknown” category are also considered occupied based on the stakeholders’ local knowledge.
 315 Then, we use the mean number of vehicles (n) derived from the household vehicle ownership data
 316 and a Poisson distribution to randomly generate a number of vehicles for each occupied residence.
 317 Once evacuation travel demand is generated, we proceed to specify the egresses based on the ERS.
 318 Then we use a microscopic traffic simulation model to perform evacuation traffic simulation and
 319 derive the ETE. Specifically, we calculate the time when the first vehicle departs (t_1) and when the
 320 last vehicle leaves the risk area (t_2), and the derived ETE is t_2-t_1 . This process is repeated N times
 321 for each evacuation scenario, and we will derive N different ETEs. Note that the distribution of the
 322 occupied second homes and the number of vehicles for each residence vary in each simulation.
 323 We do not consider the randomness in the spatial distribution of primary vs secondary homes in
 324 our model because this data is derived from the most recent tax and utility data and usually does
 325 not change dramatically within a short period of time. We use the total ETE because it is a widely
 326 used metric for evaluating evacuation effectiveness. The total ETE can be directly affected by the
 327 evacuation travel demand. This study focuses on a data-driven approach to improving evacuation

328 travel demand modeling. We have added two new input parameters (occupancy type and rate) to
 329 the evacuation model, which makes the model more complex and computationally intensive.
 330 Additionally, because we are using a microscopic traffic simulation model and the Tahoe Donner
 331 neighborhood is larger than most of the neighborhoods used in previous studies, it will be
 332 computationally prohibitive to derive some more complex evacuation evaluation metrics if we are
 333 to take into account the stochastic nature of the input parameters.



334

335 Figure 4 The flowchart of the evacuation modeling procedure

336 Table 5 Generating household evacuation travel demand based on occupancy type

Occupancy type	Occupancy rate	Mean # of vehicles
Primary home	100%	n vehicles (ACS)
Second home	r (0% - 100%)	n vehicles (if occupied)
Vacant	0	0 vehicle
Unknown	100%	n vehicles

337

338 The implementation of the method is as follows. We use an open-source microscopic traffic
339 simulation package MATSim (Horni, Nagel, & Axhausen, 2016) and its evacuation library to
340 implement the evacuation model and perform evacuation traffic simulation. The MATSim traffic
341 simulator is implemented in Java, and evacuation modelers could customize the code to add extra
342 functionalities (Horni et al., 2016). The road network data is downloaded directly from
343 OpenStreetMap, and the JOSM software and its MATSim plugin are used to code the road network
344 for MATSim. Specifically, we use the authoritative road data from Truckee to correct the speed
345 limit information of each road in the OpenStreetMap data. The centroids of the residential parcels
346 were extracted and saved as a vector format file (shapefile). Trips will be generated from each
347 parcel location randomly based on the mean number of vehicles per household (n) in this file
348 during the evacuation. Specifically, the residential parcel location dataset has a column that
349 includes the occupancy type information, and we could apply different occupancy rates (r) for the
350 second homes. Although residents' evacuation behaviors in hurricanes have been thoroughly
351 studied (Wu, Lindell, & Prater, 2012), relevant research on people's evacuation behaviors in resort
352 communities during a wildfire evacuation is scarce (Cohn, Carroll, & Kumagai, 2006; Kuligowski,
353 2021). Relevant evacuation research has shown that departure time can be modeled with statistical
354 distributions such as lognormal or Weibull distributions (Lämmel & Klüpfel, 2012; Lovreglio,
355 Kuligowski, Gwynne, & Boyce, 2019; Tu, Pel, Li, & Sun, 2012). Thus, we use a lognormal
356 distribution to model departure times, and it is assumed that all evacuees will choose the closest
357 egress and the shortest path during their evacuation. Note that we use these assumptions for
358 computational convenience, and they do not affect the generality of the proposed evacuation model.
359 If more detailed evacuation behavior data is available, we can use the data to further improve the
360 model. The user can provide a risk area polygon as the input, and all the people within the risk

361 area will be evacuated during the wildfire evacuation. In this study, we use a risk area polygon that
362 covers the whole Tahoe Donner neighborhood. Once the evacuation simulation is finished, the
363 program will produce an event file that includes all the event information of each individual vehicle
364 (e.g., a vehicle enters and leaves a link) during the evacuation. Finally, we could use Java and
365 relevant MATSim libraries to process the event files and derive ETE information for each
366 evacuation scenario.

367 Besides ETEs, we also derive the vehicle count information for each road link and map out
368 the information to help ICs improve their situational awareness. Specifically, first, we use Java
369 and relevant MATSim libraries to parse the vehicle trajectory data to derive the vehicle count
370 information for every road link in each run of the simulation for a specific scenario at time t.
371 Second, we aggregate the vehicle count information to derive the average vehicle count for each
372 link for each evacuation scenario. Then we join the vehicle count information to the road link
373 dataset in QGIS based on the common road link identification and map out the vehicle count
374 information for each road link.

375 **4.2 Experimental design**

376 In this study, it is assumed that the whole Tahoe Donner neighborhood needs to be
377 evacuated due to a fast-spreading wildfire and the two egresses will not be blocked by the fire
378 during the evacuation. As shown in Figure 5, Tahoe Donner has two primary egresses in its local
379 evacuation plan: A (Alder Creek Rd) and B (Northwoods Blvd). Alder Creek Rd connects Tahoe
380 Donner to Highway 89, and Northwoods Blvd is connected to Interstate highway 80.

382 Figure 5 The evacuation zone used in this study

383 We design a set of evacuation scenarios based on the data compiled for this study.

384 Specifically, we use the mean number of vehicles per home (n) and the second homes' occupancy

385 rate (r) as the primary variables in our experimental design. First, we need to use a series of

386 occupancy rates for the second homes in Tahoe Donner. The overall occupancy rates for different

387 r values are listed in Table 6. Based on the occupancy rate data from the field surveys, we use six

388 different values for occupancy rate r (10% ~ 60% with an interval of 10%) in the experiment.

389 Additionally, since most previous evacuation modeling studies did not consider the occupancy rate

390 of second homes, we also compute the ETEs for a 100% occupancy rate such that we can compare

391 the results. Note that a 100% occupancy rate of the second homes will make our proposed

392 evacuation model close to those in previous studies because previous evacuation models do not

393 have occupancy type and rate parameters (Beloglazov et al., 2016; Cova & Johnson, 2002; Li,

394 Cova, & Dennison, 2019).

395 Table 6 Overall occupancy rates derived from the occupancy rates of second homes in Tahoe
 396 Donner

Occupancy rate (r) for second homes	# of occupied units	Overall occupancy rate
10%	1,847	31.5%
20%	2,260	38.6%
30%	2,673	45.6%
40%	3,086	52.7%
50%	3,499	59.7%
60%	3,912	66.8%
70%	4,325	73.8%
80%	4,738	80.9%
90%	5,151	87.9%
100%	5,564	95.0%

397
 398 As for the mean number of vehicles per household (n), it is estimated to range from 2.1 to
 399 2.8 based on the field survey data. We use 2.1-2.8 with an interval of 0.1 for n in the experiment.
 400 Although a significant amount of research has been done on hurricane evacuation behaviors in the
 401 U.S., relevant research on residents' evacuation behaviors in resort communities during wildfires
 402 is still scarce. Previous evacuation research has shown that departure time can be modeled with
 403 statistical distributions such as lognormal or Weibull distributions (Lämmel & Klüpfel, 2012;
 404 Lovreglio et al., 2019; Toledo et al., 2018). Thus, we use a lognormal distribution (Horni et al.,
 405 2016) to model departure times: $\ln(t) \sim N(\mu, \sigma^2)$ (unit: s) and assume that all evacuees will leave
 406 within 60 min after the evacuation order is issued. The expected value of the departure time is
 407 1800 s (30 min), and the variance is 360,000 s². We choose to use this departure time distribution
 408 because this could be a short-notice evacuation scenario and can be used as a baseline for wildfire
 409 evacuation planning. The key parameters are summarized in Table 7, and we will perform
 410 evacuation traffic simulation for a total of 56 different evacuation scenarios. We can derive the
 411 number of simulations for each scenario based on the following equation (Winston, 2000):
 412

$$N = z_{\alpha/2}^2 \sigma^2 / D^2$$

413 where N is the number of simulations, $z_{\alpha/2}$ is the standard Z-score, σ is the estimated standard
 414 deviation, and D is desired margin of error. We need to run the simulation at least 16 times with
 415 the following parameters: $\alpha = 0.05$ (at the 95% confidence level), $\sigma = 10$ min, and $D = 5$ min.
 416 Since it is computationally intensive to perform microscopic traffic simulation (Jha et al., 2004),
 417 we choose to run each scenario 30 times ($N = 30$) in this study. Finally, we derive the statistics of
 418 the ETEs for each evacuation scenario.

419 Table 7 The evacuation scenarios used in the experiment

Departure time distribution (unit: second) ($\mu = 7.442$, $\sigma = 0.325$)	Occupancy rate (r) 10% ~ 60%, 100%	Mean # of vehicles (n) 2.1 ~ 2.8
--	---	---

420
 421 We map out the vehicle count information for each road link for the following six scenarios
 422 (See Table 8): 1) $n = 2.1$, $r = 10\%$; 2) $n = 2.1$, $r = 60\%$; 3) $n = 2.1$, $r = 100\%$; 4) $n = 2.8$, $r = 10\%$;
 423 5) $n = 2.8$, $r = 60\%$; 6) $n = 2.8$, $r = 100\%$. We aggregate the vehicle count data of 30 simulation
 424 runs for each scenario and map out the average vehicle count information for each road link at the
 425 time when 50% of the vehicles have left the risk area.

426 Table 8 The evacuation scenarios used for mapping out the vehicle count information

Scenario	Mean # of vehicles (n)	Occupancy rate (r)	Input time (t) (min)
1	2.1	10%	80
2	2.1	60%	170
3	2.1	100%	242
4	2.8	10%	106
5	2.8	60%	226
6	2.8	100%	323

427
 428 **5 Results**

429 We performed evacuation traffic simulation in MATSim for different evacuation scenarios
 430 and derived a series of ETEs. The detailed results for each run of the traffic simulation are stored
 431 in a text file. The total size of the results of the 56 scenarios is about 28 GB, and the total

432 computation time for 1680 simulation runs was about 10 hours. The boxplots of the total ETEs for
433 different scenarios are shown in Figure 6, and the detailed statistics (the mean value, standard
434 deviation, and confidence interval at the 95% confidence level) of the derived ETEs are listed in
435 Appendix B. The results indicate that the ETEs vary significantly with the occupancy rate of
436 second homes (r) and the mean number of vehicles per home (n). For example, according to the
437 field survey data, the maximum overall occupancy rate on July 4th is 58.31%. The corresponding
438 occupancy rate of second homes is approximately 50%. The derived ETEs can range from 420
439 min ($n = 2.1$) to 564 min ($n = 2.8$). If n is fixed (e.g., $n = 2.1$), the derived ETEs can range from
440 226 min ($r = 10\%$) to 470 min ($r = 60\%$). If all the second homes are occupied ($r = 100\%$, $n = 2.1$),
441 it could take about 667 min to evacuate the whole Tahoe Donner neighborhood. The results have
442 shown that our proposed model better reflect real evacuations when compared with previous
443 models that do not consider the occupancy type and rate of second homes in resort areas. Note that
444 the assumptions for the derived ETEs in Figure 6 are all the residents are at home, the evacuation
445 compliance rate is 100%, and all the residents will evacuate within 60 minutes. Although this
446 assumption is very unlikely in reality, evacuation planners and incident commanders also need to
447 take into account these extreme evacuation scenarios in evacuation planning (Cova et al., 2021).
448 Additionally, it should also be noted that the field surveys are conducted on weekends or holidays,
449 and the derived ETEs on weekdays could be lower than those on weekends or holidays.

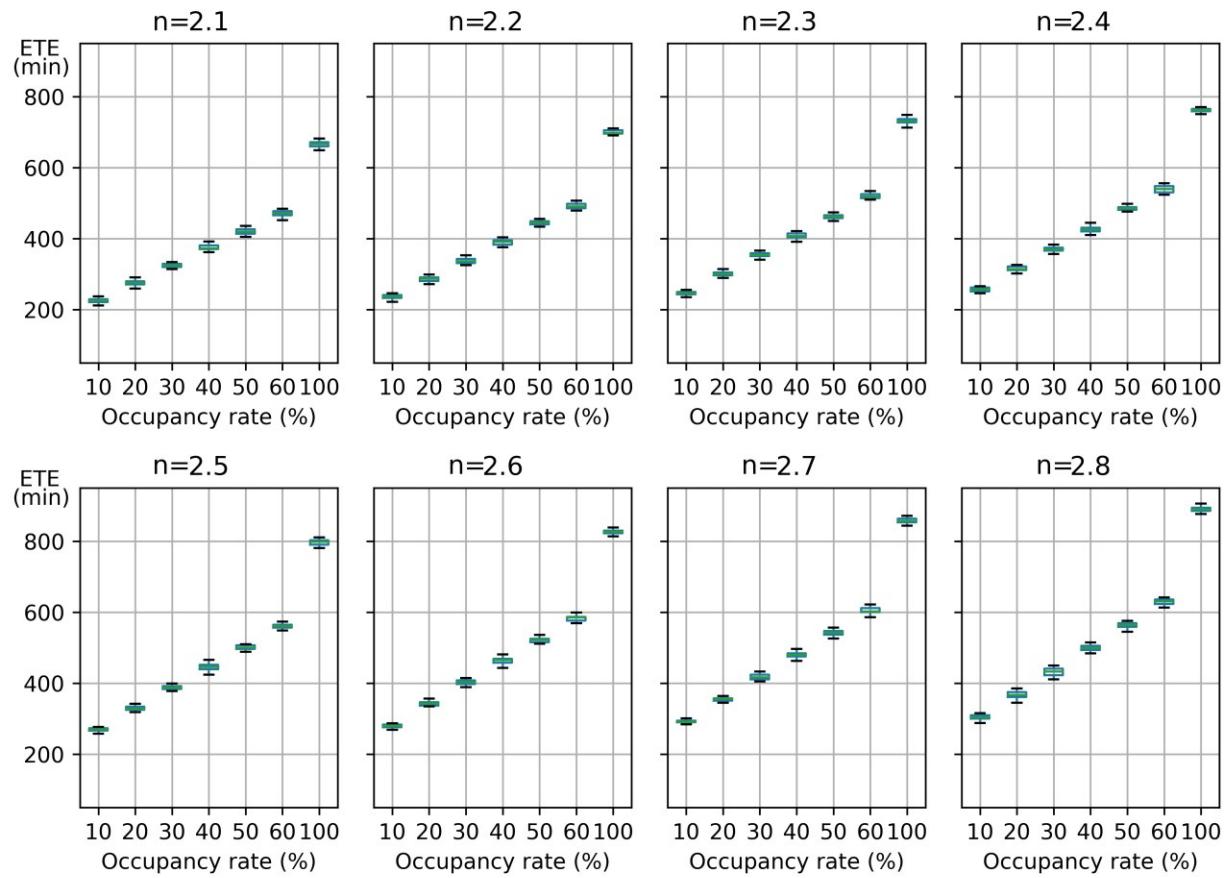
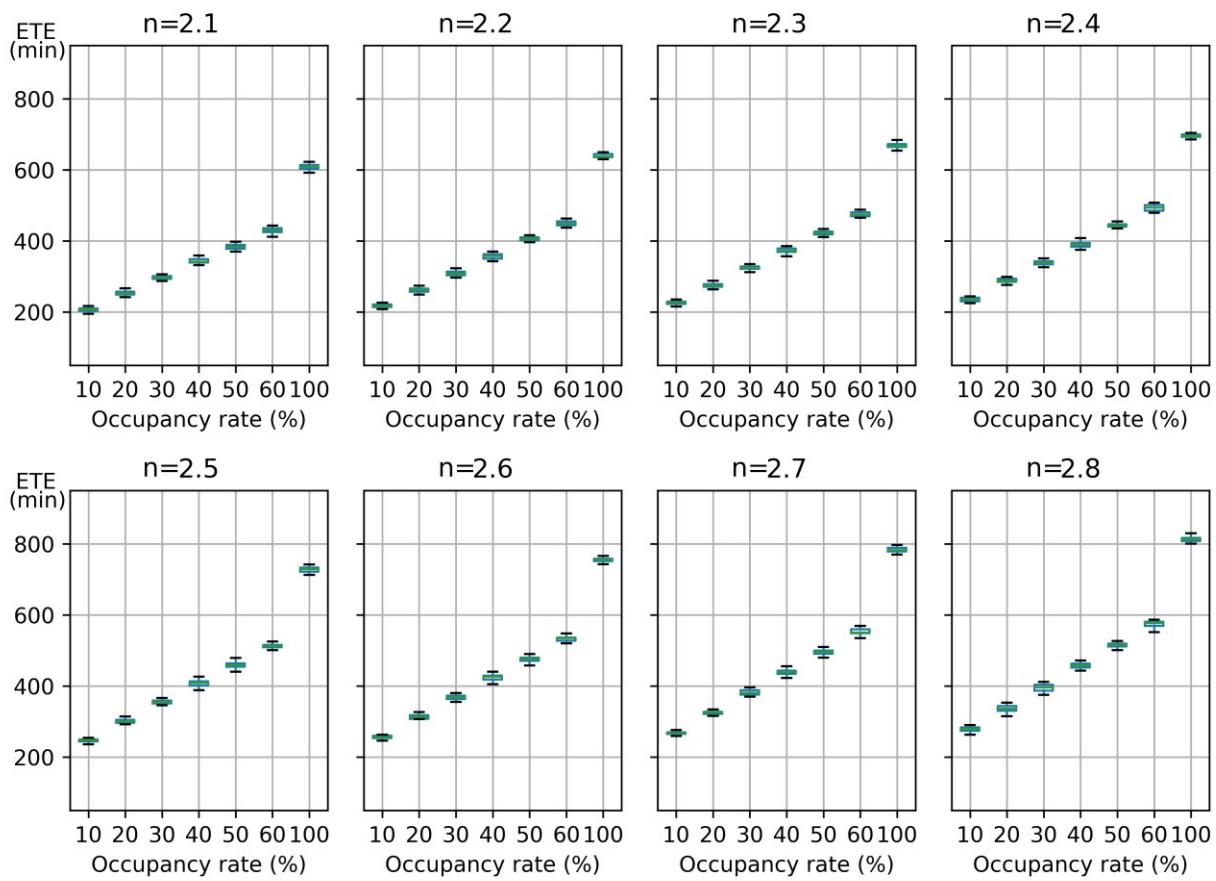


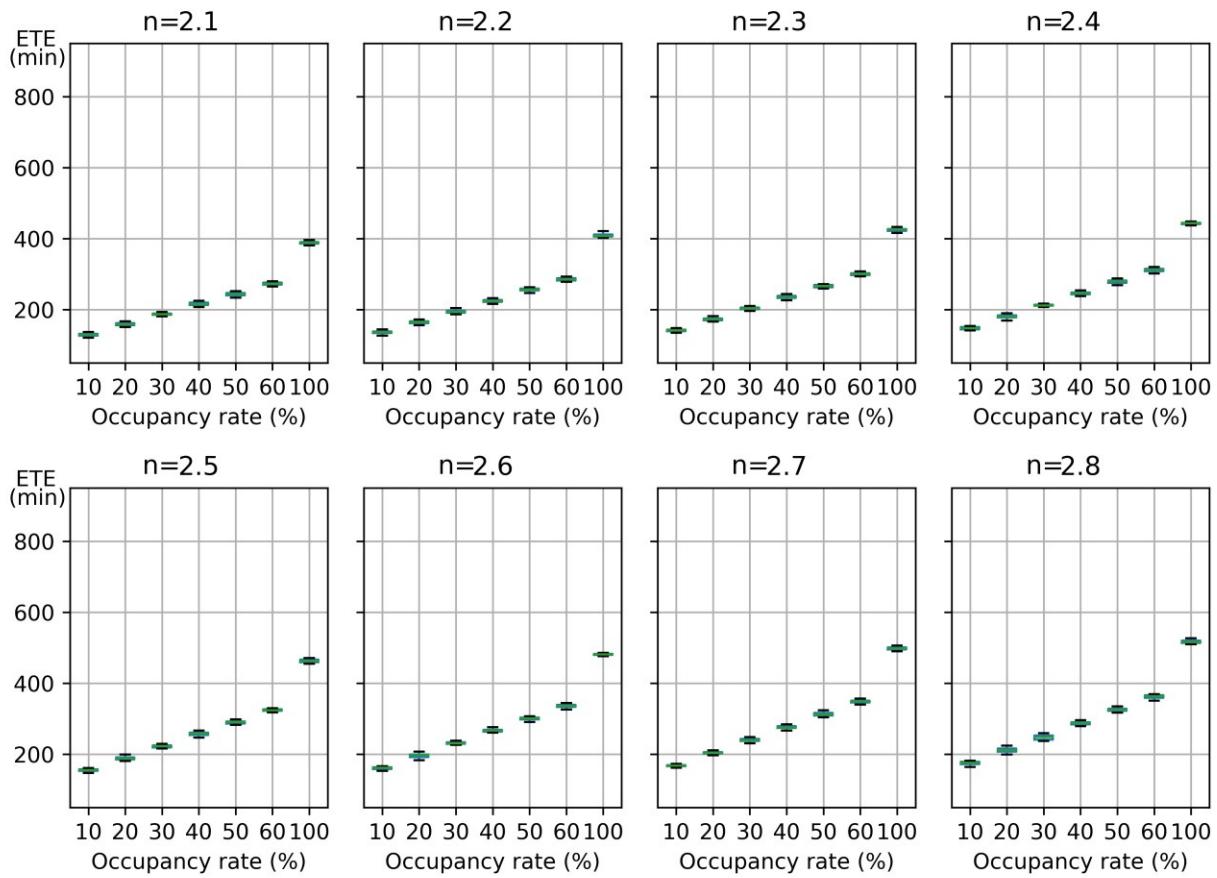
Figure 6 The derived ETEs for different evacuation scenarios

Relevant research on residents' evacuation behavior in the WUI communities has shown that many residents may choose to stay and protect their homes (McCaffrey & Winter, 2011; Paveglio, Prato, Dalenberg, & Venn, 2014). Additionally, many residents in the neighborhood may not be at home in the daytime. Thus, we also derived the ETEs needed for 95%, 75% and 50% of the vehicles to leave the risk area, and the results are shown in Figure 8, 8, and 9, respectively. The detailed statistics are listed in Appendix C. These ETEs could be useful when only a proportion of the households participate in the evacuation. Note that the values of input parameters used in this study do not affect the generalizability of the proposed method. If more detailed population distribution and evacuation behavior data is available, evacuation researchers and practitioners can

461 change the input parameters for the proposed model to derive more accurate ETEs. In summary,
 462 the simulation results indicate that it will take a long time to evacuate the residents in Tahoe
 463 Donner when the occupancy rate is high. Thus, the emergency manger can have significant
 464 difficulty evacuating the residents in Tahoe Donner if a fast-moving fire threatens this community.
 465 Moreover, the results also show that it is necessary to take into account the occupancy rate of the
 466 second homes in wildfire evacuation modeling and planning for resort areas.



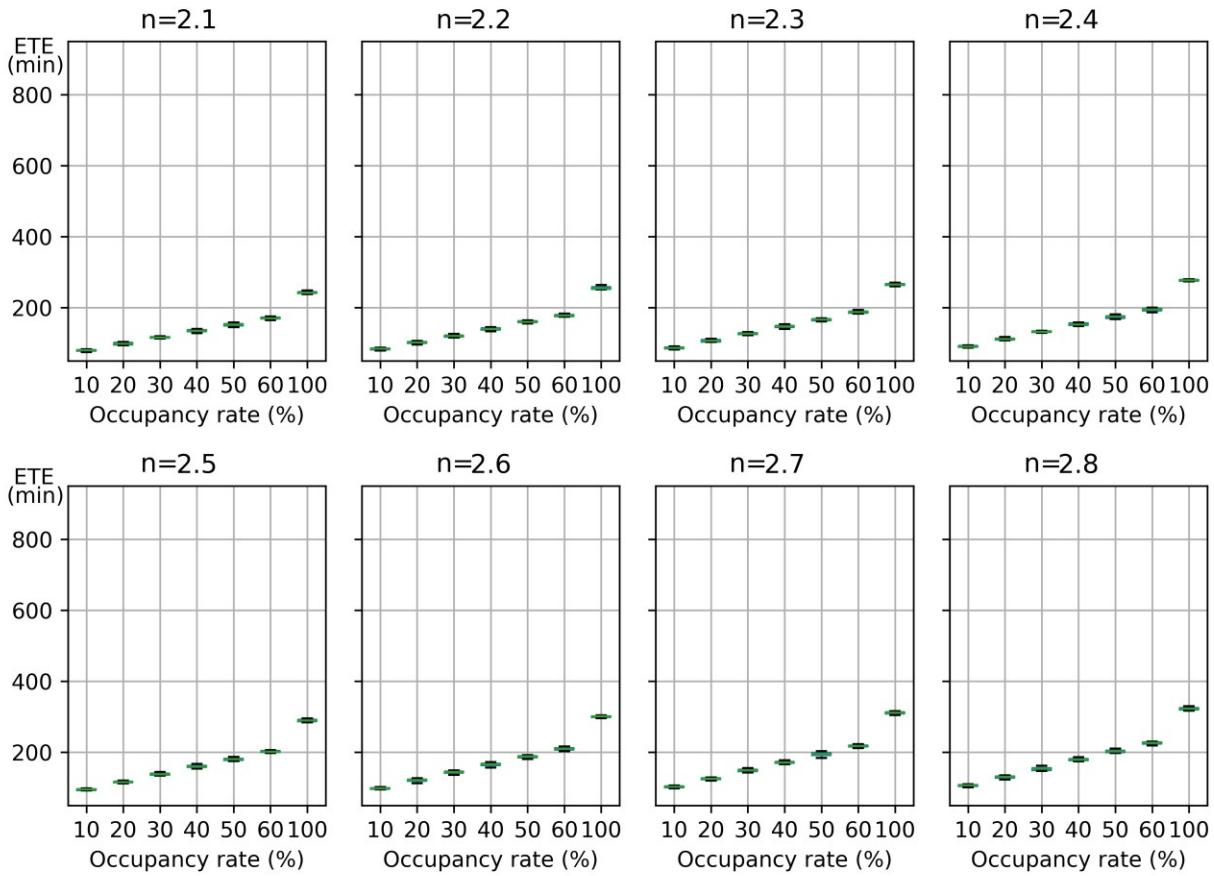
467
 468 Figure 7 The derived time needed for 95% of the vehicles to leave the risk area
 469



470

471

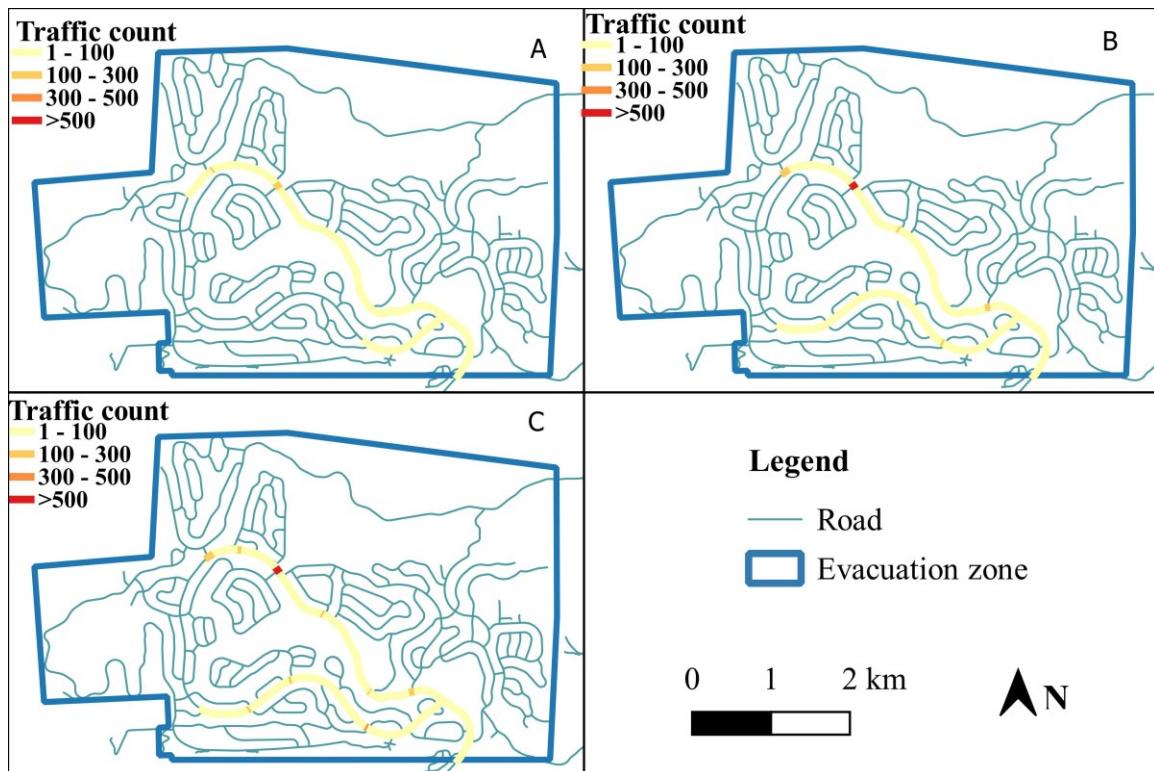
Figure 8 The derived time needed for 75% of the vehicles to leave the risk area



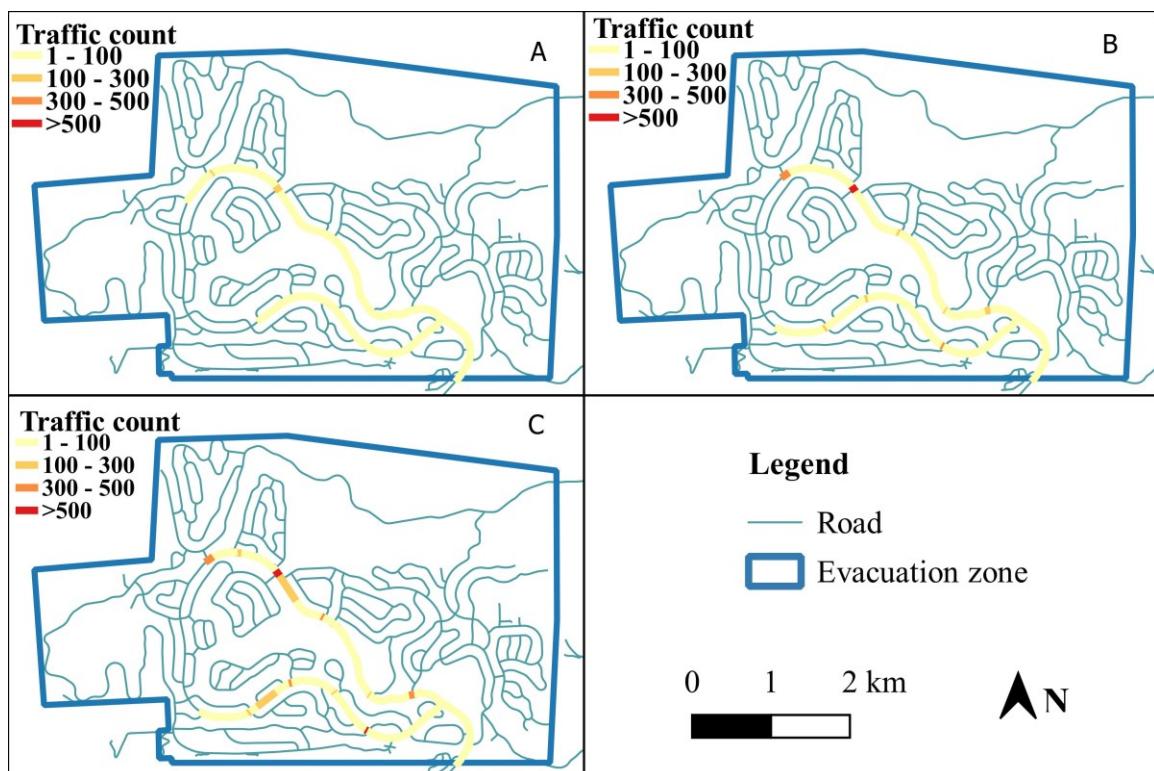
472

473 Figure 9 The derived time needed for 50% of the vehicles to leave the risk area

474 The vehicle count information of the road links for the six evacuation scenarios are shown
 475 in Figures 10 and 11. Specifically, Figures 10 A-C show the results of scenarios 1-3, respectively,
 476 and the results of scenarios 4-6 are shown in Figures 11 A-C, respectively. The results indicate
 477 that traffic congestion will occur on the Northwoods Blvd under the assumption that all evacuees
 478 will use the closest egress and the shortest path during the evacuation. The reason is that a larger
 479 proportion of the homes are closer to egress B in Figure 5. Egress A (the Alder Creek Rd) is
 480 underused with this assumption. Moreover, more evacuation traffic will be on the Northwoods
 481 Blvd when there is a larger evacuation travel demand (i.e., a larger n or r). The inclusion of vehicle
 482 count information can help the ICs better understand the dynamics of evacuation traffic.



484 Figure 10 The distribution of the evacuation traffic in three different evacuation scenarios ($n = 2.1$)



486 Figure 11 The distribution of the evacuation traffic in three different evacuation scenarios ($n = 2.8$)

487

6 Discussion

488 In this study, we leveraged a variety of data to construct the wildfire evacuation model and
489 improve ETEs in the Tahoe Donner neighborhood in Truckee, CA. Our proposed data-driven
490 evacuation model can be used by the WUI communities in resort areas for evacuation planning.
491 Evacuation practitioners could use the results of this study to better understand the dynamics of
492 evacuation travel demand during the fire season and improve the local evacuation plans
493 accordingly. We were faced with several challenges in data-driven wildfire evacuation modeling
494 research. We need to address these challenges before we can use the proposed model operationally.

495 The first challenge lies in data availability. This study is based on a set of assumptions. For
496 example, it was assumed that all evacuees will depart from their homes and the participation rate
497 is 100%. However, a wildfire evacuation in reality could be more complex and very different from
498 these assumptions. Thus, it is important that we further leverage different types of data to narrow
499 the gap between our knowledge and the real-world evacuation so that we could build an evacuation
500 model that could better reflect the reality. When using different datasets to improve wildfire
501 evacuation modeling, we need to seek a balance among many factors such as cost, effectiveness,
502 and applicability. For example, although we could use household survey to collect data to estimate
503 the distribution of daytime population, this method is costly and we may still have difficulty in
504 deriving an accurate estimate of the spatio-temporal distribution of the population in a study area.
505 Although big data has enjoyed great popularity in the past few years, we still have data scarcity
506 issues in wildfire evacuation modeling. For example, we used the ACS data and the field survey
507 data to estimate the mean number of vehicles for each household in the study area, and we lack
508 relevant data that could more accurately estimate this parameter. Although we used the most recent
509 occupancy type information derived from tax and utility data, the COVID-19 pandemic has

510 significantly changed human mobility patterns and could also change occupancy types because
511 many people move from cities to rural areas during the pandemic. Additionally, the occupancy
512 rate of second homes is based on field survey data in this study. However, the occupancy rate of
513 second homes and the population distribution in resort areas can be very dynamic, and evacuation
514 modelers need high spatial and temporal resolution human mobility data to better estimate
515 evacuation travel demand.

516 One limitation of this study is that we did not have household survey data and use them to
517 derive the parameters (e.g., the departure time distribution, the compliance rate, and the number
518 of vehicles used by each household) for the evacuation model. We could collect the above-
519 mentioned data via household surveys to further improve the evacuation model in the next step.
520 Another limitation is that we did not consider the tourists in hotels. Additionally, some secondary
521 homes can also be rented out to tourists via websites such as Airbnb. These tourists can also
522 significantly increase the ETEs during the tourist season (Urbanik, 2000). The tourists and many
523 second homeowners can have very different characteristics (e.g, the number of vehicles) and
524 evacuation behaviors (e.g., protective action selection, destination selection, and route selection)
525 during a wildfire evacuation. These differences can have significant impacts on the ETEs derived
526 from traffic simulation models. However, the tourists and second homeowners may not be included
527 in traditional household survey data (e.g., the ACS data). We need to collect relevant data to further
528 study the tourists and second homeowners' evacuation behavior. Lastly, we only considered
529 evacuation traffic within the community and assumed there is no traffic congestion at the egresses
530 because of the lack of destination choice data. We will need to collect more data to model
531 destination choice in the future.

532 Recent research has shown that relevant data such as cellphone location data could be used
533 to study people evacuation behavior in disasters (Yabe, Sekimoto, Tsubouchi, & Ikemoto, 2019).
534 However, such high-resolution location data is rarely available for evacuation researchers and
535 practitioners in the US due to privacy issues (de Montjoye et al., 2018) or the high cost. Coarse-
536 resolution cellphone location data has also been widely used by researchers to study human
537 mobility in recent years (Xu et al., 2016). Big data can provide a new avenue to improve evacuation
538 travel demand modeling. Further research could focus on investigating if high-resolution (e.g.,
539 GPS data) or coarse-resolution cellphone data (e.g., the number of persons within the service area
540 of each cellphone tower) could be acquired to estimate diurnal population distribution and improve
541 wildfire evacuation modeling.

542 Another challenge in integrating different types of data to improve wildfire evacuation
543 modeling is data management. Evacuation analysts/modelers need to have a variety of data to
544 perform evacuation analysis/modeling to facilitate the ICs' decision-making. However, data
545 management in the US is decentralized due to the organization of the government agencies, which
546 poses a significant challenge to evacuation management. Since there is no one-stop data portal in
547 Truckee, it is time-consuming to compile different datasets used in this study. Furthermore, other
548 issues such as data inconsistency will emerge when we integrate these data for one specific
549 application because different datasets are managed by different agencies. It should be noted that
550 many large wildfires could spread across multiple cities/counties, which poses a significant
551 challenge to wildfire evacuation researchers and practitioners. In such large fires, evacuation
552 researchers and practitioners will be better off if relevant data could be provided efficiently so that
553 they could leverage these data directly in computer models to help improve situational awareness
554 and facilitate protective action decision-making. Nowadays, many local and state government

555 agencies have access to Web GIS platforms such as ArcGIS Online and have the capacity to
556 publish spatial data as web services that are based on open standards such as Web Map Service
557 (WMS) and Web Feature Service (WFS). More research should be conducted on developing a
558 better cyberinfrastructure for data-driven wildfire evacuation modeling.

559 Besides the above-mentioned aspects about data, another challenge in wildfire evacuation
560 modeling lies in the coupling of different computer models. Although this study does not focus on
561 coupling different computer models to model wildfire evacuation, this has become a popular trend
562 in recent years (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019). One of the reasons model
563 coupling in wildfire evacuation modeling is challenging is that each model is usually implemented
564 as a separate piece of software and it is technically difficult to integrate them into one piece of
565 software at the source code level. One alternative is to integrate the results of each model to do
566 relevant computations. Another issue in model coupling lies in that very few open-source coupled
567 evacuation models are available at this moment, which hinders the adoption of these new coupled
568 models in wildfire evacuation practices. Lastly, recent research has shown has that coupled
569 wildfire evacuation models can be used to derive some new evacuation effectiveness metrics such
570 as the direness score (Cova et al., 2021). Further research could focus on developing a suite of
571 open-source tools for data-driven wildfire evacuation modeling to derive more meaningful metrics
572 for measuring evacuation effectiveness in resort areas.

573 Lastly, this study used a few representative evacuation scenarios in the experimental design.
574 From a wildfire evacuation planning perspective, it would be meaningful if we could derive the
575 results for all possible scenarios based on available data. However, this will not be feasible due to
576 the heavy computation. We could include a few more parameters to construct more evacuation
577 scenarios and employ high-performance computing (HPC) to calculate the ETEs for each scenario.

578 For example, if a fire is approaching the community very fast and the residents do not have enough
579 time to evacuate to safe areas, a shelter-in-place order should be issued for some residents. In this
580 case, we need to take into account different types of protective actions during the evacuation.
581 Eventually, we could derive a large table that lists the ETEs for different parameters, which could
582 be used by the ICs to look up the ETEs for a specific evacuation scenario with a given set of
583 parameters. Another alternative is that we could use deploy the coupled evacuation model in an
584 HPC environment so that ICs could provide input parameters to the model and derive ETEs from
585 the model directly. Recently, cloud computing has enjoyed great popularity in geospatial sciences
586 (Yang et al., 2011). Thus, modern commercial cloud computing platforms such as Amazon Web
587 Services (AWS), Google Cloud, and Microsoft Azure Cloud could be used to host the evacuation
588 model as a web service and derive ETEs for the ICs. Additionally, future research could also
589 examine how to model a staged evacuation in the study area. In most cases, ICs will issue
590 evacuation orders in a staged manner, and the residents who are closer to the fire front will be
591 evacuated earlier. It would be useful to compare the results in this study with those derived from
592 a staged evacuation. However, note that a staged evacuation involves many parameters, and we
593 need to further customize the evacuation model before we could perform a meaningful staged
594 evacuation simulation.

595 7 Conclusion

596 We employ a data-driven approach to design and implement a wildfire evacuation model
597 for resort areas in this study. Although we used one neighborhood in the case study, the proposed
598 approach could be used by many similar WUI communities in the US to improve the ETEs derived
599 from evacuation modeling. The proposed method could help emergency managers, emergency
600 planners, and other stakeholders develop a better understanding of the dynamics of the travel

601 demand in resort areas in wildfire evacuation and improve wildfire public safety. Additionally,
602 this study also sheds light on how to better manage and integrate different types of data to further
603 improve wildfire evacuation modeling.

604 Compared with previous research, this study focuses on integrating different types of data
605 to improve wildfire evacuation modeling for resort areas and provides a different perspective.
606 Based on the findings in this study, future research could focus on the following aspects. First, we
607 could further explore how to leverage big data (e.g., GPS data and social media data) and different
608 computer models to build a data-driven, coupled wildfire evacuation model that can take into
609 account household evacuation behavior, the dynamics of evacuation travel demand, and fire spread.
610 Second, more research should be conducted to explore how to better use open data in wildfire
611 evacuation modeling. Lastly, we also need to explore how to use modern computing technologies
612 such as cloud computing and Web GIS to make the developed evacuation models more accessible.

613 **Acknowledgement**

614 This study was funded by the South Dakota State University Research, Scholarship and Creative
615 Activity Challenge Fund and National Science Foundation (#2138647). The author would like to
616 thank the Town of Truckee, California for providing relevant data and technical support.

617 **Appendix A**

618 The traffic count data in field surveys in the Tahoe Donner (TD) neighborhood

Date	Occupied Dwellings by Percentage	Average number of Vehicles per Occupied Dwelling	Notes
6/30/2019	41.96%	2.6	1st weekend of July 4th Week
7/13/2019	42.13%	2.4	
8/3/2019	45.45%	2.5	
1/18/2020	38.14%	2.4	Martin Luther King Weekend
3/21/2020	30.60%	2.4	Covid-19
4/11/2020	24.83%	2.4	Covid-19 Saturday
6/6/2020	37.47%	2.4	
6/20/2020	43.46%	2.5	Father's Day weekend
6/27/2020	48.34%	2.4	Pre-4th weekend
7/4/2020	58.31%	2.7	4th of July
7/11/2020	50.33%	2.4	Post 4th of July
7/25/2020	54.32%	2.5	
8/1/2020	54.77%	2.6	
8/8/2020	56.54%	2.5	
8/22/2020	47.67%	2.5	North Bay Fires, Smoke Issues in local area
9/5/2020	54.55%	2.6	Labor Day Weekend
9/12/2020	49.45%	2.5	Smoke Issues
9/27/2020	49.45%	2.5	Sunday, Red Flag No. Cal.,
Summary	45.99%	2.5	Running over-all average

619

620 **Appendix B**

621 The statistics of the derived total ETEs for different evacuation scenarios

n	r (%)	Mean (100%)	SD (100%)	Confidence Interval (p = 0.95)
2.1	10	225.57	6.28	(223.32, 227.82)
2.1	20	275.7	7.24	(273.11, 278.29)

2.1	30	324.03	6.54	(321.69, 326.37)
2.1	40	375.13	7.57	(372.42, 377.84)
2.1	50	419.5	8.2	(416.56, 422.44)
2.1	60	470.2	8.78	(467.06, 473.34)
2.1	100	666.77	8.29	(663.8, 669.73)
2.2	10	236.63	5.52	(234.66, 238.61)
2.2	20	286.43	6.57	(284.08, 288.79)
2.2	30	336.8	7.7	(334.04, 339.56)
2.2	40	389.83	7.64	(387.1, 392.57)
2.2	50	444	6.92	(441.52, 446.48)
2.2	60	491.83	7.75	(489.06, 494.61)
2.2	100	700.87	7.6	(698.15, 703.59)
2.3	10	246.4	5.14	(244.56, 248.24)
2.3	20	301.2	6.21	(298.98, 303.42)
2.3	30	354.57	7.36	(351.93, 357.2)
2.3	40	408.7	7.14	(406.14, 411.26)
2.3	50	462.17	6.6	(459.81, 464.53)
2.3	60	519.6	6.95	(517.11, 522.09)
2.3	100	730.9	9.01	(727.68, 734.12)
2.4	10	256.83	5.84	(254.74, 258.92)
2.4	20	314.7	6.96	(312.21, 317.19)
2.4	30	369.13	6.45	(366.82, 371.44)
2.4	40	426.33	7.99	(423.47, 429.19)
2.4	50	484.77	7.94	(481.92, 487.61)
2.4	60	539.8	9.97	(536.23, 543.37)
2.4	100	763	7.95	(760.16, 765.84)
2.5	10	269.3	5.23	(267.43, 271.17)
2.5	20	329	5.96	(326.87, 331.13)
2.5	30	388.07	5.95	(385.94, 390.2)
2.5	40	446.5	9.83	(442.98, 450.02)
2.5	50	501.47	8.25	(498.51, 504.42)
2.5	60	561.33	7.66	(558.59, 564.08)
2.5	100	797.27	8.09	(794.37, 800.16)
2.6	10	279.43	5.22	(277.56, 281.3)
2.6	20	342.27	7.72	(339.5, 345.03)
2.6	30	402.9	7.03	(400.38, 405.42)
2.6	40	463.6	8.62	(460.52, 466.68)
2.6	50	521.1	7.01	(518.59, 523.61)
2.6	60	582.6	7.66	(579.86, 585.34)
2.6	100	826.9	7.38	(824.26, 829.54)
2.7	10	291.9	4.87	(290.16, 293.64)

2.7	20	355.47	5.78	(353.4, 357.54)
2.7	30	417.47	7.9	(414.64, 420.29)
2.7	40	479.57	9.92	(476.02, 483.11)
2.7	50	543.17	10.89	(539.27, 547.06)
2.7	60	603.97	9.93	(600.41, 607.52)
2.7	100	858.2	7.48	(855.52, 860.88)
2.8	10	303.9	6.91	(301.43, 306.37)
2.8	20	367	9.98	(363.43, 370.57)
2.8	30	431.87	11.02	(427.92, 435.81)
2.8	40	499.67	7.9	(496.84, 502.49)
2.8	50	563.7	7.88	(560.88, 566.52)
2.8	60	628.6	9.31	(625.27, 631.93)
2.8	100	891.27	8.43	(888.25, 894.28)

622

623 **Appendix C**

624 The statistics of the derived ETEs for different evacuation scenarios

n	r (%)	Mean (95%)	SD (95%)	Mean (75%)	SD (75%)	Mean (50%)	SD (50%)
2.1	10	206.73	5.77	129.9	4.23	79.57	2.24
2.1	20	252.5	6.82	158.9	3.99	98.2	2.41
2.1	30	296.57	6.15	186.7	3.58	115.8	2.37
2.1	40	343.17	6.98	216.2	4.33	134.57	2.79
2.1	50	383.37	7.5	243.6	4.67	151.87	3.12
2.1	60	429.67	8.33	272.87	3.97	170.3	2.65
2.1	100	608.87	7.82	388.37	4.04	242.43	2.84
2.2	10	216.83	5.31	136.1	3.76	83.6	2.09
2.2	20	262.2	6.13	164.7	3.98	101.63	2.57
2.2	30	308.17	7.17	193.93	4.45	120.23	2.6
2.2	40	356.57	7.21	224.47	3.73	139.8	2.71
2.2	50	405.77	6.5	256.57	3.81	160	2.46
2.2	60	449.4	7.28	285.3	4.09	178	2.63
2.2	100	639.93	7.18	408.57	4.15	255.27	3
2.3	10	225.87	4.68	141.6	3	86.67	2.23
2.3	20	275.57	5.9	172.97	3.96	106.8	2.48
2.3	30	324.37	6.86	203.8	4.16	126.8	2.66
2.3	40	373.7	6.71	235.53	4.22	146.93	2.83
2.3	50	422.43	6.17	266.57	3.67	165.93	2.39
2.3	60	474.93	6.48	300.3	3.46	187.37	2.41
2.3	100	667.43	8.58	425.3	4.45	265.3	3.09
2.4	10	235.27	5.51	147.6	3.85	90.37	1.92

2.4	20	288.1	6.61	180.67	4.49	111.4	2.36
2.4	30	337.63	6.24	212.3	3.49	131.83	2.2
2.4	40	389.9	7.5	245.87	4.44	152.77	2.86
2.4	50	443.13	7.31	279.2	4.69	173.93	3.37
2.4	60	493.37	9.24	311.63	5.01	194.37	3.45
2.4	100	696.93	7.42	443.7	4.24	277.27	2.69
2.5	10	246.8	4.98	155.23	3.56	94.8	1.63
2.5	20	301.23	5.67	188.83	4.08	115.97	2.09
2.5	30	355	5.61	222.77	3.46	138.07	2.55
2.5	40	408.3	9.29	257.13	5.16	159.83	3.23
2.5	50	458.33	7.68	289.4	4.93	180.4	3.57
2.5	60	512.9	7.23	324.33	3.78	202.27	2.72
2.5	100	728.23	7.65	462.97	4.51	289.23	3.04
2.6	10	256	5.07	160.57	3.72	98.07	2.03
2.6	20	313.37	7.19	196.43	5.1	121.17	2.7
2.6	30	368.57	6.55	231.33	4.28	143.8	3.01
2.6	40	423.97	8.06	266.83	4.5	166.1	3.18
2.6	50	476.27	6.72	300.43	3.9	187.23	2.81
2.6	60	532.43	7.03	335.97	4.57	209.53	3.21
2.6	100	755.1	6.89	481.2	3.88	300.4	2.53
2.7	10	267.4	4.49	167.7	3.49	102.43	1.89
2.7	20	325.53	5.38	204.13	3.9	125.3	2.39
2.7	30	381.83	7.27	239.73	4.46	148.9	3.12
2.7	40	438.57	9.14	275.73	5.26	171.3	3.27
2.7	50	496.5	10.2	312.77	5.99	194.87	3.99
2.7	60	551.9	9.26	348.67	4.86	217.43	3.29
2.7	100	783.83	7.04	498.1	4.44	311.07	3.08
2.8	10	278.4	6.46	174.87	4.75	106.2	2.58
2.8	20	336	9.42	210.87	6.1	129.8	3.21
2.8	30	395.17	10.45	247.93	6.51	152.97	3.94
2.8	40	457.03	7.44	287.47	4.31	178.9	3.02
2.8	50	515.3	7.32	325.13	4.85	202.5	3.05
2.8	60	574.37	8.65	362.4	4.48	225.83	2.97
2.8	100	813.9	7.94	517.1	4.47	322.8	3.21

625

626

References

628 Beloglazov, A., Almashor, M., Abebe, E., Richter, J., & Steer, K. C. B. (2016). Simulation of
 629 wildfire evacuation with dynamic factors and model composition. *Simulation Modelling
 630 Practice and Theory*, 60, 144-159. doi:10.1016/j.simpat.2015.10.002

631 CAL FIRE. (2020a). Top 20 Largest California Wildfires Retrieved from
 632 https://fire.ca.gov/media/11416/top20_acres.pdf

633 CAL FIRE. (2020b). Top 20 Most Destructive California Wildfires. Retrieved from
 634 https://fire.ca.gov/media/11417/top20_destruction.pdf

635 Chen, X., & Zhan, F. B. (2008). Agent-based modelling and simulation of urban evacuation:
 636 relative effectiveness of simultaneous and staged evacuation strategies. *Journal of the
 637 Operational Research Society*, 59(1), 25-33.

638 Cohn, P. J., Carroll, M. S., & Kumagai, Y. (2006). Evacuation Behavior during Wildfires: Results
 639 of Three Case Studies. *Western Journal of Applied Forestry*, 21(1), 39-48.
 640 doi:10.1093/wjaf/21.1.39

641 Cova, T. J., & Church, R. L. (1997). Modelling community evacuation vulnerability using GIS.
 642 *International Journal of Geographical Information Science*, 11(8), 763-784.
 643 doi:10.1080/136588197242077

644 Cova, T. J., Dennison, P. E., Kim, T. H., & Moritz, M. A. (2005). Setting Wildfire Evacuation
 645 Trigger Points Using Fire Spread Modeling and GIS. *Transactions in GIS*, 9(4), 603-617.
 646 doi:10.1111/j.1467-9671.2005.00237.x

647 Cova, T. J., Dennison, P. E., Li, D., Drews, F. A., Siebeneck, L. K., & Lindell, M. K. (2017).
 648 Warning Triggers in Environmental Hazards: Who Should Be Warned to Do What and
 649 When? *Risk Analysis*, 37(4), 601-611. doi:10.1111/risa.12651

650 Cova, T. J., Drews, F. A., Siebeneck, L. K., & Musters, A. (2009). Protective Actions in Wildfires:
 651 Evacuate or Shelter-in-Place? *Natural Hazards Review*, 10(4), 151-162.
 652 doi:10.1061/(ASCE)1527-6988(2009)10:4(151)

653 Cova, T. J., & Johnson, J. P. (2002). Microsimulation of neighborhood evacuations in the urban -
 654 wildland interface. *Environment and Planning A*, 34(12), 2211-2229.

655 Cova, T. J., Li, D., Siebeneck, L. K., & Drews, F. A. (2021). Toward Simulating Dire Wildfire
 656 Scenarios. *Natural Hazards Review*, 22(3), 06021003. doi:doi:10.1061/(ASCE)NH.1527-
 657 6996.0000474

658 Cova, T. J., Theobald, D. M., Norman, J. B., & Siebeneck, L. K. (2013). Mapping wildfire
 659 evacuation vulnerability in the western US: the limits of infrastructure. *GeoJournal*, 78(2),
 660 273-285. doi:10.1007/s10708-011-9419-5

661 Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental
 662 Hazards*. *Social Science Quarterly*, 84(2), 242-261. doi:10.1111/1540-6237.8402002

663 de Dios Ortúzar, J., & Willumsen, L. G. (2011). *Modelling transport*: John wiley & sons.

664 de Montjoye, Y.-A., Gambs, S., Blondel, V., Canright, G., de Cordes, N., Delestail, S., . . .
 665 Bengtsson, L. (2018). On the privacy-conscious use of mobile phone data. *Scientific
 666 Data*, 5(1), 180286. doi:10.1038/sdata.2018.286

667 Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large wildfire trends in the
 668 western United States, 1984–2011. *Geophysical Research Letters*, 41(8), 2928-2933.
 669 doi:10.1002/2014GL059576

670 Graur, D., Bruno, R., Bischoff, J., Rieser, M., Scherr, W., Hoefler, T., & Alonso, G. (2021).
671 Hermes: Enabling efficient large-scale simulation in MATSim. *Procedia Computer*
672 *Science*, 184, 635-641. doi:<https://doi.org/10.1016/j.procs.2021.03.079>

673 Han, L., Yuan, F., & Urbanik, T. (2007). What Is an Effective Evacuation Operation? *Journal of*
674 *Urban Planning and Development*, 133(1), 3-8. doi:10.1061/(ASCE)0733-
675 9488(2007)133:1(3)

676 Horni, A., Nagel, K., & Axhausen, K. W. (2016). *The multi-agent transport simulation MATSim:*
677 Ubiquity Press.

678 Intini, P., Ronchi, E., Gwynne, S., & Pel, A. (2019). Traffic Modeling for Wildland-Urban
679 Interface Fire Evacuation. *Journal of Transportation Engineering, Part A: Systems*, 145(3),
680 04019002. doi:10.1061/JTEPBS.0000221

681 Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers and Myths of
682 Open Data and Open Government. *Information Systems Management*, 29(4), 258-268.
683 doi:10.1080/10580530.2012.716740

684 Jha, M., Moore, K., & Pashaie, B. (2004). Emergency Evacuation Planning with Microscopic
685 Traffic Simulation. *Transportation Research Record*, 1886(1), 40-48. doi:10.3141/1886-
686 06

687 Kuligowski, E. (2021). Evacuation decision-making and behavior in wildfires: Past research,
688 current challenges and a future research agenda. *Fire Safety Journal*, 120, 103129.
689 doi:<https://doi.org/10.1016/j.firesaf.2020.103129>

690 Lämmel, G., Grether, D., & Nagel, K. (2010). The representation and implementation of time-
691 dependent inundation in large-scale microscopic evacuation simulations. *Transportation*
692 *Research Part C: Emerging Technologies*, 18(1), 84-98. doi:10.1016/j.trc.2009.04.020

693 Lämmel, G., & Klüpfel, H. (2012). *Slower is faster: the influence of departure time distribution*
694 *on the overall evacuation performance*. Paper presented at the International Conference on
695 Evacuation Modeling and Management.

696 Li, D., Cova, T. J., & Dennison, P. E. (2019). Setting Wildfire Evacuation Triggers by Coupling
697 Fire and Traffic Simulation Models: A Spatiotemporal GIS Approach. *Fire Technology*,
698 55(2), 617-642. doi:10.1007/s10694-018-0771-6

699 Li, D., Cova, T. J., Dennison, P. E., Wan, N., Nguyen, Q. C., & Siebeneck, L. K. (2019). Why do
700 we need a national address point database to improve wildfire public safety in the U.S.? *International*
701 *Journal of Disaster Risk Reduction*, 39, 101237.
702 doi:<https://doi.org/10.1016/j.ijdrr.2019.101237>

703 Liang, W., Lam, N., Qin, X., & Ju, W. (2015). A Two-level Agent-Based Model for Hurricane
704 Evacuation in New Orleans. *Journal of Homeland Security and Emergency Management*,
705 12(2), 407. doi:10.1515/jhsem-2014-0057

706 Lindell, M. K. (2008). EMBLEM2: An empirically based large scale evacuation time estimate
707 model. *Transportation Research Part A: Policy and Practice*, 42(1), 140-154.
708 doi:10.1016/j.tra.2007.06.014

709 Lindell, M. K. (2013). Evacuation planning, analysis, and management. In A. B. Badiru & L. Racz
710 (Eds.), *Handbook of Emergency Response: A Human Factors and Systems Engineering*
711 *Approach* (pp. 121-149). Boca Raton, FL: CRC Press.

712 Lindell, M. K., Murray-Tuite, P., Wolshon, B., & Baker, E. J. (2018). *Large-scale evacuation: the*
713 *analysis, modeling, and management of emergency relocation from hazardous areas*: CRC
714 Press.

715 Lindell, M. K., & Prater, C. S. (2007). Critical Behavioral Assumptions in Evacuation Time
716 Estimate Analysis for Private Vehicles: Examples from Hurricane Research and Planning.
717 *Journal of Urban Planning and Development*, 133(1), 18-29. doi:10.1061/(ASCE)0733-
718 9488(2007)133:1(18)

719 Lovreglio, R., Kuligowski, E., Gwynne, S., & Boyce, K. (2019). A pre-evacuation database for
720 use in egress simulations. *Fire Safety Journal*, 105, 107-128.
721 doi:<https://doi.org/10.1016/j.firesaf.2018.12.009>

722 McCaffrey, S. (2004). Thinking of Wildfire as a Natural Hazard. *Society & Natural Resources*,
723 17(6), 509-516. doi:10.1080/08941920490452445

724 McCaffrey, S. M., & Winter, G. (2011). *Understanding homeowner preparation and intended
725 actions when threatened by a wildfire*, Newtown Square, PA.

726 Molloy, J. C. (2011). The Open Knowledge Foundation: Open Data Means Better Science. *PLOS
727 Biology*, 9(12), e1001195. doi:10.1371/journal.pbio.1001195

728 Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg, P. F., . . . Syphard,
729 A. D. (2014). Learning to coexist with wildfire. *Nature*, 515(7525), 58-66.
730 doi:10.1038/nature13946

731 Murray-Rust, P. (2008). Open Data in Science. *Nature Precedings*. doi:10.1038/npre.2008.1526.1

732 Murray-Tuite, P., & Wolshon, B. (2013). Evacuation transportation modeling: An overview of
733 research, development, and practice. *Transportation Research Part C: Emerging
734 Technologies*, 27, 25-45. doi:10.1016/j.trc.2012.11.005

735 Pavlegio, T., Prato, T., Dalenberg, D., & Venn, T. (2014). Understanding evacuation preferences
736 and wildfire mitigations among Northwest Montana residents. *International Journal of
737 Wildland Fire*, 23(3), 435-444. doi:<https://doi.org/10.1071/WF13057>

738 Pel, A. J., Bliemer, M. C., & Hoogendoorn, S. P. (2012). A review on travel behaviour modelling
739 in dynamic traffic simulation models for evacuations. *Transportation*, 39(1), 97-123.
740 doi:10.1007/s11116-011-9320-6

741 Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H., Alexandre, P. M., Bar-Massada,
742 A., . . . Stewart, S. I. (2018). Rapid growth of the US wildland-urban interface raises
743 wildfire risk. *Proceedings of the National Academy of Sciences*, 115(13), 3314-3319.
744 doi:10.1073/pnas.1718850115

745 Sheffi, Y., Mahmassani, H., & Powell, W. B. (1982). A transportation network evacuation model.
746 *Transportation Research Part A: General*, 16(3), 209-218.
747 doi:[https://doi.org/10.1016/0191-2607\(82\)90022-X](https://doi.org/10.1016/0191-2607(82)90022-X)

748 Slavkovikj, V., Verstockt, S., Van Hoecke, S., & Van de Walle, R. (2014). Review of wildfire
749 detection using social media. *Fire Safety Journal*, 68, 109-118.
750 doi:<https://doi.org/10.1016/j.firesaf.2014.05.021>

751 Southworth, F. (1991). *Regional evacuation modeling: A state-of-the-art review*. Oak Ridge, TN,
752 USA: Oak Ridge National Laboratory.

753 Southworth, F., & Chin, S.-M. (1987). Network evacuation modelling for flooding as a result of
754 dam failure. *Environment and Planning A*, 19(11), 1543-1558.

755 Steer, K., Abebe, E., Almashor, M., Beloglazov, A., & Zhong, X. (2017). On the utility of shelters
756 in wildfire evacuations. *Fire Safety Journal*, 94, 22-32.
757 doi:<https://doi.org/10.1016/j.firesaf.2017.09.001>

758 Szwoch, G. (2019). Combining Road Network Data from OpenStreetMap with an Authoritative
759 Database. *Journal of Transportation Engineering, Part A: Systems*, 145(2), 04018085.
760 doi:10.1061/JTEPBS.0000215

761 Toledo, T., Marom, I., Grimberg, E., & Bekhor, S. (2018). Analysis of evacuation behavior in a
762 wildfire event. *International Journal of Disaster Risk Reduction*, 31, 1366-1373.
763 doi:<https://doi.org/10.1016/j.ijdrr.2018.03.033>

764 Trainor, J., Murray-Tuite, P., Edara, P., Fallah-Fini, S., & Triantis, K. (2012). Interdisciplinary
765 Approach to Evacuation Modeling. *Natural Hazards Review*, 14(3), 151-162.
766 doi:10.1061/(ASCE)NH.1527-6996.0000105

767 Tu, H., Pel, A. J., Li, H., & Sun, L. (2012). Travel Time Reliability during Evacuation: Impact of
768 Heterogeneous Driving Behavior. *Transportation Research Record*, 2312(1), 128-133.
769 doi:10.3141/2312-13

770 Urbanik, T. (2000). Evacuation time estimates for nuclear power plants. *Journal of Hazardous
771 Materials*, 75(2), 165-180. doi:[https://doi.org/10.1016/S0304-3894\(00\)00178-3](https://doi.org/10.1016/S0304-3894(00)00178-3)

772 Urbanik, T., & Desrosiers, A. E. (1981). *An Analysis of Evacuation Time Estimates Around 52
773 Nuclear Power Plant Sites Analysis and Evaluation*. Retrieved from United States:
774 <https://www.osti.gov/servlets/purl/1080056>

775 Van Wagendonk, J. W. (2018). *Fire in California's ecosystems*: Univ of California Press.

776 Vieweg, S., Hughes, A. L., Starbird, K., & Palen, L. (2010, 2010). *Microblogging during two
777 natural hazards events: what twitter may contribute to situational awareness*.

778 Waraich, R. A., Charypar, D., Balmer, M., & Axhausen, K. W. (2015). Performance Improvements
779 for Large-Scale Traffic Simulation in MATSim. In M. Helbich, J. Jokar Arsanjani, & M.
780 Leitner (Eds.), *Computational Approaches for Urban Environments* (pp. 211-233). Cham:
781 Springer International Publishing.

782 Wilmot, C., & Meduri, N. (2005). Methodology to Establish Hurricane Evacuation Zones.
783 *Transportation Research Record: Journal of the Transportation Research Board*, 1922,
784 129-137. doi:10.3141/1922-17

785 Winston, W. L. (2000). *Simulation modeling using@ RISK*: Duxbury.

786 Wolshon, B., & Marchive, E. (2007). Emergency Planning in the Urban-Wildland Interface:
787 Subdivision-Level Analysis of Wildfire Evacuations. *Journal of Urban Planning and
788 Development*, 133(1), 73-81. doi:10.1061/(ASCE)0733-9488(2007)133:1(73)

789 Wu, H.-C., Lindell, M. K., & Prater, C. S. (2012). Logistics of hurricane evacuation in Hurricanes
790 Katrina and Rita. *Transportation Research Part F: Traffic Psychology and Behaviour*,
791 15(4), 445-461. doi:<http://dx.doi.org/10.1016/j.trf.2012.03.005>

792 Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Lu, F., Chen, J., . . . Li, Q. (2016). Another Tale of Two
793 Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location
794 Data. *Annals of the American Association of Geographers*, 106(2), 489-502.
795 doi:10.1080/00045608.2015.1120147

796 Yabe, T., Sekimoto, Y., Tsubouchi, K., & Ikemoto, S. (2019). Cross-comparative analysis of
797 evacuation behavior after earthquakes using mobile phone data. *PLOS ONE*, 14(2),
798 e0211375. doi:10.1371/journal.pone.0211375

799 Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., . . . Fay, D. (2011). Spatial
800 cloud computing: how can the geospatial sciences use and help shape cloud computing?
801 *International Journal of Digital Earth*, 4(4), 305-329. doi:10.1080/17538947.2011.587547

802 Yin, W., Murray-Tuite, P., Ukkusuri, S. V., & Gladwin, H. (2014). An agent-based modeling
803 system for travel demand simulation for hurricane evacuation. *Transportation Research
804 Part C: Emerging Technologies*, 42, 44-59. doi:<https://doi.org/10.1016/j.trc.2014.02.015>

805 Yu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review.
806 *Geosciences*, 8(5), 165.

807 Yuan, F., & Han, L. D. (2009). Improving Evacuation Planning with Sensible Measure of
808 Effectiveness Choices: Case Study. *Transportation Research Record*, 2137(1), 54-62.
809 doi:10.3141/2137-07
810