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Abstract 16 

Wildfires pose a significant threat to the residents living in the wildland-urban interface. 17 

Computerized modeling of wildfire evacuation could facilitate protective action decision-making 18 

and improve wildfire public safety. This study aims to leverage different types of data, traffic 19 

simulation model, and geographic information systems to develop a data-driven wildfire 20 

evacuation model to improve evacuation time estimates in resort areas. Specifically, we take into 21 

account household vehicle ownership data and the occupancy rate of second homes based on a 22 

variety of data in model construction. We used the Tahoe Donner neighborhood in Truckee, 23 

California in the case study and derived a series of evacuation time estimates. The results indicate 24 

that the evacuation time estimates vary significantly with the mean number of vehicles per home 25 

and second homes' occupancy rate in resort areas. The proposed method could help incident 26 

commanders better understand the dynamics of travel demand of the fire-prone communities with 27 

part-time residents during wildfire evacuation and increase their situational awareness.  28 

Keywords: wildfire evacuation modeling, evacuation time estimates, traffic simulation, 29 

geographic information systems, data integration 30 

 31 
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A data-driven approach to improving evacuation time estimates during wildfires in resort areas 32 

1 Introduction 33 

Wildfire is a natural hazard that impacts both human communities and the ecosystem in 34 

many regions (Moritz et al., 2014). Due to the dry climate and fuel accumulation, wildfire poses a 35 

significant threat to the residents who live in the wildland-urban interface (WUI) in the western 36 

US (McCaffrey, 2004). Researchers have found a trend of larger and more frequent wildfires in 37 

the western US in the past few decades (Dennison, Brewer, Arnold, & Moritz, 2014). For example, 38 

in the 2020 fire season, California has experienced several top 20 largest fires in its history: the 39 

August Complex Fire, the Santa Clara Unit (SCU) Lightning Complex Fire, the Sonoma–Lake–40 

Napa Unit (LNU) Lightning Complex Fire, the North Complex Fire, and the Creek Fire (CAL 41 

FIRE, 2020a). Wildfire has caused significant loss of life and property in the western US in recent 42 

fire seasons. For example, the Camp Fire in Butte County, California destroyed 18,804 structures 43 

and killed 85 people in November 2018; the North Complex Fire caused a loss of 2,352 structures 44 

and 15 lives in August 2020 (CAL FIRE, 2020b). Despite the increasing wildfire risk, the WUI 45 

population has been growing rapidly in the past few decades (Radeloff et al., 2018). These trends 46 

pose a significant challenge for wildfire management in the US.    47 

With the rapid population growth in the WUI, many fire-prone communities that have a 48 

limited number of egresses in the American west could have evacuation difficulty during wildfires 49 

(Cova & Church, 1997; Cova, Theobald, Norman, & Siebeneck, 2013). When a wildfire 50 

approaches a WUI community and threatens life and property, incident commanders (ICs) need to 51 

issue protective action recommendations (PARs) to the population at risk. The primary PARs 52 

include evacuation and shelter-in-place, and evacuation is the primary PAR in the US (Cova, 53 

Drews, Siebeneck, & Musters, 2009). Wildfire evacuation is a complex process, and ICs need to 54 
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consider a variety of factors such as fire spread, evacuation route systems (ERS), and evacuation 55 

traffic before they could make effective PARs (Cova et al., 2017).  56 

Traffic simulation has been widely used in wildfire evacuation modeling to improve public 57 

safety (Beloglazov, Almashor, Abebe, Richter, & Steer, 2016; Cova & Johnson, 2002; Li, Cova, 58 

& Dennison, 2019). Previous research on wildfire evacuation modeling typically focuses on the 59 

households in fire-prone WUI communities and assumes that all the dwelling units are occupied 60 

by people in the fire season (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison, 61 

2019; Wolshon & Marchive, 2007). However, little research has examined how to account for 62 

those unoccupied homes in resort areas in wildfire evacuation modeling. We aim to leverage 63 

different types of data, traffic simulation model, and geographic information systems (GIS) to 64 

develop a data-driven wildfire evacuation model and improve evacuation time estimates (ETEs) 65 

for resort areas so as to improve wildfire public safety and increase community resilience. 66 

Specifically, a variety of data will be used to more accurately model evacuation travel demand, 67 

which makes this study a typical data-driven application in the field of wildfire evacuation. The 68 

novelty of this study is as follows. First, we present a data-driven approach to modeling evacuation 69 

travel demand in resort areas. Second, we develop a series of evacuation scenarios to test the 70 

developed evacuation model.  71 

This article has the following implications. First, the wildfire evacuation model constructed 72 

in this study could be directly used by emergency managers to develop a better understanding of 73 

potential issues during a wildfire evacuation in resort areas. Second, the constructed evacuation 74 

model could be used by emergency managers or evacuation practitioners to develop evacuation 75 

plans for resort areas. Lastly, the proposed data-driven method in this study could not only make 76 
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full use of existing data to improve the accuracy of ETEs but also shed light on how to incorporate 77 

other types of data to further improve wildfire evacuation modeling.  78 

The remainder of this article is organized as follows. Section 2 provides a review of wildfire 79 

evacuation modeling literature. The study area and relevant datasets compiled for this study are 80 

introduced in Section 3. Section 4 presents the proposed methods, and the results are included in 81 

Section 5. Finally, we give a further discussion on the research topic and conclude with future 82 

research directions.  83 

2 Background 84 

Traffic simulation was first employed to study evacuation in nuclear power plant 85 

emergencies (Sheffi, Mahmassani, & Powell, 1982; Urbanik & Desrosiers, 1981). The classic 86 

transport model is characterized by four steps: trip generation, trip distribution, modal split, and 87 

assignment (de Dios Ortúzar & Willumsen, 2011). Evacuation is the process of moving the 88 

population threatened by a hazard from the risk area to safe places (Lindell, 2013). Traffic 89 

simulation has been widely used in evacuation modeling in the past few decades (Pel, Bliemer, & 90 

Hoogendoorn, 2012; Sheffi et al., 1982). In the US, private vehicle is the primary transportation 91 

mode during mass evacuations (Lindell & Prater, 2007), and Southworth (1991) formulated 92 

evacuation modeling as a five-step process: 1) trip generation; 2) departure time modeling; 3) 93 

destination selection; 4) route selection; and 5) the setup, analysis, and revision of the plan. With 94 

the rapid development of transport modeling, traffic simulation models have been used to study 95 

mass evacuations in different types of hazards such as hurricane (Chen & Zhan, 2008; Yin, 96 

Murray-Tuite, Ukkusuri, & Gladwin, 2014), wildfire (Beloglazov et al., 2016; Cova & Johnson, 97 

2002), and tsunami (Lämmel, Grether, & Nagel, 2010).  98 
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Traffic simulation models can be divided into macroscopic, mesoscopic, and microscopic 99 

models based on the level of detail (Intini, Ronchi, Gwynne, & Pel, 2019; Murray-Tuite & 100 

Wolshon, 2013; Pel et al., 2012). Microscopic traffic simulation models can include detailed 101 

individual driving behaviors and vehicle movements and have enjoyed great popularity in wildfire 102 

evacuation modeling (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison, 103 

2019; Steer, Abebe, Almashor, Beloglazov, & Zhong, 2017). Note that the risk area in a wildfire 104 

evacuation is usually much smaller than that in a hurricane evacuation. Thus, although microscopic 105 

traffic simulation is characterized by heavy computation (Jha, Moore, & Pashaie, 2004), it is still 106 

feasible to use it in wildfire evacuation modeling. Recently, the coupling of different computer 107 

models such as fires spread, trigger, and traffic simulation models has become a popular trend in 108 

wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019; Steer et al., 109 

2017). Additionally, recent research also reveals the importance of incorporating behavioral 110 

research into wildfire evacuation modeling (Intini et al., 2019). This trend is also consistent with 111 

the notion that we should employ an interdisciplinary approach to modeling evacuation (Trainor, 112 

Murray-Tuite, Edara, Fallah-Fini, & Triantis, 2012).  113 

Different metrics can be derived from traffic simulations to evaluate evacuation 114 

effectiveness, and some popular metrics include total evacuation time, total travel time, total travel 115 

distance, and total evacuation exposure (Han, Yuan, & Urbanik, 2007; Yuan & Han, 2009). The 116 

total evacuation time is also termed network clearance time, and it usually includes mobilization 117 

time, vehicle travel time, and queueing delay time (Southworth & Chin, 1987). ETE has been 118 

widely used as a metric to measure evacuation effectiveness in evacuation research (Jha et al., 119 

2004; Lindell, 2008). In a wildfire evacuation, we need to ensure that the evacuees could travel to 120 

safe places before the fire approaches the community at risk (Cova, Dennison, Kim, & Moritz, 121 
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2005; Cova et al., 2017). Additionally, ETE can also be further integrated with the lead time 122 

derived from fire spread models to construct some more complex metrics for wildfire evacuation 123 

such as the direness score (Cova, Li, Siebeneck, & Drews, 2021). Note that some complex 124 

evacuation evaluation metrics such as exposure count rely on fire spread and microscopic traffic 125 

simulation models and can be computationally prohibitive if evacuation researchers and 126 

practitioners are to consider the randomness of many input parameters.   127 

Wildfire evacuation modeling involves the steps summarized by Southworth (1991), and 128 

every step could affect the accuracy of the evacuation model. Among these steps, evacuation travel 129 

demand modeling plays a significant role in the computation of ETEs. Evacuation travel demand 130 

modeling has drawn significant research attention in the past few decades (Lindell, Murray-Tuite, 131 

Wolshon, & Baker, 2018; Murray-Tuite & Wolshon, 2013; Pel et al., 2012; Southworth, 1991). 132 

However, it is still a challenge to accurately model evacuation travel demand (Jha et al., 2004). 133 

One primary reason is that we lack the necessary human movement data (Jha et al., 2004). 134 

Although recent data-driven research has revealed that cellphone data could be used to derive 135 

human movement patterns at a reasonable cost (Xu et al., 2016), such data has privacy issues and 136 

can rarely be acquired for evacuation modeling in the US and many other countries. Note that the 137 

methods to model evacuation travel demand could vary from one type of hazard to another. For 138 

example, hurricane evacuation usually involves a larger risk area, and evacuation modelers will 139 

use larger evacuation zones (e.g., traffic analysis zones, zip code zones, or census tracts/blocks) 140 

and relevant socio-economic data to generate evacuation travel demand (Liang, Lam , Qin, & Ju, 141 

2015; Wilmot & Meduri, 2005). Since wildfire evacuation usually involves a smaller population 142 

when compared with hurricane evacuation, evacuation modelers could use fine-grain household 143 

location data to generate evacuation demand (Li, Cova, & Dennison, 2019). In an early study, 144 
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Cova and Johnson (2002) used a US Geological Survey (USGS) digital orthophoto quad (DOQ) 145 

and some CAD data from the local planning agency to manually code a total of 250 home locations 146 

and road network for wildfire evacuation modeling in the Emigration Canyon community to the 147 

east of Salt Lake City, Utah. Similarly, Wolshon and Marchive (2007) used a total of 753 148 

residential parcels to generate evacuation traffic in the Summit Park neighborhood near Salt Lake 149 

City, Utah. Another recent study done by Li, Cova, and Dennison (2019) also used 744 residential 150 

parcels to generate evacuation traffic and estimate evacuation time for the town of Julian in San 151 

Diego County, California. Besides residential parcel data, address point data is also widely 152 

available in many municipal, county, and state governments and could also be used to generate 153 

trips in wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, Dennison, et al., 2019). 154 

Note that it is usually assumed that all the homes are occupied and can be used to generate 155 

evacuation travel demand in previous studies (Cova & Johnson, 2002). This assumption will be 156 

effective for those WUI communities that are not located in resort areas. However, since there are 157 

many second homes in the WUI communities in resort areas, we need to take into account the 158 

occupancy rate of these second homes during the fire season so as to better model evacuation travel 159 

demand and derive more accurate ETEs. Although the importance of considering second 160 

homeowners and tourists in evacuation modeling has been highlighted in previous evacuation 161 

literature (Kuligowski, 2021; Urbanik, 2000), relevant research on this topic is scarce. This study 162 

will contribute to the evacuation modeling literature by developing a data-driven approach to 163 

improving ETEs for resort communities.  164 

Different types of data (e.g., high-resolution satellite imagery, the aerial imagery from 165 

unmanned aerial vehicles (UAVs), and social media data)  have been used in disaster research in 166 

the past few years (Yu, Yang, & Li, 2018). The data from various sensors or social media can be 167 
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generated at a great speed, and such streaming data has been widely used in wildfire evacuation 168 

research (Slavkovikj, Verstockt, Van Hoecke, & Van de Walle, 2014; Vieweg, Hughes, Starbird, 169 

& Palen, 2010). Although different types of data have been widely used in wildfire evacuation 170 

research, little research has been conducted on data-driven wildfire evacuation modeling in resort 171 

areas. For example, the occupancy type of the parcels and the occupancy rate of second homes 172 

have not been used in previous evacuation modeling studies. This study aims to fill this gap by 173 

employing a variety of data to design and implement a wildfire evacuation model for the WUI 174 

communities in resort areas.  175 

3 Data 176 

3.1 Study area 177 

Many WUI communities in the western U.S. are located in fire-prone areas and have a 178 

limited number of egresses, which places the residents at risk during wildfires (Cova et al., 2013). 179 

We used the Tahoe Donner neighborhood in the Town of Truckee, California as our study site. 180 

Truckee is an incorporated town with a population of 16,180 (2010 Census) in Nevada County, 181 

California. As shown in Figure 1, the town is located in the northern Sierra Nevada, and Tahoe 182 

Donner is a high-density neighborhood in the northwestern part of the town. The Mediterranean 183 

climate in the Sierra Nevada area is characterized by a wet winter and a dry summer (Van 184 

Wagtendonk, 2018). The Tahoe Donner neighborhood is surrounded by a large amount of 185 

flammable vegetation. The dry summer, proximity to flammable vegetation, and frequent wildfire 186 

ignitions make Tahoe Donner a typical fire-prone community in the American west. In addition, 187 

this neighborhood also has many second homes. Since Truckee is close to many attractions (e.g., 188 

Lake Tahoe) and attracts a large number of tourists every year, the occupancy rate of the second 189 

homes in this area can vary significantly with time during the fire season. For example, the 190 
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occupancy rate can be very high on weekends or holidays. Lastly, the Tahoe Donner neighborhood 191 

only has two egresses in its ERS. Thus, wildfire poses a significant risk to the local residents in 192 

this neighborhood in the fire season. The potential large evacuation travel demand and the limited 193 

capacity of the ERS also pose a challenge to emergency managers in wildfire evacuation planning 194 

and management.  195 

 196 

Figure 1 The location of the Tahoe Donner neighborhood 197 

3.2 Data compilation 198 

This study focuses on using a variety of data to design and implement a wildfire evacuation 199 

model for WUI communities in resort areas. The primary datasets used in this study are listed in 200 

Table 1. Open data usually refers to free, publicly available data and has enjoyed great popularity 201 

in scientific research in recent years (Janssen, Charalabidis, & Zuiderwijk, 2012; Molloy, 2011; 202 

Murray-Rust, 2008). Note that while most of the data used are open data, four datasets (occupancy 203 

type, field survey, evacuation route, and road data) acquired from the Town of Truckee are not 204 
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open data. The compiled datasets include relevant socio-economic data and the datasets of the built 205 

environment (e.g., the ERS). The following subsections provide more details on these datasets.  206 

Table 1 The primary datasets compiled for this study  207 

Dataset Name Source Year 

Parcel occupancy type data The Town of Truckee 2019 

Vehicle ownership data American Community Survey 2014-2018 

Tahoe Donner field survey data  The Town of Truckee 2019-2020 

Raw parcel data Nevada County Assessor’s Office 2019 

Residential parcel data Nevada County Assessor’s Office  2019 

Road data The Town of Truckee 2019 

Road data OpenStreetMap 2019 

Evacuation route data The Town of Truckee 2019 

Neighborhood boundary data The Town of Truckee 2019 

Truckee boundary data The Town of Truckee 2019 

 208 

3.2.1 Socio-economic data 209 

Socio-economic data has been widely used to study social vulnerability in disaster research 210 

(Cutter, Boruff, & Shirley, 2003). In this study, we employ parcel occupancy and household 211 

vehicle ownership data to derive household travel demand in evacuation modeling. The parcel 212 

occupancy type dataset was derived based on residential trash and recycling charges from the 213 

Town of Truckee. Parcel occupancy type data can be subsequently joined to the residential parcel 214 

polygon data through parcel identifications (IDs). The value of this dataset lies in that it will allow 215 

evacuation modelers to assign trips for each household based on its occupancy type. This practice 216 

will significantly improve the accuracy of the model (especially in resort towns such as Truckee).    217 

Another important dataset is the household vehicle ownership data in the comparative 218 

housing characteristics dataset (2014 – 2018 estimates) from the American Community Survey 219 

(ACS). The vehicle ownership data is listed in Table 2. This dataset can be used to determine the 220 

number of trips generated by each household (Li, Cova, & Dennison, 2019). Note that this dataset 221 

is open data and is available for most of the areas in the US. The household vehicle ownership data 222 
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can be used to estimate the mean number of vehicles for each home in Tahoe Donner in subsequent 223 

evacuation travel demand modeling.  224 

Table 2 The vehicle ownership data from ACS 225 

Number of Vehicles Occupied Housing Units Percent 

No vehicles available 132 2.2% 

1 vehicle available 1,260 20.9% 

2 vehicles available 2,514 41.7% 

3 or more vehicles available 2,122 35.2% 

Total 6,028 100% 

 226 

3.2.2 Built-environment-related data 227 

Three datasets related to the built environment were compiled from different sources. First, 228 

a residential parcel dataset was acquired from the Assessor’s Office of Nevada County, CA, and 229 

it includes a total of 12,708 residential parcels. Unlike the large-scale evacuations caused by 230 

hurricanes, wildfires evacuations usually impact a smaller geographic area. Thus, compared with 231 

hurricane evacuation modeling, wildfire evacuation modeling requires finer-grained data to 232 

generate evacuation travel demand so that we can study the patterns of evacuation traffic in a 233 

smaller study area. High resolution parcel-level data could be used to generate evacuation travel 234 

demand at the household level in the WUI (Li, Cova, Dennison, et al., 2019). This dataset can be 235 

integrated with other socio-economic data such as household vehicle ownership data to estimate 236 

evacuation travel demand in the evacuation model. We employ this dataset to construct the 237 

evacuation model because it is more recent and includes the detailed location information that 238 

could be used to generate household-level evacuation travel demand in the evacuation model.  239 

Additionally, we also compiled two datasets related to the road network. Specifically, we 240 

compiled a road dataset from the Town of Truckee. This road dataset includes the detailed speed 241 

limit information for each road. Another road dataset comes from the OpenStreetMap project 242 
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because MATSim uses OpenStreetMap data as the input road network data. Compared with 243 

authoritative data, OpenStreetMap data can often be obsolete and inaccurate (Szwoch, 2019). Thus, 244 

we used the speed limit information from the authoritative road data to update the speed limit for 245 

each road in the OpenStreetMap road data to improve its quality. Lastly, we also compiled the 246 

evacuation route data from the Town of Truckee, and this dataset includes the primary evacuation 247 

routes in the local evacuation plan.  248 

3.2.3 Field survey data 249 

A series of field surveys in Tahoe Donner were conducted by local stakeholders from June 250 

30th, 2019 to September 27th, 2020 in the Tahoe Donner neighborhood. Specifically, as shown in 251 

Figure 2, a total of 395 residences were included in the surveys. The selection of the residences 252 

was based on the local stakeholders’ knowledge about this area and can be representative of the 253 

households in this neighborhood. The surveys were conducted between 6:30 am and 7:15 am on 254 

the weekends or holidays, and the local police department counted the number of vehicles for each 255 

residence in the map in person during each survey. The occupancy rate and the average number of 256 

vehicles of the homes in the sample were recorded in the surveys. As shown in Figure 3, the 257 

occupancy rate reaches its peak (58.3%) on July 4th, 2020 (Independence Day). The overall 258 

occupancy rate ranges from 37.5% to 58.3% in the fire season, while the average number of 259 

vehicles per home ranges from 2.4. to 2.7. Note that the field surveys only provide the overall 260 

occupancy rates for all types of residences. The occupancy rate and average number of vehicles 261 

from the field surveys can be used to estimate evacuation travel demand.  262 
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 263 

Figure 2 The parcels used in the field surveys 264 

 265 

Figure 3 Percent of homes occupied in the field surveys 266 
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3.3 Data processing 267 

We used the QGIS software to join parcel occupancy type data to residential parcels based 268 

on parcel IDs. Table 3 lists the number of residential parcels for each occupancy type. These 269 

summaries were derived in QGIS.  Specifically, the residential parcels (N = 5,859) are divided into 270 

four groups: primary home, second home, vacant parcel, and unknown parcel. Note that 70.5% of 271 

the homes in this neighborhood are second homes. Thus, we need to take into account the 272 

occupancy rate of the second homes when developing a wildfire evacuation model for Tahoe 273 

Donner. We examined the residential parcels without any occupancy type information and found 274 

that most of them are mobile homes. Based on the stakeholders’ local knowledge, the 205 parcels 275 

in the unknown group will be treated as primary homes in evacuation traffic simulation. The data 276 

shows that Tahoe Donner is a high-density neighborhood with many second homes. 277 

Table 3 The number of homes by occupancy type in Tahoe Donner  278 

Occupancy type Count  Percent 

Primary home 1,229 21.0% 

Second home 4,130 70.5% 

Vacant 295 5.0% 

Unknown 205 3.5% 

Total 5,859 100% 

 279 

4 Methods 280 

4.1 Data-driven evacuation modeling 281 

We employ a data-driven approach to design and implement the evacuation model. The 282 

primary goal of this proposed data-driven method is that we leverage a variety of data to improve 283 

wildfire evacuation modeling and better mimic the reality. Our proposed method is characterized 284 

by the use of a variety of data in different steps. Note that we need to take into account the 285 

following three factors in constructing data-driven evacuation models. First, the data used should 286 
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be able to improve wildfire evacuation modeling. Second, the data should be readily available in 287 

local governments or could be acquired from other sources at a relatively low cost, which will 288 

ensure that the proposed method could be applied to other fire-prone communities. Additionally, 289 

since we employ a microscopic traffic simulator to perform evacuation simulations for different 290 

scenarios, it is computationally intensive to process and analyze the large model outputs to derive 291 

the ETEs (Graur et al., 2021; Waraich, Charypar, Balmer, & Axhausen, 2015).  292 

We use the household vehicle ownership data from ACS to estimate the mean number of 293 

vehicles of each household in Tahoe Donner. This ACS dataset includes 6,028 housing units in 294 

Truckee, and 2,122 of them have three or more vehicles available. Since we do not know the exact 295 

mean number of vehicles for this group, we assume that the mean number of vehicles for this group 296 

(n) could range from 3 to 5. Excel was used to perform the calculation. As shown in Table 4, we 297 

used 0.5 as the interval to derive a range of values and computed the mean number of vehicles for 298 

all the households (N = 6,028) accordingly. The final results range from 2.1 to 2.8. Note that if we 299 

use n = 2.1 to generate trips in the evacuation model, it could be an underestimation of the total 300 

evacuation travel demand. Since the likelihood that n is larger than 5 is very small in reality, n = 301 

2.8 could be considered as the upper bound to be used to generate trips for each household in 302 

subsequent evacuation traffic simulation. Although some research has shown that households may 303 

not use all the vehicles in the evacuation (Toledo, Marom, Grimberg, & Bekhor, 2018), we assume 304 

all vehicles will be used so as to consider the worst case scenarios in evacuation planning.  305 

Table 4 The estimated mean number of vehicles based on the household vehicle ownership data 306 

# of Vehicles # of Vehicles  Count Percent Mean Number of Vehicles (n) 

No vehicles available 0 132 2.2% - 

1 vehicle available 1 1,260 20.9% - 

2 vehicles available   2 2,514 41.7% - 

3 or more vehicles available   3 2,122 35.2% 2.10 

 3.5 2,122 35.2% 2.28 
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# of Vehicles # of Vehicles  Count Percent Mean Number of Vehicles (n) 

 4 2,122 35.2% 2.45 

 4.5 2,122 35.2% 2.63 

 5 2,122 35.2% 2.80 

 307 

We employ a variety of data to implement the evacuation model, and the flowchart of the 308 

whole procedure is shown in Figure 4. First, we derive residential parcels based on parcel type. 309 

Then, we use occupancy type, occupancy rate, and household vehicle ownership data to calculate 310 

evacuation travel demand for the study area. Specifically, as shown in Table 5, we use occupancy 311 

type data to divide the residential parcels into four categories. We employ occupancy rate data to 312 

randomly select a set of second homes as the occupied second homes. Those parcels in the 313 

“unknown” category are also considered occupied based on the stakeholders’ local knowledge. 314 

Then, we use the mean number of vehicles (n) derived from the household vehicle ownership data 315 

and a Poisson distribution to randomly generate a number of vehicles for each occupied residence. 316 

Once evacuation travel demand is generated, we proceed to specify the egresses based on the ERS. 317 

Then we use a microscopic traffic simulation model to perform evacuation traffic simulation and 318 

derive the ETE. Specifically, we calculate the time when the first vehicle departs (t1) and when the 319 

last vehicle leaves the risk area (t2), and the derived ETE is t2-t1. This process is repeated N times 320 

for each evacuation scenario, and we will derive N different ETEs. Note that the distribution of the 321 

occupied second homes and the number of vehicles for each residence vary in each simulation. 322 

We do not consider the randomness in the spatial distribution of primary vs secondary homes in 323 

our model because this data is derived from the most recent tax and utility data and usually does 324 

not change dramatically within a short period of time. We use the total ETE because it is a widely 325 

used metric for evaluating evacuation effectiveness. The total ETE can be directly affected by the 326 

evacuation travel demand. This study focuses on a data-driven approach to improving evacuation 327 
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travel demand modeling. We have added two new input parameters (occupancy type and rate) to 328 

the evacuation model, which makes the model more complex and computationally intensive. 329 

Additionally, because we are using a microscopic traffic simulation model and the Tahoe Donner 330 

neighborhood is larger than most of the neighborhoods used in previous studies, it will be 331 

computationally prohibitive to derive some more complex evacuation evaluation metrics if we are 332 

to take into account the stochastic nature of the input parameters. 333 

 334 

Figure 4 The flowchart of the evacuation modeling procedure 335 

Table 5 Generating household evacuation travel demand based on occupancy type 336 

Occupancy type Occupancy rate  Mean # of vehicles 

Primary home 100% n vehicles (ACS) 

Second home r (0% - 100%) n vehicles (if occupied) 

Vacant 0 0 vehicle 

Unknown 100% n vehicles  

 337 
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The implementation of the method is as follows. We use an open-source microscopic traffic 338 

simulation package MATSim (Horni, Nagel, & Axhausen, 2016) and its evacuation library to 339 

implement the evacuation model and perform evacuation traffic simulation. The MATSim traffic 340 

simulator is implemented in Java, and evacuation modelers could customize the code to add extra 341 

functionalities (Horni et al., 2016). The road network data is downloaded directly from 342 

OpenStreetMap, and the JOSM software and its MATSim plugin are used to code the road network 343 

for MATSim. Specifically, we use the authoritative road data from Truckee to correct the speed 344 

limit information of each road in the OpenStreetMap data. The centroids of the residential parcels 345 

were extracted and saved as a vector format file (shapefile). Trips will be generated from each 346 

parcel location randomly based on the mean number of vehicles per household (n) in this file 347 

during the evacuation. Specifically, the residential parcel location dataset has a column that 348 

includes the occupancy type information, and we could apply different occupancy rates (r) for the 349 

second homes. Although residents’ evacuation behaviors in hurricanes have been thoroughly 350 

studied (Wu, Lindell, & Prater, 2012), relevant research on people’s evacuation behaviors in resort 351 

communities during a wildfire evacuation is scarce (Cohn, Carroll, & Kumagai, 2006; Kuligowski, 352 

2021). Relevant evacuation research has shown that departure time can be modeled with statistical 353 

distributions such as lognormal or Weibull distributions (Lämmel & Klüpfel, 2012; Lovreglio, 354 

Kuligowski, Gwynne, & Boyce, 2019; Tu, Pel, Li, & Sun, 2012). Thus, we use a lognormal 355 

distribution to model departure times, and it is assumed that all evacuees will choose the closest 356 

egress and the shortest path during their evacuation. Note that we use these assumptions for 357 

computational convenience, and they do not affect the generality of the proposed evacuation model. 358 

If more detailed evacuation behavior data is available, we can use the data to further improve the 359 

model. The user can provide a risk area polygon as the input, and all the people within the risk 360 
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area will be evacuated during the wildfire evacuation. In this study, we use a risk area polygon that 361 

covers the whole Tahoe Donner neighborhood. Once the evacuation simulation is finished, the 362 

program will produce an event file that includes all the event information of each individual vehicle 363 

(e.g., a vehicle enters and leaves a link) during the evacuation. Finally, we could use Java and 364 

relevant MATSim libraries to process the event files and derive ETE information for each 365 

evacuation scenario.  366 

 Besides ETEs, we also derive the vehicle count information for each road link and map out 367 

the information to help ICs improve their situational awareness. Specifically, first, we use Java 368 

and relevant MATSim libraries to parse the vehicle trajectory data to derive the vehicle count 369 

information for every road link in each run of the simulation for a specific scenario at time t.  370 

Second, we aggregate the vehicle count information to derive the average vehicle count for each 371 

link for each evacuation scenario. Then we join the vehicle count information to the road link 372 

dataset in QGIS based on the common road link identification and map out the vehicle count 373 

information for each road link.  374 

4.2 Experimental design 375 

In this study, it is assumed that the whole Tahoe Donner neighborhood needs to be 376 

evacuated due to a fast-spreading wildfire and the two egresses will not be blocked by the fire 377 

during the evacuation. As shown in Figure 5, Tahoe Donner has two primary egresses in its local 378 

evacuation plan: A (Alder Creek Rd) and B (Northwoods Blvd). Alder Creek Rd connects Tahoe 379 

Donner to Highway 89, and Northwoods Blvd is connected to Interstate highway 80.  380 
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 381 

Figure 5 The evacuation zone used in this study 382 

 We design a set of evacuation scenarios based on the data compiled for this study. 383 

Specifically, we use the mean number of vehicles per home (n) and the second homes' occupancy 384 

rate (r) as the primary variables in our experimental design. First, we need to use a series of 385 

occupancy rates for the second homes in Tahoe Donner. The overall occupancy rates for different 386 

r values are listed in Table 6. Based on the occupancy rate data from the field surveys, we use six 387 

different values for occupancy rate r (10% ~ 60% with an interval of 10%) in the experiment. 388 

Additionally, since most previous evacuation modeling studies did not consider the occupancy rate 389 

of second homes, we also compute the ETEs for a 100% occupancy rate such that we can compare 390 

the results. Note that a 100% occupancy rate of the second homes will make our proposed 391 

evacuation model close to those in previous studies because previous evacuation models do not 392 

have occupancy type and rate parameters (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, 393 

Cova, & Dennison, 2019).  394 
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Table 6 Overall occupancy rates derived from the occupancy rates of second homes in Tahoe 395 

Donner 396 

Occupancy rate (r) for second homes # of occupied units Overall occupancy rate 

10% 1,847 31.5% 

20% 2,260 38.6% 

30% 2,673 45.6% 

  40% 3,086 52.7% 

50% 3,499 59.7% 

60% 3,912 66.8% 

70% 4,325 73.8% 

80% 4,738 80.9% 

90% 5,151 87.9% 

100% 5,564 95.0% 

  397 

As for the mean number of vehicles per household (n), it is estimated to range from 2.1 to 398 

2.8 based on the field survey data. We use 2.1-2.8 with an interval of 0.1 for n in the experiment. 399 

Although a significant amount of research has been done on hurricane evacuation behaviors in the 400 

U.S., relevant research on residents’ evacuation behaviors in resort communities during wildfires 401 

is still scarce. Previous evacuation research has shown that departure time can be modeled with 402 

statistical distributions such as lognormal or Weibull distributions (Lämmel & Klüpfel, 2012; 403 

Lovreglio et al., 2019; Toledo et al., 2018). Thus, we use a lognormal distribution (Horni et al., 404 

2016) to model departure times: ln(t) ~ N(𝜇, 𝜎2) (unit: s) and assume that all evacuees will leave 405 

within 60 min after the evacuation order is issued. The expected value of the departure time is 406 

1800 s (30 min), and the variance is 360,000 s2. We choose to use this departure time distribution 407 

because this could be a short-notice evacuation scenario and can be used as a baseline for wildfire 408 

evacuation planning. The key parameters are summarized in Table 7, and we will perform 409 

evacuation traffic simulation for a total of 56 different evacuation scenarios. We can derive the 410 

number of simulations for each scenario based on the following equation (Winston, 2000): 411 

𝑁 = 𝑧𝛼/2
2𝜎2/𝐷2 412 
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where 𝑁 is the number of simulations, 𝑧𝛼/2 is the standard Z-score, 𝜎 is the estimated standard 413 

deviation, and 𝐷 is desired margin of error. We need to run the simulation at least 16 times with 414 

the following parameters: 𝛼  = 0.05 (at the 95% confidence level), 𝜎 =10 min, and 𝐷 = 5 min. 415 

Since it is computationally intensive to perform microscopic traffic simulation (Jha et al., 2004), 416 

we choose to run each scenario 30 times (N = 30) in this study. Finally, we derive the statistics of 417 

the ETEs for each evacuation scenario.   418 

Table 7 The evacuation scenarios used in the experiment 419 

Departure time distribution (unit: second) Occupancy rate (r) Mean # of vehicles (n) 

(μ =7.442, σ = 0.325) 10% ~ 60%, 100% 2.1 ~ 2.8 

 420 

 We map out the vehicle count information for each road link for the following six scenarios 421 

(See Table 8): 1) n = 2.1, r = 10%; 2) n = 2.1, r = 60%; 3) n = 2.1, r = 100%; 4) n = 2.8, r = 10%; 422 

5) n = 2.8, r = 60%; 6) n = 2.8, r = 100%. We aggregate the vehicle count data of 30 simulation 423 

runs for each scenario and map out the average vehicle count information for each road link at the 424 

time when 50% of the vehicles have left the risk area.  425 

Table 8 The evacuation scenarios used for mapping out the vehicle count information  426 

Scenario Mean # of vehicles (n) Occupancy rate (r) Input time (t) (min) 

1 2.1 10% 80 

2 2.1 60% 170 

3 2.1 100% 242 

4 2.8 10% 106 

5 2.8 60% 226 

6 2.8 100% 323 

 427 

5 Results 428 

We performed evacuation traffic simulation in MATSim for different evacuation scenarios 429 

and derived a series of ETEs. The detailed results for each run of the traffic simulation are stored 430 

in a text file. The total size of the results of the 56 scenarios is about 28 GB, and the total 431 
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computation time for 1680 simulation runs was about 10 hours. The boxplots of the total ETEs for 432 

different scenarios are shown in Figure 6, and the detailed statistics (the mean value, standard 433 

deviation, and confidence interval at the 95% confidence level) of the derived ETEs are listed in 434 

Appendix B. The results indicate that the ETEs vary significantly with the occupancy rate of 435 

second homes (r) and the mean number of vehicles per home (n). For example, according to the 436 

field survey data, the maximum overall occupancy rate on July 4th is 58.31%. The corresponding 437 

occupancy rate of second homes is approximately 50%. The derived ETEs can range from 420 438 

min (n = 2.1) to 564 min (n = 2.8). If n is fixed (e.g., n = 2.1), the derived ETEs can range from 439 

226 min (r = 10%) to 470 min (r = 60%). If all the second homes are occupied (r = 100%, n = 2.1), 440 

it could take about 667 min to evacuate the whole Tahoe Donner neighborhood. The results have 441 

shown that our proposed model better reflect real evacuations when compared with previous 442 

models that do not consider the occupancy type and rate of second homes in resort areas. Note that 443 

the assumptions for the derived ETEs in Figure 6 are all the residents are at home, the evacuation 444 

compliance rate is 100%, and all the residents will evacuate within 60 minutes. Although this 445 

assumption is very unlikely in reality, evacuation planners and incident commanders also need to 446 

take into account these extreme evacuation scenarios in evacuation planning (Cova et al., 2021). 447 

Additionally, it should also be noted that the field surveys are conducted on weekends or holidays, 448 

and the derived ETEs on weekdays could be lower than those on weekends or holidays.  449 
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 450 

Figure 6 The derived ETEs for different evacuation scenarios 451 

Relevant research on residents’ evacuation behavior in the WUI communities has shown 452 

that many residents may choose to stay and protect their homes (McCaffrey & Winter, 2011; 453 

Paveglio, Prato, Dalenberg, & Venn, 2014). Additionally, many residents in the neighborhood may 454 

not be at home in the daytime. Thus, we also derived the ETEs needed for 95%, 75% and 50% of 455 

the vehicles to leave the risk area, and the results are shown in Figure 8, 8, and 9, respectively. The 456 

detailed statistics are listed in Appendix C. These ETEs could be useful when only a proportion of 457 

the households participate in the evacuation. Note that the values of input parameters used in this 458 

study do not affect the generalizability of the proposed method. If more detailed population 459 

distribution and evacuation behavior data is available, evacuation researchers and practitioners can 460 
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change the input parameters for the proposed model to derive more accurate ETEs. In summary, 461 

the simulation results indicate that it will take a long time to evacuate the residents in Tahoe 462 

Donner when the occupancy rate is high. Thus, the emergency manger can have significant 463 

difficulty evacuating the residents in Tahoe Donner if a fast-moving fire threatens this community. 464 

Moreover, the results also show that it is necessary to take into account the occupancy rate of the 465 

second homes in wildfire evacuation modeling and planning for resort areas. 466 

 467 

Figure 7 The derived time needed for 95% of the vehicles to leave the risk area 468 

 469 
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  470 

Figure 8 The derived time needed for 75% of the vehicles to leave the risk area 471 
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 472 

Figure 9 The derived time needed for 50% of the vehicles to leave the risk area 473 

The vehicle count information of the road links for the six evacuation scenarios are shown 474 

in Figures 10 and 11. Specifically, Figures 10 A-C show the results of scenarios 1-3, respectively, 475 

and the results of scenarios 4-6 are shown in Figures 11 A-C, respectively. The results indicate 476 

that traffic congestion will occur on the Northwoods Blvd under the assumption that all evacuees 477 

will use the closest egress and the shortest path during the evacuation. The reason is that a larger 478 

proportion of the homes are closer to egress B in Figure 5. Egress A (the Alder Creek Rd) is 479 

underused with this assumption. Moreover, more evacuation traffic will be on the Northwoods 480 

Blvd when there is a larger evacuation travel demand (i.e., a larger n or r). The inclusion of vehicle 481 

count information can help the ICs better understand the dynamics of evacuation traffic.  482 
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 483 

Figure 10 The distribution of the evacuation traffic in three different evacuation scenarios (n = 2.1) 484 

 485 

Figure 11 The distribution of the evacuation traffic in three different evacuation scenarios (n = 2.8) 486 
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6 Discussion 487 

In this study, we leveraged a variety of data to construct the wildfire evacuation model and 488 

improve ETEs in the Tahoe Donner neighborhood in Truckee, CA. Our proposed data-driven 489 

evacuation model can be used by the WUI communities in resort areas for evacuation planning. 490 

Evacuation practitioners could use the results of this study to better understand the dynamics of 491 

evacuation travel demand during the fire season and improve the local evacuation plans 492 

accordingly. We were faced with several challenges in data-driven wildfire evacuation modeling 493 

research. We need to address these challenges before we can use the proposed model operationally.  494 

The first challenge lies in data availability. This study is based on a set of assumptions. For 495 

example, it was assumed that all evacuees will depart from their homes and the participation rate 496 

is 100%. However, a wildfire evacuation in reality could be more complex and very different from 497 

these assumptions. Thus, it is important that we further leverage different types of data to narrow 498 

the gap between our knowledge and the real-world evacuation so that we could build an evacuation 499 

model that could better reflect the reality. When using different datasets to improve wildfire 500 

evacuation modeling, we need to seek a balance among many factors such as cost, effectiveness, 501 

and applicability. For example, although we could use household survey to collect data to estimate 502 

the distribution of daytime population, this method is costly and we may still have difficulty in 503 

deriving an accurate estimate of the spatio-temporal distribution of the population in a study area. 504 

Although big data has enjoyed great popularity in the past few years, we still have data scarcity 505 

issues in wildfire evacuation modeling. For example, we used the ACS data and the field survey 506 

data to estimate the mean number of vehicles for each household in the study area, and we lack 507 

relevant data that could more accurately estimate this parameter. Although we used the most recent 508 

occupancy type information derived from tax and utility data, the COVID-19 pandemic has 509 
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significantly changed human mobility patterns and could also change occupancy types because 510 

many people move from cities to rural areas during the pandemic. Additionally, the occupancy 511 

rate of second homes is based on field survey data in this study. However, the occupancy rate of 512 

second homes and the population distribution in resort areas can be very dynamic, and evacuation 513 

modelers need high spatial and temporal resolution human mobility data to better estimate 514 

evacuation travel demand.  515 

One limitation of this study is that we did not have household survey data and use them to 516 

derive the parameters (e.g., the departure time distribution, the compliance rate, and the number 517 

of vehicles used by each household) for the evacuation model. We could collect the above-518 

mentioned data via household surveys to further improve the evacuation model in the next step. 519 

Another limitation is that we did not consider the tourists in hotels. Additionally, some secondary 520 

homes can also be rented out to tourists via websites such as Airbnb. These tourists can also 521 

significantly increase the ETEs during the tourist season (Urbanik, 2000). The tourists and many 522 

second homeowners can have very different characteristics (e.g, the number of vehicles) and 523 

evacuation behaviors (e.g., protective action selection, destination selection, and route selection) 524 

during a wildfire evacuation. These differences can have significant impacts on the ETEs derived 525 

from traffic simulation models. However, the tourists and second homeowners may not be included 526 

in traditional household survey data (e.g., the ACS data). We need to collect relevant data to further 527 

study the tourists and second homeowners’ evacuation behavior. Lastly, we only considered 528 

evacuation traffic within the community and assumed there is no traffic congestion at the egresses 529 

because of the lack of destination choice data. We will need to collect more data to model 530 

destination choice in the future.  531 
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Recent research has shown that relevant data such as cellphone location data could be used 532 

to study people evacuation behavior in disasters (Yabe, Sekimoto, Tsubouchi, & Ikemoto, 2019). 533 

However, such high-resolution location data is rarely available for evacuation researchers and 534 

practitioners in the US due to privacy issues (de Montjoye et al., 2018) or the high cost. Coarse-535 

resolution cellphone location data has also been widely used by researchers to study human 536 

mobility in recent years (Xu et al., 2016). Big data can provide a new avenue to improve evacuation 537 

travel demand modeling. Further research could focus on investigating if high-resolution (e.g., 538 

GPS data) or coarse-resolution cellphone data (e.g., the number of persons within the service area 539 

of each cellphone tower) could be acquired to estimate diurnal population distribution and improve 540 

wildfire evacuation modeling.  541 

Another challenge in integrating different types of data to improve wildfire evacuation 542 

modeling is data management. Evacuation analysts/modelers need to have a variety of data to 543 

perform evacuation analysis/modeling to facilitate the ICs’ decision-making. However, data 544 

management in the US is decentralized due to the organization of the government agencies, which 545 

poses a significant challenge to evacuation management. Since there is no one-stop data portal in 546 

Truckee, it is time-consuming to compile different datasets used in this study. Furthermore, other 547 

issues such as data inconsistency will emerge when we integrate these data for one specific 548 

application because different datasets are managed by different agencies. It should be noted that 549 

many large wildfires could spread across multiple cities/counties, which poses a significant 550 

challenge to wildfire evacuation researchers and practitioners. In such large fires, evacuation 551 

researchers and practitioners will be better off if relevant data could be provided efficiently so that 552 

they could leverage these data directly in computer models to help improve situational awareness 553 

and facilitate protective action decision-making. Nowadays, many local and state government 554 
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agencies have access to Web GIS platforms such as ArcGIS Online and have the capacity to 555 

publish spatial data as web services that are based on open standards such as Web Map Service 556 

(WMS) and Web Feature Service (WFS). More research should be conducted on developing a 557 

better cyberinfrastructure for data-driven wildfire evacuation modeling.  558 

Besides the above-mentioned aspects about data, another challenge in wildfire evacuation 559 

modeling lies in the coupling of different computer models. Although this study does not focus on 560 

coupling different computer models to model wildfire evacuation, this has become a popular trend 561 

in recent years (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019). One of the reasons model 562 

coupling in wildfire evacuation modeling is challenging is that each model is usually implemented 563 

as a separate piece of software and it is technically difficult to integrate them into one piece of 564 

software at the source code level. One alternative is to integrate the results of each model to do 565 

relevant computations. Another issue in model coupling lies in that very few open-source coupled 566 

evacuation models are available at this moment, which hinders the adoption of these new coupled 567 

models in wildfire evacuation practices. Lastly, recent research has shown has that coupled 568 

wildfire evacuation models can be used to derive some new evacuation effectiveness metrics such 569 

as the direness score (Cova et al., 2021). Further research could focus on developing a suite of 570 

open-source tools for data-driven wildfire evacuation modeling to derive more meaningful metrics 571 

for measuring evacuation effectiveness in resort areas.  572 

Lastly, this study used a few representative evacuation scenarios in the experimental design. 573 

From a wildfire evacuation planning perspective, it would be meaningful if we could derive the 574 

results for all possible scenarios based on available data. However, this will not be feasible due to 575 

the heavy computation. We could include a few more parameters to construct more evacuation 576 

scenarios and employ high-performance computing (HPC) to calculate the ETEs for each scenario. 577 
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For example, if a fire is approaching the community very fast and the residents do not have enough 578 

time to evacuate to safe areas, a shelter-in-place order should be issued for some residents. In this 579 

case, we need to take into account different types of protective actions during the evacuation. 580 

Eventually, we could derive a large table that lists the ETEs for different parameters, which could 581 

be used by the ICs to look up the ETEs for a specific evacuation scenario with a given set of 582 

parameters. Another alternative is that we could use deploy the coupled evacuation model in an 583 

HPC environment so that ICs could provide input parameters to the model and derive ETEs from 584 

the model directly. Recently, cloud computing has enjoyed great popularity in geospatial sciences 585 

(Yang et al., 2011). Thus, modern commercial cloud computing platforms such as Amazon Web 586 

Services (AWS), Google Cloud, and Microsoft Azure Cloud could be used to host the evacuation 587 

model as a web service and derive ETEs for the ICs. Additionally, future research could also 588 

examine how to model a staged evacuation in the study area. In most cases, ICs will issue 589 

evacuation orders in a staged manner, and the residents who are closer to the fire front will be 590 

evacuated earlier. It would be useful to compare the results in this study with those derived from 591 

a staged evacuation. However, note that a staged evacuation involves many parameters, and we 592 

need to further customize the evacuation model before we could perform a meaningful staged 593 

evacuation simulation.  594 

7 Conclusion 595 

We employ a data-driven approach to design and implement a wildfire evacuation model 596 

for resort areas in this study. Although we used one neighborhood in the case study, the proposed 597 

approach could be used by many similar WUI communities in the US to improve the ETEs derived 598 

from evacuation modeling. The proposed method could help emergency managers, emergency 599 

planners, and other stakeholders develop a better understanding of the dynamics of the travel 600 
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demand in resort areas in wildfire evacuation and improve wildfire public safety. Additionally, 601 

this study also sheds light on how to better manage and integrate different types of data to further 602 

improve wildfire evacuation modeling.  603 

Compared with previous research, this study focuses on integrating different types of data 604 

to improve wildfire evacuation modeling for resort areas and provides a different perspective. 605 

Based on the findings in this study, future research could focus on the following aspects. First, we 606 

could further explore how to leverage big data (e.g., GPS data and social media data) and different 607 

computer models to build a data-driven, coupled wildfire evacuation model that can take into 608 

account household evacuation behavior, the dynamics of evacuation travel demand, and fire spread. 609 

Second, more research should be conducted to explore how to better use open data in wildfire 610 

evacuation modeling. Lastly, we also need to explore how to use modern computing technologies 611 

such as cloud computing and Web GIS to make the developed evacuation models more accessible.   612 
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Appendix A  617 

The traffic count data in field surveys in the Tahoe Donner (TD) neighborhood  618 

Date 

Occupied Dwellings 

by Percentage 

Average number of Vehicles 

per Occupied Dwelling Notes 

6/30/2019 41.96% 2.6 1st weekend of July 4th Week 

7/13/2019 42.13% 2.4   

8/3/2019 45.45% 2.5   

1/18/2020 38.14% 2.4 Martin Luther King Weekend 

3/21/2020 30.60% 2.4 Covid-19 

4/11/2020 24.83% 2.4 Covid-19 Saturday 

6/6/2020 37.47% 2.4   

6/20/2020 43.46% 2.5 Father's Day weekend 

6/27/2020 48.34% 2.4 Pre-4th weekend 

7/4/2020 58.31% 2.7 4th of July 

7/11/2020 50.33% 2.4 Post 4th of July 

7/25/2020 54.32% 2.5   

8/1/2020 54.77% 2.6   

8/8/2020 56.54% 2.5   

8/22/2020 
47.67% 2.5 

North Bay Fires, Smoke Issues in 

local area 

9/5/2020 54.55% 2.6 Labor Day Weekend 

9/12/2020 49.45% 2.5 Smoke Issues 

9/27/2020 49.45% 2.5 Sunday, Red Flag No. Cal., 

Summary 45.99% 2.5 Running over-all average 

 619 

Appendix B 620 

The statistics of the derived total ETEs for different evacuation scenarios  621 

n r (%) Mean (100%) SD (100%) Confidence Interval (p = 0.95) 

2.1 10 225.57 6.28 (223.32, 227.82) 

2.1 20 275.7 7.24 (273.11, 278.29) 
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2.1 30 324.03 6.54 (321.69, 326.37) 

2.1 40 375.13 7.57 (372.42, 377.84) 

2.1 50 419.5 8.2 (416.56, 422.44) 

2.1 60 470.2 8.78 (467.06, 473.34) 

2.1 100 666.77 8.29 (663.8, 669.73) 

2.2 10 236.63 5.52 (234.66, 238.61) 

2.2 20 286.43 6.57 (284.08, 288.79) 

2.2 30 336.8 7.7 (334.04, 339.56) 

2.2 40 389.83 7.64 (387.1, 392.57) 

2.2 50 444 6.92 (441.52, 446.48) 

2.2 60 491.83 7.75 (489.06, 494.61) 

2.2 100 700.87 7.6 (698.15, 703.59) 

2.3 10 246.4 5.14 (244.56, 248.24) 

2.3 20 301.2 6.21 (298.98, 303.42) 

2.3 30 354.57 7.36 (351.93, 357.2) 

2.3 40 408.7 7.14 (406.14, 411.26) 

2.3 50 462.17 6.6 (459.81, 464.53) 

2.3 60 519.6 6.95 (517.11, 522.09) 

2.3 100 730.9 9.01 (727.68, 734.12) 

2.4 10 256.83 5.84 (254.74, 258.92) 

2.4 20 314.7 6.96 (312.21, 317.19) 

2.4 30 369.13 6.45 (366.82, 371.44) 

2.4 40 426.33 7.99 (423.47, 429.19) 

2.4 50 484.77 7.94 (481.92, 487.61) 

2.4 60 539.8 9.97 (536.23, 543.37) 

2.4 100 763 7.95 (760.16, 765.84) 

2.5 10 269.3 5.23 (267.43, 271.17) 

2.5 20 329 5.96 (326.87, 331.13) 

2.5 30 388.07 5.95 (385.94, 390.2) 

2.5 40 446.5 9.83 (442.98, 450.02) 

2.5 50 501.47 8.25 (498.51, 504.42) 

2.5 60 561.33 7.66 (558.59, 564.08) 

2.5 100 797.27 8.09 (794.37, 800.16) 

2.6 10 279.43 5.22 (277.56, 281.3) 

2.6 20 342.27 7.72 (339.5, 345.03) 

2.6 30 402.9 7.03 (400.38, 405.42) 

2.6 40 463.6 8.62 (460.52, 466.68) 

2.6 50 521.1 7.01 (518.59, 523.61) 

2.6 60 582.6 7.66 (579.86, 585.34) 

2.6 100 826.9 7.38 (824.26, 829.54) 

2.7 10 291.9 4.87 (290.16, 293.64) 
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2.7 20 355.47 5.78 (353.4, 357.54) 

2.7 30 417.47 7.9 (414.64, 420.29) 

2.7 40 479.57 9.92 (476.02, 483.11) 

2.7 50 543.17 10.89 (539.27, 547.06) 

2.7 60 603.97 9.93 (600.41, 607.52) 

2.7 100 858.2 7.48 (855.52, 860.88) 

2.8 10 303.9 6.91 (301.43, 306.37) 

2.8 20 367 9.98 (363.43, 370.57) 

2.8 30 431.87 11.02 (427.92, 435.81) 

2.8 40 499.67 7.9 (496.84, 502.49) 

2.8 50 563.7 7.88 (560.88, 566.52) 

2.8 60 628.6 9.31 (625.27, 631.93) 

2.8 100 891.27 8.43 (888.25, 894.28) 

 622 

Appendix C 623 

The statistics of the derived ETEs for different evacuation scenarios 624 

n r (%) Mean (95%) SD (95%) Mean (75%) SD (75%) Mean (50%) SD (50%) 

2.1 10 206.73 5.77 129.9 4.23 79.57 2.24 

2.1 20 252.5 6.82 158.9 3.99 98.2 2.41 

2.1 30 296.57 6.15 186.7 3.58 115.8 2.37 

2.1 40 343.17 6.98 216.2 4.33 134.57 2.79 

2.1 50 383.37 7.5 243.6 4.67 151.87 3.12 

2.1 60 429.67 8.33 272.87 3.97 170.3 2.65 

2.1 100 608.87 7.82 388.37 4.04 242.43 2.84 

2.2 10 216.83 5.31 136.1 3.76 83.6 2.09 

2.2 20 262.2 6.13 164.7 3.98 101.63 2.57 

2.2 30 308.17 7.17 193.93 4.45 120.23 2.6 

2.2 40 356.57 7.21 224.47 3.73 139.8 2.71 

2.2 50 405.77 6.5 256.57 3.81 160 2.46 

2.2 60 449.4 7.28 285.3 4.09 178 2.63 

2.2 100 639.93 7.18 408.57 4.15 255.27 3 

2.3 10 225.87 4.68 141.6 3 86.67 2.23 

2.3 20 275.57 5.9 172.97 3.96 106.8 2.48 

2.3 30 324.37 6.86 203.8 4.16 126.8 2.66 

2.3 40 373.7 6.71 235.53 4.22 146.93 2.83 

2.3 50 422.43 6.17 266.57 3.67 165.93 2.39 

2.3 60 474.93 6.48 300.3 3.46 187.37 2.41 

2.3 100 667.43 8.58 425.3 4.45 265.3 3.09 

2.4 10 235.27 5.51 147.6 3.85 90.37 1.92 
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2.4 20 288.1 6.61 180.67 4.49 111.4 2.36 

2.4 30 337.63 6.24 212.3 3.49 131.83 2.2 

2.4 40 389.9 7.5 245.87 4.44 152.77 2.86 

2.4 50 443.13 7.31 279.2 4.69 173.93 3.37 

2.4 60 493.37 9.24 311.63 5.01 194.37 3.45 

2.4 100 696.93 7.42 443.7 4.24 277.27 2.69 

2.5 10 246.8 4.98 155.23 3.56 94.8 1.63 

2.5 20 301.23 5.67 188.83 4.08 115.97 2.09 

2.5 30 355 5.61 222.77 3.46 138.07 2.55 

2.5 40 408.3 9.29 257.13 5.16 159.83 3.23 

2.5 50 458.33 7.68 289.4 4.93 180.4 3.57 

2.5 60 512.9 7.23 324.33 3.78 202.27 2.72 

2.5 100 728.23 7.65 462.97 4.51 289.23 3.04 

2.6 10 256 5.07 160.57 3.72 98.07 2.03 

2.6 20 313.37 7.19 196.43 5.1 121.17 2.7 

2.6 30 368.57 6.55 231.33 4.28 143.8 3.01 

2.6 40 423.97 8.06 266.83 4.5 166.1 3.18 

2.6 50 476.27 6.72 300.43 3.9 187.23 2.81 

2.6 60 532.43 7.03 335.97 4.57 209.53 3.21 

2.6 100 755.1 6.89 481.2 3.88 300.4 2.53 

2.7 10 267.4 4.49 167.7 3.49 102.43 1.89 

2.7 20 325.53 5.38 204.13 3.9 125.3 2.39 

2.7 30 381.83 7.27 239.73 4.46 148.9 3.12 

2.7 40 438.57 9.14 275.73 5.26 171.3 3.27 

2.7 50 496.5 10.2 312.77 5.99 194.87 3.99 

2.7 60 551.9 9.26 348.67 4.86 217.43 3.29 

2.7 100 783.83 7.04 498.1 4.44 311.07 3.08 

2.8 10 278.4 6.46 174.87 4.75 106.2 2.58 

2.8 20 336 9.42 210.87 6.1 129.8 3.21 

2.8 30 395.17 10.45 247.93 6.51 152.97 3.94 

2.8 40 457.03 7.44 287.47 4.31 178.9 3.02 

2.8 50 515.3 7.32 325.13 4.85 202.5 3.05 

2.8 60 574.37 8.65 362.4 4.48 225.83 2.97 

2.8 100 813.9 7.94 517.1 4.47 322.8 3.21 

 625 

  626 
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