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Abstract

Wildfires pose a significant threat to the residents living in the wildland-urban interface.
Computerized modeling of wildfire evacuation could facilitate protective action decision-making
and improve wildfire public safety. This study aims to leverage different types of data, traffic
simulation model, and geographic information systems to develop a data-driven wildfire
evacuation model to improve evacuation time estimates in resort areas. Specifically, we take into
account household vehicle ownership data and the occupancy rate of second homes based on a
variety of data in model construction. We used the Tahoe Donner neighborhood in Truckee,
California in the case study and derived a series of evacuation time estimates. The results indicate
that the evacuation time estimates vary significantly with the mean number of vehicles per home
and second homes' occupancy rate in resort areas. The proposed method could help incident
commanders better understand the dynamics of travel demand of the fire-prone communities with
part-time residents during wildfire evacuation and increase their situational awareness.

Keywords: wildfire evacuation modeling, evacuation time estimates, traffic simulation,

geographic information systems, data integration
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A data-driven approach to improving evacuation time estimates during wildfires in resort areas
1 Introduction

Wildfire is a natural hazard that impacts both human communities and the ecosystem in
many regions (Moritz et al., 2014). Due to the dry climate and fuel accumulation, wildfire poses a
significant threat to the residents who live in the wildland-urban interface (WUI) in the western
US (McCaffrey, 2004). Researchers have found a trend of larger and more frequent wildfires in
the western US in the past few decades (Dennison, Brewer, Arnold, & Moritz, 2014). For example,
in the 2020 fire season, California has experienced several top 20 largest fires in its history: the
August Complex Fire, the Santa Clara Unit (SCU) Lightning Complex Fire, the Sonoma—Lake—
Napa Unit (LNU) Lightning Complex Fire, the North Complex Fire, and the Creek Fire (CAL
FIRE, 2020a). Wildfire has caused significant loss of life and property in the western US in recent
fire seasons. For example, the Camp Fire in Butte County, California destroyed 18,804 structures
and killed 85 people in November 2018; the North Complex Fire caused a loss of 2,352 structures
and 15 lives in August 2020 (CAL FIRE, 2020b). Despite the increasing wildfire risk, the WUI
population has been growing rapidly in the past few decades (Radeloff et al., 2018). These trends
pose a significant challenge for wildfire management in the US.

With the rapid population growth in the WUI, many fire-prone communities that have a
limited number of egresses in the American west could have evacuation difficulty during wildfires
(Cova & Church, 1997; Cova, Theobald, Norman, & Siebeneck, 2013). When a wildfire
approaches a WUI community and threatens life and property, incident commanders (ICs) need to
issue protective action recommendations (PARs) to the population at risk. The primary PARs
include evacuation and shelter-in-place, and evacuation is the primary PAR in the US (Cova,

Drews, Siebeneck, & Musters, 2009). Wildfire evacuation is a complex process, and ICs need to
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consider a variety of factors such as fire spread, evacuation route systems (ERS), and evacuation
traffic before they could make effective PARs (Cova et al., 2017).

Traffic simulation has been widely used in wildfire evacuation modeling to improve public
safety (Beloglazov, Almashor, Abebe, Richter, & Steer, 2016; Cova & Johnson, 2002; Li, Cova,
& Dennison, 2019). Previous research on wildfire evacuation modeling typically focuses on the
households in fire-prone WUI communities and assumes that all the dwelling units are occupied
by people in the fire season (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison,
2019; Wolshon & Marchive, 2007). However, little research has examined how to account for
those unoccupied homes in resort areas in wildfire evacuation modeling. We aim to leverage
different types of data, traffic simulation model, and geographic information systems (GIS) to
develop a data-driven wildfire evacuation model and improve evacuation time estimates (ETEs)
for resort areas so as to improve wildfire public safety and increase community resilience.
Specifically, a variety of data will be used to more accurately model evacuation travel demand,
which makes this study a typical data-driven application in the field of wildfire evacuation. The
novelty of this study is as follows. First, we present a data-driven approach to modeling evacuation
travel demand in resort areas. Second, we develop a series of evacuation scenarios to test the
developed evacuation model.

This article has the following implications. First, the wildfire evacuation model constructed
in this study could be directly used by emergency managers to develop a better understanding of
potential issues during a wildfire evacuation in resort areas. Second, the constructed evacuation
model could be used by emergency managers or evacuation practitioners to develop evacuation

plans for resort areas. Lastly, the proposed data-driven method in this study could not only make



77

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

full use of existing data to improve the accuracy of ETEs but also shed light on how to incorporate
other types of data to further improve wildfire evacuation modeling.

The remainder of this article is organized as follows. Section 2 provides a review of wildfire
evacuation modeling literature. The study area and relevant datasets compiled for this study are
introduced in Section 3. Section 4 presents the proposed methods, and the results are included in
Section 5. Finally, we give a further discussion on the research topic and conclude with future
research directions.

2 Background

Traffic simulation was first employed to study evacuation in nuclear power plant
emergencies (Sheffi, Mahmassani, & Powell, 1982; Urbanik & Desrosiers, 1981). The classic
transport model is characterized by four steps: trip generation, trip distribution, modal split, and
assignment (de Dios Ortizar & Willumsen, 2011). Evacuation is the process of moving the
population threatened by a hazard from the risk area to safe places (Lindell, 2013). Traffic
simulation has been widely used in evacuation modeling in the past few decades (Pel, Bliemer, &
Hoogendoorn, 2012; Sheffi et al., 1982). In the US, private vehicle is the primary transportation
mode during mass evacuations (Lindell & Prater, 2007), and Southworth (1991) formulated
evacuation modeling as a five-step process: 1) trip generation; 2) departure time modeling; 3)
destination selection; 4) route selection; and 5) the setup, analysis, and revision of the plan. With
the rapid development of transport modeling, traffic simulation models have been used to study
mass evacuations in different types of hazards such as hurricane (Chen & Zhan, 2008; Yin,
Murray-Tuite, Ukkusuri, & Gladwin, 2014), wildfire (Beloglazov et al., 2016; Cova & Johnson,

2002), and tsunami (Ldmmel, Grether, & Nagel, 2010).
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Traffic simulation models can be divided into macroscopic, mesoscopic, and microscopic
models based on the level of detail (Intini, Ronchi, Gwynne, & Pel, 2019; Murray-Tuite &
Wolshon, 2013; Pel et al., 2012). Microscopic traffic simulation models can include detailed
individual driving behaviors and vehicle movements and have enjoyed great popularity in wildfire
evacuation modeling (Beloglazov et al., 2016; Cova & Johnson, 2002; Li, Cova, & Dennison,
2019; Steer, Abebe, Almashor, Beloglazov, & Zhong, 2017). Note that the risk area in a wildfire
evacuation is usually much smaller than that in a hurricane evacuation. Thus, although microscopic
traffic simulation is characterized by heavy computation (Jha, Moore, & Pashaie, 2004), it is still
feasible to use it in wildfire evacuation modeling. Recently, the coupling of different computer
models such as fires spread, trigger, and traffic simulation models has become a popular trend in
wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019; Steer et al.,
2017). Additionally, recent research also reveals the importance of incorporating behavioral
research into wildfire evacuation modeling (Intini et al., 2019). This trend is also consistent with
the notion that we should employ an interdisciplinary approach to modeling evacuation (Trainor,
Murray-Tuite, Edara, Fallah-Fini, & Triantis, 2012).

Different metrics can be derived from traffic simulations to evaluate evacuation
effectiveness, and some popular metrics include total evacuation time, total travel time, total travel
distance, and total evacuation exposure (Han, Yuan, & Urbanik, 2007; Yuan & Han, 2009). The
total evacuation time is also termed network clearance time, and it usually includes mobilization
time, vehicle travel time, and queueing delay time (Southworth & Chin, 1987). ETE has been
widely used as a metric to measure evacuation effectiveness in evacuation research (Jha et al.,
2004; Lindell, 2008). In a wildfire evacuation, we need to ensure that the evacuees could travel to

safe places before the fire approaches the community at risk (Cova, Dennison, Kim, & Moritz,
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2005; Cova et al., 2017). Additionally, ETE can also be further integrated with the lead time
derived from fire spread models to construct some more complex metrics for wildfire evacuation
such as the direness score (Cova, Li, Siebeneck, & Drews, 2021). Note that some complex
evacuation evaluation metrics such as exposure count rely on fire spread and microscopic traffic
simulation models and can be computationally prohibitive if evacuation researchers and
practitioners are to consider the randomness of many input parameters.

Wildfire evacuation modeling involves the steps summarized by Southworth (1991), and
every step could affect the accuracy of the evacuation model. Among these steps, evacuation travel
demand modeling plays a significant role in the computation of ETEs. Evacuation travel demand
modeling has drawn significant research attention in the past few decades (Lindell, Murray-Tuite,
Wolshon, & Baker, 2018; Murray-Tuite & Wolshon, 2013; Pel et al., 2012; Southworth, 1991).
However, it is still a challenge to accurately model evacuation travel demand (Jha et al., 2004).
One primary reason is that we lack the necessary human movement data (Jha et al., 2004).
Although recent data-driven research has revealed that cellphone data could be used to derive
human movement patterns at a reasonable cost (Xu et al., 2016), such data has privacy issues and
can rarely be acquired for evacuation modeling in the US and many other countries. Note that the
methods to model evacuation travel demand could vary from one type of hazard to another. For
example, hurricane evacuation usually involves a larger risk area, and evacuation modelers will
use larger evacuation zones (e.g., traffic analysis zones, zip code zones, or census tracts/blocks)
and relevant socio-economic data to generate evacuation travel demand (Liang, Lam , Qin, & Ju,
2015; Wilmot & Meduri, 2005). Since wildfire evacuation usually involves a smaller population
when compared with hurricane evacuation, evacuation modelers could use fine-grain household

location data to generate evacuation demand (Li, Cova, & Dennison, 2019). In an early study,
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Cova and Johnson (2002) used a US Geological Survey (USGS) digital orthophoto quad (DOQ)
and some CAD data from the local planning agency to manually code a total of 250 home locations
and road network for wildfire evacuation modeling in the Emigration Canyon community to the
east of Salt Lake City, Utah. Similarly, Wolshon and Marchive (2007) used a total of 753
residential parcels to generate evacuation traffic in the Summit Park neighborhood near Salt Lake
City, Utah. Another recent study done by Li, Cova, and Dennison (2019) also used 744 residential
parcels to generate evacuation traffic and estimate evacuation time for the town of Julian in San
Diego County, California. Besides residential parcel data, address point data is also widely
available in many municipal, county, and state governments and could also be used to generate
trips in wildfire evacuation modeling (Beloglazov et al., 2016; Li, Cova, Dennison, et al., 2019).
Note that it is usually assumed that all the homes are occupied and can be used to generate
evacuation travel demand in previous studies (Cova & Johnson, 2002). This assumption will be
effective for those WUI communities that are not located in resort areas. However, since there are
many second homes in the WUI communities in resort areas, we need to take into account the
occupancy rate of these second homes during the fire season so as to better model evacuation travel
demand and derive more accurate ETEs. Although the importance of considering second
homeowners and tourists in evacuation modeling has been highlighted in previous evacuation
literature (Kuligowski, 2021; Urbanik, 2000), relevant research on this topic is scarce. This study
will contribute to the evacuation modeling literature by developing a data-driven approach to
improving ETEs for resort communities.

Different types of data (e.g., high-resolution satellite imagery, the aerial imagery from
unmanned aerial vehicles (UAVs), and social media data) have been used in disaster research in

the past few years (Yu, Yang, & Li, 2018). The data from various sensors or social media can be
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generated at a great speed, and such streaming data has been widely used in wildfire evacuation
research (Slavkovikj, Verstockt, Van Hoecke, & Van de Walle, 2014; Vieweg, Hughes, Starbird,
& Palen, 2010). Although different types of data have been widely used in wildfire evacuation
research, little research has been conducted on data-driven wildfire evacuation modeling in resort
areas. For example, the occupancy type of the parcels and the occupancy rate of second homes
have not been used in previous evacuation modeling studies. This study aims to fill this gap by
employing a variety of data to design and implement a wildfire evacuation model for the WUI
communities in resort areas.
3 Data

3.1 Study area

Many WUI communities in the western U.S. are located in fire-prone areas and have a
limited number of egresses, which places the residents at risk during wildfires (Cova et al., 2013).
We used the Tahoe Donner neighborhood in the Town of Truckee, California as our study site.
Truckee is an incorporated town with a population of 16,180 (2010 Census) in Nevada County,
California. As shown in Figure 1, the town is located in the northern Sierra Nevada, and Tahoe
Donner is a high-density neighborhood in the northwestern part of the town. The Mediterranean
climate in the Sierra Nevada area is characterized by a wet winter and a dry summer (Van
Wagtendonk, 2018). The Tahoe Donner neighborhood is surrounded by a large amount of
flammable vegetation. The dry summer, proximity to flammable vegetation, and frequent wildfire
ignitions make Tahoe Donner a typical fire-prone community in the American west. In addition,
this neighborhood also has many second homes. Since Truckee is close to many attractions (e.g.,
Lake Tahoe) and attracts a large number of tourists every year, the occupancy rate of the second

homes in this area can vary significantly with time during the fire season. For example, the
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occupancy rate can be very high on weekends or holidays. Lastly, the Tahoe Donner neighborhood
only has two egresses in its ERS. Thus, wildfire poses a significant risk to the local residents in
this neighborhood in the fire season. The potential large evacuation travel demand and the limited
capacity of the ERS also pose a challenge to emergency managers in wildfire evacuation planning

and management.

AN

Legend 0 1 2 km
*  Truckee [ Tahoe Donner —
Town boundary

Figure 1 The location of the Tahoe Donner neighborhood
3.2 Data compilation
This study focuses on using a variety of data to design and implement a wildfire evacuation
model for WUI communities in resort areas. The primary datasets used in this study are listed in
Table 1. Open data usually refers to free, publicly available data and has enjoyed great popularity
in scientific research in recent years (Janssen, Charalabidis, & Zuiderwijk, 2012; Molloy, 2011;
Murray-Rust, 2008). Note that while most of the data used are open data, four datasets (occupancy

type, field survey, evacuation route, and road data) acquired from the Town of Truckee are not
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open data. The compiled datasets include relevant socio-economic data and the datasets of the built
environment (e.g., the ERS). The following subsections provide more details on these datasets.

Table 1 The primary datasets compiled for this study

Dataset Name Source Year
Parcel occupancy type data The Town of Truckee 2019
Vehicle ownership data American Community Survey 2014-2018
Tahoe Donner field survey data  The Town of Truckee 2019-2020
Raw parcel data Nevada County Assessor’s Office 2019
Residential parcel data Nevada County Assessor’s Office 2019
Road data The Town of Truckee 2019
Road data OpenStreetMap 2019
Evacuation route data The Town of Truckee 2019
Neighborhood boundary data The Town of Truckee 2019
Truckee boundary data The Town of Truckee 2019

3.2.1 Socio-economic data

Socio-economic data has been widely used to study social vulnerability in disaster research
(Cutter, Boruff, & Shirley, 2003). In this study, we employ parcel occupancy and household
vehicle ownership data to derive household travel demand in evacuation modeling. The parcel
occupancy type dataset was derived based on residential trash and recycling charges from the
Town of Truckee. Parcel occupancy type data can be subsequently joined to the residential parcel
polygon data through parcel identifications (IDs). The value of this dataset lies in that it will allow
evacuation modelers to assign trips for each household based on its occupancy type. This practice
will significantly improve the accuracy of the model (especially in resort towns such as Truckee).

Another important dataset is the household vehicle ownership data in the comparative
housing characteristics dataset (2014 — 2018 estimates) from the American Community Survey
(ACS). The vehicle ownership data is listed in Table 2. This dataset can be used to determine the
number of trips generated by each household (Li, Cova, & Dennison, 2019). Note that this dataset

is open data and is available for most of the areas in the US. The household vehicle ownership data
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can be used to estimate the mean number of vehicles for each home in Tahoe Donner in subsequent
evacuation travel demand modeling.

Table 2 The vehicle ownership data from ACS

Number of Vehicles Occupied Housing Units Percent
No vehicles available 132 2.2%

1 vehicle available 1,260 20.9%
2 vehicles available 2,514 41.7%
3 or more vehicles available 2,122 35.2%
Total 6,028 100%

3.2.2 Built-environment-related data

Three datasets related to the built environment were compiled from different sources. First,
a residential parcel dataset was acquired from the Assessor’s Office of Nevada County, CA, and
it includes a total of 12,708 residential parcels. Unlike the large-scale evacuations caused by
hurricanes, wildfires evacuations usually impact a smaller geographic area. Thus, compared with
hurricane evacuation modeling, wildfire evacuation modeling requires finer-grained data to
generate evacuation travel demand so that we can study the patterns of evacuation traffic in a
smaller study area. High resolution parcel-level data could be used to generate evacuation travel
demand at the household level in the WUI (L1, Cova, Dennison, et al., 2019). This dataset can be
integrated with other socio-economic data such as household vehicle ownership data to estimate
evacuation travel demand in the evacuation model. We employ this dataset to construct the
evacuation model because it is more recent and includes the detailed location information that
could be used to generate household-level evacuation travel demand in the evacuation model.

Additionally, we also compiled two datasets related to the road network. Specifically, we
compiled a road dataset from the Town of Truckee. This road dataset includes the detailed speed

limit information for each road. Another road dataset comes from the OpenStreetMap project
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because MATSim uses OpenStreetMap data as the input road network data. Compared with
authoritative data, OpenStreetMap data can often be obsolete and inaccurate (Szwoch, 2019). Thus,
we used the speed limit information from the authoritative road data to update the speed limit for
each road in the OpenStreetMap road data to improve its quality. Lastly, we also compiled the
evacuation route data from the Town of Truckee, and this dataset includes the primary evacuation
routes in the local evacuation plan.
3.2.3 Field survey data

A series of field surveys in Tahoe Donner were conducted by local stakeholders from June
30th, 2019 to September 27th, 2020 in the Tahoe Donner neighborhood. Specifically, as shown in
Figure 2, a total of 395 residences were included in the surveys. The selection of the residences
was based on the local stakeholders’ knowledge about this area and can be representative of the
households in this neighborhood. The surveys were conducted between 6:30 am and 7:15 am on
the weekends or holidays, and the local police department counted the number of vehicles for each
residence in the map in person during each survey. The occupancy rate and the average number of
vehicles of the homes in the sample were recorded in the surveys. As shown in Figure 3, the
occupancy rate reaches its peak (58.3%) on July 4th, 2020 (Independence Day). The overall
occupancy rate ranges from 37.5% to 58.3% in the fire season, while the average number of
vehicles per home ranges from 2.4. to 2.7. Note that the field surveys only provide the overall
occupancy rates for all types of residences. The occupancy rate and average number of vehicles

from the field surveys can be used to estimate evacuation travel demand.
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3.3 Data processing

We used the QGIS software to join parcel occupancy type data to residential parcels based
on parcel IDs. Table 3 lists the number of residential parcels for each occupancy type. These
summaries were derived in QGIS. Specifically, the residential parcels (N = 5,859) are divided into
four groups: primary home, second home, vacant parcel, and unknown parcel. Note that 70.5% of
the homes in this neighborhood are second homes. Thus, we need to take into account the
occupancy rate of the second homes when developing a wildfire evacuation model for Tahoe
Donner. We examined the residential parcels without any occupancy type information and found
that most of them are mobile homes. Based on the stakeholders’ local knowledge, the 205 parcels
in the unknown group will be treated as primary homes in evacuation traffic simulation. The data
shows that Tahoe Donner is a high-density neighborhood with many second homes.

Table 3 The number of homes by occupancy type in Tahoe Donner

Occupancy type Count Percent

Primary home 1,229 21.0%

Second home 4,130 70.5%

Vacant 295 5.0%

Unknown 205 3.5%

Total 5,859 100%
4 Methods

4.1 Data-driven evacuation modeling

We employ a data-driven approach to design and implement the evacuation model. The
primary goal of this proposed data-driven method is that we leverage a variety of data to improve
wildfire evacuation modeling and better mimic the reality. Our proposed method is characterized
by the use of a variety of data in different steps. Note that we need to take into account the

following three factors in constructing data-driven evacuation models. First, the data used should
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be able to improve wildfire evacuation modeling. Second, the data should be readily available in
local governments or could be acquired from other sources at a relatively low cost, which will
ensure that the proposed method could be applied to other fire-prone communities. Additionally,
since we employ a microscopic traffic simulator to perform evacuation simulations for different
scenarios, it is computationally intensive to process and analyze the large model outputs to derive
the ETEs (Graur et al., 2021; Waraich, Charypar, Balmer, & Axhausen, 2015).

We use the household vehicle ownership data from ACS to estimate the mean number of
vehicles of each household in Tahoe Donner. This ACS dataset includes 6,028 housing units in
Truckee, and 2,122 of them have three or more vehicles available. Since we do not know the exact
mean number of vehicles for this group, we assume that the mean number of vehicles for this group
(n) could range from 3 to 5. Excel was used to perform the calculation. As shown in Table 4, we
used 0.5 as the interval to derive a range of values and computed the mean number of vehicles for
all the households (N = 6,028) accordingly. The final results range from 2.1 to 2.8. Note that if we
use n = 2.1 to generate trips in the evacuation model, it could be an underestimation of the total
evacuation travel demand. Since the likelihood that # is larger than 5 is very small in reality, n =
2.8 could be considered as the upper bound to be used to generate trips for each household in
subsequent evacuation traffic simulation. Although some research has shown that households may
not use all the vehicles in the evacuation (Toledo, Marom, Grimberg, & Bekhor, 2018), we assume
all vehicles will be used so as to consider the worst case scenarios in evacuation planning.

Table 4 The estimated mean number of vehicles based on the household vehicle ownership data

# of Vehicles # of Vehicles Count Percent Mean Number of Vehicles (n)
No vehicles available 0 132 2.2% -
1 vehicle available 1 1,260  20.9% -
2 vehicles available 2 2,514  41.7% -
3 or more vehicles available 3 2,122 352% 2.10
3.5 2,122 352% 2.28

14
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# of Vehicles # of Vehicles Count Percent Mean Number of Vehicles (n)

4 2,122 35.2% 2.45
4.5 2,122 352% 2.63
5 2,122 35.2% 2.80

We employ a variety of data to implement the evacuation model, and the flowchart of the
whole procedure is shown in Figure 4. First, we derive residential parcels based on parcel type.
Then, we use occupancy type, occupancy rate, and household vehicle ownership data to calculate
evacuation travel demand for the study area. Specifically, as shown in Table 5, we use occupancy
type data to divide the residential parcels into four categories. We employ occupancy rate data to
randomly select a set of second homes as the occupied second homes. Those parcels in the
“unknown” category are also considered occupied based on the stakeholders’ local knowledge.
Then, we use the mean number of vehicles (n) derived from the household vehicle ownership data
and a Poisson distribution to randomly generate a number of vehicles for each occupied residence.
Once evacuation travel demand is generated, we proceed to specify the egresses based on the ERS.
Then we use a microscopic traffic simulation model to perform evacuation traffic simulation and
derive the ETE. Specifically, we calculate the time when the first vehicle departs (t1) and when the
last vehicle leaves the risk area (t2), and the derived ETE is t>-t;. This process is repeated N times
for each evacuation scenario, and we will derive N different ETEs. Note that the distribution of the
occupied second homes and the number of vehicles for each residence vary in each simulation.
We do not consider the randomness in the spatial distribution of primary vs secondary homes in
our model because this data is derived from the most recent tax and utility data and usually does
not change dramatically within a short period of time. We use the total ETE because it is a widely
used metric for evaluating evacuation effectiveness. The total ETE can be directly affected by the

evacuation travel demand. This study focuses on a data-driven approach to improving evacuation
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travel demand modeling. We have added two new input parameters (occupancy type and rate) to
the evacuation model, which makes the model more complex and computationally intensive.
Additionally, because we are using a microscopic traffic simulation model and the Tahoe Donner
neighborhood is larger than most of the neighborhoods used in previous studies, it will be
computationally prohibitive to derive some more complex evacuation evaluation metrics if we are

to take into account the stochastic nature of the input parameters.

/ Parcel data /

Filtering

\i
/ Occupancy type and / / Residential parcel data /

rate data l

Household vehicle Evacuation travel demand
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/ Evacuation travel demand /

v

/ Road data /—> Evacuation traffic simulation

/ Evacuation time estimates /

Figure 4 The flowchart of the evacuation modeling procedure

Table 5 Generating household evacuation travel demand based on occupancy type

Occupancy type Occupancy rate Mean # of vehicles
Primary home 100% n vehicles (ACS)
Second home r (0% - 100%) n vehicles (if occupied)
Vacant 0 0 vehicle

Unknown 100% n vehicles
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The implementation of the method is as follows. We use an open-source microscopic traffic
simulation package MATSim (Horni, Nagel, & Axhausen, 2016) and its evacuation library to
implement the evacuation model and perform evacuation traffic simulation. The MATSim traffic
simulator is implemented in Java, and evacuation modelers could customize the code to add extra
functionalities (Horni et al., 2016). The road network data is downloaded directly from
OpenStreetMap, and the JOSM software and its MATSim plugin are used to code the road network
for MATSim. Specifically, we use the authoritative road data from Truckee to correct the speed
limit information of each road in the OpenStreetMap data. The centroids of the residential parcels
were extracted and saved as a vector format file (shapefile). Trips will be generated from each
parcel location randomly based on the mean number of vehicles per household (#) in this file
during the evacuation. Specifically, the residential parcel location dataset has a column that
includes the occupancy type information, and we could apply different occupancy rates (r) for the
second homes. Although residents’ evacuation behaviors in hurricanes have been thoroughly
studied (Wu, Lindell, & Prater, 2012), relevant research on people’s evacuation behaviors in resort
communities during a wildfire evacuation is scarce (Cohn, Carroll, & Kumagai, 2006; Kuligowski,
2021). Relevant evacuation research has shown that departure time can be modeled with statistical
distributions such as lognormal or Weibull distributions (Lammel & Kliipfel, 2012; Lovreglio,
Kuligowski, Gwynne, & Boyce, 2019; Tu, Pel, Li, & Sun, 2012). Thus, we use a lognormal
distribution to model departure times, and it is assumed that all evacuees will choose the closest
egress and the shortest path during their evacuation. Note that we use these assumptions for
computational convenience, and they do not affect the generality of the proposed evacuation model.
If more detailed evacuation behavior data is available, we can use the data to further improve the

model. The user can provide a risk area polygon as the input, and all the people within the risk
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area will be evacuated during the wildfire evacuation. In this study, we use a risk area polygon that
covers the whole Tahoe Donner neighborhood. Once the evacuation simulation is finished, the
program will produce an event file that includes all the event information of each individual vehicle
(e.g., a vehicle enters and leaves a link) during the evacuation. Finally, we could use Java and
relevant MATSim libraries to process the event files and derive ETE information for each
evacuation scenario.

Besides ETEs, we also derive the vehicle count information for each road link and map out
the information to help ICs improve their situational awareness. Specifically, first, we use Java
and relevant MATSim libraries to parse the vehicle trajectory data to derive the vehicle count
information for every road link in each run of the simulation for a specific scenario at time t.
Second, we aggregate the vehicle count information to derive the average vehicle count for each
link for each evacuation scenario. Then we join the vehicle count information to the road link
dataset in QGIS based on the common road link identification and map out the vehicle count
information for each road link.

4.2 Experimental design

In this study, it is assumed that the whole Tahoe Donner neighborhood needs to be
evacuated due to a fast-spreading wildfire and the two egresses will not be blocked by the fire
during the evacuation. As shown in Figure 5, Tahoe Donner has two primary egresses in its local
evacuation plan: A (Alder Creek Rd) and B (Northwoods Blvd). Alder Creek Rd connects Tahoe

Donner to Highway 89, and Northwoods Blvd is connected to Interstate highway 80.
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Figure 5 The evacuation zone used in this study

We design a set of evacuation scenarios based on the data compiled for this study.
Specifically, we use the mean number of vehicles per home () and the second homes' occupancy
rate () as the primary variables in our experimental design. First, we need to use a series of
occupancy rates for the second homes in Tahoe Donner. The overall occupancy rates for different
r values are listed in Table 6. Based on the occupancy rate data from the field surveys, we use six
different values for occupancy rate » (10% ~ 60% with an interval of 10%) in the experiment.
Additionally, since most previous evacuation modeling studies did not consider the occupancy rate
of second homes, we also compute the ETEs for a 100% occupancy rate such that we can compare
the results. Note that a 100% occupancy rate of the second homes will make our proposed
evacuation model close to those in previous studies because previous evacuation models do not
have occupancy type and rate parameters (Beloglazov et al., 2016; Cova & Johnson, 2002; Li,

Cova, & Dennison, 2019).
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Table 6 Overall occupancy rates derived from the occupancy rates of second homes in Tahoe

Donner
Occupancy rate (r) for second homes # of occupied units Overall occupancy rate
10% 1,847 31.5%
20% 2,260 38.6%
30% 2,673 45.6%
40% 3,086 52.7%
50% 3,499 59.7%
60% 3,912 66.8%
70% 4,325 73.8%
80% 4,738 80.9%
90% 5,151 87.9%
100% 5,564 95.0%

As for the mean number of vehicles per household (»), it is estimated to range from 2.1 to
2.8 based on the field survey data. We use 2.1-2.8 with an interval of 0.1 for # in the experiment.
Although a significant amount of research has been done on hurricane evacuation behaviors in the
U.S., relevant research on residents’ evacuation behaviors in resort communities during wildfires
is still scarce. Previous evacuation research has shown that departure time can be modeled with
statistical distributions such as lognormal or Weibull distributions (Ldmmel & Kliipfel, 2012;
Lovreglio et al., 2019; Toledo et al., 2018). Thus, we use a lognormal distribution (Horni et al.,
2016) to model departure times: /n(t) ~ N(u, 62) (unit: s) and assume that all evacuees will leave
within 60 min after the evacuation order is issued. The expected value of the departure time is
1800 s (30 min), and the variance is 360,000 s*>. We choose to use this departure time distribution
because this could be a short-notice evacuation scenario and can be used as a baseline for wildfire
evacuation planning. The key parameters are summarized in Table 7, and we will perform
evacuation traffic simulation for a total of 56 different evacuation scenarios. We can derive the
number of simulations for each scenario based on the following equation (Winston, 2000):

N = z4,,%0%/D?
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where N is the number of simulations, z,/, is the standard Z-score, o is the estimated standard

deviation, and D is desired margin of error. We need to run the simulation at least 16 times with
the following parameters: @ = 0.05 (at the 95% confidence level), 0 =10 min, and D = 5 min.
Since it is computationally intensive to perform microscopic traffic simulation (Jha et al., 2004),
we choose to run each scenario 30 times (N = 30) in this study. Finally, we derive the statistics of
the ETEs for each evacuation scenario.

Table 7 The evacuation scenarios used in the experiment

Departure time distribution (unit: second) Occupancy rate () Mean # of vehicles (n)
(L=7.442,0=0.325) 10% ~ 60%, 100% 2.1~28

We map out the vehicle count information for each road link for the following six scenarios
(See Table 8): 1) n=2.1,r=10%;2) n=2.1,r =60%; 3) n=2.1, r = 100%; 4) n = 2.8, r = 10%;
5)n=2.8,1r=60%; 6)n=2.8, r=100%. We aggregate the vehicle count data of 30 simulation
runs for each scenario and map out the average vehicle count information for each road link at the
time when 50% of the vehicles have left the risk area.

Table 8 The evacuation scenarios used for mapping out the vehicle count information

Scenario Mean # of vehicles () Occupancy rate (r) Input time (¢) (min)
1 2.1 10% 80

2 2.1 60% 170

3 2.1 100% 242

4 2.8 10% 106

5 2.8 60% 226

6 2.8 100% 323

S Results

We performed evacuation traffic simulation in MATSim for different evacuation scenarios
and derived a series of ETEs. The detailed results for each run of the traffic simulation are stored

in a text file. The total size of the results of the 56 scenarios is about 28 GB, and the total
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computation time for 1680 simulation runs was about 10 hours. The boxplots of the total ETEs for
different scenarios are shown in Figure 6, and the detailed statistics (the mean value, standard
deviation, and confidence interval at the 95% confidence level) of the derived ETEs are listed in
Appendix B. The results indicate that the ETEs vary significantly with the occupancy rate of
second homes (r) and the mean number of vehicles per home (n). For example, according to the
field survey data, the maximum overall occupancy rate on July 4th is 58.31%. The corresponding
occupancy rate of second homes is approximately 50%. The derived ETEs can range from 420
min (n = 2.1) to 564 min (n = 2.8). If n is fixed (e.g., n = 2.1), the derived ETEs can range from
226 min (r=10%) to 470 min (r = 60%). If all the second homes are occupied (r = 100%, n=2.1),
it could take about 667 min to evacuate the whole Tahoe Donner neighborhood. The results have
shown that our proposed model better reflect real evacuations when compared with previous
models that do not consider the occupancy type and rate of second homes in resort areas. Note that
the assumptions for the derived ETEs in Figure 6 are all the residents are at home, the evacuation
compliance rate is 100%, and all the residents will evacuate within 60 minutes. Although this
assumption is very unlikely in reality, evacuation planners and incident commanders also need to
take into account these extreme evacuation scenarios in evacuation planning (Cova et al., 2021).
Additionally, it should also be noted that the field surveys are conducted on weekends or holidays,

and the derived ETEs on weekdays could be lower than those on weekends or holidays.
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Figure 6 The derived ETEs for different evacuation scenarios

Relevant research on residents’ evacuation behavior in the WUI communities has shown
that many residents may choose to stay and protect their homes (McCaffrey & Winter, 2011;
Paveglio, Prato, Dalenberg, & Venn, 2014). Additionally, many residents in the neighborhood may
not be at home in the daytime. Thus, we also derived the ETEs needed for 95%, 75% and 50% of
the vehicles to leave the risk area, and the results are shown in Figure 8, 8, and 9, respectively. The
detailed statistics are listed in Appendix C. These ETEs could be useful when only a proportion of
the households participate in the evacuation. Note that the values of input parameters used in this
study do not affect the generalizability of the proposed method. If more detailed population

distribution and evacuation behavior data is available, evacuation researchers and practitioners can
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change the input parameters for the proposed model to derive more accurate ETEs. In summary,
the simulation results indicate that it will take a long time to evacuate the residents in Tahoe
Donner when the occupancy rate is high. Thus, the emergency manger can have significant
difficulty evacuating the residents in Tahoe Donner if a fast-moving fire threatens this community.
Moreover, the results also show that it is necessary to take into account the occupancy rate of the

second homes in wildfire evacuation modeling and planning for resort areas.
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Figure 7 The derived time needed for 95% of the vehicles to leave the risk area
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Figure 8 The derived time needed for 75% of the vehicles to leave the risk area

25



472
473
474

475

476

477

478

479

480

481

482

n=2.1 n=2.2 n=2.3 n=2.4

ETE
(min)

800 - - -
600 - - - -
400 - - - -

200" = T - - T - = 1 ——
__-_-- -._-_,-, ____.- -

1I0 2I0 3I0 4[0 5IO 6I0 160 110 2IO 3I0 4'0 5I0 6I0 1(I)O 10 20 30 40 50 60100 10 20 30 40 50 60100

Occupancy rate (%) Occupancy rate (%) Occupancy rate (%) Occupancy rate (%)
ETE n=2.5 n=2.6 n=2.7 n=2.8
(min)
800 A E : :
600 A E . :
400 A b b b
200 A =T E <= =T . _____-:-" E __..--"'

10 20 30 40 50 60100 10 20 30 40 50 60100 10 20 30 40 50 60100 10 20 30 40 50 60100
Occupancy rate (%) Occupancy rate (%) Occupancy rate (%) Occupancy rate (%)

Figure 9 The derived time needed for 50% of the vehicles to leave the risk area

The vehicle count information of the road links for the six evacuation scenarios are shown
in Figures 10 and 11. Specifically, Figures 10 A-C show the results of scenarios 1-3, respectively,
and the results of scenarios 4-6 are shown in Figures 11 A-C, respectively. The results indicate
that traffic congestion will occur on the Northwoods Blvd under the assumption that all evacuees
will use the closest egress and the shortest path during the evacuation. The reason is that a larger
proportion of the homes are closer to egress B in Figure 5. Egress A (the Alder Creek Rd) is
underused with this assumption. Moreover, more evacuation traffic will be on the Northwoods
Blvd when there is a larger evacuation travel demand (i.e., a larger » or r). The inclusion of vehicle

count information can help the ICs better understand the dynamics of evacuation traffic.
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6 Discussion

In this study, we leveraged a variety of data to construct the wildfire evacuation model and
improve ETEs in the Tahoe Donner neighborhood in Truckee, CA. Our proposed data-driven
evacuation model can be used by the WUI communities in resort areas for evacuation planning.
Evacuation practitioners could use the results of this study to better understand the dynamics of
evacuation travel demand during the fire season and improve the local evacuation plans
accordingly. We were faced with several challenges in data-driven wildfire evacuation modeling
research. We need to address these challenges before we can use the proposed model operationally.

The first challenge lies in data availability. This study is based on a set of assumptions. For
example, it was assumed that all evacuees will depart from their homes and the participation rate
is 100%. However, a wildfire evacuation in reality could be more complex and very different from
these assumptions. Thus, it is important that we further leverage different types of data to narrow
the gap between our knowledge and the real-world evacuation so that we could build an evacuation
model that could better reflect the reality. When using different datasets to improve wildfire
evacuation modeling, we need to seek a balance among many factors such as cost, effectiveness,
and applicability. For example, although we could use household survey to collect data to estimate
the distribution of daytime population, this method is costly and we may still have difficulty in
deriving an accurate estimate of the spatio-temporal distribution of the population in a study area.
Although big data has enjoyed great popularity in the past few years, we still have data scarcity
issues in wildfire evacuation modeling. For example, we used the ACS data and the field survey
data to estimate the mean number of vehicles for each household in the study area, and we lack
relevant data that could more accurately estimate this parameter. Although we used the most recent

occupancy type information derived from tax and utility data, the COVID-19 pandemic has
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significantly changed human mobility patterns and could also change occupancy types because
many people move from cities to rural areas during the pandemic. Additionally, the occupancy
rate of second homes is based on field survey data in this study. However, the occupancy rate of
second homes and the population distribution in resort areas can be very dynamic, and evacuation
modelers need high spatial and temporal resolution human mobility data to better estimate
evacuation travel demand.

One limitation of this study is that we did not have household survey data and use them to
derive the parameters (e.g., the departure time distribution, the compliance rate, and the number
of vehicles used by each household) for the evacuation model. We could collect the above-
mentioned data via household surveys to further improve the evacuation model in the next step.
Another limitation is that we did not consider the tourists in hotels. Additionally, some secondary
homes can also be rented out to tourists via websites such as Airbnb. These tourists can also
significantly increase the ETEs during the tourist season (Urbanik, 2000). The tourists and many
second homeowners can have very different characteristics (e.g, the number of vehicles) and
evacuation behaviors (e.g., protective action selection, destination selection, and route selection)
during a wildfire evacuation. These differences can have significant impacts on the ETEs derived
from traffic simulation models. However, the tourists and second homeowners may not be included
in traditional household survey data (e.g., the ACS data). We need to collect relevant data to further
study the tourists and second homeowners’ evacuation behavior. Lastly, we only considered
evacuation traffic within the community and assumed there is no traffic congestion at the egresses
because of the lack of destination choice data. We will need to collect more data to model

destination choice in the future.
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Recent research has shown that relevant data such as cellphone location data could be used
to study people evacuation behavior in disasters (Yabe, Sekimoto, Tsubouchi, & Ikemoto, 2019).
However, such high-resolution location data is rarely available for evacuation researchers and
practitioners in the US due to privacy issues (de Montjoye et al., 2018) or the high cost. Coarse-
resolution cellphone location data has also been widely used by researchers to study human
mobility in recent years (Xu et al., 2016). Big data can provide a new avenue to improve evacuation
travel demand modeling. Further research could focus on investigating if high-resolution (e.g.,
GPS data) or coarse-resolution cellphone data (e.g., the number of persons within the service area
of each cellphone tower) could be acquired to estimate diurnal population distribution and improve
wildfire evacuation modeling.

Another challenge in integrating different types of data to improve wildfire evacuation
modeling is data management. Evacuation analysts/modelers need to have a variety of data to
perform evacuation analysis/modeling to facilitate the ICs’ decision-making. However, data
management in the US is decentralized due to the organization of the government agencies, which
poses a significant challenge to evacuation management. Since there is no one-stop data portal in
Truckee, it is time-consuming to compile different datasets used in this study. Furthermore, other
issues such as data inconsistency will emerge when we integrate these data for one specific
application because different datasets are managed by different agencies. It should be noted that
many large wildfires could spread across multiple cities/counties, which poses a significant
challenge to wildfire evacuation researchers and practitioners. In such large fires, evacuation
researchers and practitioners will be better off if relevant data could be provided efficiently so that
they could leverage these data directly in computer models to help improve situational awareness

and facilitate protective action decision-making. Nowadays, many local and state government
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agencies have access to Web GIS platforms such as ArcGIS Online and have the capacity to
publish spatial data as web services that are based on open standards such as Web Map Service
(WMS) and Web Feature Service (WFS). More research should be conducted on developing a
better cyberinfrastructure for data-driven wildfire evacuation modeling.

Besides the above-mentioned aspects about data, another challenge in wildfire evacuation
modeling lies in the coupling of different computer models. Although this study does not focus on
coupling different computer models to model wildfire evacuation, this has become a popular trend
in recent years (Beloglazov et al., 2016; Li, Cova, & Dennison, 2019). One of the reasons model
coupling in wildfire evacuation modeling is challenging is that each model is usually implemented
as a separate piece of software and it is technically difficult to integrate them into one piece of
software at the source code level. One alternative is to integrate the results of each model to do
relevant computations. Another issue in model coupling lies in that very few open-source coupled
evacuation models are available at this moment, which hinders the adoption of these new coupled
models in wildfire evacuation practices. Lastly, recent research has shown has that coupled
wildfire evacuation models can be used to derive some new evacuation effectiveness metrics such
as the direness score (Cova et al., 2021). Further research could focus on developing a suite of
open-source tools for data-driven wildfire evacuation modeling to derive more meaningful metrics
for measuring evacuation effectiveness in resort areas.

Lastly, this study used a few representative evacuation scenarios in the experimental design.
From a wildfire evacuation planning perspective, it would be meaningful if we could derive the
results for all possible scenarios based on available data. However, this will not be feasible due to
the heavy computation. We could include a few more parameters to construct more evacuation

scenarios and employ high-performance computing (HPC) to calculate the ETEs for each scenario.
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For example, if a fire is approaching the community very fast and the residents do not have enough
time to evacuate to safe areas, a shelter-in-place order should be issued for some residents. In this
case, we need to take into account different types of protective actions during the evacuation.
Eventually, we could derive a large table that lists the ETEs for different parameters, which could
be used by the ICs to look up the ETEs for a specific evacuation scenario with a given set of
parameters. Another alternative is that we could use deploy the coupled evacuation model in an
HPC environment so that ICs could provide input parameters to the model and derive ETEs from
the model directly. Recently, cloud computing has enjoyed great popularity in geospatial sciences
(Yang et al., 2011). Thus, modern commercial cloud computing platforms such as Amazon Web
Services (AWS), Google Cloud, and Microsoft Azure Cloud could be used to host the evacuation
model as a web service and derive ETEs for the ICs. Additionally, future research could also
examine how to model a staged evacuation in the study area. In most cases, ICs will issue
evacuation orders in a staged manner, and the residents who are closer to the fire front will be
evacuated earlier. It would be useful to compare the results in this study with those derived from
a staged evacuation. However, note that a staged evacuation involves many parameters, and we
need to further customize the evacuation model before we could perform a meaningful staged
evacuation simulation.
7 Conclusion

We employ a data-driven approach to design and implement a wildfire evacuation model
for resort areas in this study. Although we used one neighborhood in the case study, the proposed
approach could be used by many similar WUI communities in the US to improve the ETEs derived
from evacuation modeling. The proposed method could help emergency managers, emergency

planners, and other stakeholders develop a better understanding of the dynamics of the travel
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demand in resort areas in wildfire evacuation and improve wildfire public safety. Additionally,
this study also sheds light on how to better manage and integrate different types of data to further
improve wildfire evacuation modeling.

Compared with previous research, this study focuses on integrating different types of data
to improve wildfire evacuation modeling for resort areas and provides a different perspective.
Based on the findings in this study, future research could focus on the following aspects. First, we
could further explore how to leverage big data (e.g., GPS data and social media data) and different
computer models to build a data-driven, coupled wildfire evacuation model that can take into
account household evacuation behavior, the dynamics of evacuation travel demand, and fire spread.
Second, more research should be conducted to explore how to better use open data in wildfire
evacuation modeling. Lastly, we also need to explore how to use modern computing technologies

such as cloud computing and Web GIS to make the developed evacuation models more accessible.
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Appendix A

The traffic count data in field surveys in the Tahoe Donner (TD) neighborhood

Occupied Dwellings | Average number of Vehicles
Date by Percentage per Occupied Dwelling Notes

6/30/2019 41.96% 2.6 | 1st weekend of July 4th Week
7/13/2019 42.13% 2.4

8/3/2019 45.45% 2.5
1/18/2020 38.14% 2.4 | Martin Luther King Weekend
3/21/2020 30.60% 2.4 | Covid-19
4/11/2020 24.83% 2.4 | Covid-19 Saturday

6/6/2020 37.47% 2.4
6/20/2020 43.46% 2.5 | Father's Day weekend
6/27/2020 48.34% 2.4 | Pre-4th weekend

7/4/2020 58.31% 2.7 | 4th of July
7/11/2020 50.33% 2.4 | Post 4th of July
7/25/2020 54.32% 2.5

8/1/2020 54.77% 2.6

8/8/2020 56.54% 2.5

North Bay Fires, Smoke Issues in

8/22/2020 47.67% 2.5 | local areay

9/5/2020 54.55% 2.6 | Labor Day Weekend
9/12/2020 49.45% 2.5 | Smoke Issues
9/27/2020 49.45% 2.5 | Sunday, Red Flag No. Cal.,
Summary 45.99% 2.5 | Running over-all average

Appendix B

The statistics of the derived total ETEs for different evacuation scenarios

n r (%) | Mean (100%) | SD (100%) | Confidence Interval (p = 0.95)
2.1 |10 225.57 6.28 (223.32,227.82)
2.1 |20 275.7 7.24 (273.11, 278.29)
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2.1 [30 [ 324.03 6.54 (321.69, 326.37)
21 |40  [375.13 7.57 (372.42, 377.84)
2150 |419.5 8.2 (416.56, 422.44)
21|60 | 4702 8.78 (467.06, 473.34)
2.1 [ 100 | 666.77 8.29 (663.8, 669.73)

22 |10 | 236.63 5.52 (234.66, 238.61)
22 20 | 286.43 6.57 (284.08, 288.79)
22 |30 | 3368 7.7 (334.04, 339.56)
22 |40 | 389.83 7.64 (387.1,392.57)

22 (50 | 444 6.92 (441.52, 446.48)
22 |60 | 491.83 7.75 (489.06, 494.61)
22 [100 | 700.87 7.6 (698.15, 703.59)
23 |10 | 2464 5.14 (244.56, 248 24)
23|20 |3012 6.21 (298.98, 303.42)
23 |30 | 35457 7.36 (351.93,357.2)

23 |40 | 408.7 7.14 (406.14, 411.26)
23|50 |462.17 6.6 (459.81, 464.53)
23 |60 |519.6 6.95 (517.11, 522.09)
23100 | 7309 9.01 (727.68, 734.12)
24 |10 |256.83 5.84 (254.74, 258.92)
24 |20 |3147 6.96 (312.21, 317.19)
24 |30 |369.13 6.45 (366.82, 371.44)
24 |40 | 42633 7.99 (423.47, 429.19)
24 |50 | 484.77 7.94 (481.92, 487.61)
24 |60 |5398 9.97 (536.23, 543.37)
24 100 | 763 7.95 (760.16, 765.84)
25 |10 | 269.3 523 (267.43,271.17)
25|20 |329 5.96 (326.87, 331.13)
25 |30 | 388.07 5.95 (385.94, 390.2)

25 |40 | 4465 9.83 (442.98, 450.02)
25|50 | 501.47 8.25 (498.51, 504.42)
25 |60 | 561.33 7.66 (558.59, 564.08)
25 100 | 797.27 8.09 (794.37, 800.16)
26 |10 |279.43 5.22 (277.56, 281.3)

26 |20 | 34227 7.72 (339.5, 345.03)

26 |30 | 4029 7.03 (400.38, 405.42)
26 |40 | 463.6 8.62 (460.52, 466.68)
26 |50 | 521.1 7.01 (518.59, 523.61)
26 |60 |582.6 7.66 (579.86, 585.34)
2.6 | 100 | 8269 7.38 (824.26, 829.54)
27 110 | 2919 4.87 (290.16, 293.64)
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622

623

624

2.7 |20 355.47 5.78 (353.4,357.54)

2.7 |30 417.47 7.9 (414.64, 420.29)
2.7 | 40 479.57 9.92 (476.02, 483.11)
2.7 |50 543.17 10.89 (539.27, 547.06)
2.7 | 60 603.97 9.93 (600.41, 607.52)
2.7 | 100 | 858.2 7.48 (855.52, 860.88)
2.8 |10 303.9 6.91 (301.43,306.37)
2.8 |20 367 9.98 (363.43, 370.57)
2.8 |30 431.87 11.02 (427.92, 435.81)
2.8 | 40 499.67 7.9 (496.84, 502.49)
2.8 |50 563.7 7.88 (560.88, 566.52)
2.8 | 60 628.6 9.31 (625.27, 631.93)
2.8 | 100 | 891.27 8.43 (888.25, 894.28)

Appendix C

The statistics of the derived ETEs for different evacuation scenarios

n r (%) | Mean (95%) SD (95%) | Mean (75%) | SD (75%) Mean (50%) | SD (50%)
2.1 |10 206.73 5.77 129.9 4.23 79.57 2.24
2.1 120 252.5 6.82 158.9 3.99 98.2 2.41
2.1 |30 296.57 6.15 186.7 3.58 115.8 2.37
2.1 |40 343.17 6.98 216.2 4.33 134.57 2.79
2.1 |50 383.37 7.5 243.6 4.67 151.87 3.12
2.1 |60 429.67 8.33 272.87 3.97 170.3 2.65
2.1 | 100 | 608.87 7.82 388.37 4.04 242.43 2.84
22 110 216.83 5.31 136.1 3.76 83.6 2.09
2.2 120 262.2 6.13 164.7 3.98 101.63 2.57
22 130 308.17 7.17 193.93 4.45 120.23 2.6
2.2 |40 356.57 7.21 224.47 3.73 139.8 2.71
22 150 405.77 6.5 256.57 3.81 160 2.46
2.2 160 449.4 7.28 285.3 4.09 178 2.63
22 | 100 |639.93 7.18 408.57 4.15 255.27 3
23 110 225.87 4.68 141.6 3 86.67 2.23
23 120 275.57 5.9 172.97 3.96 106.8 2.48
2.3 130 324.37 6.86 203.8 4.16 126.8 2.66
23 140 373.7 6.71 235.53 4.22 146.93 2.83
23 150 422.43 6.17 266.57 3.67 165.93 2.39
2.3 160 474.93 6.48 300.3 3.46 187.37 2.41
23 | 100 | 667.43 8.58 425.3 4.45 265.3 3.09
24 110 235.27 5.51 147.6 3.85 90.37 1.92
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625

626

24 120 288.1 6.61 180.67 4.49 111.4 2.36
2.4 130 337.63 6.24 2123 3.49 131.83 2.2

2.4 140 389.9 7.5 245.87 4.44 152.77 2.86
24 150 443.13 7.31 279.2 4.69 173.93 3.37
24 |60 493.37 9.24 311.63 5.01 194.37 3.45
2.4 1100 |696.93 7.42 443.7 4.24 277.27 2.69
25110 246.8 4.98 155.23 3.56 94.8 1.63
25120 301.23 5.67 188.83 4.08 115.97 2.09
25130 355 5.61 222.77 3.46 138.07 2.55
2.5 140 408.3 9.29 257.13 5.16 159.83 3.23
25150 458.33 7.68 289.4 4.93 180.4 3.57
25 160 5129 7.23 324.33 3.78 202.27 2.72
2.5 | 100 | 728.23 7.65 462.97 4.51 289.23 3.04
26 |10 256 5.07 160.57 3.72 98.07 2.03
2.6 |20 313.37 7.19 196.43 5.1 121.17 2.7

2.6 |30 368.57 6.55 231.33 4.28 143.8 3.01
2.6 |40 423.97 8.06 266.83 4.5 166.1 3.18
2.6 |50 476.27 6.72 300.43 3.9 187.23 2.81
2.6 |60 532.43 7.03 335.97 4.57 209.53 3.21
2.6 | 100 | 755.1 6.89 481.2 3.88 300.4 2.53
27 110 267.4 4.49 167.7 3.49 102.43 1.89
2.7 120 325.53 5.38 204.13 3.9 125.3 2.39
2.7 130 381.83 7.27 239.73 4.46 148.9 3.12
2.7 |40 438.57 9.14 275.73 5.26 171.3 3.27
2.7 150 496.5 10.2 312.77 5.99 194.87 3.99
2.7 |60 551.9 9.26 348.67 4.86 217.43 3.29
2.7 | 100 | 783.83 7.04 498.1 4.44 311.07 3.08
28 | 10 278.4 6.46 174.87 4.75 106.2 2.58
2.8 120 336 942 210.87 6.1 129.8 3.21
2.8 |30 395.17 10.45 247.93 6.51 152.97 3.94
2.8 |40 457.03 7.44 287.47 4.31 178.9 3.02
2.8 |50 5153 7.32 325.13 4.85 202.5 3.05
2.8 |60 574.37 8.65 362.4 4.48 225.83 297
2.8 | 100 | 813.9 7.94 517.1 4.47 322.8 3.21
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