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ABSTRACT

Based on the success of recommender systems in e-commerce and
entertainment, there is growing interest in their use in matching
markets like job search. While this holds potential for improving
market fluidity and fairness, we show in this paper that naively
applying existing recommender systems to matching markets is
sub-optimal. Considering the standard process where candidates
apply and then get evaluated by employers, we present a new rec-
ommendation framework to model this interaction mechanism and
propose efficient algorithms for computing personalized rankings
in this setting. We show that the optimal rankings need to not only
account for the potentially divergent preferences of candidates and
employers, but they also need to account for capacity constraints.
This makes conventional ranking systems that merely rank by
some local score (e.g., one-sided or reciprocal relevance) highly
sub-optimal — not only for an individual user, but also for societal
goals (e.g., low unemployment). To address this shortcoming, we
propose the first method for jointly optimizing the rankings for
all candidates in the market to explicitly maximize social welfare.
In addition to the theoretical derivation, we evaluate the method
both on simulated environments and on data from a real-world
networking-recommendation system that we built and fielded at a
large computer science conference.
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1 INTRODUCTION

Most search and recommender systems rely on rankings as the
prevalent way of presenting results to the users. By ranking the
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most promising items first, they aim to focus the user’s attention on
a tractably small consideration set especially when the number of
items is large. For conventional applications of ranking systems in
online retail or media streaming, it has long been understood that
ranking items based on their probability of relevance (alternatively,
purchase or click) to the user provides maximal utility under stan-
dard assumptions. Sorting by the probability of relevance is called
the Probability Ranking Principle (PRP) [29], and it implies that the
optimal ranking for any user depends only on their preferences.

The PRP is no longer optimal, however, for a growing range of
new online platforms that mediate matching markets like job search,
college admission, dating, or social recommendation [4, 15, 21, 38].
The following two key properties of matching markets make the
ranking problem substantially more complex than in conventional
two-sided markets. First, a successful match requires that both
sides of a match agree on mutual relevance [14, 26]. Second, both
sides have constraints on how many options they can evaluate.
Under these conditions, the optimal ranking for any one participant
depends on the rankings and relevances of the other participants
in the market, which can make PRP ranking highly suboptimal.

To illustrate the source of these dependencies, consider a job
matching problem where many of the job candidates crowd to a
small set of employers with high name-recognition. The popular
employers will receive many applications — more than they can
carefully evaluate and many without the desired qualifications. At
the same time, less well-known employers may not get discovered
by relevant candidates. The result is that many candidates never
hear back from the popular employers and many employers are
unable to fill their positions. This is not only bad for individual
employers and candidates, but also a poor outcome in terms of the
social welfare that the system provides (e.g. minimizing unemploy-
ment and unfilled jobs). To remedy this problem, a recommender
system for job matching should consider preferences and qualifica-
tions from both the candidates (e.g., west-coast location, python)
and the employers (e.g., 5 years experience, python) and help dis-
cover mutually beneficial matches that avoid crowding.

The main contributions of this paper are fourfold: (1) First, the
paper is the first to formalize the problem of ranking in two-sided
matching markets under the apply/accept interaction protocol that
is used in many real-world settings. (2) Second, we present the first
recommender system that is able to jointly optimize personalized
rankings for all candidates to maximize social welfare in two-sided
matching markets. (3) Third, we discuss additional strategic behav-
ior (e.g., adoption and retention) and fairness issues for rankings
under this framework, which opens an important area for future
work. (4) Finally, we built a real-world networking-recommendation
system that we fielded at a large computer science conference. We
empirically validate our method on this real-world dataset, which
we provide as a benchmark to enable future research.
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1.1 Overview of Results

Before going into the formal and mathematical details of our ap-
proach, we provide an overview of the model and the main results.

Modeling matching markets using the apply/accept protocol: We
consider the apply/accept interaction protocol that is dominantly
used in matching markets like job search and college admission.
Focusing on the example of job search for clarity, job candidates on
one side of the market act by sending their applications to employers
they are interested in. The employers on the other side of the market
respond after evaluating the applications they receive, and a positive
response leads to the mutually desirable outcome of a match. A key
component of our framework is that both the candidates and the
employers have limited attention, and thus have to act under partial
information. In particular, the candidates cannot evaluate all job
postings, and thus require a personalized ranking that focuses their
attention on the most promising job postings. Similarly, employers
want a ranking of applications they receive to triage the review
process and better allocate reviewing resources. This leads to a
two-sided ranking problem which we formalize, and where we
identify the total number of mutually relevant matches as the social-
welfare objective (i.e. minimizing unemployment and unfilled jobs).
Note that this two-sided ranking problem is fundamentally new
compared to prior work [4, 14, 15, 21, 26, 38].

Optimizing for attention and discovery: The goal of our frame-
work is different from optimizing matchings under known prefer-
ences as in traditional stable matching procedures from economics
[10, 16]. Instead, we support the preference formation on both
sides of the market when the number of options is large. We thus
aim to maximize social-welfare by focusing the attention budget of
both sides on the most promising options for manual evaluation,
which is analogous to the attention-focusing goals of conventional
recommender systems. In this way, our approach supports each
participant in discovering the most promising options to manually
evaluate, optimizing how the participants spend their scarce re-
source of attention among an often overwhelming set of options.
This leaves all participants with autonomy over their decisions,
which makes it different from conventional matching procedures
[10, 16], where all participants have to submit to a centralized
matching procedure [31] that determines the matching outcome.

Capturing mutual relevance and crowding: Under the apply/accept
protocol, rankings for the candidates become dependent given the
limited attention budget of the employers. We are the first to model
this dependency when both the employer and the candidates re-
ceive their recommendations as rankings. In particular, crowding
of candidates to well-known employers influences whether an ap-
plicant will be noticed by an employer and receive a reply — and
thus the priority a crowded employer should have for evaluation by
other candidates. We, therefore, model the position each candidate
would reach in an employer ranking, which depends on the appli-
cation behavior of all other candidates. Our model is the first to
capture social-welfare of a ranking system under the dependencies
introduced by crowding and mutual relevance.

Method for finding rankings that optimize social-welfare: Our key
algorithmic contribution is the first method for computing rank-
ings that optimize social welfare in two-sized matching markets.
This objective requires us to jointly compute the rankings for all
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candidates, as the utility for each candidate also depends on how
others act in the market. This is fundamentally different from tradi-
tional ranking algorithms, where each user’s ranking is optimized
independently. To derive a tractable algorithm, we use three key
technical steps. First, we show how to transform the discrete and
exponentially-sized optimization problem over rankings into a sto-
chastic optimization problem in the polynomially-sized space of
marginal rank distributions. Second, we derive a lower bound on
the social-welfare objective and show how this objective can be
computed and optimized efficiently. Finally, we exploit the Birkhoff-
von Neumann decomposition to recover rankings from the compact
representation we used during optimization.

Providing potential for incorporating strategic behaviour: Beyond
developing algorithms for maximizing the overall utility of the mar-
ket, we also initiate a discussion of fairness and strategic behaviors
(such as user adoption and retention) for ranking in matching mar-
kets. These issues are more complex than in traditional ranking
systems, as the behaviour of individuals affects each other. However,
our optimization-based framework provides a promising potential
for incorporating various constraints, such as statistical-parity and
merit-based exposure constraints. All of these open an important
area for future work about this new type of ranking systems in
matching markets.

1.2 Related Work

As multi-sided market platforms have emerged as a popular business
model, search and recommender systems have taken a key role in
mediating their interactions. These systems need to balance the
interests of various stakeholders, such as the users, the suppliers,
and the platform itself. There is a large body of recent work on
how to specify each stakeholder’s objective [17], their interplay
[18, 41], and the design of efficient joint optimization objectives
for recommendation in multi-sided marketplaces [19, 30, 36, 45].
Important objectives include diversity [7, 27], novelty [28, 39] and
fairness [5, 6, 33, 44]. Most of the work relies on techniques from
multi-objective optimization, which include finding the Pareto front
[23], using aggregation functions that reduce to a single objective
[13, 19, 45], or including some objectives as constraints [30, 33, 34].
Unlike most of these works, we directly model the interaction
process in two-sided matching markets and aim to maximize the
overall social welfare of the market as the key objective.

Our problem setting is a form of reciprocal recommendation
[14, 26], which considers matching problems where both sides
have preferences like online dating [38, 42], job seeking [2, 20, 43],
and social media [46]. Hence, most reciprocal recommendation sys-
tems rank by a reciprocal score that combines the preferences from
both sides, like the harmonic mean [25], sum of similarities [2],
product operator [37], and community-level matching [3]. Among
these works, [38] is the closest to ours. They propose a two-sided
matching framework for dating recommendation that maximizes
the total number of reciprocated messages, while avoiding over-
burdening each user by keeping the expected number of messages
received/sent bounded. A key simplifying assumption in [38] is that
the system provides a predetermined number of recommendations
to each user, which is typically difficult to pick efficiently in practice,
and then all these recommendations will be exhaustively evaluated
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by the user. Similar assumptions are also made by recent work on
assortment planning [4] for matching problems. We consider the
more realistic and strictly more general case where each user is
shown a ranking, and there is uncertainty in how far each user
goes down. Also, we model the widely used apply/accept protocol,
which was not supported in existing methods.

Our work also builds upon the economic and social science
literature on matching markets [10, 16]. Here, the core problem lies
in the design of matching procedures. In particular, stable-matching
algorithms [10] take a ranked preference list from both sides of
the market as input and produce stable one-to-one or many-to-
one matchings, while maximum weight matching [9] considers
weighted preference graphs. In contrast, our work helps the users
form their preferences despite an intractably large set of possible
options. In particular, we do not force the final matching step and
leave all participants with autonomy over their actions and eventual
decisions. This makes it fundamentally different from conventional
matching procedures.

2 A FRAMEWORK FOR RANKING IN
MATCHING MARKETS

We begin by introducing our new framework for rankings in match-
ing markets. For simplicity and concreteness, we use a job recom-
mendation platform as a running example. However, the framework
is general and can be adapted to other domains where (1) the suc-
cess of a matching relies on relevance from both sides and (2) both
sides have limited attention.

We consider the following sequential and asymmetric interaction
protocol. First, job candidates (proactive side) browse through their
ranked lists of jobs and apply to the jobs that they find relevant.
After this, employers (reactive side) browse through rankings of
their applicants and respond to the applicants they find relevant
(e.g., invite to interview). We call this a match, and the goal of the
ranking system is to design rankings for each candidate to maximize
the total number of expected matches in the market.

We now formalize this interaction model, and then present al-
gorithms for jointly optimizing the rankings for all candidates in
Section 3. The toy example in Figure 1 serves as an intuitive guide
to the model we develop in the following. We denote the set of
candidates in the market as C, and the set of employers as J with
|C| < o and |J| < co. For simplicity, we use binary relevance
r(c, j) € {0, 1} to denote how employer j is relevant to candidate
c (i.e,, c wants to apply to j). Similarly, 7(j, c) € {0, 1} denotes the
relevance of candidate ¢ to employer j (i.e., j wants to interview c).
However, the ranking system does not know the precise relevances,
but it merely has access to relevance probabilities

fe(j) =PB(r(c.j)=1) and gj(c) :=P(F(j,¢c) = 1).

A large body of literature exists on how to estimate probabilities
of relevance, and for the purposes of this paper we assume that
accurate and unbiased estimates exist.

2.1 Candidates Act (Proactive)

Like in many real-world markets, candidates act first in our model.
Our recommendation system is characterized by a contextualized
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stochastic ranking policy 7 : C — Ay, ;,, which maps each candi-
date to a probability distribution over rankings of the employers.
The space of all possible rankings is denoted by 3 |. For each can-
didate c, the system samples a deterministic ranking o (c) according
to 7(+|c), i.e, o(c) ~ n(-|c) and presents it to the candidate c.
After each candidate ¢ receives a ranking of employers o(c),
they act independently by going down the ranking and applying
to an employer if it is relevant. We use the position-based model
(PBM) [12] to model this application process. Given a ranking o(c),
the PBM models the probability of candidate ¢ applying to job j as
the product of the relevance probability f.(j) and the examination
probability P(e(j) = 1|o(c)):
P(e applies to jlo(0)) = fe()) -Ple() = 1lo(e) (1)
The examination probability models how likely a candidate will
discover a job that is placed in a particular rank. In the PBM, this

examination probability depends only on the rank rank(j|o(c)) of
employer j under ranking o(c). Therefore, we can write

P(e()) = 1la(c)) = v(rank(jlo(c))), @)
where v is an application-dependent function. Common choices
include v(x) = 1/x [12] and 0(x) = m [11], or an application-
dependent v can be estimated directly [1]. Combining this, the
probability Pfj of candidate c applying to employer j under ranking
policy 7 can be expressed as:

ng := P(c applies to j|r) :Zﬂ(o(c)|c)fc(j)0(rank(j|o(c))). (3)
O’(C) €2|j‘

This expression may appear intractable at first glance, since it in-
volves a sum over the exponential number of possible rankings.
However, note that the relevance probability fz(j) does not depend
on the rank and that the examination probability v (rank(j|o(c)))
only depends on rank, such that P ; can be expressed equivalently
in terms of the marginal probabilities P(rank(j|o(c))) = k|r) of
employer j being placed at rank k under policy 7. Therefore, Pf,j
can be re-written as:

Vg NG
PT = () () P(rank(jlo(e)) =kIm)o(k)) = fe () (> MZ (j k)o (k)
k=1 k=1

M7 denotes the doubly stochastic matrix for candidate ¢ where
the (j, k)-th position equals P(rank(j|o(c))) = k|x). This enables
us to use only | J|? parameters when representing ranking policy
7(+|c) for candidate ¢ via M7, since all stochastic ranking policies
with the same M7 are equivalent. Meanwhile, we use M’é as the
concatenation of MZ Vc € C to denote the set of doubly stochastic
matrices for all candidates. In the following, this will allow us to
optimize in the space of doubly stochastic matrices instead of in
the exponentially sized space of rankings. Once an optimal M7 is
found, we use the Birkhoff-von Neumann (BvN) decomposition to
efficiently find a stochastic ranking policy that corresponds to M7
in polynomial time, and then sample a single ranking to present to
the candidate [33].

To further compact the notation, we write the examination

probabilities! as a vector v € Rle with v[k] = v(k) for k €

!Here, we assume user-homogeneous examination. It could be easily extended into
user-heterogenous case.
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Figure 1: A two-sided matching market with 5 candidates, 5 employers, and examination function v(x) = 1/x. The yellow
tables show the interaction process for a particular candidate c;, while the green tables are for a particular employer j4 (other
candidates and employers follow an analogous process). From left to right, the system first computes a personalized stochastic
ranking Mé’l (the 5x 5 matrix) for ¢;. Then it samples a ranking (js, ja, j3, jo, j1), presents it to c1, and c; applies to the employers
according to the position-based model. For the employer side, one realization of the process shows {cy,cz, c5} applying to js.
The system thus presents ranking (cz, c1, ¢5) to js sorted by gj, (). Finally, js replies back also following a position-based model.

{1,2,3,---,]|J1}, and we use e; as the standard basis vector in
| T |-dimensional vector space, with a 1 in the j-th position and 0’s
elsewhere. Now the probability of candidate ¢ applying to employer
j can be written as: IP’Z}. = fC(j)e}Tva.

2.2 Employers Act (Reactive)

After collecting all the applications, it is the employers’ turn to
reply back. To be specific, the ranking system will give each em-
ployer j a ranked list of candidates who applied to them, sorted by
their employer-specific probability of relevance g;(-). We denote
the set of candidates who applied to employer j as C ]” C C, and
it is important to point out that C7 is stochastic and the random-
ness comes from the candidates’ application outcome under policy
7. Then each employer responds back to the candidates ¢ € C ]”
following a similar PBM model as the one we introduced for the
candidates?. In particular, the probability that employer j replies
back to candidate ¢ (e.g., invites to interview) depends on the rele-
vance probability g;j(c) and the examination probability. Note that
the examination probability for any candidate ¢ who applied to j
depends on who else is in C J” , inducing a distribution over ranks.
Let rk;.[ (c) denote the rank of candidate c in a particular C ]” given
c applied to j, ranked by g;(c). We can then write the probability
of a reply as follows:

]P;-I’C := P(j replies to c|c applied to j, 7) = g; (c)E[v(rk;.T(c))]( )

4

The expectation is over the randomness in C}T , which is induced
by the application process on the side of the candidates.

2.3 Utility and Social Welfare

We now formulate the objective of the ranking system, which is
based on the notion of successful matches. A match for a candi-
date/employer pair (c, j) is successful, if candidate ¢ manages to
discover a relevant j and thus applies, and employer j also finds ¢
relevant and manages to discover this candidate among the appli-
cants. We use Yc’fj € {0, 1} to denote whether a match is successful.

In general, the examination function o(-) could be different for candidates and
employers. Here we keep it the same for simplicity of notation.

We define the utility U. () that the ranking system provides to
candidate ¢ when using ranking policy 7 as the expected number
of matches (e.g., interviews) that c receives.

Ue(m) = Y PO =1)= y BTPT,

Jjeg jeg 6
= Z (ﬁ(j)gj(C)E[v(rkj?(c))])eJT.va
Jjeg

After rearranging the terms, we can see that the utility of ranking
policy 7 for candidate c is analogous to traditional ranking measures
like DCG [11]. The key difference is that the utility for each ranked
item not only depends on the candidates’ own relevance, but also
on those of the employers and potentially all other candidates, since
they affect the position of this candidate in the employers’ rankings.
One can also define a similar utility U; () for each employer.

Given this interdependent nature of the individual utilities, and
the societal role that many of these matching markets play, we focus
on social welfare as the overall objective of the ranking system. We
select the most straightforward definition of social welfare SW (1),
which is the expected number of matches in the market that ranking
policy & produces. Note that this is equivalent to maximizing the
sum of candidate utilities, or equivalently the sum of employer
utilities.

SW(m) = Y Uelm) = ) Uj(n) (©)

ceC jeg

Maximizing the total number of matches is arguably a sensible
proxy for societal goals (e.g., minimize unemployment), although
one could further refine this objective (e.g. diminishing returns for
individuals [22]) for other objectives. In particular, an important
additional consideration is ensuring the fairness of such a ranking
system, which we futher discuss in Section 4.3.

In summary, we define the problem of Social-Welfare Maximiza-
tion of Rankings for Two-Sided Matching Markets that we consider
in this paper as follows.

DEFINITION 1. Given a two-sided matching market with a proac-
tive side C and a reactive side J, along with two-sided relevance
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probability f.(j),gj(c) Ve € C, j € T, the goal is to design a stochas-
tic ranking policy & that maximizes the expected number of matches
in the market.

While an abstraction of the real-world, our model captures the
key interactions and trade-off’s faced in many modern two-sided
matching markets, where (1) the number of available options is
often very large, (2) both sides of the market do not have the re-
sources to evaluate all options exhaustively, and (3) a successful
transaction depends on a two-sided relevance match. In reality, the
interaction for two sides of the market might be a highly dynamic
process. We argue that our framework could be adapted to this by
re-optimizing the rankings repeatedly conditioning on any new
information available in the market.

It is worth pointing out that our ranking problem is fundamen-
tally different from stable matching problems considered in the
economics literature [10, 16]. First, our ranking problem aims at
assisting users in forming their preferences over the options by
focusing the user’s attention, in contrast to assuming that users can
readily state their preferences for the matching procedure. However,
it still leaves open the question whether stable matching procedures
could be used to solve our optimization problem.

To address this question, consider the following simplified top-1
ranking problem where all participants only examine position one
of their ranking (i.e., v(1) = 1 and v(k) = 0 for all k > 2 and for
both sides). Furthermore, we assume that the relevance probabil-
ities fc(j) and g;(c) imply a preference order for each candidate
and employer. The following proposition clarifies that even in this
simplified setting stable matching and social-welfare maximization
are not equivalent. propositioncomparemm A matching that is sta-
ble is not necessarily a social-welfare optimal top-1 ranking, and
top-1 rankings that are not stable matchings can have better social

welfare thaq stdble majchings. i1 1 ¢3¢
2 |Jj2 1 J3 J2 c2 €1 C3

3 | J2 J3 J3 cp C2 3

() 1 09 o1 gi(© |1 09 01

Proor. We prove the claim by considering the two-sided market
shown above. There are three job candidates {c1, c2, c3} and three
employers {j1, j2, j3}. The candidates’ relevance table is shown at
left, where each row is a ranked list of employers sorted by the
candidate-side relevance probability f;(j). Similarly, the table on
the right is the ranked list of candidates sorted by the employer-side
relevance probability g;(c). The matching {(c1, j1), (c2, j2), (c3, j3)}
is stable, and it provides a social welfare of 1+ 1+ 0.1 X 0.1 = 2.01.
Now consider the deterministic ranking policy 7 so that 7(-|c1)
recommends j3 at rank 1, 7(-|c2) recommends j, at rank 1, and
7(+|c3) recommends j; at rank 1. This ranking policy provides a
social welfare of 1+ 0.9 + 0.9 = 2.8, but it is not a stable matching
(c1 and j; prefer each other over their current match). o

3 OPTIMIZING RANKINGS IN MATCHING
MARKETS

We now explore algorithms for computing ranking policies  that
maximize social welfare. To motivate the need for these new algo-
rithms, we start by theoretically quantifying the sub-optimality of
conventional PRP policies that rank based on one-sided relevances.
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Denote with 7™ the naive relevance-based policy such that for each
candidate c, 7" (+|c) sorts by fz(j) and consequently recommends
job j at position ¢ (j) with probability 1, where ¢.(j) denotes the
rank of j when ranked by fz(j). Equivalently, consider its equiva-
lent representation using a doubly-stochastic matrix MZ", which

we compare against the social welfare optimal ranking M’g.
theoremsubopt There exist two-sided matching markets over
|C| = |J| = n with examination models v(+) and relevance proba-
bilities fe(j) and g;(c), such that the gap in social welfare between
the optimal ranking M’(Z; and the naive one-side relevance-based

ranking M’CT.n is larger than ©(n). The proof is in Appendix 6.2.
The key idea is to construct an instance where there is a popular
employer j* that has high probability of relevance for all candidates.
The naive relevance-based ranking will rank j* at the top position
for all candidates and create crowding, while the optimal policy
will also consider less crowded employers that may have negligibly
smaller relevance probability.

3.1 A Tractable Optimization Objective

Given the sub-optimality of naive rankings, we now develop al-
gorithms that directly optimize social welfare. We first show that
the original objective is intractable and hard to optimize directly.
To address this, a lower bound is derived and we propose efficient
algorithms for solving it.

Before diving into the analysis, we will introduce some notation
that will be used in this section. Analogous to ¢.(j), we define
pj(c) € {1,2,3,---,|C|} as the rank of candidate ¢ when ranking
all candidates in C by employer j’s relevance probability g;(c).
We break ties arbitrarily. Inversely, we define (pjTl (s) = {c’ €
Cloj(c’) = s} as the candidate listed in rank s among C when
ranked by g;(c). Correspondingly, we define the priority set for
employer j w.r.t. candidate ¢ as Aj(c) := {¢’ € Clp;(c’) < ¢j(c)},
which includes the candidates who have higher relevance proba-
bility to employer j than candidate ¢, measured by g;(c). Based on

this, let Ffj 0 with [ < |Aj(c)| be the set of all subsets of [ items

that can be selected from Aj(c): F(lj 0= {BCAj(c)|B] =1}.
Given examination function v(+), and two-sided relevance prob-
abilities f¢(j) and g;j(c), note that our social welfare objective can

be written as:

SW(m) =) > PEPT =% " (feli)el MIV) g (¢)E[o(rkT (o))]

ceCjedg ceCjedg

T JT
Pc,j Pj,c

The probability IF’Z]. of candidate c applying to employer j is tractably
linear in the policy 7 (or its corresponding doubly stochastic matri-
ces M7;). The difficulty lies in analyzing the term rk;[ (c), which is
a random variable that depends on whether other candidates c € C
apply to employer j and the relative relevance among them. The
following lemma provides the exact distribution of I'k;.Z (c), with
the parameters depending on the ranking policy 7.

LEMMA 2. For any fixed j € J, c € C, under ranking policy
7, the rank rk;.r(c) of candidate c in the set of candidates that ap-

plied to employer j is a random variable with rk;.’(c) ~ 1+ Xj’.’C,

where XJ’FC is a Poisson Binomial random variable with parameters
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T T e JT
[P¢;1(1)’j, P@}l(z)’j, ,owl((pj(c)il))j]. Each element corresponds

to the probability of candidate ¢’ € Aj(c) applying to employer j. For

ke{1,2---9;(c)}, we have:
Pkl =k = > []ez, [] a-Pfp o
reA;j(c)\U

UeFk-1 seU
(J.e)

Proor. Fix any stochastic ranking policy 7, for employer j and
candidate ¢’, we use Y’r to denote the event that candidate ¢’ ap-
plies to employer j, and 1t is easy to see that Y” is a Bernoulli RV
with parameter P(Y7 o = 1) = PZ .. Also, the rank of candidate
c in employer j’s list is 1+ number of candidates who has higher
relevance probability to j (ie., candldates in the set Aj(c)) and

Wj(c) 1
I Yo

Then it is easy to see that the sum of independent Bernoulh trails
(but not necessarily identically distributed) follows Poisson Bi-
nomial with probabilities [P

also applied to employer j, with rk;.r (c)

i ,P7 RN s
@7 (0.7 951(2).) 05! (‘Pj(c)—l)d]
and the PMF could be easily shown as in Equation 7. O

Given Lemma 2, it is easy to see that the PMF of the distribution of
rk;.[(c) involves n!/((n—1I)!l!) terms of summation (with n = |A;(c)|
and! € {1,---,¢;(c)—1}), which poses an extensive computational
burden. While a recursive formula exists in the literature [32], the
complicated form w.r.t. P, ; poses significant challenges when we
treat these probabilities as a function of 7 (or its M7, ) To avoid
this, we instead optimize the following lower bound on the original
objective SW (), which only requires a mild condition on the
examination function and is much easier to compute and optimize.

theoremuti If the examination function o(-) is convex, the fol-
lowing expression lower bounds the social-welfare objective of the
stochastic ranking policy 7:

SW(m) = 37 > feli)gj(o(1+) fo (el MEv)el MV (8)

ceCjeg c’eAj(c)

Proor. The proof is based on the convexity of v and the simple
form of the expectation of the Poisson Binomial random variable.

SW(r) = > ' (fe(i)e] MIV)g; (B [o(rk] (c)) ]
ceCjeg
> ) > (fl)e] MIv)gj(e)o(B[rk] (<)) ©)
ceCjeg

=3 fegio(1+ Y fe (el MEv)el My

ceCjed c’eAj(c)

The inequality comes from Jensen’s inequality for the convex v(-).
The final equality is based on the expectation of the rk;.T (o). O

It is worth noting that convexity of v is not restrictive, since
most of the commonly used examination models like v(x) = 1/x
and v(x) = 1/log, (1 + x) satisfy this condition.

Now we are ready to formulate the main optimization problem,
which optimizes the tractable social-welfare-aware objective SW (ir)

Yi Su, Magd Bayoumi, and Thorsten Joachims

over the set of doubly stochastic matrices, one for each candidate:

maximize () (c)v 1+ C (])e TM’r
MZ:={MZ }cec L;‘];jf s c E;(]:)
s.t. 1TMF=1T MF1=1vVceC
(10)
Multiple approaches can be used to optimize Equation (10). One
option is projected gradient descent, where the projection of any
positive matrix into the set of doubly stochastic matrices can be
computed by the Sinkhorn-Knopp Algorithm [35, 40], which is
known to minimize the KL divergence of any nonnegative matrix
to the Birkhoff Polytope [40]. An alternative is conditional gradient
descent. Since the set of doubly stochastic matrices is convex, we can
utilize any convex optimization solver to find the descent direction
efficiently. In our experiments, we use the Frank-Wolfe approach
(Algorithm 1). For specific examination functions, more specialized
algorithms exists. For example, for v(x) = 1/x the optimization
problem in Equation (10) becomes a fractional program that can be
optimized with an iterative convex-concave procedure.

Algorithm 1: Social-Welfare Optimization via Frank-Wolfe

Result: the doubly stochastic matrices: M{;
Input: relevance f.(-) and g;(-), examination function (-),
stopping criterion €, timesteps T, learning rate n;
Initialize M7 = 117/| |, ¥c € C;
fort=0,1,---,T do
S¢, € argming, —~VSW (MZ) S
175, =17,S.1=1,Yc € C, S¢ = {Sc}eecs
Mg — (1- r]t)M’é + 17;52,
end

4 EXPERIMENTS

In this section, we empirically evaluate several key properties of
our approach. We first present experiments on synthetic data which
allows us to vary the properties of the two-sided markets to explore
the robustness of the method. In addition, we also assess our method
on real-world datasets for external validity, including a benchmark
dataset from a dating platform, and a new dataset from a virtual-
conference networking-recommendation system we built.

4.1 Analysis on Synthetic Data

To examine how our method performs in comparison to baselines
over a range of matching markets with different characteristics,
we create synthetic datasets as follows. We construct matching
markets with n employers and 1.5n job candidates to avoid unre-
alistic symmetry, and other levels of asymmetry would also work
here. In the simplest case, we generate relevance probabilities £ (j)
and gj(c) through independent and uniform draws from [0, 1].
We refer to this as the random setting, but also consider more
structural preferences. One type of structure is crowding on some
employers and candidates. To create a setting with crowding, we
rank employers and candidates in arbitrary order and name them
J1s J2s - 1T andcy,co, - .C|C)- For the candidate-side relevance,
we linearly interpolate the relevance probability in [0, 1] and define

fC(]z) =1-

71 Jl 7 identically for all ¢ so that the relevances of a
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Figure 2: Results on synthetic dataset. The parameters are (1 = 0.5, random, v(x) = 1/x, n = 100), unless stated otherwise. The
standard errors are on the order of le — 2 and invisible in the graph.

fixed employer are the same to all candidates. For the employer-
side relevance, we similarly take gj(c;) = 1 — ﬁ for all j. To
adjust the level of crowding, we take the convex combination of
the random setting and the fully crowded setting with parameter A:
£0) = (1= Dfe()) + Afe(j) and ge () = (1= Dge () + Ade (). If
not mentioned otherwise, we use A = 0.5 in the experiments, as well
as a market size of n = 100 and the examination function v(x) = 1/x
for all candidates and employers. We measure the quality for vari-
ous ranking policies by the original social welfare objective SW (1),
which we estimate using 10000 Monte Carlo simulations of the
matching market interaction process described in Section 2. We
simulate this process 10 times and report the average result.

We compare our Social-Welfare Ranking against the following
baselines. Naive-Relevance Ranking ranks employers by the one-
sided relevance f;(j) for each candidate c. Reciprocal-Relevance
Ranking ranks by the reciprocal relevance probability f.(j)g;(c)
for each candidate c, representing a heuristic objective that accounts
for the reciprocal nature of a match while ignoring dependencies
between candidates. The closest problem setting from the literature
is that of selecting a set of users for recommendation in an online
dating platform [38]. While this method only computes sets, we
convert the solution into a ranking using the computed probability
of a user being included in the recommended set. We call this the
LP Baseline Ranking. This baseline relies on picking a parameter
ne, which is the maximum number of messages that an applicant
could send and receive. To make sure we do not disadvantage this
baseline with a poor choice of n., we compute the solutions for all
ne € {2,5,10,20,50,100} and then pick the solution with the best
social welfare in hindsight.

How do the methods perform for different levels of crowding? With
crowding we refer to a situation where some employers become
overloaded with applications while others get unnoticed. The left-
most graph in Figure 2 shows the expected number of matches for
different levels A of crowding. Especially for high levels of crowding,
the Social-Welfare Ranking performs substantially better than the
baselines. While the Naive-Relevance Ranking performs poorly for
all levels of crowding, the Reciprocal-Relevance Ranking performs
equivalent to the Social-Welfare Ranking when the preferences are
fully random and there is no crowding. However, the Reciprocal-
Relevance Ranking fails to account for collisions in high-crowding
settings, where it does no better than the Naive-Relevance Ranking.

The LP Baseline Ranking consistently underperforms the Social-
Welfare Ranking, which is not surprising since it optimizes sets and
not rankings. It performs particularly poorly under high-crowding
levels, where its constraints force lower ranked jobs to have a higher
probability of being shown to ensure that candidates/employers do
not send/receive too many applications.

How do the methods perform when there is structure in the rele-
vance probabilities? Most real-world problems will contain some
structure in the relevance probabilities f.(j) and g;(c). We now
explore the two complementary cases where the candidate and
employer relevance probabilities are either similar to each other or
the reverse of each other. To construct similar two-sided relevances,
we take gj(c) = min{max{f.(j) + e, 0}, 1} with e ~ (0, 0.2). For
the reversed two-sided relevances, we take §;(c) = min{max{1 —
fo(j) + ¢,0},1} with e ~ N(0,0.2). For the random two-sided rel-
evances, we use the construction already introduced above. The
results are shown in the second plot of Figure 2. As the level of
asymmetry moves from reverse to similar, the expected number of
matches for all methods increases as expected. Moreover, for all
relevance structures, Social-Welfare Ranking consistently achieves
substantially higher social welfare than the baseline methods.

How does the examination function influence the relative perfor-
mance? The examination function v(-) models how many results
people are able or willing to browse. A steep drop-off in examina-
tion probability, like o(x) = 1/e¥~!, means that they are likely to
only evaluate the top few results. A flat examination function, such

aso(x) = means that they are likely to go further down.

The third plot in Figure 2 shows the expected number of matches
as we change the examination function. Unsurprisingly, a flatter
examination function leads to more matches and little difference
between the methods, since results are likely to be discovered no
matter where they are placed in the ranking. For the steepest ex-
amination function, the advantage of the Social-Welfare Ranking
over the baselines is largest, and it almost doubles the number of
matches compared to the Reciprocal-Relevance Ranking.

How does the size of the markets affect the methods? In this experi-
ment, we vary the size of market to understand how this affects the
effectiveness of the methods. Results are shown in the rightmost
plot of Figure 2. As market size increases, all the ranking methods
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Figure 3: Number of candidates/employers (y-axis) that derive a specific amount of utility (x-axis) from the recommendations.

Table 1: Social Welfare (+ two stderr) on real-world datasets.

Dataset Networking Online Dating
Naive-Relevance Ranking 604.0 £0.11  844.0 = 0.10
Reciprocal-Relevance Ranking  763.8 £ 0.06  957.2 + 0.12
LP Baseline Ranking 456.9 £0.52  807.9 + 0.69
Social-Welfare Ranking 824.1 £0.18 1199.2 +0.14

achieve higher utility, which is expected since there are more oppor-
tunities for matches. More interestingly, the relative performance
among the methods is largely unaffected by market size.

4.2 Validation on Real-World Data

We also validated our method on two real-world datasets. First,
we collected a new dataset® by launching a networking recom-
mendation system for a major computer science conference. The
goal was to help participants find other participants that they may
want to interact with. This recommendation system fits naturally
in the two-sided matching markets framework as each user acts
proactively by sending messages, scheduling meetings, etc. to other
users and the recommendation is successful if the other user replies
positively. To account for the fact that each user can serve as both
the proactive side (initiate interaction) and the reactive side (reply
to the messages), we put each of the 925 users on both sides of
the market, with imputed asymmetric two-sided relevances. The
imputed relevance is learned by an importance-weighted logistic
regression on the observed interaction data. We tested the perfor-
mance of various ranking algorithms for this data using v(x) = 1/x
as the examination function (results for other examination func-
tions follow a similar trend). To reduce computational complexity,
we use a two-stage ranking procedure. We first identify the top
100 results based on their reciprocal relevance, and only re-rank
those to maximize social welfare. The ranking after the top 100 is by
reciprocal relevance. Results over 10 runs are shown in Table 1. The
substantial improvement over baseline algorithms verifies that the
proposed approach can provide significant benefit in realistic appli-
cations. Beyond this overall improvement in social welfare, we find
increased individual utility for more than 88% of the participants,
which we further discuss in the following section on fairness.

As a second real-world benchmark, we tested our method on
data from the online dating service Libimseti [42]. The dataset con-
tains ratings given by a user to other users in the system. We select
500 males and 500 females that have given the most ratings to other
users and impute any missing rating using the alternating least
squares (ALS) procedure [24], making the simplifying assumption

3This dataset is available at https://github.com/bayoumi17m/SW-matching-markets

that females will only rate males and vice versa. Again, we evalu-
ate the performance of various algorithms using v(x) = 1/x, and
use the same two-stage ranking procedure for the Social-Welfare
Ranking. Results are shown in the third column of Table 1. Again,
the Social-Welfare Ranking achieves the highest social welfare and
exceeds the baseline algorithms by a large margin.

4.3 Impact on Individual Fairness, Adoption
and Retention

The issue of fairness is more complex in matching markets than
in conventional applications of ranking systems, given the com-
plex dependencies between the individuals. While our objective of
maximizing social welfare recognizes the societal importance and
impact of many matching markets, we also examined its impact
on individual fairness. Figure 3 plots the histograms of individual
utilities for different ranking algorithms on both the synthetic and
real-world datasets. On all datasets, the Social-Welfare Ranking dis-
tributes individual utility more equally compared to the baselines.
Specifically, the fraction of users in the lowest utility bin is reduced
by the Social-Welfare Ranking, leading to a more equitable distri-
bution of utility. However, we argue that adding explicit fairness
constraints is still useful, and that our optimization-based frame-
work is well-suited for including statistical parity or merit-based
exposure constraints [33] in future work. Beyond fairness, we also
briefly discuss the need for future work on strategic behavior, such
as adoption and retention in Appendix 6.1.

5 CONCLUSIONS

We have formulated the problem of ranking in the two-sided match-
ing markets with the objective of maximizing social welfare in terms
of the total number of matches. To make this problem tractable,
we identified a lower bound and showed how it can be optimized
effectively. This results in the first ranking algorithm that is able
to jointly optimize personalized rankings that take into account
mutual preferences and limited capacity. In experiments on both
synthetic and real-world datasets, we find that the proposed rank-
ing algorithm can consistently achieve the highest social welfare
in comparison to existing baselines. Finally, we also outlined direc-
tions for future work on strategic behavior and fairness guarantees
for ranking systems in matching markets.
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6 APPENDICES

6.1 Discussion on Adoption and Retention

In this section, we want to at least briefly discuss the need for future
work on strategic behavior and fairness guarantees for rankings
in matching markets. We posit that these issues are even more
important than for ranking systems in conventional markets, since
for matching markets the rankings and the actions of all participants
shape the utilities of each individual in complex and interdependent
ways. This is true for any ranking system applied to matching
markets, whether it optimizes social welfare, any other objective,
or does not do any explicit optimization at all.

To formalize strategic behavior, we view each candidate ¢ € C in
the market as an independent player that can choose among ranking
policies 7 (e.g., different recommender systems) or equivalently
their doubly stochastic matrices M. For each player c, the payoff
Re(MZ,Uzec\e Mg') is the tractable lower bound of total expected
number of matches that player ¢ could get, which is a function of
player ¢’s action M7, and the other players’ actions Ugec\¢ Mgr’_

Re(MZ | JMI) = 3" fe(gj()o(1+) fur(j)e] MZ v)e] MZv

¢eC\c jeg c’€Aj(c)

Adoption. The first question we consider is whether candidates
will want to participate in the social-welfare optimal system, or
whether they will prefer the naive ranking an which ranks by
their own relevance probabilities fz(j)? As strategic agents, candi-
dates will switch to their social-welfare optimal ranking M7, if it
increases their utility compared to Mé’". If we assume that during
the initial fielding of the system all candidates ¢’ € C use Mgn,
we may want to add the following constraints to our optimization
objective, enforcing that all agents have an e-incentive to switch.

Re(MZ, | ) MZ") = Re(MZ", | ) MZ")+e (1)

¢eC\c ¢eC\c
It is worth noting that these constraints are linear in M7 . Hence,
we can simply incorporate them into the Frank-Wolfe Algorithm.

Retention. The second question considers the behavior of the
candidates once the system has been widely adopted. In particular,
do candidates have an incentive to abandon the system and return
to their naive ranking M7 ?

To avoid this, the system ranking M7 should provide a larger
utility than MZ" given that all other candidates stay with the system,
which could be enforced by adding additional constraints of the
form

Re(MZ, U MF) > Re(MI", U MI) +e. (12)
¢eC\c ceC\c
Unfortunately, this constraint set is not convex and it is difficult
to use Algorithm 1 directly. However gradient descent ascent (GDA)
could be used to find the solution of the Lagrangian dual form of
the problem.

Experimental Examination. In this experiment, we examine how
does the social-welfare optimized ranking affect individual utilities.
As discussed in aforementioned paragraphs, the individual utili-
ties of the candidates can affect adoption, retention and fairness
of the ranking system. The first row of Figure 4 considers the case
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Figure 4: Histogram of individual utility gains on synthetic
data with A = 0.5, random, v(x) = 1/x and n = 100
(left column) and two real-world datasets: Networking Rec-
ommendation (middle column) and Online Dating (right
column). (Top) Gain when all users switch from Naive-
Relevance Ranking to Social-Welfare Ranking. (Middle) Gain
from adopting Social-Welfare Ranking even though others
are not. (Bottom) Gain from not abandoning Social-Welfare
Ranking if all others keep using it.

where all users switch from using the Naive-Relevance Ranking to
using the Social-Welfare Ranking on the synthetic dataset. It shows
a histogram of candidates according to how much they gain from
this switch in terms of expected number of matches. Surprisingly,
none of the candidates is worse off in this switch for the synthetic
dataset. Nevertheless, there are still potential fairness issues and
we see on the real-world datasets that this uniformity in gain is
not always guaranteed. The second row considers the gain from
adoption, which is also non-negative for all candidates on the syn-
thetic dataset and a large fractional of candidates on the networking
recommendation dataset. However, the proportion of positive gains
on the online dating dataset is pretty low. This calls for interesting
future work on incorporating adoption in recommender system de-
sign. Finally, the third row shows that all candidates in the synthetic
dataset (or most candidates for real-world datasets) are better off
staying in the system than switching back to the Naive-Relevance
Ranking. We also explored other variants of our synthetic data,
and generally found that the Social-Welfare Ranking is beneficial
for most users. This is pretty encouraging for future work, since
it suggests that stronger guarantees on individual utilities may be
achievable with little drop in social welfare.

6.2 Proof of Theorem 3

The ©(n) gap in Theorem 3 is achieved by identifying the spe-
cific instance of the two-sided matching market (particular choice
of relevance probability and examination model). Consider the
following two-sided market: there are n employers (denoted as
{j1,j2,*** » jn}) and n candidates (denoted as {c1,c2, - - - , cn}), with
n > 2. On the candidate side, they have highly correlated rele-
vance probability over jobs, while each job has different relevance
probability over candidates. The employers’ relevance probability
ordering (ordered by descending order of g;(-)) is given by the
left circulant matrix and the top 3 employers of the candidates’
relevance probability list (ordered by descending order of f(+)) is
given in the right table:
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J1 |1 e c3 s Cn c1 | 1 e J3

Jo | €2 c3 - Cn c1 c2 | 1 Je J3

; ; ; . and
Jk Ck e e Ck—2 Ck-1 Ck J1 Jk Jk-1

Jn | ¢n C1 t Cn-2 Cn-1 ¢n | J1 Jn  Jn-1

for each candidate c;, for the employers j that not in the top 3 posi-
tion of ¢;’s relevance list, we set arbitrary f¢, (j) € [0, fe, ((pc_i1 3)].
Given this, we define the cardinal relevance probability f.(-) and
g;j(-) from the above ordinal ordering as:

n = (¢c; (k) = 1) _n=(gjlei) = 1)
RS ey =

fCi (]k) =

The examination model Ey;, in this case is given by v(x) = 0.1*7Lif x <

m and 0 otherwise. This mimics the scenario that even as the market
size n grows, people tends to only examine the top m recommenda-
tions due to time and resource constraints. Here we choose m = 2
for simplicity in the proof, but it could be generalized to any fixed
m. As candidates only examine the top 2 positions, only the top 2
positions in our rankings do matter. Therefore for all rankings we
compare in the proof, we only list the top 2 positions in the ranking.
The naive-relevance based ranking 7" only recommends the em-
ployer to candidates by their relevance to the candidate. Therefore

n" is a deterministic policy based on the following permutation o™:
rank(jilo"(c1)) =1 rank(jzlo" (c1)) = 2

13

rank(ji|o"(c;)) = 1 rank(jilo™(c;)) =2 Vi>2 (13)

Now we analyze the utility SW ("), and it is worth noting that the
employers will only examine the top 2 positions. Then we have:

U, (™) = IP(YC’f,jl) + ]P’(Yc’f,j2
0.1(n—-1 1 0.1(n—-1 0.1(n—-1
=1+Lx— 1- (n )+0.1 (n=1)
n n n n
0.9
<11+ —
n
0.1(n—-1 0.1(n—-1 0.2(n—-1
Vg (o < $L =D 01— D) _02(n =)
n n n
(14)
For candidate ¢; with i > 3, we have
n n 0.1(n—-1
U, (") =P(Y[ ) +P(YT ) = % (15)

Then the social welfare generated by policy 7" is:
09 02(n-1 0.1(n—-1 -2
L 020-1)  01(n-1(n-2)

n n n

SW(r™") < 1.1+

Now we consider a different deterministic policy 7° based on the
following permutation o°:

rank(ji|o* (c1)) = 1 rank(jz|o* (c1)) = 2

1
<1+01n+ -
n

(16)
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rank(jilo®(c;)) = 1 rank(ji—1|o°(c;)) =2 Vi>2 (17)
Similarly we analyze the utility SW(7°) and we have:
Ue, () = PO ) + PO,
0.1(n—-1 1 -1 -1 0.01(n—-1
PO G VY P G P Y V) PR U U
n n n n n?

(18)
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For candidate ¢y, we have

(n—1) . 0.1%(n-1) _L0i(n-1)
n

U, (%) = P(YZ ) +P(YL ) = .

n
(19)
For candidate c¢; with i > 3, we have
Ue, (%) = P(Yg,ji) + P(Yg,ji—l)
-1 01(n-2 -1 01(n-1 -1 (20
_(i=1) 01(n=2)(, n-1 0i(n-1) _n
n n n n n

Then the social welfare generated by policy 7° is:
0.01(n—1 1.01(n-1 -1 -2
L00I(n=1) 1011 (n=1)(n-2)

n2 n n
21
0.99 @1)
>n—-0.99+ —
n

v

1

SW(r*)

Now we denote the optimal solution for social welfare objective as
7*. Therefore, we have SW (™) —SW (") > SW(x’) —SW(x") =
O(n).

6.3 Additional Details on Dataset and
Implementation

Datasets. We calculate the two-sided relevances in the network-
ing recommendation dataset as follows. In the recommendation
phrase, the recommendation system estimated relevance scores
between all registered users based on features likes similarity of
published articles, past co-authorship, past citations, etc. For each
user, the system recommended a ranked list of 150 participants,
and we collected different forms of positive interactions between
them (such as thumb up, send a message, schedule a meeting). In
the relevance imputation phrase, we use an importance-weighted
(to de-bias position bias) logistic regression with Ly regulariza-
tion to learn the relevance function, which allows us to impute
directional relevance probabilities between all users. Curiously,
the relevance probabilities have substantial directionality, with
faculty and postdocs being "crowded". However, the expected num-
ber of individuals that each user reaches out is rather uniform
between groups. For the online dating dataset , the license could
be accessible at http://web.archive.org/web/20180402034337/http:
//www.occamslab.com/petricek/data/.

Implementation. For all experiments, the relevance-based rank-
ing is a deterministic ranking based on descending order of f.(j),
and the reciprocal-based ranking is a deterministic ranking based
on descending order of f.(j)g;(c). For our algorithm, Social-Welfare
Ranking, we use Algorithm 1 with 50 timesteps, stopping criterion
1073, and constant learning rate ; = 0.2. We also tested a decaying
learning rate n; = ﬁ and the performance was similar to the
constant learning rate. The convex solver we use for finding the
gradient direction within Algorithm 1 is CVXPY[8] with SCS. All
experiments are performed on a Linux computer cluster.


http://web.archive.org/web/20180402034337/http://www.occamslab.com/petricek/data/
http://web.archive.org/web/20180402034337/http://www.occamslab.com/petricek/data/
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