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ABSTRACT
Based on the success of recommender systems in e-commerce and

entertainment, there is growing interest in their use in matching

markets like job search. While this holds potential for improving

market fluidity and fairness, we show in this paper that naively

applying existing recommender systems to matching markets is

sub-optimal. Considering the standard process where candidates

apply and then get evaluated by employers, we present a new rec-

ommendation framework to model this interaction mechanism and

propose efficient algorithms for computing personalized rankings

in this setting. We show that the optimal rankings need to not only

account for the potentially divergent preferences of candidates and

employers, but they also need to account for capacity constraints.

This makes conventional ranking systems that merely rank by

some local score (e.g., one-sided or reciprocal relevance) highly

sub-optimal — not only for an individual user, but also for societal

goals (e.g., low unemployment). To address this shortcoming, we

propose the first method for jointly optimizing the rankings for

all candidates in the market to explicitly maximize social welfare.

In addition to the theoretical derivation, we evaluate the method

both on simulated environments and on data from a real-world

networking-recommendation system that we built and fielded at a

large computer science conference.

CCS CONCEPTS
• Information systems → Probabilistic retrieval models; •
Computing methodologies→ Ranking.
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1 INTRODUCTION
Most search and recommender systems rely on rankings as the

prevalent way of presenting results to the users. By ranking the
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most promising items first, they aim to focus the user’s attention on

a tractably small consideration set especially when the number of

items is large. For conventional applications of ranking systems in

online retail or media streaming, it has long been understood that

ranking items based on their probability of relevance (alternatively,

purchase or click) to the user provides maximal utility under stan-

dard assumptions. Sorting by the probability of relevance is called

the Probability Ranking Principle (PRP) [29], and it implies that the

optimal ranking for any user depends only on their preferences.

The PRP is no longer optimal, however, for a growing range of

new online platforms that mediatematchingmarkets like job search,

college admission, dating, or social recommendation [4, 15, 21, 38].

The following two key properties of matching markets make the

ranking problem substantially more complex than in conventional

two-sided markets. First, a successful match requires that both

sides of a match agree on mutual relevance [14, 26]. Second, both

sides have constraints on how many options they can evaluate.

Under these conditions, the optimal ranking for any one participant

depends on the rankings and relevances of the other participants

in the market, which can make PRP ranking highly suboptimal.

To illustrate the source of these dependencies, consider a job

matching problem where many of the job candidates crowd to a

small set of employers with high name-recognition. The popular

employers will receive many applications — more than they can

carefully evaluate and many without the desired qualifications. At

the same time, less well-known employers may not get discovered

by relevant candidates. The result is that many candidates never

hear back from the popular employers and many employers are

unable to fill their positions. This is not only bad for individual

employers and candidates, but also a poor outcome in terms of the

social welfare that the system provides (e.g. minimizing unemploy-

ment and unfilled jobs). To remedy this problem, a recommender

system for job matching should consider preferences and qualifica-

tions from both the candidates (e.g., west-coast location, python)
and the employers (e.g., 5 years experience, python) and help dis-

cover mutually beneficial matches that avoid crowding.

The main contributions of this paper are fourfold: (1) First, the

paper is the first to formalize the problem of ranking in two-sided
matching markets under the apply/accept interaction protocol that

is used in many real-world settings. (2) Second, we present the first

recommender system that is able to jointly optimize personalized

rankings for all candidates to maximize social welfare in two-sided

matching markets. (3) Third, we discuss additional strategic behav-

ior (e.g., adoption and retention) and fairness issues for rankings

under this framework, which opens an important area for future

work. (4) Finally, we built a real-world networking-recommendation

system that we fielded at a large computer science conference. We

empirically validate our method on this real-world dataset, which

we provide as a benchmark to enable future research.

https://doi.org/10.1145/3485447.3511961
https://doi.org/10.1145/3485447.3511961
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1.1 Overview of Results
Before going into the formal and mathematical details of our ap-

proach, we provide an overview of the model and the main results.

Modeling matching markets using the apply/accept protocol: We

consider the apply/accept interaction protocol that is dominantly

used in matching markets like job search and college admission.

Focusing on the example of job search for clarity, job candidates on

one side of themarket act by sending their applications to employers

they are interested in. The employers on the other side of themarket

respond after evaluating the applications they receive, and a positive

response leads to the mutually desirable outcome of a match. A key

component of our framework is that both the candidates and the

employers have limited attention, and thus have to act under partial

information. In particular, the candidates cannot evaluate all job

postings, and thus require a personalized ranking that focuses their

attention on the most promising job postings. Similarly, employers

want a ranking of applications they receive to triage the review

process and better allocate reviewing resources. This leads to a

two-sided ranking problem which we formalize, and where we

identify the total number of mutually relevant matches as the social-

welfare objective (i.e. minimizing unemployment and unfilled jobs).

Note that this two-sided ranking problem is fundamentally new

compared to prior work [4, 14, 15, 21, 26, 38].

Optimizing for attention and discovery: The goal of our frame-

work is different from optimizing matchings under known prefer-

ences as in traditional stable matching procedures from economics

[10, 16]. Instead, we support the preference formation on both

sides of the market when the number of options is large. We thus

aim to maximize social-welfare by focusing the attention budget of

both sides on the most promising options for manual evaluation,

which is analogous to the attention-focusing goals of conventional

recommender systems. In this way, our approach supports each

participant in discovering the most promising options to manually

evaluate, optimizing how the participants spend their scarce re-

source of attention among an often overwhelming set of options.

This leaves all participants with autonomy over their decisions,

which makes it different from conventional matching procedures

[10, 16], where all participants have to submit to a centralized

matching procedure [31] that determines the matching outcome.

Capturingmutual relevance and crowding:Under the apply/accept
protocol, rankings for the candidates become dependent given the

limited attention budget of the employers. We are the first to model

this dependency when both the employer and the candidates re-

ceive their recommendations as rankings. In particular, crowding

of candidates to well-known employers influences whether an ap-

plicant will be noticed by an employer and receive a reply – and

thus the priority a crowded employer should have for evaluation by

other candidates. We, therefore, model the position each candidate

would reach in an employer ranking, which depends on the appli-

cation behavior of all other candidates. Our model is the first to

capture social-welfare of a ranking system under the dependencies

introduced by crowding and mutual relevance.

Method for finding rankings that optimize social-welfare: Our key
algorithmic contribution is the first method for computing rank-

ings that optimize social welfare in two-sized matching markets.

This objective requires us to jointly compute the rankings for all

candidates, as the utility for each candidate also depends on how

others act in the market. This is fundamentally different from tradi-

tional ranking algorithms, where each user’s ranking is optimized

independently. To derive a tractable algorithm, we use three key

technical steps. First, we show how to transform the discrete and

exponentially-sized optimization problem over rankings into a sto-

chastic optimization problem in the polynomially-sized space of

marginal rank distributions. Second, we derive a lower bound on

the social-welfare objective and show how this objective can be

computed and optimized efficiently. Finally, we exploit the Birkhoff-

von Neumann decomposition to recover rankings from the compact

representation we used during optimization.

Providing potential for incorporating strategic behaviour: Beyond
developing algorithms for maximizing the overall utility of the mar-

ket, we also initiate a discussion of fairness and strategic behaviors

(such as user adoption and retention) for ranking in matching mar-

kets. These issues are more complex than in traditional ranking

systems, as the behaviour of individuals affects each other. However,

our optimization-based framework provides a promising potential

for incorporating various constraints, such as statistical-parity and

merit-based exposure constraints. All of these open an important

area for future work about this new type of ranking systems in

matching markets.

1.2 Related Work
Asmulti-sided market platforms have emerged as a popular business

model, search and recommender systems have taken a key role in

mediating their interactions. These systems need to balance the

interests of various stakeholders, such as the users, the suppliers,

and the platform itself. There is a large body of recent work on

how to specify each stakeholder’s objective [17], their interplay

[18, 41], and the design of efficient joint optimization objectives

for recommendation in multi-sided marketplaces [19, 30, 36, 45].

Important objectives include diversity [7, 27], novelty [28, 39] and

fairness [5, 6, 33, 44]. Most of the work relies on techniques from

multi-objective optimization, which include finding the Pareto front

[23], using aggregation functions that reduce to a single objective

[13, 19, 45], or including some objectives as constraints [30, 33, 34].

Unlike most of these works, we directly model the interaction

process in two-sided matching markets and aim to maximize the

overall social welfare of the market as the key objective.

Our problem setting is a form of reciprocal recommendation
[14, 26], which considers matching problems where both sides

have preferences like online dating [38, 42], job seeking [2, 20, 43],

and social media [46]. Hence, most reciprocal recommendation sys-

tems rank by a reciprocal score that combines the preferences from

both sides, like the harmonic mean [25], sum of similarities [2],

product operator [37], and community-level matching [3]. Among

these works, [38] is the closest to ours. They propose a two-sided

matching framework for dating recommendation that maximizes

the total number of reciprocated messages, while avoiding over-

burdening each user by keeping the expected number of messages

received/sent bounded. A key simplifying assumption in [38] is that

the system provides a predetermined number of recommendations

to each user, which is typically difficult to pick efficiently in practice,

and then all these recommendations will be exhaustively evaluated
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by the user. Similar assumptions are also made by recent work on

assortment planning [4] for matching problems. We consider the

more realistic and strictly more general case where each user is

shown a ranking, and there is uncertainty in how far each user

goes down. Also, we model the widely used apply/accept protocol,

which was not supported in existing methods.

Our work also builds upon the economic and social science

literature on matching markets [10, 16]. Here, the core problem lies

in the design of matching procedures. In particular, stable-matching

algorithms [10] take a ranked preference list from both sides of

the market as input and produce stable one-to-one or many-to-

one matchings, while maximum weight matching [9] considers

weighted preference graphs. In contrast, our work helps the users

form their preferences despite an intractably large set of possible

options. In particular, we do not force the final matching step and

leave all participants with autonomy over their actions and eventual

decisions. This makes it fundamentally different from conventional

matching procedures.

2 A FRAMEWORK FOR RANKING IN
MATCHING MARKETS

We begin by introducing our new framework for rankings in match-

ing markets. For simplicity and concreteness, we use a job recom-
mendation platform as a running example. However, the framework

is general and can be adapted to other domains where (1) the suc-

cess of a matching relies on relevance from both sides and (2) both

sides have limited attention.

We consider the following sequential and asymmetric interaction
protocol. First, job candidates (proactive side) browse through their

ranked lists of jobs and apply to the jobs that they find relevant.

After this, employers (reactive side) browse through rankings of

their applicants and respond to the applicants they find relevant

(e.g., invite to interview). We call this a match, and the goal of the

ranking system is to design rankings for each candidate tomaximize

the total number of expected matches in the market.

We now formalize this interaction model, and then present al-

gorithms for jointly optimizing the rankings for all candidates in

Section 3. The toy example in Figure 1 serves as an intuitive guide

to the model we develop in the following. We denote the set of

candidates in the market as C, and the set of employers as J with

|C| < ∞ and |J | < ∞. For simplicity, we use binary relevance

𝑟 (𝑐, 𝑗) ∈ {0, 1} to denote how employer 𝑗 is relevant to candidate

𝑐 (i.e., 𝑐 wants to apply to 𝑗 ). Similarly, 𝑟 ( 𝑗, 𝑐) ∈ {0, 1} denotes the
relevance of candidate 𝑐 to employer 𝑗 (i.e., 𝑗 wants to interview 𝑐).

However, the ranking system does not know the precise relevances,

but it merely has access to relevance probabilities

𝑓𝑐 ( 𝑗) := P(𝑟 (𝑐, 𝑗) = 1) and 𝑔 𝑗 (𝑐) := P(𝑟 ( 𝑗, 𝑐) = 1) .

A large body of literature exists on how to estimate probabilities

of relevance, and for the purposes of this paper we assume that

accurate and unbiased estimates exist.

2.1 Candidates Act (Proactive)
Like in many real-world markets, candidates act first in our model.

Our recommendation system is characterized by a contextualized

stochastic ranking policy 𝜋 : C → ΔΣ |J| , which maps each candi-

date to a probability distribution over rankings of the employers.

The space of all possible rankings is denoted by Σ |J | . For each can-

didate 𝑐 , the system samples a deterministic ranking 𝜎 (𝑐) according
to 𝜋 (·|𝑐), i.e., 𝜎 (𝑐) ∼ 𝜋 (·|𝑐) and presents it to the candidate 𝑐 .

After each candidate 𝑐 receives a ranking of employers 𝜎 (𝑐),
they act independently by going down the ranking and applying

to an employer if it is relevant. We use the position-based model

(PBM) [12] to model this application process. Given a ranking 𝜎 (𝑐),
the PBM models the probability of candidate 𝑐 applying to job 𝑗 as

the product of the relevance probability 𝑓𝑐 ( 𝑗) and the examination

probability P(𝑒 ( 𝑗) = 1|𝜎 (𝑐)):
P(𝑐 applies to 𝑗 |𝜎 (𝑐)) = 𝑓𝑐 ( 𝑗) · P(𝑒 ( 𝑗) = 1|𝜎 (𝑐)) (1)

The examination probability models how likely a candidate will

discover a job that is placed in a particular rank. In the PBM, this

examination probability depends only on the rank 𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐)) of
employer 𝑗 under ranking 𝜎 (𝑐). Therefore, we can write

P(𝑒 ( 𝑗) = 1|𝜎 (𝑐)) = 𝑣 (𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))), (2)

where 𝑣 is an application-dependent function. Common choices

include 𝑣 (𝑥) = 1/𝑥 [12] and 𝑣 (𝑥) = 1

log(1+𝑥) [11], or an application-

dependent 𝑣 can be estimated directly [1]. Combining this, the

probability P𝜋
𝑐,𝑗

of candidate 𝑐 applying to employer 𝑗 under ranking

policy 𝜋 can be expressed as:

P𝜋𝑐,𝑗 := P(𝑐 applies to 𝑗 |𝜋) =
∑

𝜎 (𝑐) ∈Σ |J|
𝜋 (𝜎 (𝑐) |𝑐) 𝑓𝑐 ( 𝑗)𝑣

(
𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))

)
. (3)

This expression may appear intractable at first glance, since it in-

volves a sum over the exponential number of possible rankings.

However, note that the relevance probability 𝑓𝑐 ( 𝑗) does not depend
on the rank and that the examination probability 𝑣

(
𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))

)
only depends on rank, such that P𝜋

𝑐,𝑗
can be expressed equivalently

in terms of the marginal probabilities P(𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))) = 𝑘 |𝜋) of
employer 𝑗 being placed at rank 𝑘 under policy 𝜋 . Therefore, P𝜋

𝑐,𝑗

can be re-written as:

P𝜋𝑐,𝑗 = 𝑓𝑐 ( 𝑗)
(|J |∑
𝑘=1

P(𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))=𝑘 |𝜋)𝑣 (𝑘)
)
= 𝑓𝑐 ( 𝑗)

(|J |∑
𝑘=1

𝑀𝜋
𝑐 ( 𝑗, 𝑘)𝑣 (𝑘)

)
𝑀𝜋
𝑐 denotes the doubly stochastic matrix for candidate 𝑐 where

the ( 𝑗, 𝑘)-th position equals P(𝑟𝑎𝑛𝑘 ( 𝑗 |𝜎 (𝑐))) = 𝑘 |𝜋). This enables
us to use only |J |2 parameters when representing ranking policy

𝜋 (·|𝑐) for candidate 𝑐 via𝑀𝜋
𝑐 , since all stochastic ranking policies

with the same 𝑀𝜋
𝑐 are equivalent. Meanwhile, we use M𝜋

C as the

concatenation of𝑀𝜋
𝑐 ∀𝑐 ∈ C to denote the set of doubly stochastic

matrices for all candidates. In the following, this will allow us to

optimize in the space of doubly stochastic matrices instead of in

the exponentially sized space of rankings. Once an optimal 𝑀𝜋
𝑐 is

found, we use the Birkhoff-von Neumann (BvN) decomposition to

efficiently find a stochastic ranking policy that corresponds to𝑀𝜋
𝑐

in polynomial time, and then sample a single ranking to present to

the candidate [33].

To further compact the notation, we write the examination

probabilities
1
as a vector v ∈ R |J |+ with v[𝑘] = 𝑣 (𝑘) for 𝑘 ∈

1
Here, we assume user-homogeneous examination. It could be easily extended into

user-heterogenous case.
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Pos
1

Pos
2

Pos
3

Pos
4

Pos
5

𝑗! 0.2 0.2 0 0 0.6

𝑗" 0.2 0.2 0 0.6 0

𝑗# 0 0 0.8 0.2 0

𝑗$ 0 0.6 0.2 0 0.2

𝑗% 0.6 0 0 0.2 0.2

Ranking 
for 𝑐!

𝑗%

𝑗$
𝑗#
𝑗"
𝑗!

Apply 
Probability

𝑓&!(𝑗%)
!
"𝑓&!(𝑗$)
!
#𝑓&!(𝑗#)
!
$𝑓&!(𝑗")
!
%𝑓&!(𝑗!)

Candidate Applied Relevance
𝑔'"(⋅)

𝑐! ✓ 0.7

𝑐" ✓ 0.9

𝑐# ✗ 0.8

𝑐$ ✗ 0.2

𝑐% ✓ 0.6

Ranking for 
Employer 𝑗$

𝑐"

𝑐!

𝑐%

Reply
Probability

𝑔'"(𝑐")
!
"𝑔'"(𝑐!)
!
#𝑔'"(𝑐%)

𝑀&!
(

Figure 1: A two-sided matching market with 5 candidates, 5 employers, and examination function 𝑣 (𝑥) = 1/𝑥 . The yellow
tables show the interaction process for a particular candidate 𝑐1, while the green tables are for a particular employer 𝑗4 (other
candidates and employers follow an analogous process). From left to right, the system first computes a personalized stochastic
ranking𝑀𝜋

𝑐1
(the 5× 5matrix) for 𝑐1. Then it samples a ranking ( 𝑗5, 𝑗4, 𝑗3, 𝑗2, 𝑗1), presents it to 𝑐1, and 𝑐1 applies to the employers

according to the position-based model. For the employer side, one realization of the process shows {𝑐1, 𝑐2, 𝑐5} applying to 𝑗4.
The system thus presents ranking (𝑐2, 𝑐1, 𝑐5) to 𝑗4 sorted by 𝑔 𝑗4 (·). Finally, 𝑗4 replies back also following a position-basedmodel.

{1, 2, 3, · · · , |J |}, and we use e𝑗 as the standard basis vector in

|J |-dimensional vector space, with a 1 in the 𝑗-th position and 0’s

elsewhere. Now the probability of candidate 𝑐 applying to employer

𝑗 can be written as: P𝜋
𝑐,𝑗

= 𝑓𝑐 ( 𝑗)e𝑇𝑗 𝑀
𝜋
𝑐 v.

2.2 Employers Act (Reactive)
After collecting all the applications, it is the employers’ turn to

reply back. To be specific, the ranking system will give each em-

ployer 𝑗 a ranked list of candidates who applied to them, sorted by

their employer-specific probability of relevance 𝑔 𝑗 (·). We denote

the set of candidates who applied to employer 𝑗 as C𝜋
𝑗
⊆ C, and

it is important to point out that C𝜋
𝑗
is stochastic and the random-

ness comes from the candidates’ application outcome under policy

𝜋 . Then each employer responds back to the candidates 𝑐 ∈ C𝜋
𝑗

following a similar PBM model as the one we introduced for the

candidates
2
. In particular, the probability that employer 𝑗 replies

back to candidate 𝑐 (e.g., invites to interview) depends on the rele-

vance probability 𝑔 𝑗 (𝑐) and the examination probability. Note that

the examination probability for any candidate 𝑐 who applied to 𝑗

depends on who else is in C𝜋
𝑗
, inducing a distribution over ranks.

Let rk𝜋𝑗 (𝑐) denote the rank of candidate 𝑐 in a particular C𝜋
𝑗
given

𝑐 applied to 𝑗 , ranked by 𝑔 𝑗 (𝑐). We can then write the probability

of a reply as follows:

P𝜋𝑗,𝑐 := P( 𝑗 replies to 𝑐 |𝑐 applied to 𝑗, 𝜋) = 𝑔 𝑗 (𝑐)E
[
𝑣
(
rk𝜋𝑗 (𝑐)

) ]
(4)

The expectation is over the randomness in C𝜋
𝑗
, which is induced

by the application process on the side of the candidates.

2.3 Utility and Social Welfare
We now formulate the objective of the ranking system, which is

based on the notion of successful matches. A match for a candi-

date/employer pair (𝑐, 𝑗) is successful, if candidate 𝑐 manages to

discover a relevant 𝑗 and thus applies, and employer 𝑗 also finds 𝑐

relevant and manages to discover this candidate among the appli-

cants. We use 𝑌𝜋
𝑐,𝑗
∈ {0, 1} to denote whether a match is successful.

2
In general, the examination function 𝑣 ( ·) could be different for candidates and

employers. Here we keep it the same for simplicity of notation.

We define the utility U𝑐 (𝜋) that the ranking system provides to

candidate 𝑐 when using ranking policy 𝜋 as the expected number

of matches (e.g., interviews) that 𝑐 receives.

U𝑐 (𝜋) =
∑
𝑗 ∈J
P(𝑌𝜋

𝑐,𝑗 = 1) =
∑
𝑗 ∈J
P𝜋𝑐,𝑗P

𝜋
𝑗,𝑐

=
∑
𝑗 ∈J

(
𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)E

[
𝑣
(
rk𝜋𝑗 (𝑐)

) ] )
e𝑇𝑗 𝑀

𝜋
𝑐 v

(5)

After rearranging the terms, we can see that the utility of ranking

policy 𝜋 for candidate 𝑐 is analogous to traditional rankingmeasures

like DCG [11]. The key difference is that the utility for each ranked

item not only depends on the candidates’ own relevance, but also

on those of the employers and potentially all other candidates, since

they affect the position of this candidate in the employers’ rankings.

One can also define a similar utility U𝑗 (𝜋) for each employer.

Given this interdependent nature of the individual utilities, and
the societal role that many of these matchingmarkets play, we focus

on social welfare as the overall objective of the ranking system. We

select the most straightforward definition of social welfare SW(𝜋),
which is the expected number of matches in the market that ranking

policy 𝜋 produces. Note that this is equivalent to maximizing the

sum of candidate utilities, or equivalently the sum of employer

utilities.

SW(𝜋) =
∑
𝑐∈C

U𝑐 (𝜋) =
∑
𝑗 ∈J

U𝑗 (𝜋) (6)

Maximizing the total number of matches is arguably a sensible

proxy for societal goals (e.g., minimize unemployment), although

one could further refine this objective (e.g. diminishing returns for

individuals [22]) for other objectives. In particular, an important

additional consideration is ensuring the fairness of such a ranking

system, which we futher discuss in Section 4.3.

In summary, we define the problem of Social-Welfare Maximiza-
tion of Rankings for Two-Sided Matching Markets that we consider
in this paper as follows.

Definition 1. Given a two-sided matching market with a proac-
tive side C and a reactive side J , along with two-sided relevance
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probability 𝑓𝑐 ( 𝑗), 𝑔 𝑗 (𝑐) ∀𝑐 ∈ C, 𝑗 ∈ J , the goal is to design a stochas-
tic ranking policy 𝜋 that maximizes the expected number of matches
in the market.

While an abstraction of the real-world, our model captures the

key interactions and trade-off’s faced in many modern two-sided

matching markets, where (1) the number of available options is

often very large, (2) both sides of the market do not have the re-

sources to evaluate all options exhaustively, and (3) a successful

transaction depends on a two-sided relevance match. In reality, the

interaction for two sides of the market might be a highly dynamic

process. We argue that our framework could be adapted to this by

re-optimizing the rankings repeatedly conditioning on any new

information available in the market.

It is worth pointing out that our ranking problem is fundamen-

tally different from stable matching problems considered in the

economics literature [10, 16]. First, our ranking problem aims at

assisting users in forming their preferences over the options by

focusing the user’s attention, in contrast to assuming that users can

readily state their preferences for the matching procedure. However,

it still leaves open the question whether stable matching procedures

could be used to solve our optimization problem.

To address this question, consider the following simplified top-1
ranking problem where all participants only examine position one

of their ranking (i.e., 𝑣 (1) = 1 and 𝑣 (𝑘) = 0 for all 𝑘 ≥ 2 and for

both sides). Furthermore, we assume that the relevance probabil-

ities 𝑓𝑐 ( 𝑗) and 𝑔 𝑗 (𝑐) imply a preference order for each candidate

and employer. The following proposition clarifies that even in this

simplified setting stable matching and social-welfare maximization

are not equivalent. propositioncomparemm A matching that is sta-

ble is not necessarily a social-welfare optimal top-1 ranking, and

top-1 rankings that are not stable matchings can have better social

welfare than stable matchings.𝑐1 𝑗1 𝑗3 𝑗2

𝑐2 𝑗2 𝑗1 𝑗3

𝑐3 𝑗1 𝑗2 𝑗3

𝑓𝑐 ( 𝑗) 1 0.9 0.1

𝑗1 𝑐1 𝑐3 𝑐2

𝑗2 𝑐2 𝑐1 𝑐3

𝑗3 𝑐1 𝑐2 𝑐3

𝑔 𝑗 (𝑐) 1 0.9 0.1

Proof. We prove the claim by considering the two-sided market

shown above. There are three job candidates {𝑐1, 𝑐2, 𝑐3} and three

employers { 𝑗1, 𝑗2, 𝑗3}. The candidates’ relevance table is shown at

left, where each row is a ranked list of employers sorted by the

candidate-side relevance probability 𝑓𝑐 ( 𝑗). Similarly, the table on

the right is the ranked list of candidates sorted by the employer-side

relevance probability𝑔 𝑗 (𝑐). Thematching {(𝑐1, 𝑗1), (𝑐2, 𝑗2), (𝑐3, 𝑗3)}
is stable, and it provides a social welfare of 1 + 1 + 0.1 × 0.1 = 2.01.

Now consider the deterministic ranking policy 𝜋 so that 𝜋 (·|𝑐1)
recommends 𝑗3 at rank 1, 𝜋 (·|𝑐2) recommends 𝑗2 at rank 1, and

𝜋 (·|𝑐3) recommends 𝑗1 at rank 1. This ranking policy provides a

social welfare of 1 + 0.9 + 0.9 = 2.8, but it is not a stable matching

(𝑐1 and 𝑗1 prefer each other over their current match). □

3 OPTIMIZING RANKINGS IN MATCHING
MARKETS

We now explore algorithms for computing ranking policies 𝜋 that

maximize social welfare. To motivate the need for these new algo-

rithms, we start by theoretically quantifying the sub-optimality of

conventional PRP policies that rank based on one-sided relevances.

Denote with 𝜋𝑛 the naive relevance-based policy such that for each

candidate 𝑐 , 𝜋𝑛 (·|𝑐) sorts by 𝑓𝑐 ( 𝑗) and consequently recommends

job 𝑗 at position 𝜑𝑐 ( 𝑗) with probability 1, where 𝜑𝑐 ( 𝑗) denotes the
rank of 𝑗 when ranked by 𝑓𝑐 ( 𝑗). Equivalently, consider its equiva-
lent representation using a doubly-stochastic matrixM𝜋𝑛

C , which

we compare against the social welfare optimal ranking M𝜋∗
C .

theoremsubopt There exist two-sided matching markets over

|C| = |J | = 𝑛 with examination models 𝑣 (·) and relevance proba-

bilities 𝑓𝑐 ( 𝑗) and 𝑔 𝑗 (𝑐), such that the gap in social welfare between

the optimal rankingM𝜋∗
C and the naive one-side relevance-based

ranking M𝜋𝑛

C is larger than Θ(𝑛). The proof is in Appendix 6.2.

The key idea is to construct an instance where there is a popular

employer 𝑗∗ that has high probability of relevance for all candidates.
The naive relevance-based ranking will rank 𝑗∗ at the top position

for all candidates and create crowding, while the optimal policy

will also consider less crowded employers that may have negligibly

smaller relevance probability.

3.1 A Tractable Optimization Objective
Given the sub-optimality of naive rankings, we now develop al-

gorithms that directly optimize social welfare. We first show that

the original objective is intractable and hard to optimize directly.

To address this, a lower bound is derived and we propose efficient

algorithms for solving it.

Before diving into the analysis, we will introduce some notation

that will be used in this section. Analogous to 𝜑𝑐 ( 𝑗), we define

𝜑 𝑗 (𝑐) ∈ {1, 2, 3, · · · , |C|} as the rank of candidate 𝑐 when ranking

all candidates in C by employer 𝑗 ’s relevance probability 𝑔 𝑗 (𝑐).
We break ties arbitrarily. Inversely, we define 𝜑−1

𝑗
(𝑠) := {𝑐 ′ ∈

C|𝜑 𝑗 (𝑐 ′) = 𝑠} as the candidate listed in rank 𝑠 among C when

ranked by 𝑔 𝑗 (𝑐). Correspondingly, we define the priority set for

employer 𝑗 w.r.t. candidate 𝑐 as 𝐴 𝑗 (𝑐) := {𝑐 ′ ∈ C|𝜑 𝑗 (𝑐 ′) < 𝜑 𝑗 (𝑐)},
which includes the candidates who have higher relevance proba-

bility to employer 𝑗 than candidate 𝑐 , measured by 𝑔 𝑗 (𝑐). Based on

this, let 𝐹 𝑙( 𝑗,𝑐) with 𝑙 ≤ |𝐴 𝑗 (𝑐) | be the set of all subsets of 𝑙 items

that can be selected from 𝐴 𝑗 (𝑐): 𝐹 𝑙( 𝑗,𝑐) := {𝐵 ⊆ 𝐴 𝑗 (𝑐) | |𝐵 | = 𝑙}.
Given examination function 𝑣 (·), and two-sided relevance prob-

abilities 𝑓𝑐 ( 𝑗) and 𝑔 𝑗 (𝑐), note that our social welfare objective can
be written as:

SW(𝜋) =
∑
𝑐∈C

∑
𝑗 ∈J
P𝜋𝑐,𝑗P

𝜋
𝑗,𝑐 =

∑
𝑐∈C

∑
𝑗 ∈J

(
𝑓𝑐 ( 𝑗)e𝑇𝑗 𝑀

𝜋
𝑐 v

)︸           ︷︷           ︸
P𝜋
𝑐,𝑗

𝑔 𝑗 (𝑐)E
[
𝑣
(
rk𝜋𝑗 (𝑐)

)]︸                 ︷︷                 ︸
P𝜋
𝑗,𝑐

The probability P𝜋
𝑐,𝑗

of candidate 𝑐 applying to employer 𝑗 is tractably

linear in the policy 𝜋 (or its corresponding doubly stochastic matri-

ces M𝜋
C ). The difficulty lies in analyzing the term rk𝜋𝑗 (𝑐), which is

a random variable that depends on whether other candidates 𝑐 ∈ C
apply to employer 𝑗 and the relative relevance among them. The

following lemma provides the exact distribution of rk𝜋𝑗 (𝑐), with
the parameters depending on the ranking policy 𝜋 .

Lemma 2. For any fixed 𝑗 ∈ J , 𝑐 ∈ C, under ranking policy
𝜋 , the rank rk𝜋𝑗 (𝑐) of candidate 𝑐 in the set of candidates that ap-
plied to employer 𝑗 is a random variable with rk𝜋𝑗 (𝑐) ∼ 1 + 𝑋𝜋

𝑗,𝑐
,

where 𝑋𝜋
𝑗,𝑐

is a Poisson Binomial random variable with parameters
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P𝜋
𝜑−1
𝑗
(1), 𝑗 , P

𝜋

𝜑−1
𝑗
(2), 𝑗 , · · · , P

𝜋

𝜑−1
𝑗
(𝜑 𝑗 (𝑐)−1), 𝑗

]
. Each element corresponds

to the probability of candidate 𝑐 ′ ∈ 𝐴 𝑗 (𝑐) applying to employer 𝑗 . For
𝑘 ∈ {1, 2, · · ·𝜑 𝑗 (𝑐)}, we have:

P(rk𝜋𝑗 (𝑐) = 𝑘) =
∑

𝑈 ∈𝐹𝑘−1( 𝑗,𝑐 )

∏
𝑠∈𝑈
P𝜋𝑠,𝑗

∏
𝑟 ∈𝐴 𝑗 (𝑐)\𝑈

(1 − P𝜋𝑟,𝑗 ) (7)

Proof. Fix any stochastic ranking policy 𝜋 , for employer 𝑗 and

candidate 𝑐 ′, we use 𝑌𝜋
𝑐′, 𝑗 to denote the event that candidate 𝑐 ′ ap-

plies to employer 𝑗 , and it is easy to see that 𝑌𝜋
𝑐′, 𝑗 is a Bernoulli RV

with parameter P(𝑌𝜋
𝑐′, 𝑗 = 1) = P𝜋

𝑐′, 𝑗 . Also, the rank of candidate

𝑐 in employer 𝑗 ’s list is 1+ number of candidates who has higher

relevance probability to 𝑗 (i.e., candidates in the set 𝐴 𝑗 (𝑐)) and
also applied to employer 𝑗 , with rk𝜋𝑗 (𝑐)

D∼ 1 + ∑𝜑 𝑗 (𝑐)−1
𝑙=1

𝑌𝜋

𝜑−1
𝑗
(𝑙), 𝑗 .

Then it is easy to see that the sum of independent Bernoulli trails

(but not necessarily identically distributed) follows Poisson Bi-

nomial with probabilities

[
P𝜋
𝜑−1
𝑗
(1), 𝑗 , P

𝜋

𝜑−1
𝑗
(2), 𝑗 , · · · , P

𝜋

𝜑−1
𝑗
(𝜑 𝑗 (𝑐)−1), 𝑗

]
,

and the PMF could be easily shown as in Equation 7. □

Given Lemma 2, it is easy to see that the PMF of the distribution of

rk𝜋𝑗 (𝑐) involves𝑛!/((𝑛−𝑙)!𝑙 !) terms of summation (with𝑛 = |𝐴 𝑗 (𝑐) |
and 𝑙 ∈ {1, · · · , 𝜑 𝑗 (𝑐)−1}), which poses an extensive computational

burden. While a recursive formula exists in the literature [32], the

complicated form w.r.t. P𝜋
𝑐′, 𝑗 poses significant challenges when we

treat these probabilities as a function of 𝜋 (or its M𝜋
C ). To avoid

this, we instead optimize the following lower bound on the original

objective SW(𝜋), which only requires a mild condition on the

examination function and is much easier to compute and optimize.

theoremuti If the examination function 𝑣 (·) is convex, the fol-
lowing expression lower bounds the social-welfare objective of the

stochastic ranking policy 𝜋 :

SW(𝜋) :=
∑
𝑐∈C

∑
𝑗 ∈J

𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)𝑣
(
1 +

∑
𝑐′∈𝐴 𝑗 (𝑐)

𝑓𝑐′ ( 𝑗)e𝑇𝑗 𝑀
𝜋
𝑐′v

)
e𝑇𝑗 𝑀

𝜋
𝑐 v (8)

Proof. The proof is based on the convexity of 𝑣 and the simple

form of the expectation of the Poisson Binomial random variable.

SW(𝜋) =
∑
𝑐∈C

∑
𝑗 ∈J

(
𝑓𝑐 ( 𝑗)e𝑇𝑗 𝑀

𝜋
𝑐 v

)
𝑔 𝑗 (𝑐)E

[
𝑣
(
rk𝜋𝑗 (𝑐)

) ]
≥

∑
𝑐∈C

∑
𝑗 ∈J

(
𝑓𝑐 ( 𝑗)e𝑇𝑗 𝑀

𝜋
𝑐 v

)
𝑔 𝑗 (𝑐)𝑣

(
E
[
rk𝜋𝑗 (𝑐)

] )
=
∑
𝑐∈C

∑
𝑗 ∈J

𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)𝑣
(
1 +

∑
𝑐′∈𝐴 𝑗 (𝑐)

𝑓𝑐′ ( 𝑗)e𝑇𝑗 𝑀
𝜋
𝑐′v

)
e𝑇𝑗 𝑀

𝜋
𝑐 v

(9)

The inequality comes from Jensen’s inequality for the convex 𝑣 (·).
The final equality is based on the expectation of the rk𝜋𝑗 (𝑐). □

It is worth noting that convexity of 𝑣 is not restrictive, since

most of the commonly used examination models like 𝑣 (𝑥) = 1/𝑥
and 𝑣 (𝑥) = 1/log

2
(1 + 𝑥) satisfy this condition.

Now we are ready to formulate the main optimization problem,

which optimizes the tractable social-welfare-aware objective SW(𝜋)

over the set of doubly stochastic matrices, one for each candidate:

maximize

M𝜋
C :={𝑀

𝜋
𝑐 }𝑐∈C

∑
𝑐∈C

∑
𝑗 ∈J

𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)𝑣
(
1 +

∑
𝑐′∈𝐴 𝑗 (𝑐)

𝑓𝑐′ ( 𝑗)e𝑇𝑗 𝑀
𝜋
𝑐′v

)
e𝑇𝑗 𝑀

𝜋
𝑐 v

s. t. 1𝑇𝑀𝜋
𝑐 = 1𝑇 , 𝑀𝜋

𝑐 1 = 1,∀𝑐 ∈ C
(10)

Multiple approaches can be used to optimize Equation (10). One

option is projected gradient descent, where the projection of any

positive matrix into the set of doubly stochastic matrices can be

computed by the Sinkhorn-Knopp Algorithm [35, 40], which is

known to minimize the KL divergence of any nonnegative matrix

to the Birkhoff Polytope [40]. An alternative is conditional gradient

descent. Since the set of doubly stochasticmatrices is convex, we can

utilize any convex optimization solver to find the descent direction

efficiently. In our experiments, we use the Frank-Wolfe approach

(Algorithm 1). For specific examination functions, more specialized

algorithms exists. For example, for 𝑣 (𝑥) = 1/𝑥 the optimization

problem in Equation (10) becomes a fractional program that can be

optimized with an iterative convex-concave procedure.

Algorithm 1: Social-Welfare Optimization via Frank-Wolfe

Result: the doubly stochastic matrices: M𝜋
C

Input: relevance 𝑓𝑐 (·) and 𝑔 𝑗 (·), examination function 𝑣 (·),
stopping criterion 𝜖 , timesteps 𝑇 , learning rate 𝜂𝑡 ;

Initialize𝑀𝜋
𝑐 = 11𝑇 /|J |,∀𝑐 ∈ C;

for 𝑡 = 0, 1, · · · ,𝑇 do
𝑆∗C ∈ argmin𝑆C −∇SW(M

𝜋
C)

𝑇 𝑆C ;

1𝑇 𝑆𝑐 = 1𝑇 , 𝑆𝑐1 = 1,∀𝑐 ∈ C, 𝑆C = {𝑆𝑐 }𝑐∈C ;
𝑀𝜋
C ← (1 − 𝜂𝑡 )M

𝜋
C + 𝜂𝑡𝑆

∗
C

end

4 EXPERIMENTS
In this section, we empirically evaluate several key properties of

our approach. We first present experiments on synthetic data which

allows us to vary the properties of the two-sided markets to explore

the robustness of themethod. In addition, we also assess our method

on real-world datasets for external validity, including a benchmark

dataset from a dating platform, and a new dataset from a virtual-

conference networking-recommendation system we built.

4.1 Analysis on Synthetic Data
To examine how our method performs in comparison to baselines

over a range of matching markets with different characteristics,

we create synthetic datasets as follows. We construct matching

markets with 𝑛 employers and 1.5𝑛 job candidates to avoid unre-

alistic symmetry, and other levels of asymmetry would also work

here. In the simplest case, we generate relevance probabilities
¯𝑓𝑐 ( 𝑗)

and 𝑔 𝑗 (𝑐) through independent and uniform draws from [0, 1].
We refer to this as the random setting, but also consider more

structural preferences. One type of structure is crowding on some

employers and candidates. To create a setting with crowding, we

rank employers and candidates in arbitrary order and name them

𝑗1, 𝑗2, · · · , 𝑗 |J | and 𝑐1, 𝑐2, · · · , 𝑐 |C | . For the candidate-side relevance,
we linearly interpolate the relevance probability in [0, 1] and define
˜𝑓𝑐 ( 𝑗𝑖 ) = 1 − 𝑖−1

|J |−1 identically for all 𝑐 so that the relevances of a
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Figure 2: Results on synthetic dataset. The parameters are (𝜆 = 0.5, random, 𝑣 (𝑥) = 1/𝑥 , 𝑛 = 100), unless stated otherwise. The
standard errors are on the order of 1𝑒 − 2 and invisible in the graph.

fixed employer are the same to all candidates. For the employer-

side relevance, we similarly take 𝑔 𝑗 (𝑐𝑖 ) = 1 − 𝑖−1
|C |−1 for all 𝑗 . To

adjust the level of crowding, we take the convex combination of

the random setting and the fully crowded setting with parameter 𝜆:

𝑓𝑐 ( 𝑗) := (1 − 𝜆) ¯𝑓𝑐 ( 𝑗) + 𝜆 ˜𝑓𝑐 ( 𝑗) and 𝑔𝑐 ( 𝑗) := (1 − 𝜆)𝑔𝑐 ( 𝑗) + 𝜆𝑔𝑐 ( 𝑗). If
not mentioned otherwise, we use 𝜆 = 0.5 in the experiments, as well

as a market size of𝑛 = 100 and the examination function 𝑣 (𝑥) = 1/𝑥
for all candidates and employers. We measure the quality for vari-

ous ranking policies by the original social welfare objective SW(𝜋),
which we estimate using 10000 Monte Carlo simulations of the

matching market interaction process described in Section 2. We

simulate this process 10 times and report the average result.

We compare our Social-Welfare Ranking against the following

baselines. Naive-Relevance Ranking ranks employers by the one-

sided relevance 𝑓𝑐 ( 𝑗) for each candidate 𝑐 . Reciprocal-Relevance
Ranking ranks by the reciprocal relevance probability 𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)
for each candidate 𝑐 , representing a heuristic objective that accounts

for the reciprocal nature of a match while ignoring dependencies

between candidates. The closest problem setting from the literature

is that of selecting a set of users for recommendation in an online

dating platform [38]. While this method only computes sets, we

convert the solution into a ranking using the computed probability

of a user being included in the recommended set. We call this the

LP Baseline Ranking. This baseline relies on picking a parameter

𝑛𝑐 , which is the maximum number of messages that an applicant

could send and receive. To make sure we do not disadvantage this

baseline with a poor choice of 𝑛𝑐 , we compute the solutions for all

𝑛𝑐 ∈ {2, 5, 10, 20, 50, 100} and then pick the solution with the best

social welfare in hindsight.

How do the methods perform for different levels of crowding? With

crowding we refer to a situation where some employers become

overloaded with applications while others get unnoticed. The left-

most graph in Figure 2 shows the expected number of matches for

different levels 𝜆 of crowding. Especially for high levels of crowding,

the Social-Welfare Ranking performs substantially better than the

baselines. While the Naive-Relevance Ranking performs poorly for

all levels of crowding, the Reciprocal-Relevance Ranking performs

equivalent to the Social-Welfare Ranking when the preferences are

fully random and there is no crowding. However, the Reciprocal-
Relevance Ranking fails to account for collisions in high-crowding

settings, where it does no better than the Naive-Relevance Ranking.

The LP Baseline Ranking consistently underperforms the Social-
Welfare Ranking, which is not surprising since it optimizes sets and

not rankings. It performs particularly poorly under high-crowding

levels, where its constraints force lower ranked jobs to have a higher

probability of being shown to ensure that candidates/employers do

not send/receive too many applications.

How do the methods perform when there is structure in the rele-
vance probabilities? Most real-world problems will contain some

structure in the relevance probabilities 𝑓𝑐 ( 𝑗) and 𝑔 𝑗 (𝑐). We now

explore the two complementary cases where the candidate and

employer relevance probabilities are either similar to each other or

the reverse of each other. To construct similar two-sided relevances,
we take 𝑔 𝑗 (𝑐) = min{max{ ¯𝑓𝑐 ( 𝑗) + 𝑒, 0}, 1} with 𝑒 ∼ N(0, 0.2). For
the reversed two-sided relevances, we take 𝑔 𝑗 (𝑐) = min{max{1 −
¯𝑓𝑐 ( 𝑗) + 𝑒, 0}, 1} with 𝑒 ∼ N(0, 0.2). For the random two-sided rel-

evances, we use the construction already introduced above. The

results are shown in the second plot of Figure 2. As the level of

asymmetry moves from reverse to similar, the expected number of

matches for all methods increases as expected. Moreover, for all

relevance structures, Social-Welfare Ranking consistently achieves

substantially higher social welfare than the baseline methods.

How does the examination function influence the relative perfor-
mance? The examination function 𝑣 (·) models how many results

people are able or willing to browse. A steep drop-off in examina-

tion probability, like 𝑣 (𝑥) = 1/𝑒𝑥−1, means that they are likely to

only evaluate the top few results. A flat examination function, such

as 𝑣 (𝑥) = 1

log(1+𝑥) , means that they are likely to go further down.

The third plot in Figure 2 shows the expected number of matches

as we change the examination function. Unsurprisingly, a flatter

examination function leads to more matches and little difference

between the methods, since results are likely to be discovered no

matter where they are placed in the ranking. For the steepest ex-

amination function, the advantage of the Social-Welfare Ranking
over the baselines is largest, and it almost doubles the number of

matches compared to the Reciprocal-Relevance Ranking.
How does the size of the markets affect the methods? In this experi-

ment, we vary the size of market to understand how this affects the

effectiveness of the methods. Results are shown in the rightmost

plot of Figure 2. As market size increases, all the ranking methods
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Figure 3: Number of candidates/employers (y-axis) that derive a specific amount of utility (x-axis) from the recommendations.

Table 1: Social Welfare (± two stderr) on real-world datasets.

Dataset Networking Online Dating

Naive-Relevance Ranking 604.0 ± 0.11 844.0 ± 0.10

Reciprocal-Relevance Ranking 763.8 ± 0.06 957.2 ± 0.12

LP Baseline Ranking 456.9 ± 0.52 807.9 ± 0.69

Social-Welfare Ranking 824.1 ± 0.18 1199.2 ± 0.14

achieve higher utility, which is expected since there are more oppor-

tunities for matches. More interestingly, the relative performance

among the methods is largely unaffected by market size.

4.2 Validation on Real-World Data
We also validated our method on two real-world datasets. First,

we collected a new dataset
3
by launching a networking recom-

mendation system for a major computer science conference. The

goal was to help participants find other participants that they may

want to interact with. This recommendation system fits naturally

in the two-sided matching markets framework as each user acts

proactively by sending messages, scheduling meetings, etc. to other

users and the recommendation is successful if the other user replies

positively. To account for the fact that each user can serve as both

the proactive side (initiate interaction) and the reactive side (reply

to the messages), we put each of the 925 users on both sides of

the market, with imputed asymmetric two-sided relevances. The

imputed relevance is learned by an importance-weighted logistic

regression on the observed interaction data. We tested the perfor-

mance of various ranking algorithms for this data using 𝑣 (𝑥) = 1/𝑥
as the examination function (results for other examination func-

tions follow a similar trend). To reduce computational complexity,

we use a two-stage ranking procedure. We first identify the top

100 results based on their reciprocal relevance, and only re-rank

those to maximize social welfare. The ranking after the top 100 is by

reciprocal relevance. Results over 10 runs are shown in Table 1. The

substantial improvement over baseline algorithms verifies that the

proposed approach can provide significant benefit in realistic appli-

cations. Beyond this overall improvement in social welfare, we find

increased individual utility for more than 88% of the participants,

which we further discuss in the following section on fairness.

As a second real-world benchmark, we tested our method on

data from the online dating service Libimseti [42]. The dataset con-

tains ratings given by a user to other users in the system. We select

500 males and 500 females that have given the most ratings to other

users and impute any missing rating using the alternating least

squares (ALS) procedure [24], making the simplifying assumption

3
This dataset is available at https://github.com/bayoumi17m/SW-matching-markets

that females will only rate males and vice versa. Again, we evalu-

ate the performance of various algorithms using 𝑣 (𝑥) = 1/𝑥 , and
use the same two-stage ranking procedure for the Social-Welfare
Ranking. Results are shown in the third column of Table 1. Again,

the Social-Welfare Ranking achieves the highest social welfare and

exceeds the baseline algorithms by a large margin.

4.3 Impact on Individual Fairness, Adoption
and Retention

The issue of fairness is more complex in matching markets than

in conventional applications of ranking systems, given the com-

plex dependencies between the individuals. While our objective of

maximizing social welfare recognizes the societal importance and

impact of many matching markets, we also examined its impact

on individual fairness. Figure 3 plots the histograms of individual

utilities for different ranking algorithms on both the synthetic and

real-world datasets. On all datasets, the Social-Welfare Ranking dis-

tributes individual utility more equally compared to the baselines.

Specifically, the fraction of users in the lowest utility bin is reduced

by the Social-Welfare Ranking, leading to a more equitable distri-

bution of utility. However, we argue that adding explicit fairness

constraints is still useful, and that our optimization-based frame-

work is well-suited for including statistical parity or merit-based

exposure constraints [33] in future work. Beyond fairness, we also

briefly discuss the need for future work on strategic behavior, such

as adoption and retention in Appendix 6.1.

5 CONCLUSIONS
We have formulated the problem of ranking in the two-sided match-

ingmarkets with the objective of maximizing social welfare in terms

of the total number of matches. To make this problem tractable,

we identified a lower bound and showed how it can be optimized

effectively. This results in the first ranking algorithm that is able

to jointly optimize personalized rankings that take into account

mutual preferences and limited capacity. In experiments on both

synthetic and real-world datasets, we find that the proposed rank-

ing algorithm can consistently achieve the highest social welfare

in comparison to existing baselines. Finally, we also outlined direc-

tions for future work on strategic behavior and fairness guarantees

for ranking systems in matching markets.
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6 APPENDICES
6.1 Discussion on Adoption and Retention
In this section, we want to at least briefly discuss the need for future

work on strategic behavior and fairness guarantees for rankings

in matching markets. We posit that these issues are even more

important than for ranking systems in conventional markets, since

formatchingmarkets the rankings and the actions of all participants

shape the utilities of each individual in complex and interdependent

ways. This is true for any ranking system applied to matching

markets, whether it optimizes social welfare, any other objective,

or does not do any explicit optimization at all.

To formalize strategic behavior, we view each candidate 𝑐 ∈ C in

themarket as an independent player that can choose among ranking

policies 𝜋 (e.g., different recommender systems) or equivalently

their doubly stochastic matrices𝑀𝜋
𝑐 . For each player 𝑐 , the payoff

𝑅𝑐 (𝑀𝜋
𝑐 ,

⋃
𝑐∈C\𝑐 𝑀

𝜋 ′

𝑐
) is the tractable lower bound of total expected

number of matches that player 𝑐 could get, which is a function of

player 𝑐’s action𝑀𝜋
𝑐 , and the other players’ actions

⋃
𝑐∈C\𝑐 𝑀

𝜋 ′

𝑐
.

𝑅𝑐 (𝑀𝜋
𝑐 ,

⋃
𝑐∈C\𝑐

𝑀𝜋 ′

𝑐
) =

∑
𝑗 ∈J

𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐)𝑣
(
1 +

∑
𝑐′∈𝐴 𝑗 (𝑐)

𝑓𝑐′ ( 𝑗)e𝑇𝑗 𝑀
𝜋 ′
𝑐′ v

)
e𝑇𝑗 𝑀

𝜋
𝑐 v

Adoption. The first question we consider is whether candidates

will want to participate in the social-welfare optimal system, or

whether they will prefer the naive ranking 𝑀𝜋𝑛

𝑐 which ranks by

their own relevance probabilities 𝑓𝑐 ( 𝑗)? As strategic agents, candi-
dates will switch to their social-welfare optimal ranking 𝑀𝜋

𝑐 , if it

increases their utility compared to𝑀𝜋𝑛

𝑐 . If we assume that during

the initial fielding of the system all candidates 𝑐 ′ ∈ C use 𝑀𝜋𝑛

𝑐′ ,

we may want to add the following constraints to our optimization

objective, enforcing that all agents have an 𝜖-incentive to switch.

𝑅𝑐 (𝑀𝜋
𝑐 ,

⋃
𝑐∈C\𝑐

𝑀𝜋𝑛

𝑐
) ≥ 𝑅𝑐 (𝑀𝜋𝑛

𝑐 ,
⋃

𝑐∈C\𝑐
𝑀𝜋𝑛

𝑐
) + 𝜖 (11)

It is worth noting that these constraints are linear in 𝑀𝜋
𝑐 . Hence,

we can simply incorporate them into the Frank-Wolfe Algorithm.

Retention. The second question considers the behavior of the

candidates once the system has been widely adopted. In particular,

do candidates have an incentive to abandon the system and return

to their naive ranking𝑀𝜋𝑛

𝑐 ?

To avoid this, the system ranking 𝑀𝜋
𝑐 should provide a larger

utility than𝑀𝜋𝑛

𝑐 given that all other candidates staywith the system,

which could be enforced by adding additional constraints of the

form

𝑅𝑐 (𝑀𝜋
𝑐 ,

⋃
𝑐∈C\𝑐

𝑀𝜋
𝑐
) ≥ 𝑅𝑐 (𝑀𝜋𝑛

𝑐 ,
⋃

𝑐∈C\𝑐
𝑀𝜋
𝑐
) + 𝜖. (12)

Unfortunately, this constraint set is not convex and it is difficult

to use Algorithm 1 directly. However gradient descent ascent (GDA)

could be used to find the solution of the Lagrangian dual form of

the problem.

Experimental Examination. In this experiment, we examine how

does the social-welfare optimized ranking affect individual utilities.

As discussed in aforementioned paragraphs, the individual utili-

ties of the candidates can affect adoption, retention and fairness

of the ranking system. The first row of Figure 4 considers the case
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Figure 4: Histogram of individual utility gains on synthetic
data with 𝜆 = 0.5, random, 𝑣 (𝑥) = 1/𝑥 and 𝑛 = 100

(left column) and two real-world datasets: Networking Rec-
ommendation (middle column) and Online Dating (right
column). (Top) Gain when all users switch from Naive-
Relevance Ranking to Social-Welfare Ranking. (Middle) Gain
from adopting Social-Welfare Ranking even though others
are not. (Bottom) Gain from not abandoning Social-Welfare
Ranking if all others keep using it.

where all users switch from using the Naive-Relevance Ranking to

using the Social-Welfare Ranking on the synthetic dataset. It shows

a histogram of candidates according to how much they gain from

this switch in terms of expected number of matches. Surprisingly,

none of the candidates is worse off in this switch for the synthetic

dataset. Nevertheless, there are still potential fairness issues and

we see on the real-world datasets that this uniformity in gain is

not always guaranteed. The second row considers the gain from

adoption, which is also non-negative for all candidates on the syn-

thetic dataset and a large fractional of candidates on the networking

recommendation dataset. However, the proportion of positive gains

on the online dating dataset is pretty low. This calls for interesting

future work on incorporating adoption in recommender system de-

sign. Finally, the third row shows that all candidates in the synthetic

dataset (or most candidates for real-world datasets) are better off

staying in the system than switching back to the Naive-Relevance
Ranking. We also explored other variants of our synthetic data,

and generally found that the Social-Welfare Ranking is beneficial

for most users. This is pretty encouraging for future work, since

it suggests that stronger guarantees on individual utilities may be

achievable with little drop in social welfare.

6.2 Proof of Theorem 3
The Θ(𝑛) gap in Theorem 3 is achieved by identifying the spe-

cific instance of the two-sided matching market (particular choice

of relevance probability and examination model). Consider the

following two-sided market: there are 𝑛 employers (denoted as

{ 𝑗1, 𝑗2, · · · , 𝑗𝑛}) and 𝑛 candidates (denoted as {𝑐1, 𝑐2, · · · , 𝑐𝑛}), with
𝑛 ≥ 2. On the candidate side, they have highly correlated rele-

vance probability over jobs, while each job has different relevance

probability over candidates. The employers’ relevance probability

ordering (ordered by descending order of 𝑔 𝑗 (·)) is given by the

left circulant matrix and the top 3 employers of the candidates’

relevance probability list (ordered by descending order of 𝑓𝑐 (·)) is
given in the right table:
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𝑗1 𝑐1 𝑐2 𝑐3 · · · 𝑐𝑛
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.

.

.

.
.
.
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.
.
.
.

.
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.
.
.
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.
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𝑐𝑘 𝑗1 𝑗𝑘 𝑗𝑘−1
.
.
.

.

.

.
.
.
.

.

.

.

𝑐𝑛 𝑗1 𝑗𝑛 𝑗𝑛−1

and

for each candidate 𝑐𝑖 , for the employers 𝑗 that not in the top 3 posi-

tion of 𝑐𝑖 ’s relevance list, we set arbitrary 𝑓𝑐𝑖 ( 𝑗) ∈ [0, 𝑓𝑐𝑖 (𝜑−1𝑐𝑖 (3))].
Given this, we define the cardinal relevance probability 𝑓𝑐 (·) and
𝑔 𝑗 (·) from the above ordinal ordering as:

𝑓𝑐𝑖 ( 𝑗𝑘 ) =
𝑛 − (𝜑𝑐𝑖 ( 𝑗𝑘 ) − 1)

𝑛
𝑔 𝑗𝑘 (𝑐𝑖 ) =

𝑛 − (𝜑 𝑗𝑘 (𝑐𝑖 ) − 1)
𝑛

The examinationmodel𝐸𝑚 in this case is given by 𝑣 (𝑥) = 0.1𝑥−1, if 𝑥 ≤
𝑚 and 0 otherwise. This mimics the scenario that even as the market

size 𝑛 grows, people tends to only examine the top𝑚 recommenda-

tions due to time and resource constraints. Here we choose𝑚 = 2

for simplicity in the proof, but it could be generalized to any fixed

𝑚. As candidates only examine the top 2 positions, only the top 2

positions in our rankings do matter. Therefore for all rankings we

compare in the proof, we only list the top 2 positions in the ranking.

The naive-relevance based ranking 𝜋𝑛 only recommends the em-

ployer to candidates by their relevance to the candidate. Therefore

𝜋𝑛 is a deterministic policy based on the following permutation 𝜎𝑛 :

𝑟𝑎𝑛𝑘 ( 𝑗1 |𝜎𝑛 (𝑐1)) = 1 𝑟𝑎𝑛𝑘 ( 𝑗2 |𝜎𝑛 (𝑐1)) = 2

𝑟𝑎𝑛𝑘 ( 𝑗1 |𝜎𝑛 (𝑐𝑖 )) = 1 𝑟𝑎𝑛𝑘 ( 𝑗𝑖 |𝜎𝑛 (𝑐𝑖 )) = 2 ∀𝑖 ≥ 2

(13)

Now we analyze the utility SW(𝜋𝑛), and it is worth noting that the

employers will only examine the top 2 positions. Then we have:

U𝑐1 (𝜋𝑛) = P(𝑌𝜋𝑛

𝑐1, 𝑗1
) + P(𝑌𝜋𝑛

𝑐1, 𝑗2
)

= 1 + 0.1(𝑛 − 1)
𝑛

× 1

𝑛

(
1 − 0.1(𝑛 − 1)

𝑛
+ 0.10.1(𝑛 − 1)

𝑛

)
≤ 1.1 + 0.9

𝑛

U𝑐2 (𝜋𝑛) =
0.1(𝑛 − 1)

𝑛
+ 0.1(𝑛 − 1)

𝑛
=

0.2(𝑛 − 1)
𝑛

(14)

For candidate 𝑐𝑖 with 𝑖 ≥ 3, we have

U𝑐𝑖 (𝜋𝑛) = P(𝑌𝜋𝑛

𝑐𝑖 , 𝑗1
) + P(𝑌𝜋𝑛

𝑐𝑖 , 𝑗𝑖
) = 0.1(𝑛 − 1)

𝑛
(15)

Then the social welfare generated by policy 𝜋𝑛 is:

SW(𝜋𝑛) ≤ 1.1 + 0.9

𝑛
+ 0.2(𝑛 − 1)

𝑛
+ 0.1(𝑛 − 1) (𝑛 − 2)

𝑛
≤ 1 + 0.1𝑛 + 1

𝑛
(16)

Now we consider a different deterministic policy 𝜋𝑠 based on the

following permutation 𝜎𝑠 :

𝑟𝑎𝑛𝑘 ( 𝑗1 |𝜎𝑠 (𝑐1)) = 1 𝑟𝑎𝑛𝑘 ( 𝑗2 |𝜎𝑠 (𝑐1)) = 2

𝑟𝑎𝑛𝑘 ( 𝑗𝑖 |𝜎𝑠 (𝑐𝑖 )) = 1 𝑟𝑎𝑛𝑘 ( 𝑗𝑖−1 |𝜎𝑠 (𝑐𝑖 )) = 2 ∀𝑖 ≥ 2

(17)

Similarly we analyze the utility SW(𝜋𝑠 ) and we have:

U𝑐1 (𝜋𝑠 ) = P(𝑌𝜋𝑠

𝑐1, 𝑗1
) + P(𝑌𝜋𝑠

𝑐1, 𝑗2
)

= 1 + 0.1(𝑛 − 1)
𝑛

× 1

𝑛

(
1 − (𝑛 − 1)

𝑛
+ 0.1 (𝑛 − 1)

𝑛

)
≥ 1 + 0.01(𝑛 − 1)

𝑛2

(18)

For candidate 𝑐2, we have

U𝑐2 (𝜋𝑠 ) = P(𝑌𝜋𝑠

𝑐2, 𝑗2
) + P(𝑌𝜋𝑠

𝑐2, 𝑗1
) = (𝑛 − 1)

𝑛
+ 0.12 (𝑛 − 1)

𝑛
=

1.01(𝑛 − 1)
𝑛
(19)

For candidate 𝑐𝑖 with 𝑖 ≥ 3, we have

U𝑐𝑖 (𝜋𝑠 ) = P(𝑌𝜋𝑠

𝑐𝑖 , 𝑗𝑖
) + P(𝑌𝜋𝑠

𝑐𝑖 , 𝑗𝑖−1
)

=
(𝑛 − 1)

𝑛
+ 0.1(𝑛 − 2)

𝑛

(
1 − 𝑛 − 1

𝑛
+ 0.1(𝑛 − 1)

𝑛

)
≥ 𝑛 − 1

𝑛

(20)

Then the social welfare generated by policy 𝜋𝑠 is:

SW(𝜋𝑠 ) ≥ 1 + 0.01(𝑛 − 1)
𝑛2

+ 1.01(𝑛 − 1)
𝑛

+ (𝑛 − 1) (𝑛 − 2)
𝑛

≥ 𝑛 − 0.99 + 0.99

𝑛

(21)

Now we denote the optimal solution for social welfare objective as

𝜋∗. Therefore, we have SW(𝜋∗) −SW(𝜋𝑛) ≥ SW(𝜋𝑠 ) −SW(𝜋𝑛) =
Θ(𝑛).

6.3 Additional Details on Dataset and
Implementation

Datasets. We calculate the two-sided relevances in the network-

ing recommendation dataset as follows. In the recommendation

phrase, the recommendation system estimated relevance scores

between all registered users based on features likes similarity of

published articles, past co-authorship, past citations, etc. For each

user, the system recommended a ranked list of 150 participants,

and we collected different forms of positive interactions between

them (such as thumb up, send a message, schedule a meeting). In

the relevance imputation phrase, we use an importance-weighted

(to de-bias position bias) logistic regression with 𝐿2 regulariza-

tion to learn the relevance function, which allows us to impute

directional relevance probabilities between all users. Curiously,

the relevance probabilities have substantial directionality, with

faculty and postdocs being "crowded". However, the expected num-

ber of individuals that each user reaches out is rather uniform

between groups. For the online dating dataset , the license could

be accessible at http://web.archive.org/web/20180402034337/http:

//www.occamslab.com/petricek/data/.

Implementation. For all experiments, the relevance-based rank-

ing is a deterministic ranking based on descending order of 𝑓𝑐 ( 𝑗),
and the reciprocal-based ranking is a deterministic ranking based

on descending order of 𝑓𝑐 ( 𝑗)𝑔 𝑗 (𝑐). For our algorithm, Social-Welfare
Ranking, we use Algorithm 1 with 50 timesteps, stopping criterion

10
−3
, and constant learning rate 𝜂𝑡 = 0.2. We also tested a decaying

learning rate 𝜂𝑡 = 1

𝑡+2 and the performance was similar to the

constant learning rate. The convex solver we use for finding the

gradient direction within Algorithm 1 is CVXPY[8] with SCS. All

experiments are performed on a Linux computer cluster.

http://web.archive.org/web/20180402034337/http://www.occamslab.com/petricek/data/
http://web.archive.org/web/20180402034337/http://www.occamslab.com/petricek/data/

	Abstract
	1 Introduction
	1.1 Overview of Results
	1.2 Related Work

	2 A Framework for Ranking in Matching Markets
	2.1 Candidates Act (Proactive)
	2.2 Employers Act (Reactive)
	2.3 Utility and Social Welfare

	3 Optimizing Rankings in Matching Markets
	3.1 A Tractable Optimization Objective

	4 Experiments
	4.1 Analysis on Synthetic Data
	4.2 Validation on Real-World Data
	4.3 Impact on Individual Fairness, Adoption and Retention

	5 Conclusions
	References
	6 Appendices
	6.1 Discussion on Adoption and Retention
	6.2 Proof of Theorem 3
	6.3 Additional Details on Dataset and Implementation


