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ABSTRACT

Rankings have become the primary interface in two-sided online
markets. Many have noted that the rankings not only affect the satis-
faction of the users (e.g., customers, listeners, employers, travelers),
but that the position in the ranking allocates exposure — and thus
economic opportunity — to the ranked items (e.g., articles, products,
songs, job seekers, restaurants, hotels). This has raised questions
of fairness to the items, and most existing works have addressed
fairness by explicitly linking item exposure to item relevance. How-
ever, we argue that any particular choice of such a link function
may be difficult to defend, and we show that the resulting rankings
can still be unfair. To avoid these shortcomings, we develop a new
axiomatic approach that is rooted in principles of fair division. This
not only avoids the need to choose a link function, but also more
meaningfully quantifies the impact on the items beyond exposure.
Our axioms of envy-freeness and dominance over uniform ranking
postulate that for a fair ranking policy every item should prefer
their own rank allocation over that of any other item, and that no
item should be actively disadvantaged by the rankings. To compute
ranking policies that are fair according to these axioms, we propose
anew ranking objective related to the Nash Social Welfare. We show
that the solution has guarantees regarding its envy-freeness, its
dominance over uniform rankings for every item, and its Pareto
optimality. In contrast, we show that conventional exposure-based
fairness can produce large amounts of envy and have a highly dis-
parate impact on the items. Beyond these theoretical results, we
illustrate empirically how our framework controls the trade-off
between impact-based individual item fairness and user utility.

CCS CONCEPTS

« Information systems — Probabilistic retrieval models; Social
recommendation; « Computing methodologies — Ranking.
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1 INTRODUCTION

Ranking interfaces are widely used to mediate online market plat-
forms, ranging from booking a hotel to finding qualified employees.
In these two-sided markets, not only the users (e.g., travelers and
employers) obtain utility from the rankings, but the ranking policy
also has a crucial impact on the items being ranked (e.g., hotels
and job seekers). Many have noted that conventional ranking ap-
proaches [26], which exclusively optimize the utility to the users,
may be unfair to the items. In particular, conventional rankings
can give items with similar merit (i.e., relevance) very dissimilar
exposure and thus economic opportunity [3, 27, 32].

To address this disparity of treatment, existing works on fairness-
in-ranking explore how to explicitly link merit to the exposure that
is allocated to individual items or groups of items [3, 23, 27, 28, 33,
35, 36]. Concrete definitions of exposure-based fairness were intro-
duced in the seminal works by Singh and Joachims [27] and Biega
et al. [3], enforcing constraints to allocate exposure proportional to
relevance in expectation over groups or amortized over a sequence
of rankings. This fairness-of-exposure approach has since been
extended to end-to-end policy learning [24, 28, 33], dynamic rank-
ing [23, 35], evaluation metrics [14], and contextual bandits [20, 32].
However, a key criticism of exposure-based fairness is the necessity
to select a function that links merit and exposure, and there is typi-
cally no justification that this relationship should be linear — nor
would any other choice be more defendable. Furthermore, we show
that the fairness-of-exposure approach can still lead to rankings
that violate basic fairness principles.

To overcome these shortcomings, we develop an axiomatic ap-
proach to fairness in ranking that is rooted in principles of fair
division. In particular, we provide a novel formulation of fairness in
ranking as a resource allocation problem, where the resources are
the positions in a ranking that need to be fairly divided among the
items. To concisely define fairness, we propose envy-freeness and
dominance over uniform ranking as two fairness axioms that parallel
widely accepted concepts from the fair-division literature [8, 18, 31].
Envy-freeness requires that no item can gain better impact by ex-
changing its position allocation with another item in a market.
Dominance over uniform ranking requires that every item should
gain better impact than under the uniform random ranking policy,
ensuring that all items draw some benefit from participating in the
platform. This axiomatization not only avoids the need for an arbi-
trary link function between relevance and exposure, it also directly
captures the impact (e.g. clicks, conversions, revenue, streams) of
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the ranking on the items, not just their visibility as in the exposure-
based framework. Prior attempts to extend fairness-of-exposure
to individual fairness of impact have already been shown to lead
to degenerate ranking policies [27], making ours the first viable
formulation of impact-based individual item fairness.

The key remaining problem is to find an algorithm for com-
puting rankings that are guaranteed to fulfill the fairness axioms,
and that also guarantee a notion of optimality. To this effect, we
introduce a new objective for optimizing rankings that is related to
the Nash Social Welfare (NSW). Under our formulation, maximiz-
ing the NSW is a convex program that is efficiently solvable. We
prove that the ranking policy that maximizes the NSW-objective has
guarantees regarding the envy-freeness of the position allocations
and its dominance over the uniform ranking policy for each item.
Furthermore, the rankings are Pareto optimal. We also develop an
extension of the NSW called the a-NSW, which enables a steerable
trade-off between user utility and item fairness through a single
hyper-parameter. Beyond these conceptual and methodological
contributions, we conduct extensive experiments on synthetic and
real-world data. We find that conventional exposure-based fairness
can produce large amounts of envy and disparate impact on the
items. In contrast, the proposed NSW-maximizing policy achieves
an almost envy-free impact distribution even with noisy relevance
predictions, and provides more equitable benefit to all items.

2 RELATED WORK

Fair Ranking in Two-Sided Markets. There exist several notions
of fairness in ranking, ranging from the ones based on the composi-
tion of a prefix of the ranking [1, 11, 12, 34] to the exposure-based
item fairness. The latter argues that fairness in ranking corresponds
to how ranking policies allocate exposure to individual items or
groups of items based on their merit [23, 27-29, 33, 35, 36]. Within
the exposure-based framework, Singh and Joachims [27] introduce
a post-processing algorithm to allocate exposure for protected item
groups proportional to their merit. Following Singh and Joachims
[27], other fairness-of-exposure methods have been proposed such
as end-to-end policy learning [28, 33] and dynamic ranking algo-
rithms [23, 35]. Instead of guaranteeing group fairness, there is also
a line of work aiming at achieving a fair allocation of exposure
among individual items [3, 7]. Biega et al. [3] solve an integer pro-
gram and optimize amortized share of exposure over time among
each item. Bower et al. [7] propose an optimal-transport-based
regularizer to enforce individual item fairness.

Although the exposure-based formulation is widely accepted for
both group and individual item fairness, there is no obvious choice
for how exposure should be linked to merit. Most studies require
exposure to be proportional to merit — but why not proportional
to merit squared or some other function? Indeed, no principled
justification has been given for any choice of the link function. Our
axiomatic approach overcomes this shortcoming, since it does not
rely on an arbitrary link function between exposure and merit, but
is solely based on the impact of the ranking on the items. Moreover,
we show that the existing exposure-based framework can create
a substantially disparate impact among individual items. While a
disparate impact constraint has been proposed to ensure group item
fairness [23, 27], imposing such constraints per item for individual
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fairness leads to the uniform random ranking policy [27]. We are the
first to formulate and enforce impact-based individual item fairness
in a meaningful way.

Fair Division. Fair division has been studied extensively in al-
gorithmic game theory [8, 18, 31]. The goal of this line of work
is to allocate a set of valuable — but limited — resources or goods
to the agents in a fair manner. The classical fairness desiderata
considered in this field are envy-freeness (EF) and proportional fair
share (PFS) [8, 18, 25]. EF requires that no agents prefer another
agent’s allocation of goods to their own. PFS means that every agent
receives 1/n of their utility over the entire set of goods, where n is
the number of agents. When the goods are divisible, maximizing
the Nash Social Welfare, the product of agent utilities, has been
considered compelling, because its solution ensures EF and PFS as
well as being Pareto optimal. In contrast, recent studies focus on
a more challenging problem of fairly allocating indivisible goods
(e.g., course seats in universities [9] or computational resources in a
cloud computing environment [6]). When the goods are indivisible,
no feasible allocation may satisfy EF or PFS [10]. Therefore, relaxed
versions of these axioms have been considered such as envy-freeness
up to one good (EF1) and maximin share guarantee (MMS) [8, 25].
For example, EF1 requires that any pairwise envy can be eliminated
by removing a single good from the envied agent’s allocation. An
allocation satisfying EF1 always exists for a broad class of utility
functions even in the case of indivisible goods [10].

The notion of EF has been adopted to fair machine learning
in binary classification [2]. This is because EF is intuitive and re-
quires no information beyond individuals’ utility functions, which
contrasts with other notions of fairness such as metric-based in-
dividual fairness [16]. Beyond binary classification, a few works
have applied the axioms in fair division to recommender system
applications. Patro et al. [25] map the fair recommendation problem
in two-sided markets to the problem of fairly allocating indivis-
ible goods, where the goods are the set of products. The goal of
Patro et al. [25] is then to ensure EF1 among users in terms of
their utility and MMS (a relaxed version of PFS) among items in
terms of their exposure allocation. Do et al. [15] consider the prob-
lem of auditing the unfair behavior of recommender systems with
respect to EF among users. Although these studies formulating
versions of EF in the context of recommender systems are related,
our contributions are unique in several ways. First, we focus on
achieving fairness of impact among individual items. In contrast,
Patro et al. [25] consider the item fairness in terms of exposure and
Do et al. [15] consider only the user-side fairness. In the following
sections, we argue that the exposure-based fairness can produce
a substantial amount of envy and a highly disparate impact. We
are the first to formulate and achieve impact-based fairness rather
than fairness-of-exposure in the context of individual fairness in
ranking. Second, we build on the exact notions of EF and PFS, while
Patro et al. [25] relax these fairness criteria and rely on EF1 and
MMS. We can formulate fairness in rankings as the problem of
fairly allocating divisible goods by considering a class of stochastic
ranking policies. Stochastic ranking policies have been adapted
in the fair ranking literature [14, 27, 28, 33], and we rely on this
stochastic formulation aiming for more desirable fairness criteria
than those of previous studies. Finally, our formulation is aware of
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the position bias in a ranking. Related studies [15, 25] do not take
into account position bias, which is an inevitable factor in dealing
with real-world ranking interfaces [21, 30].

3 AN AXIOMATIC APPROACH TO
INDIVIDUAL FAIRNESS IN RANKING

We consider the following class of ranking problems, where a two-
sided market platform has responsibilities to both users and items.

e On a news platform, each reader (user) receives a ranking of
news stories (items) as a digest of the previous day.

o On a hiring platform, each employer (user) receives a weekly
ranking of the most relevant job candidates (items) that were
added to the database.

e For a scientific conference, each reviewer (user) receives a
ranking of the most relevant submissions (items) during the
bidding process.

All problems have in common that the platform not only aims to
maximize the utility of the rankings to the users, but that it also
needs to be fair to the items. Specifically, the news providers would
like a fair share of the traffic for their items, the job candidates
deserve to get an adequate number of connections to relevant em-
ployers, and every paper should be given an appropriate chance of
finding knowledgeable reviewers.

All these problems are instances of batch-ranking problems,
where U = [m] is a set of users, and a ranking policy 7 aims
to optimally order a set of items 7 = [n] for each user u € U.
We assume the full-information setting, where we have access to
the true relevance labels (or their predictions) r(u, i) € Ry for all
user-item pairs. A ranking o is a permutation of the set of items
sampled from a ranking policy 7 (-|u), which is a distribution over
all possible rankings of the items. We consider the general case of
stochastic ranking policies, which includes deterministic ranking
policies as a special case. Stochastic ranking policies have been
utilized in fair ranking research to have fine-grained control over
the expected exposure allocation [14, 28, 33].

3.1 Utility to Users

Like in conventional ranking frameworks, we measure the utility
that a policy & provides to the users through a utility function of
the following form.

Do) r(ui)

iel

U(r) = Z Eo’»vn(-\u) (1

uel

o(i) is the rank of item i in ranking o, and e(-) casts the rank to
the exposure probability according to the position-based model
(PBM) [13]. This definition of utility captures widely-used additive
ranking metrics through the choice of e(-). For example, when

we define e(k) = %» the utility becomes DCG@K [19].
It is also possible to learn an application-specific e(-) from the
data [21]. We refer to a ranking policy that maximizes the utility
to the users as a utility-maximizing policy, which is defined as
Tmax = argmax iy U (7).

To avoid optimizing over the exponentially large space of rank-
ings, we utilize the fact that only the exposure probability e(-)
depends on the rank. This allows us to more concisely express the
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user utility as follows.

U(rn) = Z ZZe(k)r(u, DXT )

ueUiel k=1
where X7 is the tensor whose (u, i, k) element X:f,i,k =P(a(i) =
k|, u) denotes the marginal probability of item i being ranked at
the k-th position for user u under policy 7,! and X[ .« should be the
doubly stochastic matrix?. The benefit of using this representation
is to reduce the number of parameters needed to specify the effect
of policy 7. Specifically, for user u, we use only |7|? parameters
rather than the exponential number of possible rankings, as all
stochastic ranking policies with the same matrix have the same
user utility. This will allow us to optimize in the space of doubly
stochastic matrices. Given a doubly stochastic matrix, the Birkhoff-
von Neumann (BvN) decomposition can be used to efficiently find
a stochastic ranking policy that corresponds to the matrix [4, 27].

3.2 Impact on Items

While sorting the items by their probability of relevance maximizes
the utility to the users [26], many existing works have noted that
this naive treatment can lead to rankings that are unfair to the
items [3, 28, 33]. In particular, Biega et al. [3] measure similarity
between individual items by their amortized merit, and propose
a notion of fairness requiring that amortized exposure should be
distributed proportional to their amortized merit. This definition of
fairness aims at allocating exposure similarly between items with
similar merit. However, as we have already argued, this formula-
tion lacks a clear justification for why exposure should be linked
proportional to relevance — or linked via any other specific func-
tion. Furthermore, the items only indirectly care about exposure,
and they more directly care about the impact the ranking has on
them. For example, a ranking policy that predominantly shows men
for high-paying jobs and shows women for low-paying jobs can
perfectly obey fairness of exposure, but it clearly violates fairness
of impact.

We therefore focus on fairness of impact in this work, where
impact quantifies the effect that a ranking policy has on a specific
item i. To define impact, we build on an item-centric version of
the matrix Xzi’* whose (u, k) element is: X;Tik =P(o(i) = k|, u).
This matrix characterizes the allocation of pc’Js’itions, i.e., how big a
fraction of the k-th position in a ranking for user u goes to item i.
With this notation, we define the impact on each item as

n
Imp; (X[, ,) = Z Z i (u, k)XlZ.’k
uel k=1
vi(u, k) is an application-dependent impact function, which defines
how much impact (e.g., expected clicks, bookings, revenue) item i re-
ceives when it is ranked at the k-th position for user u. For ease of ex-
position, we will use the number of relevant users who see each item
under the PBM as the impact function, i.e., v;(u, k) = e(k)r(u, i).
Note that even with this specialization, impact remains more mean-
ingful than fairness of exposure, which does not differentiate be-
tween exposure to relevant and non-relevant users. Note that the

P(o(i) = k|m,u) = Egr(u) [I{o(i) = k}] where I{-} is the indicator function.
2The sum of each row and column is 1.
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Table 1: A Illustrative Ranking Problem showing the Exposure Allocations and Impact Fairness of Different Ranking Policies

(a) True Relevance Table (b) Max: U (7timax) = 1.30

(¢) Fair: U(7expo-fair) = 1.23

(d) Uniform: U (7ypir) = 1.00

| i1 i

| i i | i i

Exp;(Xewodair |yg) | 1.0 0.0
Exp; (X7 ewodiir |ug) | 03 0.7

Exp;(X™if lug) | 05 0.5
Exp,(X™f lug) | 0.5 05

| i i

: Exp;(X™max|ug) | 1.0 0.0
r(ui,i) | 0.8 0.3 Exp;(X™x|uz) | 1.0 0.0
r(ug,i) | 0.5 0.4

Exp;(X7mex) | 2.0 0.0

Exp;(XTewofar) | 13 0.7

Exp;(X™wif) | 1.0 1.0

Meriti ‘ 1.3 0.7 Impi(X”max ‘ 13 0.0

*,1,%

Tmp, (X< Fry \0.95 0.28 Imp; (X" ‘0.65 0.35

*,1,% *,1,%

user utility is equal to the sum of impacts under the specialization

U(r) = Z Impi(X:i’* ,
iel
making both equally measurable and comparable.

3.3 Fairness Axioms

We are now in a position to state axioms that ensure individual
fairness with respect to the impact on each item as quantified by
Imp; (X fl .)- Making connections to well-established principles of
fair division [8, 18, 22, 31], we treat the rank positions as the limited
resource to allocate, and impact Imp; (X fl ,) as the natural valuation
of the items for each resource allocation. We start with the axiom

of envy-freeness.

Definition 3.1. (Envy-Freeness) A ranking policy 7 is said to be
envy-free if no item prefers another item’s position allocation of r,
ie, Imp;(XT. ) > Impi(ij,*), Vi,jel.

#,1,%

An envy-free ranking policy ensures that no item would prefer
the positions allocated to another item over their own allocation. If
an allocation is envy-free, no item will want to switch allocations
with another item.

The second axiom is dominance over uniform ranking, which
requires that a fair ranking policy does not provide worse impact
Imp; (X fl ,) to any item than ¢, which samples every possible
permutation uniformly at random (uniform ranking policy).

Definition 3.2. (Dominance over Uniform Ranking) A ranking
policy r is said to dominate the uniform random policy m p; if 7
provides better or equal impact on every item compared t0 7T,p;f, e,

Impi(X” ) > Imp; (X”'"”f), Vi € I. Moreover, at least one item

#,1,% *,1,%

should gain impact strictly better than that under 1r,p;f.

We regard 7y, as a baseline policy, because it provides an
impact distribution that one can achieve without implementing any
optimization or policy learning procedure. If a policy makes some
items worse off than under 7, it inflicts active harm on those
items and they are likely to abandon the platform.

In addition to the aforementioned fairness desiderata, we also
want the ranking policy to be optimal in the following sense.

Definition 3.3. (Pareto Optimality) A ranking policy 7 is said to be
Pareto optimal if no alternative policy can make some items strictly
better off without making any others strictly worse off.

Pareto optimality ensures that the user utility, and equivalently
the sum of item impacts, cannot easily be improved. This codifies
that the policy should not needlessly sacrifice utility to the users

or aggregate impact to the items, and that there is no obviously
avoidable harm to any of the items.

3.4 Fairness of Exposure Violates Axioms

To motivate the need for new algorithms to achieve fairness of
impact, we now show in detail that the conventional fairness-of-
exposure framework can cause envy among the items and create
an unfair impact distribution in light of our axioms. Exposure-
based fairness imposes a constraint to allocate exposure propor-
tional to the amortized merit [3]. Here, we describe a more general
constraint [32], where merit is quantified through an application-
dependent link function f(-) > 0,

Exp;(XT) Exp;(X™)
f(Merit;) — f(Merit;)’

Vi,jelrl, (3)

where Merit; := ), cqq r(u, i) is the amortized merit, i.e., the rele-
vance of item i amortized over all users. In contrast, Exp;(X”) :=
Du Expi (X7 |u) = Xy Xg e(k)X, | is the total amount of exposure
allocated to item i under policy 7, i.e., the amortized exposure. The
link function f(-) maps the amortized merit to a positive merit
value. A typical choice is f(x) = x, which leads to a linear program
to optimize the rankings [3, 27, 28].

Algorithms for computing exposure-based fair rankings find a
doubly stochastic matrix that maximizes the utility to the users (or
equivalently the sum of impacts), subject to Eq. (3) as follows.

Texpo-fair
n
= argmax Z ZZe(k)r(u, i)X;[,i,k = ZImpi(Xfi’*) ,
(XT3 Yier uett ieT k=1 ier
Exp; (X Exp(X™)
XD PR e,
f(Merit;)  f(Meritj)
n
X:f,i,k =1, Y(u,i)
k=1
X;T,i,k =1, Y(u, k)
iel

0< Xff,i,k <1, Y(u,ik)

We use Texpo-fair to denote a policy that solves the above optimiza-
tion and call it the exposure-based fair ranking policy.

While widely used as the desideratum for fair ranking [3, 14,
20, 23, 27, 28, 33, 35, 36], the following provides a counterexample
which illustrates that a fair allocation of exposure cannot avoid
a disparate impact among individual items. Our counterexample
consists of two users (U = {uy,uz}) and two items (I = {iy, i2}).
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We know the true relevance labels of every user-item pair, which
is given in Table 1a. For simplicity, we also assume that only the
top-ranked item is exposed to the users (e(1) = 1,e(2) = 0). We
consider three ranking policies, (i) the utility-maximizing policy
Tmaxs (ii) the exposure-based fair ranking policy 7expo-fair» and, (iii)
the uniform random policy 7,;f.

Tables 1b to 1d provide the exposure allocation of the three
policies and how much impact each item receives. 7,4« allocates
all exposure on the item having highest relevance (i1). As a result,
it achieves the highest user utility (U(7max) = 1.3) while leading
to the unfair situation where iz obtains no exposure despite its
substantial relevance.

Texpo-fair d€als with this unfair allocation by imposing the expo-
sure constraint. Specifically, it allocates some amount of exposure to
the less relevant item (i) and ensures that the exposure is allocated
proportional to merit as shown in Table 1c. However, our exam-
ple indicates that 7eyp,-fair Violates impact-based fairness. First,
Texpo-fair 18 not envy-free. Indeed, iz envies the allocation of i1, be-
cause impact on iz can be improved by swapping its allocation with
that of i;.3 Second, Texpo-fair d0€s not dominate sr,p;f for all items.
It is easy to see that impact on iz under Zexpo-fair (0.28) is smaller
than under 7, (0.35). This implies that 7exp0-fair improves impact
on i at the cost of impact on iy, creating a substantial disparity.

Our counterexample indicates that exposure-based fairness al-
lows a policy to produce envy and an unfair distribution of impact.
The following theorem more formally illustrates the possible dis-
parate impact of the existing exposure-based framework.

THEOREM 3.4. There exist two-sided markets with |U| = |I|=n
such that, even under the exposure-based fair ranking policy Texpo-fair
with f(x) = x, there exists item i whose maximum envy grows while
impact compared to Tunif diminishes with the market size n, i.e.,

TLexpo-fair Texpo-fair
max;e 7 Impi(X*!j’i fairy Imp; (X, ;7 fairy .
TLexpo-fair = Q(n)’ ];Tunif = O(T’l )
Impi(X*’i)* ) Impl-(X*,l.,* )

for any e(-) such that the exposure-fair constraint in Eq. (3) is feasible.

Theorem 3.4 indicates that exposure-based fair rankings can
produce large amounts of envy for some items. It can also actively
harm some items beyond a reasonable baseline. Singh and Joachims
[27] describe the disparate impact constraint aiming at allocating
impact proportional to merit in the context of group fairness. How-
ever, this constraint merely leads to the uniform ranking in the
case of individual fairness [27]. The disparate impact caused by
the exposure-based framework and the inapplicability of the dis-
parate impact constraint validate that our framework of impact-
based individual fairness is fundamentally new and different from
conventional exposure-based fairness.

4 COMPUTING RANKINGS WITH FAIRNESS
OF IMPACT GUARANTEES

While the previous section introduced the axiomatization of fairness-
of-impact for ranking and showed that the conventional fairness-of-
exposure approach does not satisfy these axioms, it is not yet clear

) = 0.28 from Table 1c. If we replaced Xﬂexﬁo-fair

X%

EI
3We know that Imp;, (X expofair

wig,%

. Texpo-fair . . . . Texpo-fair
with X*)il"i fair impact on i, would increase, i.e., Imp;, (X*,il,[i f ) =0.42.
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whether an efficient algorithm exists to compute fair rankings —
and whether fair rankings even exist. To approach this algorithmic
question, we formulate the following optimization problem which
extends the concept of Nash Social Welfare (NSW) to fair rankings.

NSW = arg max n Imp; (X7 )
(X7 Yier  jer

n

s.t. ng,i,k =1, VY(u,i)
k=1
YU —
D XI =1 V(wk)
iel
0< X"j,l.,k <1, Y(uik)

The objective maximizes the product of impacts on the items, and
the constraints express that each item needs to have probability
1 to be placed in some position, and each position needs to have
probability 1 of receiving an item. This constraint structure makes
this optimization problem different from the standard NSW in fair
division [5, 17, 22]. However, we retain that the optimization prob-
lem is convex and thus efficiently solvable, which is easy to see by
equivalently replacing the product of impacts in objective with the
sum of their logarithms, };c r log Imp; (Xfi,*)‘4 We call the policy
that solves the optimization problem the NSW policy, which we
denote by mnsw-

A useful intuition is that the NSW does not allow any item to have
zero impact, thus achieving a more equitable impact distribution.
In particular, the NSW becomes zero if there is even a single item
with zero impact. This contrasts with the conventional objective of
maximizing user utility (which equals the sum of impacts), which
may be maximized even if there are some items receiving no impact.
The following shows more formally that this intuition is correct,
and that 7nsw guarantees (approximate) dominance over 7y;f.
Furthermore, the following shows that zysw is (approximately)
envy-free and Pareto optimal.

THEOREM 4.1. IfK = 1 and only the top-ranked item contributes to
the utility and impact (e.g., DCG@1), nnsw is exactly Pareto optimal,
is envy-free, and dominates m,y;f. For the more general case with
K > 1, nnsw is still Pareto optimal. Moreover, let us call a pair of
items i and j “e-twins” if maxy, |r(u,i) — r(u, j)| < €. Then, if every
item has at least K + 1 e-twins and n/m = O(1), we have

ma}( Imp; (XYY — Imp, (X5W) = O(e),
je

*, % s, 1%
T uni, 3
Imp; (X, 1) = Imp;(XT25Y) = O(e),

forallitemic I.

In the case of K = 1, the solution of our problem coincides with
the allocation computed via the competitive equilibrium from equal
incomes (CEEI), a classic model of market equilibrium [9, 31], which
is known to be Pareto optimal, to be envy-free, and to dominate a
uniform random allocation. When K > 1, the classical result from
CEEI does not necessarily hold due to the additional constraints in
our problem [22]. However, Theorem 4.1 characterizes that, even
for the general case, mns can approximately satisfy our fairness
axioms if there are items that are similar to each other, which

“This type of program is know as the Eisenberg-Gale (EG) program [17].
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Table 2: Allocation of the NSW Policy: U(nnsw) = 1.20

| i1 i
Exp;(X"™sW|y1) | 1.0 0.0
Exp;(X™W|uz) | 0.0 1.0

Exp;(X™W) | 1.0 1.0
Imp;(X[35¥) | 0.8 0.4

*,1,%

Table 3: Exposure Allocations and Impact Fairness of the
a-NSW Policies with Different Hyper-parameter Values

(a) 1-NSW: U(”l-NSW) =1.21 (b) 2-NSw: U(”Z-NSW) =1.24

| i i .
Exp;(X™"NsW[yq) | 1.0 0.0 Exp; (X NsW|yg) | 1.0 0.0
Exp; (X" NWluz) | 0.1 0.9 Exp; (X7 NsWup) | 0.4 0.6
Exp;(X™W) | 1.1 0.9 Exp;(X™™W) | 14 06
Imp,(X725") | 085 0.36 Imp,(X525") | .00 0.24

*,1,% *,1,%

is reasonable for large markets.> Note that Theorem 4.1 assumes
the availability of the true relevance labels, but in Section 5, we
empirically show that mnsy robustly produces fair distributions of
impact even with predicted relevance values.

Table 2 illustrates these guarantees of gy on the same example
used earlier. First, we can see that mngy produces an envy-free
allocation of positions, i.e., neither item prefers the other item’s
allocation. In addition, mnsw dominates 7,;f, since every item
gains higher impact than under ;s

4.1 Controlling the Fairness/Utility Trade-Off

In some situations, we may want to exert explicit control over how
much user utility to sacrifice for stronger fairness guarantees to
the items. For example, in Tables 2 and 1, the user utility of 7zysy
(1.20) is lower than that of 7max (1.30) and Texpo-fair (1.23), and we
may want to put more emphasis on user utility. To enable explicit

control, we extend the NSW to what we call the «-NSW as follows.

i
Te-NSW = argmax 1—[ Imp; (Xifi,*)Memi i
{X:r” }iEI iel

n
s.t. ZXIZi,k =1, Y(u,i)
k=1
D UXI =1 Y(wk)
iel
0< ij’i’k <1, Y(u,ik)

a > 0 is a hyper-parameter that controls the balance between
maximizing user utility (large «) and guaranteeing impact-based
fairness (small a). When a = 0, the a-NSW objective is reduced
to the standard NSW. Note that we can again take the logarithm
to rewrite the objective to };e 7 Merit;" log Imp; (X[, ) and solve
the program efficiently. The a-NSW policy ensures only a weaker
version of envy-freeness and dominance over 7,,;r as detailed in the

5Note that it may be reasonable to assume that € decreases with the size of the market,
since it should be easier to find a sufficient number of e-twins in a larger market. This
means we could expect 75w to more accurately satisfy our axioms with an increasing
number of items.

Yuta Saito & Thorsten Joachims

appendix, which means it can achieve higher user utility compared
to the standard NSW.

Table 3 illustrates the allocations of the @-NSW policy 7, -nsw for
a =1and @ = 2 on the example problem. We see that a larger value
of « leads to a better user utility, i.e., U(nnsw) < U(mi-nsw) <
U(Zexpo-fair) < U(mz-Nsw), while a smaller value leads to a more
balanced impact distribution. What is particularly notable here
is that y_Nsw still dominates 7, and remains envy-free, while
achieving a better utility compared to gy . This suggests that an
appropriate choice of @ may allow us to improve user utility over
7Nsw without sacrificing envy-freeness and dominance over ;s
on particular problem instances, even if we no longer have a-priori
guarantees that hold over all problem instances. In the next section,
we empirically explore how « controls this trade-off.

5 EXPERIMENTS

We first present experiments on synthetic data where we can con-
trol the popularity pattern in the market and the accuracy of the
relevance prediction. In addition, we use real-world extreme classi-
fication datasets to evaluate how our method works with realistic
relevance predictions. Our experiment implementation is available
at https://github.com/usaito/kdd2022-fair-ranking-nsw.

5.1 Synthetic Data
To generate synthetic data, we first define the ground-truth rele-
vance between user u and item i as

Firue(us 1) = (1= A) - rynif (u, 1) + A - rpop(u, 0), 4)
where ;¢ (u, ) is an independent and uniform draw within range
[0, 1]. The second term infuses popularity bias, which we define as

n—i+l | m-u+l
m

rpop(, ) =1, 7
pop {"T”'l L (rest of the items)

(randomly sampled 70% of the items)

A € [0, 1] controls the popularity pattern, where a larger value of
A leads to more severe popularity bias. We also simulate that we
typically only have access to (inaccurately) predicted relevances,
which we model as

rpred(u, i) := Clip(r,me(u, i) +1,0, 1), n ~ Unif(—c, c),

where 7 is independent and uniform noise, and ¢ > 0 controls the
accuracy of the predicted relevance values. We use the predicted
relevance rpyq(u, i) to optimize the rankings, and evaluate the
item fairness and user utility of the policies using the ground-
truth relevance rye(u, i). We use the inverse examination function
e(k) .= I{k < K}/k in the definition of utility and impact, but we
also present experiments with a different function in the appendix.

We evaluate the degree of individual item fairness of a ranking
policy 7 using the following measures:

(1) Mean Max Envy (smaller is better):

1
] {Z rjnea}( Impi(ij’* = Imp; (X7} , }
iel

(2) Proportion (%) of items for which 7 improves impact by over
10% compared to ;s (larger is better):

100

= 1m0, ) fmpy (X3 2 11}
|I| iel "

*,0,%
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Figure 1: Fairness and user utility of the NSW policy compared to baseline policies on synthetic data for varying levels of

popularity bias.
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Figure 2: Fairness and user utility relative to the exposure-based fair policy 7xp,-fair for various a-NSW policies. Note that we
omit A = 0.0 from (a) and 1 = 0.0,0.2,0.4 from (c), because the measures of 7.y, are (almost) zero for these cases.

(3) Proportion (%) of items for which 7 decreases impact by over
10% compared to 7, (smaller is better):

*,1,%

% ]I{Impi(X:i’*) JImp, (X < 0.9}
iel

The following evaluates nnsw in comparison to Tmax, Texpo-fair>
and 7. We also evaluate how the hyper-parameter a of 74-Nsw
controls the trade-off of item fairness and user utility. Note that
we use |U| = 100, |Z| = 50, ¢ = 0.05, A = 0.5, K = 5 as defaults,
and vary each experiment configuration to see how each affects
the behavior of the ranking policies.® Results are averaged over 10
simulation runs performed with different random seeds.

5.1.1 How do the ranking policies perform with different popularity
patterns? Here, we test how the fairness measures and user utility
of the ranking policies change with different popularity patterns.
For this purpose, we vary the experiment parameter A in Eq. (4) in
the range of {0.0,0.2, ..., 1.0}. First, Figure 1 (a) shows the amount
of envy produced under different levels of popularity bias. The
figure suggests that gy is always almost envy-free, while 7,45
and eypo-fair produce larger amounts of envy for markets with
greater popularity bias. Next, Figure 1 (b) shows how many items
gain substantially better impact compared to 7, under differ-
ent levels of popularity bias. We observe that mysy substantially

©The results with varying number of items (r) and lengths of ranking (K) are reported
in Appendix C

improves impact on almost all items in all cases, while 7,4y and
Texpo-fair fail to achieve this desideratum. In addition, Figure 1 (c)
indicates that 7max and expo-fair decrease impacts on some items
over 10% from those under 7,y;¢. In particular, when 1 = 1.0, 80%
and 40% of the items experience substantial loss of impact under
Tmax and Texpo-fair» respectively. Instead, mysw does not substan-
tially decrease any item’s impact below 7, even if there exists
severe popularity bias. These results demonstrate that 7nsy avoids
producing envy and provides fair improvements in impact for al-
most all items. On the other hand, both max and 7expo-fair can lead
to an unfair impact distribution and produce substantial amounts
of envy, especially in the presence of severe popularity bias.
Although 7mngw is the most desirable in terms of item fairness,
Figure 1 (d) suggests the expected trade-off between maximizing
the user utility and satisfying our impact-based axioms. Figure 1
(d) shows how much user utility each policy gains under different
popularity patterns. We observe that 7,4y achieves the largest user
utility followed by 7expo-fair and znsw. This trend does not change
across different levels of popularity bias, however, the gap in user
utility among those policies varies. When A = 0 and there is no
popularity bias in the market, all policies except for 7, achieve
almost the same user utility. However, for larger values of A, the gap
in user utility between mmax, Texpo-fair» and TNsw becomes greater.
In particular, 7max and Texpo-fair improve user utility, while that of
mNsw decreases. An explanation is that an increase in popularity
bias makes it easier to maximize the user utility by allocating large
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Figure 3: Fairness and user utility of the NSW policy compared to baseline policies on synthetic data for varying levels of

relevance-prediction accuracy.
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Figure 4: Fairness and user utility on the Delicious dataset for varying lengths of the ranking.

amounts of exposure to popular items. Conversely, mnsy shows
the opposite trend since it needs to ever more strongly counteract
the popularity bias to maintain impact fairness.

5.1.2  How does the hyper-parameter of m,_nsw balance item fair-
ness and user utility? This experiment investigates how effectively
one can control the balance between item fairness and user utility
through the hyper-parameter « of 7, -nsw-. To this end, we evaluate
Te-Nsw With @ € {0.0,0.5,1.0,2.0} (when « = 0, 7,_Nsw is identical
to 7Nsw) in comparison to Teypo-fair - Figure 2 reports the fairness
measures and user utility of 7,-Nsw relative to those of Zeypo-fair-
Overall, the result demonstrates that 7,_nsw is able to choose a
range of trade-offs through the hyper-parameter. The most inter-
esting trade-off is achieved with @ = 1.0. Figure 2 (a) indicates that
71-Nsw reduces the amount of envy over 40% compared to expo-fair
in all cases. Moreover, Figure 2 (b) and (c) demonstrate that 77 _nsw
provides a far more equitable distribution of impact compared to
Texpo-fair- Finally, Figure 2 (d) shows that 7;.Nsw achieves almost
the same user utility as Zeypo-fair (@bout 4% drop even when A = 1.0).
This result suggests that 7,_nNsw has the potential to achieve a sub-
stantially fairer impact distribution than ey, fz;» While achieving
a comparable level of user utility.

5.1.3  How do the ranking policies perform under different relevance-
prediction accuracies? We also empirically investigate how robust
the ranking policies are to inaccurate relevance labels, given that
one would typically use predicted relevances in real-world applica-
tions. Figure 3 illustrates fairness and user utility for varying values

of the accuracy parameter c. The plots show that user utility slightly
decreases as the relevance labels become more inaccurate, while
fairness remain almost constant for all policies. Notably, mysw is
almost envy-free and achieves a fairer impact distribution com-
pared to the other policies in all situations, indicating that the NSW
approach is robust to inaccurate relevance predictions.

5.2 Real-World Data

To further evaluate how our method performs with predicted rele-
vances on real-world data, we adapt two multilabel extreme classifi-
cation datasets, namely Delicious and Wiki10-31K from the Extreme
Classification Repository.” We regard each data as a user and each
label as an item. If a data belongs to a label, then they are considered
relevant. As preprocessing, we randomly sample 100 labels,® and
then split the data into 90% training and 10% test sets. We train
a Logistic Regression model on the training set, and predict the
probabilities of each data belonging to the labels, which correspond
to the relevance predictions. Based on the predictions, the ranking
policies optimize the ordering of the labels for each data. We finally
evaluate item fairness and user utility of the ranking policies on
the test set using the true class labels as the ground-truth relevance.
The fairness measures are the same as in the previous section. We
use the inverse examination function and vary K € {1, 3, 5, 10, 20}.

"http://manikvarma.org/downloads/XC/XMLRepository.html
8We sample label i with probability y - I{i is one of top 100 frequent labels} + (1 —
) - (100/|T'|) (where we set g = 0.5) to introduce some popularity bias in the data.
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We iterate the simulation 10 times with different seeds and report
the aggregated results.

Figure 4 compares fairness and user utility of 7 max, TNSW, 7T1-NSW:
Texpo-fair @0d 7ypip on the Delicious dataset. First, mnsw achieves
almost envy-free and fair impact distribution with increasing K,
suggesting that our desiderata can be achieved even with realisti-
cally inaccurate relevance predictions. In addition, ;_Nsw succeeds
in finding a utility-fairness trade-off that is more desirable than
that of 7eypo-fair- Specifically, 71-Nsw obtains user utility slightly
better than 7,ypo.fair While leading to a fairer impact distribution.
Figure 4 (a) suggests that 71_Nsw produces a larger amount of envy
compared t0 Zexpo-fair» but the amount is controllable by tuning a.
Appendix C reports qualitatively similar results on Wiki10-31K.

6 CONCLUSION

We provide a new conceptualization of fairness in ranking as a re-
source allocation problem and propose impact-based axioms for in-
dividual item fairness. This allows us to build upon well-established
principles of fairness from economics, removing the need to choose
a difficult-to-justify link function as required for exposure-based
fairness. We also contribute an efficient algorithm for computing
impact-fair rankings, adapting the Nash Social Welfare to ranking
problems. Furthermore, we develop a practical extension of the
NSW, which enables us to control the trade-off between user utility
and item fairness. This work opens a wide range of new research
directions, ranging from the development of end-to-end policy
learning methods for impact-fair ranking, to the use of partial-
information data and extensions to sequential ranking problems.
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A CONNECTING EXPOSURE-BASED AND
IMPACT-BASED NOTIONS OF FAIRNESS

The existing exposure-based fairness and our impact-based axioms
have an interesting connection. Here, we show that the equality
of attention of Biega et al. [3] is a special case of our notion of
envy-freeness.

THEOREM A.1. Ifthe impact function is defined asv; (u, k) := e(k),
then envy-freeness coincides with the equality of attention.

Proor. Consider a pair of items i, j € 7(i # j). Given that
v;i(u, k) == e(k), envy-freeness mandates that

Impl-(X;fi’*) > Imp; (X ,) = Exp;(X™) > Expj(X”). (5)

*,J5%

Analogously, for the opposite direction, we should have that

Imp;(XT;,) = Imp; (X7, ) = Exp;(X™) > Exp;(X”™),  (6)

#,1,%
Thus, from Eqs (5) and (6), envy-freeness coincides with the equality
of attention, which requires that the amortized exposure should be
equal for all items, i.e., Exp;(X™) = Exp;(X™), Vi, j € I. O

B PROOF SKETCHES

We do not have space enough to describe the complete proofs,
so here we provide only their sketches. The complete proofs are
included in the appendix of the arXiv version of the paper.

Proof Sketch of Theorem 3.4. Consider the true relevance func-
tion r(u,i) = (n —u + 1)(n — i + 1)/n?, which creates severe
popularity bias. Then, we have Imp,, (X: ffff'f“") < 2TE/n(n + 1),
Impn(X:;‘:i{) = (n + 1) TE/2n? where TE := Y e(k). We can also
show that Imp, (X:i’jff'f“" )/Imp,, (Xzﬁ:i”'f“") > (n+1)/2.

PRrROOF. Given r(u,i) = (n—u+1)(n—i+1)/n?, amortized merit
of i is Merit; = Y, r(u,i) = (n+ 1)(n — i + 1)/2n. To satisfy the
exposure fairness constraint in Eq. (3), exposure-fair ranking policy
Texpo-fair N€€ds to allocate the following amount of exposure to
item i

Merit; 2(n—i+1
Exp, (Xepofur) = —— 0 Tp (n-itl)
i Merit; n+1
where TE := Y}; e(k) is the total amount of exposure available for
each user and we use Y; Merit; = (n+ 1)%/4.

Then, we have

2TE
E X Pexpo-fair ) =
X ) n+1
. 2TE
TLexpo-fair expo-fair'y — "
Impn(x*,n,}; ) < r(l’ n)Expn(X” ok ) B n(fl + 1) (7)

Note that Eq. (7) holds for any policy (including 7eypo fair) that
satisfies the exposure-fair constraint in Eq. (3).

In contrast, the uniform ranking policy ;s provides the fol-
lowing impact on the n-th item:

; —-u+1TE +1
ImPn(XZ;fZ):Z” u+1TE _n

n2 n 2n?
u
Therefore,
Texpo-fair
Imp(Xonit ™) __dn___ o™
Imp, (Xowdy  ~ (n+1)?
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In addition, emqx := maxy e(k) needs to be larger than Exp, (X eofair) [n

so that the exposure-fair constraint is feasible. Given that 7expo-fair
maximizes the utility to the users under the exposure-fair constraint
and allocates exposure of the most relevant users preferentially to
the 1st item, we have

expo-fair n—u+ 1 Exp) (X™ewofar)  TE

Eq. (8) provides the lowest possible utility of the n-th item under
T Lk

X expo-fair

ls when e is the lowest possible with

EXP1 (X”expn—fair) B 2TE
n T+l

€max =
Using Eqs (7) and (8), we have
TLexpo-fair
) Impy (M) naa

- Texpo-fair \
Imp, (X*,n,[; ” ) 2

TLexpo-fair
max e 7 Imp,, (X*,j,*

Impn (X:Z?;o-fair)

O

Proof Sketch of Theorem 4.1. If K = 1, our problem is reduced
to the classical fair division of divisible goods with additive utility.
Thus, the NSW-maximizing solution is known to satisfy Pareto
optimality, envy-freeness, and dominance over ;¢ (which corre-
sponds to PFS) [31]. For a general case with K > 1, our problem is
reduced to fair division with constrained groups described in Ap-
pendix A of Kroer and Peysakhovich [22]. Thus, our result follows
from a version of their Theorem 1.

In more detail, fair division with constrained groups is an instance
of fair division with linear utility function where we have a set
P of constraint groups, which is a partitioning of resources. Each
P € P is a subset of the original resources that should be allocated
to the agents. It is assumed that each agent can be assigned 1 unit
of resources among those in each group P. This problem of fair
division with constrained groups is reduced to our problem of fair
ranking when we regard agents as items, resources as positions in a
ranking, and a constraint group as a set of positions in a ranking that
is shown to each user u. In the ranking problem, a set of positions
(Py € P) that is associated with a single user u can be allocated
to each item in total quantity of 1 (i.e., a constraint described as
Diel X:f,i,k =1, Y(u, k)) as in fair division with constraint group.

Under this reduction and the assumption that there exists at least
K + 1 e-twins for each item, Theorem 1 in Appendix A.2 of Kroer
and Peysakhovich [22] suggests that envy and the proportional
share gap (which is Imp; (Xf;":f) — Imp;(X™5") in our problem)
is upper bounded by €(c; + ﬁ/(mcz)) for some positive constants
c1,¢2 > 0 where the notations in the original paper, }}; B; (sum
of agent budgets) and |X| (number of constraint groups) can be
regarded as n (number of items) and m (number of users) in our
setup, respectively.

Note that 7, _nsw satisfies the following relaxed version of envy-
freeness and dominance over 7, in the case of K = 1.

Imp;(X*. ) Imp;(XT..))
>

1% *, %

Weighted Envy-Freeness: ,VjeT,
£ Y Meritl.“ Meritj”‘ ]
Weighted D. Imp;(XT. ) nMerit Imp, (X"
eighted Dominance: Imp; (X_; ) 2 —————Imp; 20 ),

L 2 Merzt]‘." Lk
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Table 4: Statistics of the real-world datasets after preprocess-
ing and the relevance prediction accuracy on the test set

| Delicious  Wiki10-31k

Training Data Size 9,123 7,639
Test Data Size (|U|) 1,014 849
Number of Labels (|7]) 100 100
AUC (on test set) 0.81 0.87
LogLoss (on test set) 0.31 0.18

for all i € 7. Here, we can follow a similar step as in Theorem A.1
and show that weighted envy-freeness coincides with the equity
(not equality) of attention [3] when a = 1 and v;(u, k) = e(k).

THEOREM B.1. If the impact function is defined as v;(u, k) = e(k),
then weighted envy-freeness with a = 1 coincides with the equity of
attention.

Proor. Consider a pair of items i, j € 7 (i # j). Given thata =1
and v; (u, k) := e(k), weighted envy-freeness mandates that

Impi X)) B | B )
Merit; - Merit; Merit; Merit;
Analogously, for the opposite direction, we should have that
Imp (X7, . Imp; (X[, Exp;(X™) N Exp, (X™) w0
Merit; - Merit; Merit; —  Merit; ’

Thus, from Eqs (9) and (10), weighted envy-freeness coincides with
the equity of attention, which requires that the amortized exposure
should be allocated proportional to merit for all items (Eq. (3) in the
Exp;(X™) _ Exp;(X™)
Merit; —  Merit;

main text with f(x) = x), ie, ,Vi,jel. O

C EXPERIMENT DETAILS AND RESULTS
C.1 Synthetic Data

In this section, we employ the same default setting as in Section 5.1
and vary some additional configurations.

C.1.1 How do the ranking policies perform with different lengths
of ranking? Here, we validate how the policies perform as the
length of ranking (K) varies. Figure 5 reports the results with
K € {1,3,5, 10, 20}. First, we can see that all policies improve user
utility with increasing K in Figure 5 (d), as more items contribute to
the user utility. As for the fairness measures, 7ysy remains envy-
free and improves impact on all items over 10% from 7,,;¢, while
Texpo-fair Produces a larger amount of envy and a less equitable
impact distribution with increasing K.

C.1.2  How do the ranking policies perform with different market
sizes? Next, we vary the size of the market. Figure 6 shows how the
fairness measures and user utility of the ranking policies change
with varying numbers of items and a fixed number of users. We
observe that 74y produces a larger amount of envy and a less equi-
table impact distribution with the growing market size. In contrast,
Texpo-fair Slightly improves both the fairness measures and user
utility, but sy is much fairer for all cases, always being almost
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envy-free and dominating ;¢ in terms of impact distribution.
Texpo-fair does not achieve these desiderata for all market sizes.

C.1.3 How does the examination function influence the relative
performance? Finally, we evaluate whether a different examina-
tion function results in a different conclusion. We use the inverse
function e(k) := I{k < K}/k in the main text, but there are some
other types of examination functions we can consider [30]. Here
we use the exponential examination function defined as e(k) :=
I{k < K}/exp(k — 1), which has a steeper drop off in probability
than the inverse function, and as a result, assumes that users are
likely to only see the top few items. Figure 7 shows the item fair-
ness measures and user utility with varying popularity patterns
(A €{0.0,0.2,...,1.0}) and with the exponential examination func-
tion. In general, we observe trends similar to Figure 1 (which is
obtained with the inverse examination function) for all metrics.
Because we use a steeper examination function, the user utility
decreases for all policies compared to Figure 1, but the relative
fairness and utility remain similar.

C.2 Real-World Data

Table 4 summarizes some statistics of the datasets after applying
the preprocessing described in the main text. Figure 8 shows the
fairness measures and user utility of Zmax, ZTNSW, T1-NSW: Texpo-fair»
and 7, with varying K on Wiki10-31K. We observe that znsyw is
almost envy-free and achieves an equitable impact distribution for
all values of K. In addition, ;_ysw achieves similar levels of user
utility as 7expo-fair» While leading to a fairer impact distribution.
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Figure 5: Fairness and user utility on synthetic data with varying lengths of ranking.
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Figure 6: Fairness and user utility on synthetic data with varying numbers of items.
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Figure 7: Fairness and user utility with different popularity patterns and with exponential examination function.
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Figure 8: Fairness and user utility on the Wiki10-31K dataset with varying lengths of ranking,.
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