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Abstract

A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has approximate solutions
whose constraint violation is arbitrarily small. These SDPs are ill-posed and numerically often unsolvable.
They are also closely related to “bad” linear projections that map the cone of positive semidefinite matrices to
a nonclosed set. We describe a simple echelon form of weakly infeasible SDPs with the following properties:
(1) it is obtained by elementary row operations and congruence transformations, (ii) it makes weak infeasibility
evident, and (iii) it permits us to construct any weakly infeasible SDP or bad linear projection by an elementary
combinatorial algorithm. Based on our echelon form we generate a library of computationally very difficult
SDPs. Finally, we show that some SDPs in the literature are in our echelon form, for example, the SDP from
the sum-of-squares relaxation of minimizing Motzkin’s famous polynomial.
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1 Introduction

Semidefinite programming (SDP) feasibility problems of the form

AX = b

X e s, )

are fundamental in many areas of applied mathematics, including combinatorial optimization, polynomial opti-
mization, control theory, and machine learning. Here A is a linear map from n X n symmetric matrices to R™, b
is in R™, and S’ is the set of symmetric positive semidefinite (psd) matrices.

Semidefinite programs — either in the feasibility form, or in an optimization form, with an objective function
attached — are often pathological and this work focuses on their pathological kind of infeasibility, called weak
infeasibility. Precisely, we say that (P) is weakly infeasible when it has no feasible solution, but the set of
solutions of the linear system of equations AX = b has zero distance to S} .

Example 1. An enlightening, classical, and minimal example is

x1 = 0
xpp=x31 = 1 (ME)
X e 8,
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where the (i, j)th element of X is denoted by x;;. If X satisfies the equality constraints of (ME), then

X:(o 1)
I x2

for some xy; real number, so X cannot be positive semidefinite. Hence (ME) is infeasible. However, such X
matrices converge to Si if we choose x3 > 0 to be large: then to make X psd, we must only slightly change its
0 entry to 1/x3. So we conclude that (ME) is weakly infeasible.

We visualize this example in Figure 1. The solid blue set bordered by a hyperbola is
§= {(x117x22) € Ri D X11X0 > 1}7

the set of diagonals of 2 x 2 psd matrices whose offdiagonal elements are 1. We approach S arbitrarily closely
if we fix x11 = 0 and make x5 large, moving towards infinity on the xy; axis.

X224

(0,0) X11

Figure 1: A visualization of (ME)

Weakly infeasible SDPs appear in the literature in many guises, some of which are modern and some others
classic:

* they are difficult SDPs that are often mistaken for feasible ones by even the best solvers.

* they are closely related to linear maps under which the image of & is not closed. Precisely, (P) is weakly
infeasible, if it is infeasible, but a sequence {X;} C S satisfies

AX; — b, asi — oo,

in other words, when b is in the closure of AS", but not in AS" itself. Such linear maps cause other
pathologies in SDPs, such as unattained optimal values and positive duality gaps [29, Lemma 2]. They
are also intriguing from the viewpoint of pure mathematics: they were recently christened bad projections
of the psd cone by Jiang and Sturmfels [11] and explored from the perspective of algebraic geometry.

More broadly, bad projections are a good example of linear maps that carry a closed set into a nonclosed
one, because S’} is one of the simplest sets for which such maps even exist. The “(non)closedness of the
linear image” question appears in several equivalent forms, for example, we may ask whether the sum
of closed convex cones is closed. (Non)closedness of the linear image can be ensured by many diverse
conditions: some of the key ones are Jameson’s property (G) (Jameson [10] and Bauschke et al. [2]) and
existence of certain tangent directions [27, Theorem 1.1, Theorem 5.1].

* they are ill-posed, i.e., their distance to the set of feasible instances is zero. Hence their infeasibility
cannot be detected by interior point methods whose complexity depends on the distance to feasibility; the
best we can do is compute solutions of nearby feasible instances, see Pefia and Renegar [32, Theorem



13]. Nor can we detect their infeasibility by the algorithm of Nesterov et al. in [23], though this algorithm
can detect near ill-posedness.

For a sample of the thriving literature on algorithm analysis based on distance to (in)feasibility, we refer
to Renegar [35, 36]; Pefia [31]; and the comprehensive book by Biirgisser and Cucker [5].

* according to a classic viewpoint of Klee [13], when (P) is weakly infeasible, the affine subspace {X :
AX = b} is an asymptote of S’} . The asymptotic behavior is indeed apparent on Figure 1. !

Although the infeasibility of weakly infeasible SDPs cannot be reliably detected in general, several algo-
rithmic approaches are available:

* Facial reduction algorithms can handle pathological SDPs, at least in theory, since they must be imple-
mented in exact arithmetic. Facial reduction originated in a paper by Borwein and Wolkowicz [4], then
simpler variants were proposed, for example in [26,28]. We will use facial reduction as a theoretical tool
to develop our echelon form. In particular, we will use Parts (1) and (2) of Theorem 5 in [17]; an earlier
version of the latter appeared in Lourenco et al. [19].

* In contrast to the previous points, approximate, or robust solutions to SDPs in the Lasserre hierarchy
of polynomial optimization can be found by SDP solvers, even when exact solutions are impossible to
compute: see Henrion and Lasserre [9] and Lasserre and Magron [16]. Some of these SDPs are weakly
infeasible and one of them comes from minimizing the famous Motzkin polynomial. We closely examine
this SDP in Example 4. In other related work, the Douglas-Rachford method presented in Liu et al. [18]
successfully identified infeasibility of the weakly infeasible SDPs from [17].

To sketch our contributions, we revisit Example 1, where we naturally describe the affine subspace
H = {X | Xis n by n symmetric, AX = b} (1

in two ways. First, with equations A1 ¢ X =0 and A, ¢ X = 2, where

A= (5 8> and Ay — (‘1) é) P

and the e product of symmetric matrices is the trace of their regular product. By the argument in Example 1,
this representation certifies that (ME) is infeasible.

Besides, H = {AX; + X, : A € R} where

X, = (8 (1)) and X, = ((1) (1)> 3)

This generator representation proves that H is an asymptote of Si, since AX; + X, approaches Si as A — oo,

We see that A1,A; and X;,X, share a common “echelon” structure and we may wonder whether such a
structure appears in every weakly infeasible SDP. The answer is naturally no, since we can easily ruin this
structure even in (ME). For example, we may take linear combinations of the equations and perform congruence
transformations, in other words, replace both A; by T TA;T for some invertible 7.

However, it turns out that the same operations can untangle any weakly infeasible SDP. More precisely,
in Theorem 1 we develop an echelon form of weakly infeasible SDPs with the following features: i) it is
constructed using elementary row operations and congruence transformations; ii) it makes weak infeasibility

1To be precise, although Klee introduced the notion of asymptotes, he did not specifically mention asymptotes of the psd cone.



evident, since the matrices both in the equality and in the generator representation of the underlying affine
subspace have the same echelon structure; and iii) it permits us to construct any weakly infeasible SDP.

Let us explain the last point by an analogy with basic linear algebra. We know that any infeasible linear
system of equations Ax = b can be brought to a normal form

! /
St o)
X =
using elementary row operations. Thus we can verify infeasibility of a linear system using the normal form (4).
Further, we can construct any infeasible linear system as follows: we choose A’ and 4’ in (4) arbitrarily, then
perform elementary row operations. This basic algorithm always succeeds and every infeasible linear system is
among its outputs.

This work shows that a similar scheme works for a more involved pathology — weak infeasibility — in a
much more involved problem — an SDP.

Further, in Example 4 we present an SDP that is naturally in our echelon form, without ever having to
perform elementary row operations or congruence transformations. This SDP arises from a sum-of-squares
(SOS) relaxation of minimizing the famous Motzkin polynomial; we thus hope that our work will be of interest
to the sum-of-squares optimization community.

The plan of the paper is as follows. In Section 2 we review preliminaries consisting of basic linear algebra
and SDP duality. In Section 3 we present and illustrate our main result, Theorem 1, and to build intuition, we
prove the “easy” direction. In Section 4 we describe our algorithm to construct weakly infeasible SDPs and
show that any weakly infeasible SDP is among its outputs. Our algorithm also constructs any bad projection
of the psd cone. For the reader’s convenience, some of the proofs are postponed to Section 5 and 6. The most
difficult proofis the “hard” direction in Theorem 1, which we give in Section 6. Section 7 describes our problem
library and computational tests. In Section 8 we reinterpret Theorem 1 in two ways: as a “sandwich” theorem
and as a “factorization” theorem. Here we also discuss open research directions.

To make the paper’s results accessible to a broad audience, we prove them using only basic results in SDP
duality and linear algebra, all of which we summarize in Section 2. This work has some unavoidable overlap
with [17], where the lemmas of Section 5 were already proved. On the other hand, here we prove these lemmas
in a more elementary fashion. Reference [17] also gave a scheme to construct weakly infeasible SDPs in a
certain restricted class; however, that scheme does not capture even some weakly infeasible SDPs with 3 x 3
matrices. We comment in detail on these points in Section 5 and Section 6.

2 Preliminaries

Operators and matrices For a linear operator (or matrix) M, we denote its rangespace by R(M) , its
nullspace by N (M) , and its adjoint by M*.

We denote the set of n X n symmetric matrices by S”. Further, N stands for the set {1,...,n}.

Given a matrix M € R**" and R,S C N, we denote the submatrix of M corresponding to rows in R and
columns in S by M(R,S). When R = {r} is a singleton, we simply write M(r,S) for M({r},S). For brevity, we
let M(R) := M(R,R).

We denote the concatenation of matrices A and B along the diagonal by A ® B,

A O
non (49).



Thus, M @0 is the matrix obtained by attaching zero rows and colums to M. The dimensions of M & 0 will be
clear from the context.

Further, X > O means that the matrix X is symmetric and positive semidefinite and X > 0 means it is
symmetric and positive definite.

Basics of SDP duality Consider the pair of SDPs

inf CeX sup by
(P-opt) . o « (D)
s.t. X is feasible in (P) st. Ay =<C,

where C € §", and for 7,S € §" we write T < S to say S — T = 0. We say that (D) is the dual of (P-opt) and
vice versa, (P-opt) is the dual of (D).

When both are feasible, the optimal value of (P-opt) is at least as large as the optimal value of (D). These
optimal values agree and the optimal value of (P-opt) is attained when (D) satisfies Slater’s condition, i.e., when
there is y € R™ such that C — A*y = 0.

We say that (P) is strongly infeasible, if the distance of the affine subspace H (see (1)) from S’ is positive.
By this definition, we see that every infeasible SDP is either strongly or weakly infeasible. We know that (P) is
strongly infeasible exactly when its alternative system
Ay
by

0
-1

Iy

(P-alt)

is feasible. In other words, strong infeasibility of (P) is certified by (P-alt).

We will use the above results as building blocks, since they can be proven in a few pages, with real analysis
and elementary linear algebra as sole prerequisites; see Renegar [37, Chapter 3].

Reformulations In the sequel we represent the operator A via symmetric matrices Ay, ...,A,, as
AX = (A eX,...,ApeX)' 2 (5)
The following definition will be used throughout the paper.

Definition 1. We say that we reformulate (P) if we apply to it some of the following operations (in any order):

1. Exchange (A;,b;) and (A;j,b;), where i and j are distinct indices in {1,...,m}.
2. Replace (Aj,b;) by A(Ai,b;)+ 1(Aj,bj), where A and [ are reals, A # 0, and i and j are distinct indices
in{l,...,m}.

3. Replace all A; by T "A;T, where T is a suitably chosen invertible matrix.

We also say that by reformulating (P) we obtain a reformulation; and that we reformulate the map A: 8" — R"
if we reformulate (P) with some b € R™.

We make two observations that will be useful later. First, reformulating (P) preserves its status: it is feasible
(infeasible, weakly infeasible) if and only if has the same status after reformulating it. Second, in Definition 1
operations 1 and 2 can be naturally viewed as elementary row operations performed on the constraints of system

AX = b.
Then the adjoint A* is given as A*y = Y yiA; fory e R™.




Semidefinite echelon form To motivate our next definition, suppose that a square matrix M is in row echelon,
i.e., upper triangular form

* ok *
* *

M =
*

where the empty cells are all zeroes. Assuming the diagonal entries of M are nonzero, this form serves two
purposes. First, it makes it clear that the columns of M span the whole space; and second, it shows that the
nullspace of M contains only 0.

Analogously, we define an echelon form of a sequence of symmetric matrices:

Definition 2. We say that the sequence of symmetric n X n matrices (My,...,My) is in semidefinite echelon
Sform with structure {Py, ..., P} if the following three conditions hold: i) the P; are disjoint subsets of N, ii) for
i=1,...,k
M;(P) is  diagonal with positive diagonal entries, and ©)
M;(PU---UP_,N) is arbitrary,

and iii) the remaining elements of all M; are zero. (Note that by symmetry M;(N,PiU---UP,_1) = M;(PLU---U
P,N)T)

Thus, for a suitable permutation matrix T the M; look like
P P

A e

T"M\T T"M,T T"M;T
where the columns of M; with indices in P; were permuted into columns of T " M;T with indices in P

Here the + red blocks are positive definite and diagonal, the x blue blocks may have arbitrary elements,
and the white blocks are zero.

To highlight the analogy with the row echelon form, suppose (Mj,...,M;) is in semidefinite echelon form
with structure {P,...,P;}. In Section 3 we will see that this special form serves two purposes. First, suppose
that X > O satisfies M; ¢ X = 0 for all i. Then by an elementary argument the rows (and columns) of X indexed
by Py U--- U P, are zero. Second, suppose X is a symmetric matrix whose N\ (P;U---U P,) diagonal block is
positive definite. Then by another elementary argument Z{;l AiM; + X is positive definite for suitable Ay, ..., A
reals.

Remark 1. A sequence (My,...,M;) in semidefinite echelon form is a type of facial reduction sequence [4,
26,28]. Precisely, (M,...,M;) certifies that any X > 0 such that M; e X = 0 for all i belongs to a face of S,
namely the set of of psd matrices with certain rows and columns equal to zero.

Let us consider a special case when the structure of (My,...,My) is {Py,..., P}, Pi contains the first |P|
indices of N, P, contains the next |P;| indices, and so on, and the positive definite blocks in all M; are identities.
These sequences were defined in [17], and baptized as regularized facial reduction sequences.



3 The main result, and the easy direction

The main result of the paper is the following.
Theorem 1. The problem (P) is weakly infeasible if and only if it has a reformulation

A'X
X

bl
0

Yl

with the following properties:

1. (AY,...,A},) is in semidefinite echelon form and (b, ...,b},b;_ ) = (0,...,0,—

k+1
2. thereis (Xy,...,Xy11) in semidefinite echelon form such that ¢ > 1 and

AX; = 0  fori=1,...4
A/X€+1 - b/.

Here we understand that A’ is represented by symmetric matrices A’ as

AX = (A eX,... Al eX)T.

(Pweak)

1) for some k > 1,

)

®)

If (P) is weakly infeasible, then we can choose the reformulation (Py.,x) so the positive definite blocks in
Al,..., A} and Xi,...,X, are all nonempty. Indeed, in the proof of the “only if” direction we will construct the

reformulation (Pyeqx) and X; sequence precisely in this manner.

Example 2. (Example 1 continued) As a quick check, the problem (ME) needs only a minimal reformulation.

To put it into the echelon form of (Pyeak), we set

1
__AZa

A=A AL = 5

C))

where Ay and A, are given in (2), and use (X1,X») from equation (3). In this SDP we have k ={ = 1.

It is useful to visualize Theorem 1 via the matrix of inner products of the A} and X in Figure 2.

£+1
0 0 0
0 0 0 k+1
0 0 0
(A:'XJ)T:?J]A = 0 0| —1
0 o 0] b
0 0| o

Figure 2: The matrix of inner products of the A and X; in Theorem 1



The proof of the “only if” direction of Theorem 1 is technical and deferred to Section 6. However, the proof
of the “if” direction is elementary, and we provide it below.

Proof (of “if ” in Theorem 1). It suffices to prove that (Py.ax) is weakly infeasible. To that end, we first prove it
is infeasible, so to obtain a contradiction we assume that X is feasible in it. We also assume that (A',..., A} )
has structure {P, ..., P} (see Definition 2).

Since A| @ X = 0, a positively weighted linear combination of the diagonal elements of X (P;) is zero. Since
X > 0, these elements are zero, hence the rows (and columns) of X indexed by P; are zero.

Continuing, A5 ¢ X =0,...,A; X = 0 implies that the rows (and columns) of X indexed by P,U--- UP are
zero. Hence Aj, 1 ®X is a positively weighted linear combination of the diagonal elements of X (P, 1), so

Aji10X >0.
This contradiction proves that (Py,.x) is indeed infeasible.

This process is illustrated on Figure 3, where the submatrices marked by @& are positive semidefinite. For
convenience we assume in this figure that the columns of all matrices indexed by P; come first; the columns
indexed by P> come next; etc.

PP
0|0 O
— Y
0
X X

Figure 3: Proving that (Pyc,k) is infeasible

Next we prove that (Py.ak) 1s not strongly infeasible. For that, let
H={XeS8 : Ax=b1},
and fix € > 0.

We will construct a psd matrix which is € close to H’'. Suppose the structure of (X1, ..., Xpy1)is {Q1,...,Qr41}
and for brevity, let Oy o =N\ (Q1U---UQpy1).

First we define X5 € S” so that X5(Qy.2) = 61 and the other elements of X; are zero. Here 6 > 0 is chosen
so the norm of X is at most €. See the leftmost picture in Figure 4.

Second, we define Xé 41 = Xe41+ Xs. Then the (Qr1UQyy2) diagonal block of X[f 1 18 positive definite
and X/ | is within € distance of H' (since X;, | € H'). See the middle picture in Figure 4.

Next we let X; := y,X; + X 1 Where 7, is a positive real. The definition of positive definiteness (G > 0 if
x" Gx > 0 for all nonzero x) implies that

X(QeUQr11UQpsi2) -0

if y is sufficiently large. Further, le is still within & distance of H’' (since A’X; = 0). We refer to the rightmost
picture in Figure 4.



Qri2 Ort1 O
X[ X[ X[X XX | X]|X
+X€+l X | x| x|x +’}/fxf X X | X _._WleZfl
— — s —
X | X | Yo >0 X | X |+ Yo >0
oI X | X ol X X i
=0 =0 =0
% X, X

Figure 4: Proving that (Py.ak) is not strongly infeasible

Continuing in this fashion we add 9,1 X, to X/ for some large ¥%_; and so on. Eventually we obtain a
positive definite matrix, within € distance of H’, and conclude that (Pyeax) is not strongly infeasible. The proof
is complete.

O
Remark 2. Suppose (P) is weakly infeasible. Based on Theorem 1 we can prove this to a “third party” by the
following data:
1. The original problem (P) and the reformulation (Pyeax);
2. The sequence of matrices (Xi,...,Xr11);

3. The operations needed to reformulate (P) into (Pyeax). These can be encoded in a very compact manner,
just by two matrices: the elementary row operations by an m x m matrix G = (g;;) and the congruence
transformations by an n X n matrix 7. Then the equations

Al = TT(X7,8iAj)T for i=1,...
b = Gb

m

’ (10)
hold.

So, to verify that (P) is weakly infeasible, we check that (Pyeqx) and (X1, ...,Xy. 1) are in the required form, and
equations (7) and (10) hold. All these computations must be done over real numbers and in exact arithmetic.
This discussion implies that the problem “is (P) weakly infeasible?” is in AP in the real number model of
computing 3.

This result already follows from previous works [14,34]. Precisely, these papers described certificates to
verify infeasibility of any infeasible SDP, regardless of whether it is strongly or weakly infeasible. For example,
Ramana’s infeasibility certificate of an SDP is a semidefinite system which is feasible exactly when the SDP in
question is infeasible. Note that (Pjnfeas) in Lemma 5 also certifies infeasibility of (P). Thus, using any of these
certificates, we obtain a certificate that (P) is weakly infeasible, if we verify that (P) and its alternative system
(P-alt) are both infeasible.

On the other hand, our echelon form (Py,,x) does more than just verify weak infeasibility. It makes weak
infeasibility evident to see; and we can use it to conveniently construct any weakly infeasible SDP, a feature
that previously known certificates do not have.

31t is also in co-A/P, since if (P) is not weakly infeasible, we can verify this by exhibiting either a feasible solution of (P), or a feasible
solution of (P-alt).



Note that the following related question: “Can we decide the feasibility status (feasibility, or weak/strong
infeasibility) of (P) in polynomial time?” is open in the real number model, and in the Turing model as well.

Example 3. The SDP in the form (P) with data

8§ -1 -9 -2 5 -3 -6 -2
-1 —26 3 39 3 -6 5 21
A= g 3 g0 3 A = -6 5 7 2
-2 39 3 —16 2 21 2 —11
-6 -3 7 4 5 4 -9 -6 (11)
3 34 1 —43 4 —28 6 48
A3 = 7 I o8 s | = 19 6 13 s
4 —43 -5 18 -6 48 5 21
b = (—44,-22,44,-68)T

is weakly infeasible, but from this form this would be very difficult to tell.

However, once we reformulate (11) by the formulas in (10) and the G and T matrices

1 01 0 11
1o 2 1 o 0 1 0 0
=311 13 1" T=lo -1 o 1|

00 1 1 0 0 -1 0

it is brought into the form (Pyeax) with the A} and Xj shown on Figure 5.

P {.
P {
Py {
Al A} Al
O {
03 {
0 { .
Xi X5 X3

Figure 5: The A and X obtained from reformulating the SDP (11)

In the reformulation equations A} e X = A, e X =0, A} e X = —1 certify infeasibility and (X1,X>,X3) certify
not strong infeasibility. The matrix A)j is omitted (and is straightforward to compute from the formulas in (10)).
Note that now k =0 =2.

The reader may ask whether some SDPs are naturally in the echelon form of (Pyeax) without even having
to reformulate them. We next present such an SDP from a prominent application of semidefinite programming,
polynomial optimization.

10



We first recall a definition. Given a multivariate polynomial f = f(x1,...,x,), we say that f is a sum of
squares (SOS) if f = Y_, f? for some ¢ positive integer and f; polynomials. An SOS polynomial is of course
nonnegative. On the other hand, the first example of a nonnegative, but not SOS polynomial was given by
Motzkin in [21] and there are many more nonnegative polynomials than SOS polynomials: see Blekherman [3].

Example 4. Given the famous Motzkin polynomial
flry) =1=32% 42+, (12)
we can find its infimum over R? by solving the problem

sup A

st. flx,y)—A > 0. (3)
In the SOS relaxation of (13) proposed in [15] and [25] we solve the following problem instead:
sup A
st. f—A is SOS. (14
In turn, we formulate (14) as an SDP as follows. We define a vector of monomials *
= (x27y27x7)’axy7x)’27x2)’7 1)T7
then we know that f — A is SOS if and only if f — A = X ezz| for some X = 0.
i
Ay Ay
X X X3
Figure 6: Certificates of weak infeasibility in the Motzkin polynomial SDP
We then match the coefficients of monomials in f — A and X ezz' and obtain the SDP
sup —Egg o X
s.t. EjjeX = 0 (%
E22 X = 0 (y4)
(Exs+Eig)eX = 0 (&)
(Esa+Exg)eX = 0 (yz) (15)
(Ess+En+Ex+Eq)eX = =3 (%)
X = 0.

4To strictly follow the SOS recipe we should also include in z the monomials x> and y>. We omitted these for simplicity, but it is
straightforward to check that even if we do include them, the resulting SDP is still in the echelon form of (Pyeax)-

11



In (15) the E;; are unit matrices in S® whose elements in the (i, j) and (j,i) position are 1 and the rest zero. For
each equation we show the corresponding monomial in parentheses. For example, E11 @ X = 0 because f — A
has no x* term. Note that in (15) we indicated the equation corresponding to x*y and several other equations
only by vertical dots.

Of course, we know that f — A is not SOS for any A, hence (15) is infeasible. We next verify that it is weakly
infeasible, and in the echelon form (Pyeax) without ever having to reformulate it.

We see that Ay := E11,A2 :=Ep, ..., A5 := Ess+ E1» + E36+ E47 is in semidefinite echelon form, hence the
equations in (15) prove it is infeasible (the last right hand side is —3, not —1 as in Theorem 1, but this does not
matter).

On the other hand, let

X1 = Egg
Xo = 2E33+2E;u—E;g—Eo (16)
X3 = Ess+Ee+E77—Ey7— Ese.

Then (X1,X,,X3) is in semidefinite echelon form and proves that (15) is not strongly infeasible. To see why, we
write the equations in (15) as AX = b, then we can check that AX|, = AX, =0 and AX3 = b.

In Figure 6 we visualize the certificates of infeasibility (on the top) and the certificates of not-strong-
infeasibility (on the bottom).

To better explain Example 4, we make three remarks.

First, SDPs that come from polynomial optimization problems are widely known to be difficult, both due
to their often pathological behavior, and also due to their size. On the one hand, some remedies to address the
difficult behaviors are available. For example, if such an SDP is feasible, we can ensure strong duality by adding
a redundant ball constraint, see Henrion and Josz [12]. See also references [9, 16] mentioned in the introduction.
One may also entirely do away with the SDP based approach, and either optimize directly over SOS polyno-
mials, see Papp and Yildiz [24]; or use a second order conic programming, or linear programming relaxation,
which is a bit weaker, but much more scalable, see Ahmadi and Majumdar [1]. Example 4 complements these
works: it gives a combinatorial insight into why some of the pathologies arise in the first place.

Second, Waki in [38] constructed a library of weakly infeasible SDPs from the SOS relaxation of polynomial
optimization problems; on the other hand [38] did not provide certificates of the kind we study in this work.

Third, suppose we just wish to decide whether f — A is SOS for some fixed A. For that, we set up an SDP
feasibility problem with the constraints of (15), and add the constraint Egg @ X = 1 — A. Interestingly, this SDP
turns out to be strongly infeasible, as it was proved by Henrion [8].

We now move on, and in Corollary 1 characterize the underlying operators in weakly infeasible SDPs.
The discussion in the introduction shows that these are linear operators that map S’ to a nonclosed set. These
operators were recently baptized as “bad projections of the psd cone,” and explored through the lens of algebraic
geometry [11].

Corollary 1. Suppose A:S" — R™ is a linear map. Then AS} is not closed if and only if A has a reformulation
A’ with the following properties:
1. (AY,...,A},,) is in semidefinite echelon form, where k > 1;

2. Thereis (Xy,...,Xy11), in semidefinite echelon form, where £ > 1 and the matrix of inner products of the
A} and X matrices looks like

12



(+1

0 0| 0
0 0| 0
k+1
0 0| 0
(Ag'Xj);it;lezl =10 0] -1
0 0| x
0 0| x

where the x symbols denote arbitrary elements.
O

Proof. To show the “only if”” direction, suppose .AS”} is not closed, and suppose b € R™ is in the closure of AS”}
but b ¢ AS"} . Then (P) is weakly infeasible, so we appeal to Theorem 1 and construct A'b | and Xq,...,Xp1

therein. Then the matrix (A} e X;)™"!

i—1,j—1 is in the form given in Figure 2, so items 1 and 2 in our corollary hold.

For the “if” direction, suppose A’ and (Xi,...,Xy.1) are as in the statement of Corollary 1, and let &' =
A'Xy. 1. Then (A',b') and (X1,...,Xy, 1) satisfy items 1 and 2 in Theorem 1. Hence the system (Pye,i) therein
is weakly infeasible, so &' is in the closure of A’ S’ but vegA &'t Thus A'S" is not closed, hence neither is
AS'!, as required. O

We next contrast Corollary 1 with an equivalent characterization of nonclosedness of .AS’ that we recap
below in Theorem 2. Theorem 2 is obtained from [30, Theorem 1] by setting B = 0.

Theorem 2. Suppose that Z is a maximum rank psd matrix in R(A*), the linear span of Ay,...,An. Assume
without loss of generality that Z is of the form

(L. 0
P~ ( 0 o) (17
for some r € {0,...,n}. Then AS} is not closed if and only if there is a matrix V € R(A*) of the form
Vit Vi
V= , 18
() o
where Vy, € 8" and R(V,5) € R(Va2). O

Next we argue that Corollary 1 is more useful than Theorem 2, although the latter is more compact. In
particular, Corollary 1 can be used to construct maps under which S’ is not closed, as we show in Section 4.

On the other hand, Theorem 2 cannot be used for this purpose in a straightforward manner. Suppose indeed
that we try to construct such an 4 and choose A} := Z as in (17) (with 0 < r < n) and A, :=V as in (18) as
elements of R(A*). However, we cannot guarantee that Z remains a maximum rank psd matrix in R(A*) after
we chose the other A;.
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4 How to construct any weakly infeasible SDP and bad projection of
the psd cone

We now build on Theorem 1, and present a combinatorial algorithm, Algorithm 1, to construct any weakly in-
feasible SDP of the form (P). Algorithm 1 (with Algorithm 2 as a subroutine) also constructs any bad projection
of the psd cone, and provides a vector b in the closure of AS”} such that b ¢ AS .

Algorithm 1 first chooses positive integers m, k and ¢, such that k+ 1 < m, then constructs a weakly infea-
sible SDP with just k£ 4 1 constraints in the echelon form of (Pye,k). It also chooses a sequence (X1, ..., Xpy1)
in semidefinite echelon form that certifies not strong infeasibility of this “small” SDP. Finally, it chooses the
remaining m — (k+ 1) equality constraints and reformulates the SDP.

Algorithms 1 and 2 rely on Theorem 1, but to simplify notation, everywhere we write A; in place of A} and
b; in place of b..

Algorithm 1 Construct Weakly Infeasible SDP

1: Choose m,k and ¢ positive integers such that k + 1 < m. Also choose (Ay,...,A;.1) and (X1,...,Xpy1) in
semidefinite echelon form, which satisfy the following base equations:

Aok = {0 if (i,) # (k+1,041) (BASE)

1 if (i, j) = (k+1,0+1)

Let (bl,...,bk,karl) = (0,...,0,—1).

Choose Ay, ...,An, so they have zero e product with Xj,...,X,.
Setb;:=A;eX, fori=k+2,...,m.

Reformulate (P).

Observe that step 1 ensures that the first K+ 1 rows of the (A; e X ,)Imjgl matrix are as required in Figure 2.

Steps 3 and 4 ensure that the rest of the matrix looks like as required in the same figure.
The only nontrivial step in Algorithm 1 is step 1, so the question is, how to carry out this step?

The main idea is that we have many potentially nonzero blocks in the A; and the X;, and only a small
number of equations to satisfy. Precisely, by a straightforward count the A; altogether have at least constant
times k> potentially nonzero blocks of the form A;(P;, P,), where {Py, ..., P} is the structure of (Ay, ..., Apy1)-
Similarly, the X; have at least constant times 3 potentially nonzero blocks. So if we set these blocks in the right
order, then the A; and X; will satisfy the (BASE) equations, of which there are only (k+1)(¢+1).

To carry out this plan, we need two lemmas.

Lemma 1. Suppose that (A1, ...,Ay1) is in semidefinite echelon form with structure { Py, ..., Py 1} and (X1, .., Xev1)
is in semidefinite echelon form with structure {Qy,...,Q41}-

Also suppose that (Ay,...,Axr1) and (X, ..., Xy 1) satisfy the base equations (BASE). Then

PN(Q1U---UQpy1) = 0 (19)
orn (Pl U--- UPkJrl) 0. (20)

Proof. We prove (20), the proof of (19) is analogous. Since (A1, ...,A;.1) is in semidefinite echelon form, and
X1 = 0, an argument like in the “if” direction in Theorem 1 proves X; (P U---UP;.1,N) = 0. Since the only
nonzero entries of X; are in X;(Q1), the statement follows.

14



O

Lemma 2 shows how to solve a linear system of equations in an unusual setup, in which only the right hand
side is fixed. In Lemma 2 we index the b; reals and Y; matrices from 2 to £+ 1 for convenience. We also define
the inner product of possibly nonsymmetric matrices M and Y as the trace of MY

Lemma 2. Given positive integers p,q and £, and real numbers by, ... by, there is a polynomial time algo-
rithm to find M,Y,, ..., Yy 1 in RP*9 such that

MeY,=b;
: @
MeYy ) =byy.
Further, any solution to (21) is a possible outcome of this algorithm.

Proof. If all b; are zero, we first choose an arbitrary M, then choose Y5, ...,Y;, 1 to solve the system (21). If not
all b; are zero, we do the same, but we make sure to pick M # 0.

O

Algorithm 2, which is used as a subroutine in Algorithm 1, constructs sequences of A; and X; that satisfy
the (BASE) equations.

Algorithm 2 Base Equations Algorithm

1: Choose (A;)*"! and (X )[ﬂ in semidefinite echelon form with structure {P;}**! and {Q; 3 le respectively,
which satisfy

PL#£0,....B#0,01 #0,...,00 # 0, (19), and (20).
2: fori=2:k+1do
3: Set Aj(P—1,01),X2(P,—1,01),---,X¢11(Pi—1,01) to satisfy the base equations (BASE) with left hand
SideA,.XZ,...,A OX@+1.
4: end for

Lemma 3. We can implement step 3 of Algorithm 2 so the algorithm is correct.

Proof. For brevity, we define P, o ;=N\ (PLU---UPy) and we fix i € {2,...,k+ 1}. To implement step
3 of Algorithm 2 we first set the (P,_1,Q) block of A;,Xa,..., Xy to zero, then introduce a target vector

(b27' .. 7b€+1)T
b —JAieX; if (i,7) # (k+1,0+1)
— (Ao X;+1) if (i, j) = (k+ 1,L+1).

Next we invoke Lemma 2 with A;(P,_1, Q) in place of M and X;(P,_1,Q1) in place of ¥; for j =2,...,0+1.
Finally we symmetrize A; and the X;, namely we set

Ai(Q1,P1) ==Ai(P1,01) "and X;(Q1,Pi1) = X;(Pi_1,01) "
for j=2,....0+1.

Suppose we perform step 3 with a certain i € {2,...,k+ 1} to satisfy the base equations (BASE) with left
hand side A; e X; for j = .,£+ 1. We next show that the previously satisfied equations remain true.
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If i = 2 then there is nothing to show, so assume i > 3. Letus fixr € {2,...,i— 1} and j € {2,..., ¢+ 1}.
We will show that the equation with left hand side A, ® X; remains satisfied. For that, we note that the support
of A, is contained in the blocks

7, = (AU---UPRPU---UPR)
I, = (PAU---UPR_1,P11U---UPy2) (22)
Iz = (Py1U--UPga,PlU---UP)

cf. Definition 1. In iteration i we change X;(P,—1,0) and X;(Q;,P,—;) for j =2,...,¢+ 1. So it suffices to
show

(P—1,01)NZT; = 0 (23)
(P-1,01)NL, = 0 (24)
(P-1,01)NI; = 0. (25)

Indeed, (23) and (25) follow by (20). Further, (24) follows from r — 1 < i — 1 and the proof is complete.

In summary, we have the following theorem.

Theorem 3. Algorithm I always correctly constructs a weakly infeasible SDP and any weakly infeasible SDP
of the form (P) is among its outputs.

Proof. Lemmas 1-3 imply that Algorithm 1 always correctly outputs a weakly infeasible SDP. On the other
hand, suppose (P) is weakly infeasible. Then (P) has a reformulation (Py.,x) as presented in Theorem 1. For
simplicity, let us denote the operator in (Pyeac) by A and represent 4 with matrices Ay, ...,A,. Also let us
denote the right hand side in (Pyeax) by b.

Assume the first k+ 1 > 2 equations in (Pyeax) prove it is infeasible. We know that (Py.,k) is not strongly
infeasible, and we let (Xi,...,Xy,1) be the sequence that certifies this as presented in Theorem 1. Recall that
£>1.

Suppose that (Ay,...,Agy1) has structure {Py, ..., Py} and (Xi,..., X4 1) has structure {Qy,...,Q¢1}- By
the remark following Theorem 1 we can assume that Py, ..., P, and Qy,...,Q, are nonempty. Hence by Lemma
2 we have that (Ay,...,Ax1) and (Xi,...,Xp, 1) are possible outputs of Algorithm 2. Besides, Ay, ..,A;; and
biia, ..., b, are possible outputs of steps 3 and 4 in Algorithm 1. Because of the reformulation step 5 we see
that (P) is a possible output of Algorithm 1, and the proof is complete.

O

As a quick check, Algorithm 1 constructs a variant of (ME) as follows. Firstitsets m =2, k=¢=1,P, =
{1},01={2},, =0, =0 and

() om0 oo Y3 9)

where o and 8 are arbitrary. Then the subroutine Algorithm 2 sets o and f3 to satisfy 2a8 = —1. Algorithm
1 in step 2 sets b = (0,—1) . Then it skips steps 3 and 4 (since m = k + 1) and also skips the reformulation of
step 5.

Example 5. Lerk={(=1,P, ={1}, P, =12}, 01 = {3},0. = {2}, a and B be arbitrary reals, and

1 00 0 0 «o 0 0 0 0 0 B
Ar=10 0 o), 4a=[0 1 o], x;,=[0 0 o], a=[0 1 0
0 0 0 « 0 0 0 0 1 B 0 0
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Our algorithms construct a weakly infeasible SDP from this data as follows. Algorithm 2 sets o and B so that
aff = —1. After this the A; and X; satisfy the (BASE) equations. Then Algorithm 1 in step 2 sets (bi,by) =
(0,—1) and in step 3 it chooses

0 1
A3 =(1 0
0 1

>~ O = O

as it has zero inner product with Xi. Finally, in step 4 it sets b3 := Az @ X, = 0 and skips the reformulation of

step 5.

We note that a scheme to construct weakly infeasible SDPs was given in [17]. That scheme is somewhat
similar to the one presented here, as it uses a sequence of A; matrices to certify infeasibility and a sequence of
X; matrices to certify not strong infeasibility. However, the scheme in [17] assumes that the positive definite
blocks of the A; and X; matrices do not overlap, so the variety of weakly infeasible SDPs it can construct is
limited. In particular, it cannot even construct the small SDP of Example 5.

On the other hand, our Algorithm 1, that generates any weakly infeasible SDP, relies on Theorem 1; that
result is simple to state, but somewhat technical to prove.

Example 6. (Example 3 continued) We now show how Algorithm I constructs the SDP in Example 3. We first
setm=4k=1{=2, and select (A1,A,,A3) and (X1,X»,X3) in semidefinite echelon form shown below:

P {.
P {
Py {
A Ar Aj
O {
03 {
0O { .
Xi X> X3

Here at the start the entries marked by = are arbitrary. Algorithm 2 first ensures Ay e X, = Ar e X3 =0 by

setting
A(1,4)=1/2, X(1,4)=-1, X3(1,4)=0.

Then it ensures Az e X, = 0,A3 ¢ X3 = —1 by setting
A32,4) =1, X(2,4)=1, X3(2,4)=-5.
(It also sets the symmetric blocks, for example, it sets A»(4,1) = 1/2 and so on.)
Next, Algorithm 1 in step 2 sets (by,by,b3) = (0,0, —1), then in step 3 it selects

-1 -2 -1 3
12 2 -1 2
21-1 -1 0 -1

32 -1 0

A4 =

as it is orthogonal to X| and X,. Then in step 4 it sets by = Ay X3 = —12. We thus get the weakly infeasible
instance of Example 3 with the A; and X; shown above and b = (0,0,—1,— 12)T.
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5 Proofs: certificates of infeasibility and not strong infeasibility sepa-
rately

In this section we construct two distinct reformulations of (P): one to certify it is infeasible, and the second to
certify it is not strongly infeasible. Lemma 5 already appeared as part (1) of Theorem 5 in [17] and Lemma 6
as part (2) of Theorem 5 in [17]. An earlier version of the latter result appeared in [19]. Here we give shorter
and more elementary proofs.

We first state a necessary condition for a semidefinite system to be infeasible. Lemma 4 is a slightly stronger
version of Lemma 3.2 in Waki and Muramatsu [39].

Lemma 4. Suppose B € 8" and L C 8" is a subspace such that (B+ L) NS} = 0. Then the following hold:

1. The system (26) is feasible:
BeY <0

Y eLtn(sh\{0}). (26)

2. If (26) has a positive definite solution, then it has a positive definite solution Y such that BeY < 0.

Proof. To prove item 1, let B : R™ — S” be a linear map whose rangespace is L. We claim that the optimal
value of the SDP

sup Yo

s.it. —Byg—By=<0 @7

is zero. Indeed, its optimal value is nonnegative, since (y,yo) = (0,0) is feasible in it. On the other hand, the
optimal value cannot be positive: if yp > 0 were feasible with some y, then we would get the contradiction
B+ 5By = 0.

First assume that (27) satisfies Slater’s condition. Then its dual (which is of the form (P-opt)), is feasible.
Any Y feasible in the dual of (27) satisfies

BeY=-1, B*Y =0,
as required.

Second, assume that (27) does not satisfy Slater’s condition. We claim that the optimal value of the SDP

sup ¢

s.t. tI—Byy—By=0 (28)

is zero. Indeed, it is nonnegative since setting all variables to zero we obtain a feasible solution. On the other

hand if t > 0 were feasible with some yg and y, then the contradiction Byy + By > ¢I > 0 would follow.

Note that (28) does satisfy Slater’s condition with t = —1,y =0, and yg = 0. Thus there is a Y feasible in
the dual of (28), which satisfies
BeY =0, B'Y=0, leY=1,

as required.
To prove item 2, we observe that (B+L) NS’ = 0 implies B ¢ L. So there is Y’ € L* such that
BeY' <0.

Suppose (26) has a positive definite solution. Then we add a sufficiently small positive multiple of ¥’ to it and
obtain a Y positive definite feasible solution such that BeY < 0. The proof is now complete.

O
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Lemma 5. The SDP (P) is infeasible if and only if it has a reformulation
A v

X
X 0 (Pinfeas)

Yl

in which (A},...,A} ) is in semidefinite echelon form and (b',...,bj,bj ) = (0,...,0,—1) for some k > 0.

Proof. The “if” direction is given verbatim in the proof of the “if” direction in Theorem 1. For the “only if”
direction, by elementary row operations (operations 1 and 2 in Definition 1) we will first achieve the following:

A =0,b € {O,—l} 29)

and
b1 =0 = 0 <rankA; < n. (30)

For that, we distinguish two cases.

Case 1 (The linear system AX = b is infeasible). Then by elementary linear algebra there is y such that
Ay=0, bly=—1.

We have y # 0 so after permuting the equations in AX = b we assume y; # 0 without loss of generality. Next,
using elementary row operations we replace A; by A*y and by by b'y. As a result, (29) and (30) hold.

Case 2 (The linear system AX = b is feasible). We first fix Xy € S" such that AX, = b. Then we apply Lemma
4 with L := N (A) and B := Xj and find Y feasible in the system (26). Further, using item 2 in Lemma 4, if ¥
is positive definite, we ensure Xo oY < 0. We have Y € L+, and L' = R(A*), so we write ¥ = A*y for some
y € R™ and deduce

0> XpeY = Xge A*y = (AXy)'y=0b"y.

We then proceed as in Case 1: we permute the equations in AX = b, if needed, and replace A; by A*y and
b1 by bTy. Afterwards, if b; < 0 then we rescale A; and by so that by = —1. Again, (29) and (30) hold.

Now that we have satisfied (29) and (30), we choose an invertible 7' matrix such that T"A;T = I, &0 for
some r > 0, and let
AL=TTAT, b :=b; fori=1,...,m. (31)

If b} = —1, we set k = 0 and stop.

If b} =0, then we must have 0 < r < n. We must also have m > 1, otherwise the all zero matrix would
be feasible in (P). We then delete the equation A} X = 0 and also delete the first » rows and columns from
the other A’. We thus obtain a smaller SDP, say (P’), with m — 1 equations and order n — r matrices. We see
that (P’) is infeasible: if X" were feasible in it, then X := 0@ X’ would be feasible in (P). So we proceed by
induction, as a reformulation of (P’) into the form of (Piyfeqs) yields a reformulation of (P) into the same form.

O

As a quick sanity check, we consider the SDP in (ME), and the reformulation given in Example 2 (see
equation (9)). This reformulation is in the form (Pjyeas). Note that now k = 1.

The proof of Lemma 5 implies that the positive definite blocks in A/, ..., A} are nonempty, and can be chosen
as identity matrices. However, the positive definite block in A}, 41 may be empty, as it is in the reformulated
version of (ME) given in the previous paragraph.

We next present Lemma 6 to construct a certificate that (P) is not strongly infeasible. Lemma 6 builds on
two ideas. First, if (P) is not strongly infeasible, then the alternative system (P-alt) is infeasible. In turn, if
(P-alt) is infeasible, then using Lemma 5 we will reformulate it to make its infeasibility evident.
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Lemma 6. The SDP (P) is not strongly infeasible if and only if it has a reformulation

bl/

A'X
0 (Pnotstrong)

X

Yl

such that for some (X\,...,Xy11) in semidefinite echelon form with £ > 0 the following holds:

A// Xi
A" XZ+ |

0 i=1,....,0 and
O for i an (32)

Proof. The proof of the “if”” direction is given in the proof of the “if” direction in Theorem 1.

For the “only if” direction, we assume that (P) is not strongly infeasible, and choose an operator 3 : S* — R™
such that R(A*) = N (B). We also choose Xy € 8" such that AXy = b (such an X, must exist, otherwise (P)
would be strongly infeasible). Since (P) is not strongly infeasible, the alternative system (P-alt) is infeasible.
We claim that (P-alt) is equivalent to

BY = 0
Xpo¥ = -1 (33)
Yy > 0.

Indeed, by the choice of 3 we have that BY = 0 for some Y € §" iff ¥ = A*y for some y € R™. For any such Y
and y we see that
bly = (AXo)'y = XoeY,

and this proves that (P-alt) and (33) are equivalent.

Thus, by Lemma 5, the system (33) has a reformulation of the form (Pjyfess), in which for some ¢ > 0 the
first £+ 1 equations prove the infeasibility. These equations are of the form

XjeY = 0 (j=1,...,0)

)
where (Xi,...,Xy41) is in semidefinite echelon form.

Note that in (33) the only equation with nonzero right hand side is XoeY = —1. Given that from (33) we
derived equations (34) by elementary row operations and by congruence transformations, we see that

X; € T'R(BHT forj=1,...,0

X1 € T" (R(B*) +X())T (35)

for some invertible matrix 7.

Observe that R(B*) = N(A). Then from (35) we deduce that fori=1,...,m

} “Ty.p—1 _ 0 if jE{l,...,E}

Ao T XT _{ b if j=l+1

holds. We have A; ¢ T~ TX,T~! = T~!A,7~ T e X for all i. We define the operator A" as
A'X = (AleX,... Al e X)T,

where A” = T~'A,7~T forall i and let »” = b. We see that A”,b", and the X, ..., X, that we already defined
satisfy the requirements of our lemma.

O
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Yet again, consider the reformulation of (ME) given in Example 2 and set A] = A}, and A} = A}, and X,
and X; as in (3). Then (A},A%) and (X;,X,) with b” = (0,—1)" satisfy the conclusions of Lemma 6. Note that
now ¢ = 1.

By the proof of Lemma 6 the positive definite blocks in Xi,...,X, are nonempty, and can be chosen as
identity matrices. However, the positive definite block in X, | may be empty, as it is in the reformulated version
of (ME) that we gave in the previous paragraph.

6 Proof of Theorem 1

Section 5 showed how to produce a reformulation (Pjyfeas) to prove that (P) is infeasible; and another reformu-
lation (Pyorstrong) to prove it is not strongly infeasible. In this section we show that a single reformulation can
accomplish both. This common reformulation was fairly straightforward to produce when we started with a
simple problem like (ME). In the general case we need a technical proof.

We first define operators that transform a certain targeted block of a matrix. To absorb Definition 3 we need
to recall the notation M(R, S) and M(R) for blocks of a matrix M from the start of Section 2.

Definition 3. Suppose R C N and G is matrix of order |R|. The matrix Ig g is obtained from the n x n identity
by replacing I(R) by G, i.e., by performing the following two steps:

IR,G = I,
IR’G(R) =G.

For example, ifn =4, R={1,4}, and G = (2 3) , then

4 5
2 0 0 3
I — 01 00
RG=1o o 1 0
4 0 0 5
Suppose M € R and R C N. Then the operation
M = M'IR’G

right multiplies by G the columns of M indexed by R and leaves the rest of M unchanged.
Given subsets Ry, ...,R; of N and indices i and j such that 1 <i < j <t we will use the following shorthand:
R,';j ::RiUR[+1U"'URj. (36)

We will often use a congruence transformation to put matrices into a convenient block diagonal form, bringing
us to the following lemma:

Lemma 7. Suppose X € 8" and Ry,...,R; are disjoint subsets of N such that
X(Ryy4) = 0.
Then there is an invertible matrix T such that
(TTXT)(R,.) is nonnegative diagonal,
and T can be chosen as the product of n X n invertible matrices
T =1Ig,uW .. Ig,uW,

where
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1. the U; are orthonormal matrices for all i.
2. right multiplying an n X n matrix, say M, by W; adds multiples of columns in M(N,R;) to columns of
M(N,Rj) for some j indices in {i+1,...,t}.
O

Suppose W; is a matrix in the statement of Lemma 7. We can describe W; algebraically as follows: i) it has
all 1 entries on the main diagonal; ii) the block W;(R;,R;) is nonzero for some j indices in {i+1,...,¢}; iii) all
other blocks of W; are zero.

Proof (of Lemma 7). Let U; be a matrix of orthonormal eigenvectors of X (R;) and define T := I, y,. Then
(T"XT)(R1.) looks like on the first picture of Figure 7, where the x symbols represent arbitrary elements.

Ry R

—_—

=0 =0

Figure 7: How to diagonalize X (R;) in Lemma 7

Next we let W; be a matrix such that right multiplying 7 " XT by W; adds columns of 7" X T indexed by R;
to columns indexed by R to zero out the T " X T (R, R;) block for all j > 1. Then the Ry, region of W," T " XTW;
looks like in the right picture on Figure 7.

We then redefine 7 := TW, and X := T ' X7, and continue in like fashion with the R, diagonal block of
X.

O

The next definition is from the theory of facial reduction [4,28].

Definition 4. We say that a sequence of symmetric matrices X1, ...,X; is a facial reduction sequence for S} if
X1 €8, and Xy € (SENX{N--NX)" fori=1,...t—1.
Here, for a set C C 8" we write C* = {Y : X oY >0 forall X € C} for its dual cone.
Evidently, if (Xi,...,X;) is in semidefinite echelon form, then it is a facial reduction sequence, but the
converse is not true in general.
Lemma 8 below follows from Lemma 1 in [17]; however, below we give a simpler proof.

Lemma 8. Suppose that (X1,...,X;) is a facial reduction sequence, and V is an invertible matrix. Then
(VTX\V,...,VTX,V) is also a facial reduction sequence.
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Proof. Let (Xi,...,X;) be as stated. For brevity, define the map V : S — S" as VX = V' XV for X € §”. Then
the conjugate of V is computed as V*Y = VYV forY € S".

Letus fixi€ {1,...,t—1}andletY € TN (VX)) N---N(VX;)L. We will show
VX, oY >0, (37)
and this will prove our claim. From the definition of the conjugate we deduce
VY € STNXiN---NXi (38)

Hence VX; oY = X;;1 @ V*Y > 0, where the inequality follows from (38) and from (X, ...,X;) being a facial
reduction sequence. Hence (37) follows and the proof is complete.

O
We can now prove the difficult direction in Theorem 1.

Proof (of “only if” in Theorem I). Suppose that (P) is weakly infeasible and Lemma 5 produced the reformula-
tion (Pinfeqs) With operator A’ and right hand side 5. We claim that k > 1, so to obtain a contradiction, suppose
k = 0. Then the alternative system of (Pifeas) (namely the system (P-alt) with (A’ ") in place of (A,b)) is
feasible, in particular, y = (1,0, ... ,O)T is feasible in it. Hence (Pjyfeas) is strongly infeasible. Thus (P) is also
strongly infeasible, which is the desired contradiction.

Also suppose that Lemma 6 produced the reformulation (Pyotstrong) With operator A" and right hand side b”;
and it produced the sequence (X, ...,Xy, 1) which is in semidefinite echelon form and certifies that (Pnotstrong)
is not strongly infeasible. We claim that £ > 1. Indeed, if £ were 0, then X; would be feasible in (Ppotstrong)s
hence (P) would also be feasible, which would be a contradiction.

As usual, we represent the operator A’ with matrices A’ and the operator .A” with matrices A” fori=1,...,m.
Further, following the proof of Lemma 5 we assume without loss of generality that the positive definite blocks
in the A} are identities.

If (Pnotstrong) 18 the same as (Pjpfeqs), then there is nothing to do. Otherwise, since both are reformulations of
(P), we can transform (Ppotstrong) 1nt0 (Pipfeas) if we

1. perform a sequence of elementary row operations on the equations A/ ¢ X = b/; then

2. replace all A by VAV for some invertible matrix V.

Suppose we perform only the elementary row operations, and for simplicity we still call the resulting reformu-
lation (Ppogsirong) With operator A” (represented by matrices A}') and right hand side 5”. Of course, now b’ = b".
Afterwards equations (32) still hold. At this point we have

Al = VTAi./V for i=1,...,m,

AleX, = VTAﬁ’VoV*IXXV’T for i=1,...,m; for s=1,...,.4+1, (39)

where the second set of equations follows from the properties of the e product. We next perform the following
operations:
X;:=V X,V T for s=1,...,0+1. (40

Let us consider the following invariant conditions, where j € {0,...,0+ 1}:

(INV-1): The semidefinite system (Pijfe,s) is a reformulation of (P) with properties given in Lemma 5. In

particular, (A7,...,A}, ) is in semidefinite echelon form and (b!,...,b},b; ) = (0,...,0,—1).
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(INV-2):
AX, = 0fors=1,...¢

./4/}(2+1 — b,. (41)

(INV-3): (Xy,...,Xpy1) is a facial reduction sequence.

(INV-4): (Xy,...,X;) is in semidefinite echelon form.

We claim that all these conditions hold when j = 0. Indeed, (INV-1) holds since (Pjyfe,s) Was constructed
in Lemma 5. Condition (INV-4) holds vacuously. Condition (INV-2) holds by (39), by ' = b”, and since
we performed the operations in (40). Finally, condition (INV-3) holds by Lemma 8§, since we started with
(Xi,...,Xr41) being in semidefinite echelon form, then we performed operations (40).

The goal is to have the invariant conditions satisfied with j = £+ 1. Once that is done, the proof is complete,
since we can set (Pyeak) equal to (Pinfeas). So let us assume that j € {0, ..., ¢} is an integer, and all the invariant
conditions hold with j.

We will perform Step j below, which diagonalizes a certain block of X;, | and in the process also transforms
A’ and the other X;. We will prove that afterwards the invariant conditions hold with j+ 1. Recall the notation
(36).

Step j  We assume that (A},...,A} ) has structure {Pi,..., Py} and set P = N\ Py, (j41)- We also assume
that (Xi,...,X;) has structure {Q1,...,0,}.

By condition (INV-4) and using an argument like in the proof of the “if” direction in Theorem 1 we see
that S? NX{-N---NX ]l is the set of psd matrices whose rows and columns corresponding to Qy.; are
zero. By condition (INV-3) we have

X1 € (STnXin---nXxj)",
hence
Xjr1(N\ Q1:j) = 0. (42)
Let us define R; = P;\ Qy.j fori=1,...,k+ 2. Then we rewrite (42) as
Xj+1(R1 .- URk+2) = 0. (43)

So X1 looks like on Figure 8, where the red submatrix is positive semidefinite, and the blue and white
submatrices are arbitrary.

R {

Ry {

Riia {

[p—

— —
PiNQy; BNOy; Prey2N Oy

Figure 8: X; before it is transformed
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We now apply Lemma 7 with X := X, 1,7 := k+2 and the R; just defined. The goal is to diagonalize
Xj1 (R1y). Let T be the transformation matrix produced by Lemma 7, then

T =1Ig, Wi .. IRy U, Wit2, (44)
where

(a) the U; are orthonormal matrices for all .

(b) right multiplying an n x n matrix, say M, by W; adds multiples of columns in M(N,R;) to columns
of M(N,Rj) where j € {i+1,....k+2}.

We perform the operations

X, = T'X,T for s=1,....0+1,

Al = THAITT fori=1,...,m, (@5)

and set
Qjy1 :={r | the (t,r) element of X, (N \ Qy:;) is positive}.

We claim that the invariant conditions now hold for j+ 1. Indeed, (INV-2) holds by how we redefined the X;
and A} in (45). Condition (INV-3) holds by Lemma 8.

We next look at (INV-4). We first show on Figure 9 how X | looks before and after step (45). To better see
what happened, we permuted the rows and columns of X, so that rows (and columns) indexed by Q;.; come
first. The & block stands for a positive semidefinite block.

Step (45) transforms X1 (N \ Q1.;) to be nonnegative diagonal, and in this process X;1(Q1.;,N\ Q1.;) (and
the symmetric counterpart) is also transformed. We show the changed block in red in Figure 9.

O1; N\Qr; 01 Qj+ 1N\ Q111

— et e

Figure 9: How step (45) changes X1

Next we look at how Xi,...,X; change due to step (45), so we fix s € {1,..., j}. Given the factorization of
T in (44), replacing X, by T " X,T amounts to running Algorithm 3 below:

Algorithm 3 Transforming X;
forr=1:(k+2)do
(*) X, = I;’,UthIRhU,;
(%) X; := VVtTXsVVt;
end for

We claim that after Algorithm 3 is run, the matrix X remains in the same shape it was in before. Suppose
this is true after we performed steps (¥) and (**) forr =1,...,q— 1, where g > 1.

25



We next perform step (*) with r = g. This amounts to first multiplying X(N,R,) from the right by U, then
multiplying X (R, N) from the left by UqT. Since R{U---URyy2 = N\ Qy.j, we see that

ngN\lejgN\les~

We depict X; on Figure 10, with the affected parts shaded in red and conclude that X; remains in the shape it
was in before step (45). Note that on Figure 10 we permuted the rows and columns of X; so that X;(Qy.,) is in
the upper left corner.

Ql:s—l N\Ql:s

Qs
—_—

X X X

+

Figure 10: How steps (*) and (**) in Algorithm 3 change X;, where s < j.

We next perform step (**) with r = g. Multiplying X, from the right by W, adds multiples of columns in
X;(N,R,) to columns in X;(N,R ) where ¢’ € {g+1,...,k+2}. Then we perform the analogous row operations.
Thus Figure 10 again tells us that X; remains in the same shape.

We thus conclude that condition (INV-4) holds after step (45) with j+ 1 instead of j.

We next prove that condition (INV-1) remains unchanged after step (45) is executed, so we look at how the
Al change. Let us fix i € {1,...,m}.

Given the decomposition (44), we have

T _ T w-T g-T T
T = IR1U1 W 'IRk+27Uk+2Wk+27 46
-1 _ 1 -1 -1 (46)
T W, 1 W1
- k+2"Rp U2 771 TRyULY

We also know that for all # € {1,...,k+2} by the the definition of Iz ¢ and by U' = U, ! the following hold:
Iy = Iyt

e @)

R, U Ry, Us -

Thus, given the decomposition (46), performing step (45) on A] amounts to running Algorithm 4 below.

Algorithm 4 Transforming A/
forr=1:(k+2)do
(*) Ap =1y yrAilR, U
() Af =W AW T
end for

We claim that after Algorithm 4 is run, the matrix A} remains in the shape it was in before.
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Suppose this is true after we performed steps (*) and (**) fort =1,...,q4— 1, where g > 1. Next we perform
(*) with r = g. We need to keep in mind that g € {1,...,k+2} and R, C P,.

We distinguish three cases.

q=i

q<i

q>i

We show on Figure 11 the A} matrix before and after step (*). The changed portion is in red.
First the submatrix A}(N,R,) is multiplied from the right by Uy, then the submatrix A}(R,,N) is multi-
plied from the left by UqT .

Thus A/(R,) = I is replaced by U[;r IU, =1, so it remains an identity. In summary, A} has the same form
before and after step (*).

P P, N\ P

Figure 11: How step (*) in Algorithm 4 changes A}, when g = i

We show on Figure 12 the A} matrix, before and after step (*). The changed portion is in red.

First the submatrix A/(N,R,) is multiplied from the right by Uy, then the submatrix A}(R,,N) is multi-
plied from the left by U,

Again, A; has the same form before and after step (*).

P P, N\ Py;

Figure 12: How step (*) in Algorithm 4 changes A}, when g < i

We show on Figure 13 the A} matrix, before and after step (*). The changed portion is again in red.

First the submatrix A/(N,R,) is multiplied from the right by Uy, then the submatrix A}(R,,N) is multi-
plied from the left by U, .

Yet again, A} has the same form before and after step (*).
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X X X X
X I

Rq{ X
X

Figure 13: How step (45) changes A/, when g > i

Next we perform step (**) with 7 = g. We recall that right multiplying A} by W, adds columns of A’(N,R,)
to columns in A}(N,R,) where g < ¢'. By the algebraic description of W, (after the statement of Lemma 7) we
see that multiplying A/ from the right by Wq’—r adds columns of A}(N,R) to columns in A}(N,R,) where g < ¢'.
(Multiplying A} from the left by W, ! works analogously on the rows of A}.)

Recall that R, C P, and Ry CPy. Thus Figures 11, 12, and 13 tell us that Af» remains in the same shape as
it was in before step (**). Thus condition (INV-1) holds, and the proof is complete.

O

7 Our problem library and computational tests

Using the results of the previous sections, we now show how to generate a library of weakly infeasible SDPs. We
accompany our SDPs with an intuitive visualization and examine whether their infeasibility can be recognized
by the prominent SDP solvers MOSEK [20] and SDPA-GMP [6].

Libraries of weakly infeasible SDPs are available [17,38] the latter of these was generated using the Lasserre
relaxation of polynomial optimization problems. On the other hand, any weakly infeasible SDP is a possible
output of our Algorithm 1, so our current library includes instances that are unlikely to appear in any previous
collection.

The instances We constructed all 80 instances using Algorithm 1 and split them into two classes: clean and
messy.

* We constructed our clean instances by steps 1-4 of Algorithm 1, without using the reformulation step of
step 5, so our clean SDPs are in the echelon form (Pyeax)-

» From each clean instance we created a corresponding messy instance as follows. We applied elementary
row operations that we represent by an m x m integral matrix F = (f;;), then a congruence transformation
that we represent by an n X n integral matrix 7.

That is, if (P) is a clean instance, then in the corresponding messy instance constraint i is

m m
T'(Y fijA)TeX =Y fiib;.
=1 =1
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‘ H Miniature ‘ Small ‘ Medium Large

k 1 3 3 4

4 1 1-3 2-4 2-4

n 3 5-15 25-40 | 120-240
m 2-5 4-7 4-7 5-8

Table 1: Parameters of our weakly infeasible SDPs: k + 1 being the length of the infeasibility certificate, £ + 1
the length of the not-strong infeasibility certificate, n the matrix order, and m the number of constraints.

EEINNT3

We further categorize the instances as “miniature”, “small”, “medium”, and “large”, with parameters given
in Table 1. In each category the clean and messy instances are in one-to-one correspondence. For example, from
the “mini, clean, 9” instance we constructed the “mini, messy, 9 instance. In all instances all data is integral,
so their weak infeasibility can be verified by hand, in exact arithmetic.

Data storage For convenience we give our instances in three formats.

1. In the “.mat” files (in Matlab format) the Ay, ...,A,, are stored as rows of a matrix A and the X;,..., Xy
are stored as rows of a matrix X. These files also contain the right hand side b.

For each messy instance the files also include the matrices F' and T that were used to create it from the
corresponding clean instance.

2. The “.cbf” and “.dat-s” files contain the same SDPs. The “.cbf” files can be directly read by MOSEK and
the “.dat-s” files can be directly read by SDPA-GMP.

The “.jpg” files in the “image” subdirectories contain visualizations of the matrices A;,X; and F" and T for
each problem. Matrices A1, ...,A;1 and Xj,..., Xy are color coded, just like in Figure 5.

Computational testing For computational testing we selected the SDP solvers MOSEK and SDPA-GMP as
representative industry standards. MOSEK is currently the only commercially available SDP solver, it is fast
and accurate on most industrial problems, however, it has limited numerical precision. On the other hand,
SDPA-GMP can carry out calculations with precision 1072%0.

The results are in Table 2, where we reported a solver’s output as “correct” if it marked an instance as
infeasible.

Miniature Small Medium/Large
Clean | Messy | Clean | Messy | Clean | Messy
MOSEK 0 0 0 0 0 0
SDPA-GMP 10 10 0 2 0 0
Totalcorrect | 10 | 10 | 10 | 10 [ 20 | 20 |

Table 2: Number of infeasible instances correctly identified by MOSEK and SDPA-GMP

We see that while MOSEK failed to identify infeasibility of any of the SDP instances, SDPA-GMP correctly
identified the infeasibility of all miniature and of some small instances. However, both solvers failed on the the
larger instances.
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Besides standalone SDP solvers we also tested two implementations of facial reduction. The first is the
Sieve-SDP algorithm [40], which works very well if the constraint matrices of an SDP are in semidefinite
echelon form. Not surprisingly, Sieve-SDP quickly proved infeasibility of all clean instances, but failed on all
messy instances. The second implementation is the facial reduction method of Permenter and Parrilo [33] which
performed very similarly.

The problem instances are available from the webpage of the first author.

8 Discussion and conclusion

We presented an echelon form of weakly infeasible SDPs that permits us to construct any weakly infeasible
SDP and any bad projection of the psd cone by a combinatorial algorithm. We conclude with a discussion.

First we recall normal forms of other types of SDPs and linear maps; these normal forms are similar in
spirit, but much easier to derive. For example, in [29] and in Section 2.2.1 in [30] we produced a normal form
of well-behaved semidefinite systems of the form

m
Y xiAi < B, (48)
i=1

and called the normal form a good reformulation. The system (48) with B = 0 is well behaved iff AS"} is closed,
hence we obtain a normal form of linear maps that carry S’} to a closed set. This normal form also permits us
to construct any such linear map. In contrast, to derive such a normal (echelon) form of weakly infeasible SDPs
and of maps that carry S’} to a nonclosed set, we needed a much more technical proof.

Next, we reinterpret Theorem 1 in two equivalent forms.

The first interpretation is a “sandwich theorem” which we state in terms of weak infeasibility of H NS
where the affine subspace H is defined in (1).

Theorem 4. The semidefinite program HN S} is weakly infeasible if and only if there are positive integers k
and ¢, an invertible matrix T, and sequences (A’l,...,A;(H) and (X1,...,Xe11), both in semidefinite echelon
form such that

TTHT
{X 1 AleX = =AjeX=0,A,, 0X=—1}

Xpo1 +H1lin{Xy,....X¢} C
c

Here lin{ Xi,...,X; } stands for the linear span of X;,...,X;, and T "HT for the set {T'XT : X € H}.

The second interpretation is a “factorization” result. Suppose that (Pyeax) in Theorem 1 was obtained by
elementary row operations that we represent by an m x m matrix G and by congruence transformations that
we represent by an n x n matrix 7, see the discussion in Remark 2. We define the map 7 : " — S" as
T(X)=TXT' for X € §". Then in Theorem 1 the operators .A and A’ and vectors b and b’ are related as

A" =GAT, b = Gb,
so (A, D) can be “factorized” into (A’,#’) (and vice versa).

Next we comment on computing the echelon form (Pyeax). In general, we do not have an efficient or stable
method to do that, since we would need to solve the SDPs that arise in Lemma 4 in exact arithmetic. However,
the complexity of even finding a feasible solution to an SDP is unknown (see Remark 2). Thus the echelon
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form (Pyeax) is similar in spirit to the Jordan normal form of a matrix, which also must be computed in exact
arithmetic [7]. At the same time, even though they are nontrivial to compute, both our echelon form, and the
Jordan normal form yield both theoretical and practical insights.

We finally mention some intriguing research questions. First, it may be of interest to interpret our results
from the viewpont of projective geometry, in the spirit of Naldi and Sinn’s recent paper [22]. Second, recall
again Example 4: here the SDP from minimizing the sum-of-squares (SOS) relaxation of the Motzkin polyno-
mial is weakly infeasible, and is in the echelon form of (Pyeax) without having to reformulate it. It would be
interesting to see whether the same is true of other sum-of-squares SDPs.
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