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The prediction of glass-forming ability (GFA) in alloy systems is a challenging
problem in material science as well as for metallurgical applications. In this
study, we build artificial neural network (ANN) models to investigate the GFA
of multicomponent alloys, based on the datasets assembled from ternary alloys
as well as quinary alloys prepared by magnetron sputtering. Through training
the ANN models with different combinations of datasets, we tackle the prob-
lem of the influence of the data source on the model performance, especially
the generalizability of the models in predicting the GFA in unseen multi-
component alloy systems. The ANN model trained on a combined dataset
exhibits the best performance, specifically low root mean square error in leave-
one-alloy-system-out validation and high model robustness, for several
CoCrFeNi-based multicomponent alloys. To further verify the ANN models,
we synthesize CoCrFeNi-Mo metallic thin films by magnetron co-sputtering
and characterize the structure and phase information via x-ray diffraction and
electron microscopy. The outcomes of our experiments agree reasonably well
with the ANN model predictions, indicating that the data-driven machine
learning approach can be a useful tool in the future design of multicomponent
amorphous alloys.

INTRODUCTION

Metallic glasses (MGs) possess high strength,
large elastic limit, and superb corrosion resistance,
due to the disordered atomic structures, and thus
exhibit great potential for advanced structural and
functional applications.1–4 However, MGs have a
very limited glass-forming ability (GFA) compared
to conventional glassy systems (e.g., oxide glasses),
significantly hindering their development.3,5 There-
fore, it is of crucial importance to predict GFA and
to identify superior glass-forming alloy systems.
Thermodynamically, to form a glass crystallization
must be bypassed, and a good GFA implies a small
driving force of crystallization.6 Accordingly, several
thermodynamic models have been developed to

predict the GFA based on the experimental obser-
vations and measurements of thermodynamic and
physical quantities.7–11 Inoue summarized an
empirical rule to identify high GFA alloys. He has
proposed that an alloy with high GFA should have
more than three elements, negative heats of mixing
(DHmix) of the liquid phases, and a large atomic size
difference (d) (above 12%).8 Additionally, based on
the nature of glass formation along with metallur-
gical considerations, it has been found that the
liquidus temperature and supercooled liquid region
can reflect the stability of glass-forming liquids and
crystallization resistance during glass forma-
tion.6,9,12 For instance, Du designed a parameter
cm = (2Tx � Tg)/Tl, where Tx is the onset crystal-
lization temperature, Tg is the glass transition
temperature, and Tl is the liquidus temperature.9

The parameter, cm, has shown a good correlation
with the GFA of 39 different MGs, with a statistical
correlation factor of 0.931. From a structural per-
spective, the enhanced atomic size mismatch can
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induce large lattice distortion and instability, favor-
ing the glassy phase.7,8 The presence of short- to
medium-range orders leads to geometric frustration
in glass formation, which can also stabilize the
disordered structures.13 To date, identifying the key
factors for GFA is still an open research topic, and
the non-equilibrium nature of glass-forming pro-
cesses may give rise to complex relationships
beyond the current understanding. Recently, the
rapid development of multicomponent alloys has
enabled the MG search in a much broader compo-
sitional space.14 The vast space provides opportuni-
ties to find glass-forming candidates, but is difficult
to explore by the traditional trial-and-error method.

Data-driven machine learning (ML) technologies
have emerged as a new tool to investigate the
structure and property relationships in MGs.15–38

Learning from the existing data, ML models can
predict the properties of unknown alloys, rapidly
screening candidates in a vast compositional space,
and potentially replacing the trial-and-error
method.39 In particular, a variety of ML algorithms
have been applied to correlate the glass structure
and chemistry with elasticity,29 the propensity for
plastic deformation,16,17,23,33 and thermal and phys-
ical properties.18–22,24–32 In regard to GFA, ML
models demonstrate success in predicting the glass
transition temperature,35,36 the critical cooling
rate,37 and the critical casting diameter of
MGs,15,21,26,28 and further identify new glass-form-
ing systems,22,31 using random forest,25,32 support
vector machine (SVM),28 and neural network18,31,34

algorithms. Until now, the ML studies of GFA have
been mainly focused on binary and ternary alloy
systems, and further efforts are required to explore
multicomponent alloys using ML algorithms. The
exploration of multicomponent alloys in the compo-
sitional space features a large variety in selecting
chemical elements, and a vast combination of these
chemical elements by tunning the composition. The
existing datasets of binary and ternary alloys cover
a large set of chemical elements to form MGs;
whereas the increasing datasets of multicomponent
alloys provide refined GFA information for a hand-
ful of quaternary or quinary alloy systems. All the
data sources are of importance in providing valuable
information in training ML models, but how the
data sources influence the ML model performance of
multicomponent alloys is still in question.

In this study, we build artificial neural network
(ANN) models to investigate the GFA of multicom-
ponent alloys based on the datasets assembled from
ternary alloys, as well as quinary alloys prepared by
magnetron sputtering. Through training the ANN
models with different combinations of datasets, we
tackle the problem of the influence of the data
source on the model performance, especially the
generalizability of the models in predicting the GFA
in unseen multicomponent alloy systems. The ANN
model trained on a combined dataset exhibits the
best performance, specifically low root mean square

error in leave-one-alloy-system-out validation and
high model robustness, for several CoCrFeNi-based
multicomponent alloys. To further verify our ML
models, we synthesized CoCrFeNi-Mo metallic thin
films by magnetron co-sputtering and have charac-
terized the structural and phase information via x-
ray diffraction and electron microscopy. The out-
comes of our experiments agree reasonably well
with the ANN model predictions, indicating that the
data-driven ML approach can be a useful tool in the
future design of multicomponent MGs.

METHODS

Datasets

Our data were collected from the following three
sources: (1) the handbook Nonequilibrium Phase
Diagrams of Ternary Amorphous Alloys,40 (2) Ren
and Ward’s high-throughput sputtering experi-
ments for ternary alloys,32 and (3) recent high-
throughput sputtering experiments for quinary
alloys by Kube et al.41 In total, the dataset consisted
of 7114 alloy compositions in 44 alloy systems. As
detailed in Fig. 1 and Table I, 5421 (76.2%) of these
alloys were ternary alloys, which mix 3 elements out
of 20 different elements (see Fig. 2). The data came
primarily from the handbook and Ren and Ward’s
high-throughput sputtering experiments.32,40,42 The
remaining 1693 alloys (23.8%) were quinary, mixing
5 elements out of 7 different elements (see Fig. 2).43

Refer to online supplementary material for the
distributions of elements and alloy systems in the
dataset, which are provided in supplementary
Figs. S14 and S15. To train the ML model, each
data point was labeled, based on its structures:
amorphous, indicating the alloy could form MG
during the sputtering, or crystal, indicating it could

Fig. 1. Distribution of amorphous (light blue) and crystalline (dark
blue) phases in the Ternary (red) and Quinary (orange) datasets
(Color figure online).
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not. Among the collected data, 1966 alloys (27.6%)
were identified to have an amorphous structure and
5148 (72.4%) had a crystal structure. Specifically, it
was observed that the distribution of the crystal and
amorphous structures was imbalanced in the quin-
ary dataset, where 88.7% was crystal and only
11.3% was amorphous. Therefore, we performed a
random undersampling test with the synthetic
training data. The result showed no discrepancy in
performance between the balanced and raw data-
sets (see supplementary Figs. S13 and S12). There-
fore, we accepted this slightly skewed dataset to
reduce the risk of information loss from resampling.
Notably, the ternary alloy dataset was rich in
chemical information, consisting of 20 chemical
elements; while the quinary dataset was rich in
physical information, with phase and structural
properties resulting from 5 element interactions. To
explore the influence of the data source on the model
performance, the ML models were trained on the
‘‘Ternary’’, ‘‘Quinary’’, and ‘‘Combined’’ datasets.
The ‘‘Combined’’ dataset represented the combina-
tion of the ternary and quinary alloy datasets.

Data Featurization

Thirteen features, as listed in Table II, have been
selected to describe the alloys and serve as the input
of the ML models. According to the existing studies
on the GFA of MGs, these features captured the
basic physical, and/or chemical properties of alloys
(e.g., valance electron concentration, Pauling’s elec-
tronegativity), which distinguish them from each
other and were able to relate the elemental proper-
ties to the alloy performance. In addition, average
atomic size, atomic size difference, average heat of
mixing, and standard deviation of the heat of

mixing were chosen as features. These features
were used to capture the elemental, thermal, and
elastic properties of the alloys considered relevant
for glass formation.3,7–9,11

The probability density distributions of the 13
features for the three datasets are displayed in
Fig. 3, where the dashed and solid lines represent
the crystal (CR) and amorphous (AM) structures,
respectively. These plots provide direct visualiza-
tion of the separation between the crystal and
amorphous data in one dimension for a selected
feature that is embedded in a higher-dimensional
feature space. The blue, green, and red lines
represent the Ternary, Quinary, and Combined
datasets, respectively. Notably, the distribution of
feature values for the Quinary dataset is narrow
and concentrated in a small range. This can be
attributed to the fact that only 7 different elements
exist in the Quinary dataset, compared to 20 in the
Ternary dataset. Moreover, the features that mea-
sure the standard deviations of the properties (e.g.,
rVEC, rPE) exhibit sharp distributions for the
Quinary dataset, reflecting the chemical similarity
of the elements that it contains. Additionally, the
peaks of the DSmix distributions are located at large
values for the Quinary dataset, which results from
the increased number of components in the system
(refer to the definition of DSmix in Table II). Overall,
the Combined dataset generally preserves the fea-
ture space distribution of the Ternary dataset, and
is complemented by the details of the Quinary data.

Machine Learning Model

ANN models were employed to train the datasets
for GFA prediction, and the architecture of the ANN
model is illustrated in Fig. 4. It had a feed–forward
structure with one input layer (13 normalized
features), two hidden layers with 30 and 15 neu-
rons, and one output layer (1 neuron). The number
of hidden layers and the number of neurons per
layer were determined through a search of the
hyperparameter space to simultaneously minimize
the model’s error and its complexity. We opted for a
brute force search method to tune the hyperparam-
eters over other possibilities, such as Bayesian
optimization, due to the relatively small model size
and hyperparameter search space.38 The details of
the hyperparameter explorations are provided in
the supplementary Tables S1 and S2. Firstly, the
values of all the 13 features were normalized and
served as the values of input layer neurons. The

Table I. The information of the datasets

Data points Elements Alloy systems Amorphous to crystal ratio

Ternary 5421 20 33 1:2.06
Quinary 1693 7 11 1:7.82
Combined 7114 20 44 1:2.62

Fig. 2. The elements in the datasets. The elements denoted in blue only
exist in the Ternary dataset, and the elements denoted in red exist in both
Ternary and Quinary datasets (Color figure online).
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inputs then went through each of the hidden layers,
being transformed by a sigmoid function in each
layer. Lastly, the output neuron received the infor-
mation transmitted from the hidden layer and gen-
erated a value between 0 and 1. Thereby, the output
value measured the probability to form the amor-
phous structures and was treated as GFA. In the
training dataset, label 0 was given to crystal struc-
ture and label 1 was given to amorphous structure.
Two metrics were applied to measure the model
performance. One was the root mean squared error
(RMSE), and the other was the accuracy. RMSE was
used as the training metric for hyperparameter
tuning. To calculate accuracy, a binary classification
was applied to the output values. When the output
value was larger than or equal to the threshold of 0.5,
the alloy was classified as amorphous; otherwise, the
alloy was classified as crystal. The accuracy was the
correct prediction percentage, i.e., the ratio of the
correct prediction to the total number of samples.

Three ANN models were trained based on the
three datasets, Ternary, Quinary, and Combined

models. We evaluated model performance using a
ten-fold cross-validation (CV) scheme, and a leave-
one-alloy-system-out validation approach. Notably,
for the leave-one-alloy-system-out validation, we
left the data (alloys) in one alloy system completely
out of the training dataset, and that data only
served as the validation dataset. Since the leave-
one-alloy-system-out validation evaluated the model
performance on an entire unseen alloy system, it
provided a better measure of the model’s generaliz-
ability to the new, unseen alloy systems.

Experimental Validation

We employed magnetron co-sputtering to fabri-
cate multicomponent thin films for model valida-
tion. The compositions and structure of the thin
films were determined by x-ray energy dispersive
spectrometer (EDS), x-ray diffraction (XRD), and
high-resolution transmission electron microscopy
(HRTEM). The details of the experiments are
provided in the supplementary material.

Table II. The features and their formulae used in the ANN models

Features Formula

Average valance electron concentration (VEC)
VEC ¼

Pn

i¼1

ciVECið Þ

Standard deviation of VEC
rVEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ci VECi � VECð Þ2

s

Configurational entropy of mixing
DSmix ¼ �R

Pn

i¼1

cilncið Þ

Average Pauling’s electronegativity (PE)
PE ¼

Pn

i¼1

ciPEið Þ

Standard deviation of PE
rPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ci PEi � PEð Þ2

s

Average atomic radius (R)
R ¼

Pn

i¼1

cirið Þ

Atomic radius difference
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ci 1 � ri
R

� �2

s

Average melting point
Tm ¼

Pn

i¼1

ci Tmð Þi
Standard deviation of melting point

rTm
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ci Tmð Þi�Tm

� �2

s

Average heat of mixing
Hmix ¼

Pn

i¼1

4DHmix
ij cicj

Standard deviation of heat of mixing
rHmix ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

cicj DHmix
ij �Hmix

� �2
s

Average bulk modulus (B)
B ¼

Pn

i¼1

ciBið Þ

Standard deviation of bulk modulus
rBulk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ci Bi � Bð Þ2

s
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RESULTS AND DISCUSSION

ANN Model Performance

The performance of the ANN models trained on
three datasets in the ten-fold CV is summarized in
Table III. All the models show a good performance
with accuracies of 95.2%, 98.6%, and 96.1%, and

RMSE of 0.189, 0.094, and 0.173 for the Ternary,
Quinary, and Combined ANN models, respectively.
The limitation of ten-fold CV is that it cannot be
used to evaluate the generalizability of the model to
explore new alloy systems. In the ten-fold CV
scheme, the data are randomly split into training
and validation sets. Therefore, the training and
validation sets will include data from the same alloy
system. In other words, upon training the model, it
sees data in all the alloy systems. Therefore, the
model metrics obtained by ten-fold CV may not be
reliable to evaluate the ML model performance on
unseen alloy systems.

The model performance in the leave-one-alloy-
system-out validation is shown in Fig. 5 and

Fig. 3. Probability density distributions of the 13 features. The dashed and solid lines represent the distribution of the CR (crystal) and AM
(amorphous) data points, respectively. The blue, green, and red lines represent the Ternary, Quinary, and Combined datasets, respectively
(Color figure online).

Fig. 4. Schematic of the ANN model. The ANN model has two
hidden layers with 30 and 15 neurons, respectively. The output layer
generates a value between 0 (crystal) and 1 (amorphous).

Table III. Ten-fold cross-validation (CV) results

Models RMSE Accuracy

Ternary 0.189 ± 0.009 95.2 ± 0.62%
Quinary 0.094 ± 0.024 98.6 ± 0.80%
Combined 0.173 ± 0.018 96.1 ± 0.83%
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Table IV. The Combined model shows the best
performance on the Combined dataset with an
overall accuracy of 88.3% and RMSE of 0.278, when
compared to the Ternary and Quinary models with
accuracies of 66.7% and 73.1%, and RMSE of 0.466
and 0.391, respectively. Exploring the model per-
formance on the ternary systems, the Combined
model has the lowest RMSE = 0.330, followed by the
Ternary model with RMSE = 0.452 in the leave-one-
alloy-system-out validation. For quinary alloy sys-
tems, the Quinary model has the lowest RMSE =
0.083, whereas the Combined model ranks second

with a slightly higher RMSE = 0.110. The Quinary
model behaves the worst in the ternary alloys,
especially for the alloy systems containing the
chemical elements that are not included in the
quinary dataset, such as RMSE = 1.0 for the AlNiTi
system, and RMSE = 1.0 for the BFeNb system.
While the Ternary model has the largest RMSE
(= 0.511) for quinary datasets, and the errors are
consistent across different quinary systems, e.g.,
RMSE = 0.482 for AlCrFeCoCu and RMSE = 0.516
for CrMnFeNiCu, the Combined model represents
the most balanced one, and will be employed to

further explore the GFA in the multicomponent
alloy systems. The detailed performances of the
three models in the leave-one-alloy-system-out val-
idation are in supplementary Table S3 and
Figs. S1 � S11.

Essentially, the supervised ML model is a map-
ping function between the input features and the
output values.44 In this study, the ML models
correlate the 13 features of alloys to the GFA, and
the density distributions in the 13-feature space
determine the ML model performance. Thereby, the
differences in model performance in the leave-one-
alloy-system-out validation can be attributed to the
differences in data distribution in the feature space
for the three datasets. As shown in Fig. 3, the
Ternary and Quinary datasets are distinct in the
feature space distribution, and such distinctions
account for the worst performance of the Ternary
model in the Quinary dataset and the Quinary
model in the Ternary dataset. On the other hand,
the Combined model slightly outperforms the
Ternary models on the Ternary dataset with addi-
tional information from the Quinary dataset. As
shown in Fig. 5, the Combined model has a lower

Fig. 5. Root mean squared error (RMSE) for each model when tested with leave-one-alloy-system-out validation for the Combined, Ternary, and
Quinary datasets, and the selected alloy systems.

Table IV. The model performance in leave-one-alloy-system-out validation

Models Validation dataset RMSE Accuracy (%)

Ternary Ternary 0.452 71.2
Quinary 0.511 52.0
Combined 0.466 66.7

Quinary Ternary 0.487 65.6
Quinary 0.083 97.2
Combined 0.391 73.1

Combined Ternary 0.330 85.6
Quinary 0.110 96.6
Combined 0.278 88.3
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RMSE than that of the Ternary model in the AlNiTi
ternary alloy systems. As Al and Ni are in the
Quinary dataset, the addition of these data points
provides extra information about Al and Ni proper-
ties, leading to better performance. For the Quinary
alloy systems, the Combined model shows a much
better performance than that of the Ternary model,
but is a little worse than that of the Quinary model.
Considering the narrow distribution of the quinary
data in the feature space, it is reasonable to suspect
that the Quinary model is overfitting to the quinary
alloy systems. We further examine the robustness of
the Quinary and Combined models by calculating:45

qadv k̂
� �

¼ Ex

D x; k̂
� �

xj jj j2
ð1Þ

where D x; k̂
� �

:¼ min
r

rj jj j2 subject to k̂ xþ rð Þ 6¼ k̂ xð Þ.
Where Ex is the expectation, x is a vector of the

features of a data point, k̂ is the model, and r is the
perturbation. The robustness of the Quinary and
Combined models are 23.91 and 86,285.74, respec-
tively. A larger value of the robustness represents a
bigger perturbation needed to make the model do an
opposite prediction. The significantly enhanced
robustness of the Combined model demonstrates
its improved noise resistance, suggesting it is a

reliable model for exploring multicomponent alloy
systems. Additionally, we have collected 74 more
binary and quaternary sputtering data points as a
new test dataset. The Combined model performs the
best with RMSE = 0.448 and an accuracy of 82.67%
compared to RMSE = 0.501 and 0.738 for the
Ternary and Quinary models, respectively (see
supplementary Table S4).

Figure 6 compares the (a) ground true and (b–d)
predicted GFA by the three ANN models in the
CrMnFeNiCu alloy systems. The yellow, blue and
purple points in Fig. 6a represent the amorphous
structure, dual-phase structure (mixture of crystal
and amorphous structures), and crystal structure,
respectively, based on the experimental results. The
Ternary model shows a huge prediction error with
the ground truth, as shown in Fig. 6c. It predicts
that all the alloys in this system have a low GFA
(i.e., less than 0.5), and cannot capture the amor-
phous structure in the center of the alloy system. It
seems that the predicted results by the Quinary
model have the best agreement with the experi-
mental data. However, the predicted high-GFA is
confined to the area where the alloys show an
amorphous structure and the boundary between the
high-GFA and low-GFA regions is very sharp.
According to Fig. 6d, the Quinary model fails to

Fig. 6. GFA in the CrMnFeNiCu system. (a) Experimental data with crystal as purple, amorphous as yellow, and crystal-amorphous dual-phase
alloys as green. The GFA predictions of models on this system for the (b) Combined, (c) Ternary, and (d) Quinary models (Color figure online).
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identify the experimentally shown dual-phase alloy
region, denoted as the green dots in Fig. 6a. It is
noteworthy that the dual-phase data is not included
in the training dataset, the failure of prediction
further indicates that the Quinary model overfits
the Quinary data. Upon infusing the ternary data,
the Combined model shows a slower transition from
a high-GFA to a low-GFA region (a broader bound-
ary) in the compositional space, corresponding to
the existence of the dual-phase alloys, as illustrated
in Fig. 6b.

Prediction of GFA for Multicomponent Alloys

We employed the Combined ANN model to
explore multicomponent alloys with high GFA. As
a start, we focus on the CoCrFeNi-based alloy
system and explore its derivatives by introducing
the fifth element. The predicted GFA of four repre-
sentative alloy systems are displayed in Fig. 7. The
model predicts the GFA of CoCrFeNi to be around 0,
which is consistent with experimental observations
in the literature.46 The addition of Al or Cu does not
enhance GFA even up to 50% of alloying, but the
addition of Mn and Mo does increase the GFA of
CoCrFeNi. More specifically, the small addition of
Mo leads to a dramatic increase in the GFA, with
the maximum value around 0.95.

We further validate the Combined ANN model
prediction by fabricating CoCrFeNi-Mo alloys using
magnetron co-sputtering with CoCrFeNi target and

pure Mo target, as shown in Fig. 8a. The chemical
compositions of the CoCrFeNi-Mo thin film alloys
are measured by EDS (Fig. 8b), where the Fe, Co,
Cr, and Ni elements are nearly identical, and the
Mo contents are � 0 at.%, 6 at.%, 13 at.%, 17 at.%,
and 23 at.%. We denote these alloys according to the
Mo contents, as Mo-0, Mo-6, Mo-13, Mo-17, and Mo-
23. The XRD patterns of these alloys are shown in
Fig. 8c. Mo-0 exhibits a small (111) peak at around
43�, confirming a crystal FCC structure. With the
addition of Mo, the diffraction peaks in the XRD
patterns disappear, indicating the structure transi-
tion from a crystal to an amorphous structure.
Figure 8d compares the Combined model prediction
versus experimental observations as a function of
Mo content. Evidently, with increasing Mo content,
the CoCrFeNi-Mo thin films undergo a transition
from a crystalline to an amorphous structure,
generally agreeing with the model prediction. As
shown in the inset HRTEM of Fig. 8d, a mixture of
ordered and disordered atomic arrangements is
observed for Mo-13, and the selective area electron
diffraction pattern further confirms the dual-phase
structure with nanocrystalline diffraction rings and
a diffuse halo of amorphous structure. The predicted
GFA of Mo-13 is 0.381, reasonably matching the
experimental observation of dual-phase structures.

To evaluate the influence of datasets on the
CoCrFeNi-Mo prediction, the Combined dataset is
visualized by the 2-D projection of the high-

Fig. 7. Predicted GFA by the Combined model for the CoCrFeNi-M systems, where M represents Al, Cu, Mn, and Mo for (a), (b), (c), and (d),
respectively.
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dimensional feature space, as illustrated in Fig. 9.
We use the ML algorithm called t-distributed
stochastic neighbor embedding (t-SNE) to represent
all composition data from both Ternary (in orange)
and Quinary (in blue) datasets in two dimensions.47

This technique helps quantify the similarity
between points and visualize high-dimensional
data, reducing the 13-dimensional space given by
the set of possible alloying elements to a 2-D scatter
plot. Notably, the Ternary dataset shows a much

Fig. 8. Experimental validation for the CoCrFeNi-Mo system. (a) Schematic of magnetron co-sputtering with CoCrFeNi target and pure Mo
target. (b) The alloy compositions of the five sputtered samples were determined by EDS. (c) XRD results of the sputtered samples with the
variation of Mo contents (d) The Combined model prediction versus experimental observations as a function of Mo content. The inset is an
HRTEM image of the Mo-13 sample.

Fig. 9. t-SNE plot of the CoCrFeNi-Mo multicomponent alloys in the Combined dataset. This scatter plot shows a 2D projection of the high-
dimensional composition space that is achieved via t-SNE. The Ternary dataset is in blue, and the Quinary dataset is in orange. The composition
data correspond to the five CoCrFeNi-Mo alloys are denoted in various symbols (Color figure online).
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broader distribution than the Quinary dataset,
which is consistent with the observation in the
feature space (Fig. 3). The CoCrFeNi alloy lies near
the cluster of the Quinary dataset, whereas the
CoCrFeNi-Mo alloys lie near the cluster of the
Ternary dataset. In the Combined dataset, the
Quinary dataset provides the information on CoCr-
FeNi, and the Ternary dataset provides the infor-
mation on the Mo addition. The newly designed
compositions fall in or near the regions spanned by
the existing GFA dataset. Also, a large separation
between the Mo-0 and the other Mo-contained
samples (i.e., Mo-10, Mo-20, and Mo-30) can be
observed in the t-SNE plot, which is also accompa-
nied by a large increase in the predicted GFA
(Fig. 8d). Such an increase in the predicted GFA
may come from the imbalanced data distribution in
the Mo-contained alloys (see supplementary
Fig. S14), where, among the 25 Mo-contained alloys,
24 of them have amorphous structures. The biased
amorphous/crystal distribution could lead to the
increase of predicted GFA in the CoCrFeNi-Mo
HEAs. However, it is noteworthy that a slight
increase in the GFA from Mo-0 and Mo-6 is observed
in Fig. 8d, indicating that the model is not com-
pletely dominated by the imbalanced Mo data
distribution. So far, our model has been used to
explore the vicinity of the existing data regions in
the t-SNE plot. The generalizability of the model to
the unexplored regions (e.g., blank area in the t-
SNE plot) will require further experiments, provid-
ing more data for model training and validation.

CONCLUSION

We have developed ANN models based on different
datasets to investigate the GFA of multicomponent
alloys. The ANN model, trained on a combined
dataset including both ternary and quinary alloys,
exhibits the best performance, well balancing the
model accuracy and generalizability, evident by the
low RMSEs in leave-one-alloy-system-out validation
and high model robustness. Using the ANN model
trained on the combined dataset, we explore the GFA
in the CoCrFeNi-based alloy systems and identify a
CoCrFeNi-Mo alloy system that can have high GFA.
To verify the ML model prediction, we perform
magnetron co-sputtering to synthesize CoCrFeNi-
Mo thin films with Mo content varying from 0 at.% to
23 at.%. A transition from a crystalline to an amor-
phous structure in the CoCrFeNi-Mo thin films is
observed, agreeing nicely with the model prediction.
Furthermore, the t-SNE plot reveals the newly
identified alloy compositions are in the vicinity of
the clusters of the existing datasets, suggesting that
the discovery of new alloy systems requires more
high-fidelity data to expand the compositional space
via extensive research into data collection and gen-
eration by a high-throughput means.
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