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a b s t r a c t 

Machine Learning has thrived on the emergence of data-driven materials science. However, the materials 

datasets acquired at existing research effort s have significant imbalance issues. This paper investigated 

the data imbalance for the glass-forming ability of ternary alloy systems, which consists of abundant, low- 

fidelity high-throughput data, and sparse, high-fidelity traditional experimental data. We demonstrated a 

new method to handle the data imbalance and trained artificial neural network (ANN) models on the 

original vs. balanced datasets. The ANN model trained on the balanced dataset solved the overfitting 

issue suffered by the model trained on the original dataset. More importantly, the generalizability in 

predicting the new alloy system was improved in the data-balanced model, evidenced by the leave-one- 

alloy-system-out validation. Our work highlights the importance of handling data imbalance in material 

datasets to solve the overfitting issues of machine learning models and further enhance generalizability 

in predicting the characteristics of the new material systems. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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Metallic glasses (MGs), owing to the amorphous structure, ex- 

ibit various remarkable properties that are difficult to achieve in 

rystal materials [ 1 , 2 ]. The development and application of MGs 

re largely hindered by the limited glass-forming ability (GFA) of 

etallic systems. Tremendous efforts have been made to explore 

lloy systems and compositions with enhanced GFA [ 1 , 3-7 ]. In- 

ue summarized an empirical rule for high GFA systems, which 

re composed of more than three elements with negative heats 

f mixing ( �H mix ) of the liquid phases and an atomic size differ-

nce ( δ) above 12% [1] . Yang et al. have derived a thermodynamic

odel with a parameter � ( = T m • �S mix /| �H mix |, T m is melting

oint, �S mix is entropy) based on the experimental observations. 

hey demonstrated that MGs were formed when the parameter �

1 and δ ≥ 6% [7] . However, the key thermodynamic and physical 

actors to determine the GFA are still mysteries, as a result of the 

on-equilibrium nature of glass forming processes. 

Machine learning (ML), capable of learning the underlying 

tatistics of materials datasets, emerges as a powerful tool to tackle 

he long-standing issues in the materials field [8–19] . It has been 

ccelerating the discovery of new materials and uncovering the 

idden mechanisms that control material structure, processing, 

nd properties [ 8-15 , 17–19 ]. Specifically, in the field of MG devel-

pment, researchers have gained a deeper understanding of GFA 
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ith the assistance of ML models [20–25] . Sun et al. utilized a Sup- 

ort Vector Machine algorithm to study the GFA of as-cast alloys 

nd found that the differences in liquidus temperature and fictive 

iquid temperature were the critical features to determine GFA [21] . 

ang and Logan et al. combined ML and high-throughput experi- 

ents to explore the GFA of ternary alloys, discovering two new 

ernary alloy systems with high GFA that could be omitted by con- 

entional alloy development approaches [25] . Till now, most of the 

ork on GFA has focused on material featurization and ML algo- 

ithms, limited study considers the quality of the material dataset 

nd its influence on the ML model performance. 

The successful incorporation of ML models into materials re- 

earch requires overcoming the challenge of data scarcity and im- 

alance inherent to the material datasets [26] . Traditional mate- 

ial data collections rely heavily on dedicated and costly experi- 

ents, which results in data scarcity in materials science when 

ompared to other big data fields [27] . The published data con- 

ains high-fidelity and successful results, yet excludes the failures, 

eading to skewed data distributions (data imbalance, i.e. the suc- 

essful samples dominate the datasets) [26] . Such imbalance mars 

he central assumption of ML models: both training and testing 

ata should be independent and identically distributed [28] . Re- 

ently, high-throughput experiments and simulations have been 

idely adopted to address data scarcity and imbalance. The high- 

hroughput effort s have yielded abundant data, including both im- 

roved and deteriorated results on material structure and property, 
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reatly enhancing the dataset size [ 25 , 29 ]. And yet the data yielded

y the high-throughput efforts are in general low-fidelity. For in- 

tance, to explore the GFA in large compositional space, Fang et al 

mployed an in-house sputtering model to estimate the composi- 

ion of the data points, instead of experimentally measuring every 

oint. Such estimation could lead to a maximum error of 5% [25] . 

he incorporation of diversified data sources (e.g. traditional lit- 

rature data vs. high-throughput data, simulation vs. experimen- 

al data) poses a new data imbalance issue, i.e. the low-fidelity 

igh-throughput data dominates the ML model performance. The 

igh-fidelity traditional literature data are scarce but essential, 

hich deliver more accurate material information to train the ML 

odels. The high-throughput data overcome the issures of data 

carcity and imbalance, but they are lower-fidelity and less accu- 

ate in materials information for the ML models. How to combine 

he two kinds of datasets to provide underlying knowledge to the 

L model and further avoid the side effect of the domination of 

he high-throughput data become an emergent question to be an- 

wered. 

In this work, we present a method to handle the dataset im- 

alance, i.e. the high-throughput data dominate the dataset in 

FA of ternary alloy systems. We balanced the dataset by sys- 

ematically reducing abundant, low-fidelity high-throughput data 

nd augmenting sparse, high-fidelity traditional experimental data. 

wo artificial neural network (ANN) models were built based on 

he original (imbalanced) and balanced datasets. The ANN model 

rained on the balanced dataset solves the overfitting issue suf- 

ered by the model trained on the original datasets, exhibiting 

2% improvement in the model performance on the alloy systems 

ith sparse data, and maintaining nearly the same performance on 

he alloy systems with abundant data. More importantly, the ANN 

odel trained on the balanced dataset has a 31% improvement in 

redicting unseen alloy systems in the leave-one-alloy-system-out 

alidation when compared to the model trained on the original 

ataset. Our work highlights the importance of data balancing in 

pplying ML model to the material dataset and provides a prac- 

ical approach to solving the overfitting issues of ML models and 

mprove the model’s generalizability to explore new alloy systems. 

Our training dataset consists of 5725 alloys fabricated by mag- 

etic sputtering [ 25 , 29 , 30 ], and the data are categorized based

n the alloy structures, i.e. crystal vs. amorphous. The collected 

ataset has 20 alloy elements, as shown in Fig. S1 in the supple- 

entary materials (SM), and 1997 (34.88%) alloys are amorphous 

tructure and 3728 (65.12%) alloys are crystal. The data distribu- 

ion in the different alloy systems is illustrated in Fig. 1 a . Specifi-

ally, the data were obtained from two types of experiments: high- 

hroughput vs. traditional. The high-throughput dataset includes 5 

ernary alloy systems (i.e. CoFeZr, CoTiZr, CoVZr, FeTiNb, and Al- 

iTi), consisting of 5568 data points ( ∼97.3 % of the dataset). The 

raditional experiments provide the data on the 12 alloy systems 

ut only have 157 data points ( ∼2.7% of the dataset). A significant 

ata imbalance issue emerges, the high-throughput experiments 

rovide fewer but data-abundant alloy systems vs. traditional ex- 

eriments have more but the data-sparse alloy systems. It is note- 

orthy that such a data imbalance issue is quite prevalent when 

ompiling various data sources to train ML model for materials in- 

estigation [ 25 , 31 ]. 

To balance the dataset [ 28 , 32 ], we applied data reduction and

ata augmentation to the high-throughput data and the traditional 

ata, respectively. For data reduction, the number of data points 

or each high-throughput ternary alloy system was reduced uni- 

ormly in the compositional space to 200 from ~ 10 0 0. For data 

ugmentation, we increased data from the existing compositions 

ith a step of 0.1 at.%, which is within the error of compositional 

easurements. For instance, starting from the Al50Cu30Fe20 (at.%) 

lloy with the crystal structure, we varied the element composi- 
2 
ions with 0.1 at.%, resulting in 6 new ternary alloys all labeled 

ith the same crystal structure as the original one. To ensure fi- 

elity, if two data points had different structures and their com- 

osition varies by less than 2 at.%, no augmentation is conducted. 

t is noteworthy that there is an inevitable error upon data aug- 

entation. Our study on error tolerance of labeling the augmented 

ata find that the models trained on the balanced dataset can tol- 

rate 1% label change/error (details in Fig. S7, S8, and S9 in SM). 

fter augmentation, a duplication check will be performed to re- 

ove any data with the same composition. And if the number of 

ata points is larger than 200, data reduction would be applied to 

ontrol the number to 200. Consequently, after data processing, as 

hown in Fig. 1 b , the balanced dataset has 1983 alloys, in which

65 (38.58%) are crystals and 1218 (61.42%) are amorphous. The 

ata distribution of the balanced dataset is illustrated in Fig. 1 b , 

nd Table S1 in SM. 

According to the previous studies on the GFA of MGs [ 18 , 23 , 31 ],

31 features are used to describe the alloys as the input of the ML 

odel (details in Table S2 in SM). The 131 features contain atomic 

roperties ( e.g. atomic radii, atomic radius mismatch), atomic pack- 

ng properties, and thermodynamic properties ( e.g. heat of mixing 

nd configurational entropy of mixing), covering a comprehensive 

ist used for general-purpose as well as for the MG systems. Specif- 

cally, the probability density distribution of data for the most rel- 

vant 13 features [ 1 , 8 , 14 ] before and after data processing is il-

ustrated in Fig. 2 . The dashed and solid lines denote the crystal 

CR) and amorphous (AM) structures, respectively. After data bal- 

ncing, the number of data points in each alloy system is roughly 

qual, leading to a more uniform and broader data distribution of 

he balanced dataset in the feature space. Especially for the AM 

ata, the sharp peaks in the features of σ VEC , �S mix , PE, R, δ, T m ,

Tm 
, �Hmix, σ�Hmix , B, σ B have been smoothed after balancing 

he data numbers between the high-throughput and traditionally 

btained alloys systems. The probability density distributions of all 

he features upon data processing are available at GitHub. Next, 

wo ML models are trained on the original and balanced datasets, 

espectively. We demonstrate that the balanced data features can 

olve the overfitting of the ML models to the dominant data clus- 

ers, enhancing the generalizability of the ML models. 

An ANN algorithm is used to build the ML model. The ANN has 

 feed-forward structure with one input layer (131 normalized fea- 

ures), two hidden layers (250 neurons in the first hidden layer, 

5 neurons in the second hidden layer), and one output layer (one 

euron). The architecture of the ANN model is shown in Fig. S3 in 

M, and the convergence study of hyperparameters is provided in 

able S5 in SM. Two ANN models are trained on the original and 

alanced datasets, respectively. To evaluate the ANN model perfor- 

ance, 10-fold cross-validation (CV) is performed. The receiver op- 

rating characteristic (ROC) curve is constructed according to the 

esults of the 10-fold CV, and then the area under the ROC curve 

AUC) is evaluated. Additionally, the root mean square error ( RMSE ) 

or different datasets and different alloy systems is also calculated 

s RMSE = 

√ 

n ∑ 

i 

( ̂ y i −y i ) 
2 

n , where n is the total number of data, ˆ y i is 

he predicted GFA (between 0-1), and y i is 0 for crystal and 1 for 

morphous. 

The performance of the ANN models trained on the original 

ataset (ANN-original) and balanced dataset (ANN-balanced) in the 

0-fold CV validation are summarized in Fig. 3 and Table 1 . No- 

ably, both models show high accuracy in the overall performance 

ith AUC = 0.9963, and RMSE = 0.1478 for the ANN-original, and 

UC = 0.9958, and RMSE = 0.1384 for the ANN-balanced. When 

elving into the data subsets, the overfitting of the ANN-original is 

dentified: the model shows a lower RMSE = 0.1399 on the high- 

hroughput subset but much higher RMSE = 0.2008 on the tradi- 
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Fig. 1. The data distribution of the original vs. balanced datasets. After data processing, the balanced dataset shows a more uniform data distribution among different alloy 

systems. 

Fig. 2. The probability density distribution of data for 13 different features. Blue and red colors represent the original and balanced datasets, respectively. Dashed and solid 

lines denote the alloys with crystal (CR) and amorphous (AM) structures. After data processing, the distribution of the CR data changes slightly; whereas the distribution 

of AM data changes significantly. VEC, PE, R, T m , �H mix , B represent the mean value of the valence electron concentration, Pauling electronegativity, covalent radius, melting 

temperature, the heat of mixing, and bulk modulus; and σ calculates the standard deviation of those quantities. �S mix and δ stand for entropy and covalent difference, 

respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Table 1 

The performance of the original and balanced ML models. 

Models AUC RMSE 

ANN-original overall 0.9963 0.1478 

high-throughput 0.9974 0.1399 

traditional 0.9744 0.2008 

ANN-balanced overall 0.9958 0.1384 

high-throughput 0.9955 0.1579 

traditional 0.9920 0.1160 
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ional dataset. In contrast, the ANN-balanced significantly improves 

he performance on the traditional subset with RMSE = 0.1160 and 

aintains the performance on the high-throughput subset with 

MSE = 0.1579 (ref. to Table 1 ). Moreover, the RMSEs of each 
3 
ernary alloy system for the two models are calculated and shown 

n Fig. 3 (b) . The ANN-original has smaller RMSEs for the 4 high- 

hroughput alloy systems (CoFeZr, CoTiZr, CoVZr, and FeTiNb) than 

hose of the ANN-balanced. The exception is the AlNiTi alloy sys- 

em, in which the RMSE remains nearly unchanged. On the other 

and, the ANN-balanced shows significant improvement on the al- 

oy systems started with sparse data. For the AlCuFe and AlFeGd 

he RMSEs reduced by ∼83% from ∼0.46 to ∼0.08. The detailed re- 

ults of the RMSEs of each ternary alloy system in 10-fold CV are 

hown in Table S3 in SM. Even though the ANN-balanced does 

ot have significantly better performance than the ANN-original 

n the overall dataset, it solves the over-fitting suffered by ANN- 

riginal. The ANN-original is predominantly controlled by the high- 

hroughput alloy systems ( RMSE = 0.1399), resulting in large errors 
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Fig. 3. The performances of the original and balanced ML models in the 10-fold CV. (a) The ROC curves and calculated AUCs of the two ML models. The AUCs show that 

both two models have overall good performances under 10-fold CV. (b) The RMSE of two models for each alloy system. The original model has slightly smaller RMSE s in 

high-throughput data than those of the balanced model. The balanced model has much better RSME s for the other ternary alloy systems in the traditional data. These results 

indicate that the ANN-original is suffering from overfitting. 

Fig. 4. The RMSE s of the original and balanced models for each ternary alloy system in the LEAVE-ONE-ALLOY-SYSTEM-OUT validation. The balanced model shows a much 

better performance than the original model, demonstrating enhanced generalizability in predicting the new alloy system data. 

i

F

a

b

i

 

a

a

m

f

v

c

s

t

l

a

t

t

s

a

b

s

b

t

t

t

R

s

e

d

t

t

t

(

(

t

n

p

fi

t

b

t

C

t

t

a

o

n

i

B

n the traditional data subset (e.g. RMSE for AlFeGd = 0.456186). 

urthermore, we will demonstrate that the overfitted model is not 

ble to explore new alloy systems with high accuracy, while the 

alanced model that avoids overfitting enhances the generalizabil- 

ty for new alloy systems. 

The ultimate goal of the ML model is to predict the GFA of new

lloy systems that have not been seen by the initial ML models, 

nd we refer to this capability as the generalizability of the ML 

odels. To evaluate the generalizability of the ML model, we per- 

orm leave-one-alloy-system-out validation. Specifically, upon de- 

eloping the ML models, we leave the data in one alloy system 

ompletely out of the training dataset, and such alloy system only 

erves as the validation dataset. Since the ML model has not been 

rained on the alloy system, the performance of the model in the 

eave-one-alloy-system-out validation can be treated as the gener- 

lizability of the model to the new alloy system. It is noteworthy 

hat this is distinct from the 10-fold CV performance, in which the 

raining dataset includes approximately 90% data from all the alloy 

ystems, and thus the performance cannot represent the generaliz- 

bility of the ML models. 

Fig. 4 displays the RMSE s of the ANN-original and ANN- 

alanced models for each alloy system in the leave-one-alloy- 

ystem-out validation. When comparing the two models, the ANN- 

alanced model shows nearly identical performance in the high- 

hroughput alloy systems, but a much better performance in the 

raditional ones. The average RMSE of all the predicted alloy sys- 
4 
ems is reduced by 31%, from 0.4587 to 0.3170. For example, the 

MSE s of the AlCuFe, AlFeGd, AlMgTi, CoFeNb, CrGePd, and FeHfTa 

ystems significantly decrease after data balancing. The RMSE s of 

ach ternary alloy system in the leave-one-alloy-system-out vali- 

ation are shown in Table S4 in SM. The overall performance of 

he ANN-balanced model in the leave-one-alloy-system-out valida- 

ion demonstrates its better generalizability to a new alloy system. 

Fig. 5 illustrates the predicted GFA of the AlMgTi alloy system in 

he leave-one-alloy-system-out validation for (a) ANN-original vs. 

b) ANN-balanced, along with the experimental data shown in blue 

crystal) and red (amorphous). The ANN-original predicts low GFA 

hroughout the entire compositional region of AlMgTi, and can- 

ot identify the boundary between two the crystal and amorphous 

hases in this alloy system. Such prediction results from the over- 

tting in the ANN-original, i.e. the high-throughput data dominates 

he model performance. Notably, after data processing, the ANN- 

alanced can identify the two-phase boundary even without seeing 

his AlMgTi alloy system before. The balanced dataset of AlNiTi, Al- 

uFe, and AlFeGd provides more information for the ANN-balanced 

o do accurate prediction in AlMgTi. The comparison between the 

wo models under leave-one-alloy-system-out validation for other 

lloy systems is shown in Fig. S4 vs. Fig. S5. It is noteworthy that 

ur data balancing method and the ANN-balanced model so far do 

ot handle extreme cases well when the initial data distribution 

s clustered around only one corner of the composition space, e.g. 

FeZr alloy system. 
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Fig. 5. The predicted GFA for AlMgTi alloy system under leave-one-alloy-system-out validation. (a)The ANN-original model; (b) the ANN-balanced model. The symbol x 

represents the experimental data points. 
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In this study, we investigated the imbalance issues of the 

atasets for GFA of ternary alloy systems, which consist of abun- 

ant, low-fidelity high-throughput data and sparse, high-fidelity 

raditional data. We proposed a method to handle the data imbal- 

nce issues and trained ANN models on the original and balanced 

atasets. The 10-fold cross-validation and leave-one-alloy-system- 

ut validation were employed to evaluate the model performance. 

he 10-fold cross-validation results reveal that the model trained 

n the original dataset suffers from overfitting to the abundant 

igh-throughput data. The model trained on the balanced dataset 

xhibits 42% improvement in the alloy systems with sparse data, 

nd maintains the performance in the alloy systems with high- 

hroughput data. More importantly, in the leave-one-alloy-system- 

ut validation, the balanced model has a 31% improvement in 

redictive ability for unseen alloy systems when compared to 

he original model. In addition, the data-balancing approach also 

eads to better and more stable performance for the decision 

ree (DT) and support vector machine (SVM) algorithms, not only 

he ANN algorithms. Our work highlights the importance of data 

alancing in applying ML models to the material field and pro- 

ides a practical approach to balance the dataset of ML mod- 

ls and improve the model’s generalizability to explore new al- 

oy systems. The data, codes, and trained ANN models that sup- 

ort the findings of the present work are available at GitHub, 

https://github.com/linear85/TernaryAlloyGFA_ANN_Model). 
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