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ABSTRACT

Machine Learning has thrived on the emergence of data-driven materials science. However, the materials
datasets acquired at existing research efforts have significant imbalance issues. This paper investigated
the data imbalance for the glass-forming ability of ternary alloy systems, which consists of abundant, low-
fidelity high-throughput data, and sparse, high-fidelity traditional experimental data. We demonstrated a
new method to handle the data imbalance and trained artificial neural network (ANN) models on the
original vs. balanced datasets. The ANN model trained on the balanced dataset solved the overfitting
issue suffered by the model trained on the original dataset. More importantly, the generalizability in
predicting the new alloy system was improved in the data-balanced model, evidenced by the leave-one-
alloy-system-out validation. Our work highlights the importance of handling data imbalance in material
datasets to solve the overfitting issues of machine learning models and further enhance generalizability
in predicting the characteristics of the new material systems.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Metallic glasses (MGs), owing to the amorphous structure, ex-
hibit various remarkable properties that are difficult to achieve in
crystal materials [1,2]. The development and application of MGs
are largely hindered by the limited glass-forming ability (GFA) of
metallic systems. Tremendous efforts have been made to explore
alloy systems and compositions with enhanced GFA [1,3-7]. In-
oue summarized an empirical rule for high GFA systems, which
are composed of more than three elements with negative heats
of mixing (AHp;,) of the liquid phases and an atomic size differ-
ence (&) above 12% [1]. Yang et al. have derived a thermodynamic
model with a parameter Q (= Tp*ASyix /| AHpixl, Tm is melting
point, AS,,;, is entropy) based on the experimental observations.
They demonstrated that MGs were formed when the parameter 2
< 1and § > 6% [7]. However, the key thermodynamic and physical
factors to determine the GFA are still mysteries, as a result of the
non-equilibrium nature of glass forming processes.

Machine learning (ML), capable of learning the underlying
statistics of materials datasets, emerges as a powerful tool to tackle
the long-standing issues in the materials field [8-19]. It has been
accelerating the discovery of new materials and uncovering the
hidden mechanisms that control material structure, processing,
and properties [8-15,17-19]. Specifically, in the field of MG devel-
opment, researchers have gained a deeper understanding of GFA
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with the assistance of ML models [20-25]. Sun et al. utilized a Sup-
port Vector Machine algorithm to study the GFA of as-cast alloys
and found that the differences in liquidus temperature and fictive
liquid temperature were the critical features to determine GFA [21].
Fang and Logan et al. combined ML and high-throughput experi-
ments to explore the GFA of ternary alloys, discovering two new
ternary alloy systems with high GFA that could be omitted by con-
ventional alloy development approaches [25]. Till now, most of the
work on GFA has focused on material featurization and ML algo-
rithms, limited study considers the quality of the material dataset
and its influence on the ML model performance.

The successful incorporation of ML models into materials re-
search requires overcoming the challenge of data scarcity and im-
balance inherent to the material datasets [26]. Traditional mate-
rial data collections rely heavily on dedicated and costly experi-
ments, which results in data scarcity in materials science when
compared to other big data fields [27]. The published data con-
tains high-fidelity and successful results, yet excludes the failures,
leading to skewed data distributions (data imbalance, i.e. the suc-
cessful samples dominate the datasets) [26]. Such imbalance mars
the central assumption of ML models: both training and testing
data should be independent and identically distributed [28]. Re-
cently, high-throughput experiments and simulations have been
widely adopted to address data scarcity and imbalance. The high-
throughput efforts have yielded abundant data, including both im-
proved and deteriorated results on material structure and property,
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greatly enhancing the dataset size [25,29]. And yet the data yielded
by the high-throughput efforts are in general low-fidelity. For in-
stance, to explore the GFA in large compositional space, Fang et al
employed an in-house sputtering model to estimate the composi-
tion of the data points, instead of experimentally measuring every
point. Such estimation could lead to a maximum error of 5% [25].
The incorporation of diversified data sources (e.g. traditional lit-
erature data vs. high-throughput data, simulation vs. experimen-
tal data) poses a new data imbalance issue, i.e. the low-fidelity
high-throughput data dominates the ML model performance. The
high-fidelity traditional literature data are scarce but essential,
which deliver more accurate material information to train the ML
models. The high-throughput data overcome the issures of data
scarcity and imbalance, but they are lower-fidelity and less accu-
rate in materials information for the ML models. How to combine
the two kinds of datasets to provide underlying knowledge to the
ML model and further avoid the side effect of the domination of
the high-throughput data become an emergent question to be an-
swered.

In this work, we present a method to handle the dataset im-
balance, i.e. the high-throughput data dominate the dataset in
GFA of ternary alloy systems. We balanced the dataset by sys-
tematically reducing abundant, low-fidelity high-throughput data
and augmenting sparse, high-fidelity traditional experimental data.
Two artificial neural network (ANN) models were built based on
the original (imbalanced) and balanced datasets. The ANN model
trained on the balanced dataset solves the overfitting issue suf-
fered by the model trained on the original datasets, exhibiting
42% improvement in the model performance on the alloy systems
with sparse data, and maintaining nearly the same performance on
the alloy systems with abundant data. More importantly, the ANN
model trained on the balanced dataset has a 31% improvement in
predicting unseen alloy systems in the leave-one-alloy-system-out
validation when compared to the model trained on the original
dataset. Our work highlights the importance of data balancing in
applying ML model to the material dataset and provides a prac-
tical approach to solving the overfitting issues of ML models and
improve the model’s generalizability to explore new alloy systems.

Our training dataset consists of 5725 alloys fabricated by mag-
netic sputtering [25,29,30], and the data are categorized based
on the alloy structures, i.e. crystal vs. amorphous. The collected
dataset has 20 alloy elements, as shown in Fig. S1 in the supple-
mentary materials (SM), and 1997 (34.88%) alloys are amorphous
structure and 3728 (65.12%) alloys are crystal. The data distribu-
tion in the different alloy systems is illustrated in Fig. 1a. Specifi-
cally, the data were obtained from two types of experiments: high-
throughput vs. traditional. The high-throughput dataset includes 5
ternary alloy systems (i.e. CoFeZr, CoTiZr, CoVZr, FeTiNb, and Al-
NiTi), consisting of 5568 data points (~97.3 % of the dataset). The
traditional experiments provide the data on the 12 alloy systems
but only have 157 data points (~2.7% of the dataset). A significant
data imbalance issue emerges, the high-throughput experiments
provide fewer but data-abundant alloy systems vs. traditional ex-
periments have more but the data-sparse alloy systems. It is note-
worthy that such a data imbalance issue is quite prevalent when
compiling various data sources to train ML model for materials in-
vestigation [25,31].

To balance the dataset [28,32], we applied data reduction and
data augmentation to the high-throughput data and the traditional
data, respectively. For data reduction, the number of data points
for each high-throughput ternary alloy system was reduced uni-
formly in the compositional space to 200 from ~ 1000. For data
augmentation, we increased data from the existing compositions
with a step of 0.1 at.%, which is within the error of compositional
measurements. For instance, starting from the AI50Cu30Fe20 (at.%)
alloy with the crystal structure, we varied the element composi-
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tions with 0.1 at.%, resulting in 6 new ternary alloys all labeled
with the same crystal structure as the original one. To ensure fi-
delity, if two data points had different structures and their com-
position varies by less than 2 at.%, no augmentation is conducted.
It is noteworthy that there is an inevitable error upon data aug-
mentation. Our study on error tolerance of labeling the augmented
data find that the models trained on the balanced dataset can tol-
erate 1% label change/error (details in Fig. S7, S8, and S9 in SM).
After augmentation, a duplication check will be performed to re-
move any data with the same composition. And if the number of
data points is larger than 200, data reduction would be applied to
control the number to 200. Consequently, after data processing, as
shown in Fig. 1b, the balanced dataset has 1983 alloys, in which
765 (38.58%) are crystals and 1218 (61.42%) are amorphous. The
data distribution of the balanced dataset is illustrated in Fig. 1b,
and Table S1 in SM.

According to the previous studies on the GFA of MGs [18,23,31],
131 features are used to describe the alloys as the input of the ML
model (details in Table S2 in SM). The 131 features contain atomic
properties (e.g. atomic radii, atomic radius mismatch), atomic pack-
ing properties, and thermodynamic properties (e.g. heat of mixing
and configurational entropy of mixing), covering a comprehensive
list used for general-purpose as well as for the MG systems. Specif-
ically, the probability density distribution of data for the most rel-
evant 13 features [1,8,14] before and after data processing is il-
lustrated in Fig. 2. The dashed and solid lines denote the crystal
(CR) and amorphous (AM) structures, respectively. After data bal-
ancing, the number of data points in each alloy system is roughly
equal, leading to a more uniform and broader data distribution of
the balanced dataset in the feature space. Especially for the AM
data, the sharp peaks in the features of oygc, ASpiv, PE R, 6§, T,
OTm, AHMIX, 0 apmix» B, 0 have been smoothed after balancing
the data numbers between the high-throughput and traditionally
obtained alloys systems. The probability density distributions of all
the features upon data processing are available at GitHub. Next,
two ML models are trained on the original and balanced datasets,
respectively. We demonstrate that the balanced data features can
solve the overfitting of the ML models to the dominant data clus-
ters, enhancing the generalizability of the ML models.

An ANN algorithm is used to build the ML model. The ANN has
a feed-forward structure with one input layer (131 normalized fea-
tures), two hidden layers (250 neurons in the first hidden layer,
25 neurons in the second hidden layer), and one output layer (one
neuron). The architecture of the ANN model is shown in Fig. S3 in
SM, and the convergence study of hyperparameters is provided in
Table S5 in SM. Two ANN models are trained on the original and
balanced datasets, respectively. To evaluate the ANN model perfor-
mance, 10-fold cross-validation (CV) is performed. The receiver op-
erating characteristic (ROC) curve is constructed according to the
results of the 10-fold CV, and then the area under the ROC curve
(AUC) is evaluated. Additionally, the root mean square error (RMSE)
for different datasets and different alloy systems is also calculated

n - 2
as RMSE = _[>° w where n is the total number of data, y; is

1
the predicted GFA (between 0-1), and y; is 0 for crystal and 1 for
amorphous.

The performance of the ANN models trained on the original
dataset (ANN-original) and balanced dataset (ANN-balanced) in the
10-fold CV validation are summarized in Fig. 3 and Table 1. No-
tably, both models show high accuracy in the overall performance
with AUC = 0.9963, and RMSE = 0.1478 for the ANN-original, and
AUC = 0.9958, and RMSE = 0.1384 for the ANN-balanced. When
delving into the data subsets, the overfitting of the ANN-original is
identified: the model shows a lower RMSE = 0.1399 on the high-
throughput subset but much higher RMSE = 0.2008 on the tradi-
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Fig. 1. The data distribution of the original vs. balanced datasets. After data processing, the balanced dataset shows a more uniform data distribution among different alloy

systems.
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Fig. 2. The probability density distribution of data for 13 different features. Blue and red colors represent the original and balanced datasets, respectively. Dashed and solid
lines denote the alloys with crystal (CR) and amorphous (AM) structures. After data processing, the distribution of the CR data changes slightly; whereas the distribution
of AM data changes significantly. VEC, PE, R, T, AHp;y, B represent the mean value of the valence electron concentration, Pauling electronegativity, covalent radius, melting
temperature, the heat of mixing, and bulk modulus; and o calculates the standard deviation of those quantities. AS,;;; and § stand for entropy and covalent difference,
respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Table 1
The performance of the original and balanced ML models.
Models AUC RMSE
ANN-original overall 0.9963 0.1478
high-throughput 0.9974 0.1399
traditional 0.9744 0.2008
ANN-balanced overall 0.9958 0.1384
high-throughput 0.9955 0.1579
traditional 0.9920 0.1160

tional dataset. In contrast, the ANN-balanced significantly improves
the performance on the traditional subset with RMSE = 0.1160 and
maintains the performance on the high-throughput subset with
RMSE = 0.1579 (ref. to Table 1). Moreover, the RMSEs of each

ternary alloy system for the two models are calculated and shown
in Fig. 3(b). The ANN-original has smaller RMSEs for the 4 high-
throughput alloy systems (CoFeZr, CoTiZr, CoVZr, and FeTiNb) than
those of the ANN-balanced. The exception is the AINiTi alloy sys-
tem, in which the RMSE remains nearly unchanged. On the other
hand, the ANN-balanced shows significant improvement on the al-
loy systems started with sparse data. For the AlCuFe and AlFeGd
the RMSEs reduced by ~83% from ~0.46 to ~0.08. The detailed re-
sults of the RMSEs of each ternary alloy system in 10-fold CV are
shown in Table S3 in SM. Even though the ANN-balanced does
not have significantly better performance than the ANN-original
on the overall dataset, it solves the over-fitting suffered by ANN-
original. The ANN-original is predominantly controlled by the high-
throughput alloy systems (RMSE = 0.1399), resulting in large errors
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Fig. 4. The RMSEs of the original and balanced models for each ternary alloy system in the LEAVE-ONE-ALLOY-SYSTEM-OUT validation. The balanced model shows a much
better performance than the original model, demonstrating enhanced generalizability in predicting the new alloy system data.

in the traditional data subset (e.g. RMSE for AlFeGd = 0.456186).
Furthermore, we will demonstrate that the overfitted model is not
able to explore new alloy systems with high accuracy, while the
balanced model that avoids overfitting enhances the generalizabil-
ity for new alloy systems.

The ultimate goal of the ML model is to predict the GFA of new
alloy systems that have not been seen by the initial ML models,
and we refer to this capability as the generalizability of the ML
models. To evaluate the generalizability of the ML model, we per-
form leave-one-alloy-system-out validation. Specifically, upon de-
veloping the ML models, we leave the data in one alloy system
completely out of the training dataset, and such alloy system only
serves as the validation dataset. Since the ML model has not been
trained on the alloy system, the performance of the model in the
leave-one-alloy-system-out validation can be treated as the gener-
alizability of the model to the new alloy system. It is noteworthy
that this is distinct from the 10-fold CV performance, in which the
training dataset includes approximately 90% data from all the alloy
systems, and thus the performance cannot represent the generaliz-
ability of the ML models.

Fig. 4 displays the RMSEs of the ANN-original and ANN-
balanced models for each alloy system in the leave-one-alloy-
system-out validation. When comparing the two models, the ANN-
balanced model shows nearly identical performance in the high-
throughput alloy systems, but a much better performance in the
traditional ones. The average RMSE of all the predicted alloy sys-

tems is reduced by 31%, from 0.4587 to 0.3170. For example, the
RMSEs of the AlCuFe, AlFeGd, AIMgTi, CoFeNb, CrGePd, and FeHfTa
systems significantly decrease after data balancing. The RMSEs of
each ternary alloy system in the leave-one-alloy-system-out vali-
dation are shown in Table S4 in SM. The overall performance of
the ANN-balanced model in the leave-one-alloy-system-out valida-
tion demonstrates its better generalizability to a new alloy system.

Fig. 5 illustrates the predicted GFA of the AIMgTi alloy system in
the leave-one-alloy-system-out validation for (a) ANN-original vs.
(b) ANN-balanced, along with the experimental data shown in blue
(crystal) and red (amorphous). The ANN-original predicts low GFA
throughout the entire compositional region of AIMgTi, and can-
not identify the boundary between two the crystal and amorphous
phases in this alloy system. Such prediction results from the over-
fitting in the ANN-original, i.e. the high-throughput data dominates
the model performance. Notably, after data processing, the ANN-
balanced can identify the two-phase boundary even without seeing
this AIMgTi alloy system before. The balanced dataset of AINiTi, Al-
CuFe, and AlFeGd provides more information for the ANN-balanced
to do accurate prediction in AIMgTi. The comparison between the
two models under leave-one-alloy-system-out validation for other
alloy systems is shown in Fig. S4 vs. Fig. S5. It is noteworthy that
our data balancing method and the ANN-balanced model so far do
not handle extreme cases well when the initial data distribution
is clustered around only one corner of the composition space, e.g.
BFeZr alloy system.
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Fig. 5. The predicted GFA for AIMgTi alloy system under leave-one-alloy-system-out validation. (a)The ANN-original model; (b) the ANN-balanced model. The symbol x

represents the experimental data points.

In this study, we investigated the imbalance issues of the
datasets for GFA of ternary alloy systems, which consist of abun-
dant, low-fidelity high-throughput data and sparse, high-fidelity
traditional data. We proposed a method to handle the data imbal-
ance issues and trained ANN models on the original and balanced
datasets. The 10-fold cross-validation and leave-one-alloy-system-
out validation were employed to evaluate the model performance.
The 10-fold cross-validation results reveal that the model trained
on the original dataset suffers from overfitting to the abundant
high-throughput data. The model trained on the balanced dataset
exhibits 42% improvement in the alloy systems with sparse data,
and maintains the performance in the alloy systems with high-
throughput data. More importantly, in the leave-one-alloy-system-
out validation, the balanced model has a 31% improvement in
predictive ability for unseen alloy systems when compared to
the original model. In addition, the data-balancing approach also
leads to better and more stable performance for the decision
tree (DT) and support vector machine (SVM) algorithms, not only
the ANN algorithms. Our work highlights the importance of data
balancing in applying ML models to the material field and pro-
vides a practical approach to balance the dataset of ML mod-
els and improve the model’'s generalizability to explore new al-
loy systems. The data, codes, and trained ANN models that sup-
port the findings of the present work are available at GitHub,
(https://github.com/linear85/TernaryAlloyGFA_ANN_Model).
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