
This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. C, 2021, 9, 11153–11162 |  11153

Cite this: J. Mater. Chem. C, 2021,

9, 11153

Monitoring the role of site chemistry on the
formation energy of perovskites via deep learning
analysis of Hirshfeld surfaces†

Logan Williams, Arpan Mukherjee, Aparajita Dasgupta and Krishna Rajan*

This paper presents a new approach for predicting thermodynamic properties of perovskites that

harnesses deep learning and crystal structure fingerprinting based on Hirshfeld surface analysis. It is

demonstrated that convolutional neural network methods capture critical features embedded in two-

dimensional Hirshfeld surface fingerprints that enable a quantitative assessment of the formation energy

of perovskites. Building on our recent work on lattice parameter prediction from Hirshfeld surface

calculations, we show how transfer learning can be used to speed up the training of the neural network,

allowing multiple properties to be trained using the same feature extraction layers. We also predict

formation energies for various perovskite polymorphs, and our predictions are found to give generally

improved performance over a well-established graph network method, but with the methods better

suited to different types of datasets. Analysis of the structure types within the dataset reveals the

Hirshfeld surface-based method to excel for the less symmetric and similar structures, while the graph

network performs better for very symmetric and similar structures.

Introduction

The perovskite crystal structure is a rich family of materials,
capable of hosting most elements in the periodic table on either
the A site, B site, or both. This flexibility in chemical species on its
A and B sites creates a huge number of possible combinations,
many of which have technologically interesting properties for use
as photovoltaics, or ferroelectrics, etc.1–3 Many, but not all, of
these combinations are thermodynamically stable, making the
prediction of stable perovskites a valuable tool in the search for
new materials with desirable properties.

The rigid sphere model proposed by Goldschmidt4 in 1926 is
still used in perovskite prediction to this day, providing an easy
to calculate first order assessment of a composition’s ability to

form the perovskite structure. Using only the ionic radii of the
three elements, two geometric ratios called the tolerance
factor and the octahedral factor can be calculated. A region in
tolerance factor–octahedral factor space can be defined either
empirically or theoretically5 where perovskite formation is
possible. However, the rigid sphere model is an approximation,
ionic radii are dependent upon local coordination environ-
ment, and chemistry is too complex for Goldschmidt’s method
to be accurate enough for reliable prediction.

While other, much more complex, methods such as Density
Functional Theory (DFT) can provide relatively accurate for-
mation energies at an acceptable computational cost these
days, faster methods are always sought to allow for more
thorough exploration of potential new materials. Direct experi-
mental measurement is possible, but more time-consuming.6,7

There have been many studies using a variety of machine
learning and transfer learning techniques that focus on either
formation energy specifically8–11 or for general property
prediction.12–15 In a previous study,16 we have shown that
crystal ‘fingerprints’ based on Hirshfeld surfaces can be used
as input to a Convolutional Neural Network (CNN) to accurately
predict the equilibrium lattice constant of cubic perovskites. In
this work, we show that the same technique can be used to
predict formation energies of cubic and non-cubic perovskites.
Furthermore, we show that transfer learning can be used to
accelerate the CNN training process, as the feature extraction
layers can be preserved between different property predictions.
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Transfer learning is a concept within machine learning
where the knowledge gained from one model (the source task)
can be used or transferred towards learning another model (the
target task). It can be used to speed the training of a different
property of a given dataset, or allow more reliable training upon
a small dataset that shares some correlation overlap with an
available, larger dataset.17,18 In deep learning models, the
number of parameters to be optimized can easily be in the
order of millions, requiring huge computational times for
model training. Transfer learning can reduce the number of
parameters that need to be optimized by keeping some con-
stant from the earlier model and/or speed convergence on the
optimal solution by initializing parameters close to the optimal
values. Deep learning models usually consist of two parts:
feature extraction and task-specific fully connected layers. The
feature extractors in a CNN model comprise of the convolution
layers and are responsible for pre-processing the image, identi-
fying high-level geometric features, and spatial correlations.
Thus, transfer learning can be used to borrow the ‘knowledge’
from the feature extraction layers of a different network while
fine-tuning the fully connected layers suited to a given classi-
fication or regression task. However, such transfer learning
requires similarity between the datasets of the pre-trained
network and the new network. Without such similarity, transfer
learning can give poor results.19,20

In this study, our CNN is based on image recognition
techniques applied to crystal ‘fingerprints’ created from the
Hirshfeld Surface Analysis of the crystal structure.21 Hirshfeld
Surface Analysis has seen extensive use in the field of molecular
crystals,21–25 as it is an efficient way to analyze molecular
packing and shape, close contact points, and inter-molecular
interactions. In this study, as in our previous work,16 we modify
the traditional Hirshfeld surface fingerprint plot when moving
from molecular crystals to inorganic crystals: instead of

defining a single Hirshfeld surface about the entire molecule
or unit cell, we define one around each unique atomic site in
the unit cell, as shown in Fig. 1, taking inspiration from the
field of Atom In Molecule (AIM) research using Hirshfeld
surfaces.26–29 This creates a fingerprinting method that equally
characterizes all atomic sites within a structure and reflects
crystal structure, stoichiometry, defects, and lattice distortions.

By characterizing each unique atomic site separately and
then combining the data from each atomic site together, the
atomic Hirshfeld surfaces fingerprint plot characterizes a crys-
tal structure in a way that is invariant with respect to transla-
tions, rotations, or other arbitrary choices in unit cell selection,
which is vital for robust learning and prediction upon varied
crystal structures. As shown in Fig. 1 and 2, our neural networks
are built from a 3-dimensional description of each atom and its
local environment, measuring the radial size (di) and distance
to the nearest external atom (de) for each point upon the atom’s
Hirshfeld surface.

The organization of the remainder of the paper is as follows.
The methodological details for all calculations and data cura-
tion are listed in the Methodology section. We then report
formation energy results using transfer learning and the cubic
perovskites dataset used in our previous paper,16 analyzing
performance and outlier trends. Next, we report and analyze
results for a new network trained upon a dataset of cubic and
non-cubic perovskites. As this dataset consists of DFT calcula-
tions that allowed for structural relaxation during calculation,
we then perform a structural analysis of the dataset, recategor-
izing them from the four perovskite structure prototypes they
started in to the actual structure at the end of each calculation.
We use this categorization to analyze the results of our tested
methods upon different types of structural data. Finally, we
include some descriptive statistics of our cubic and non-cubic
dataset, analyzing common perovskite forming elements and

Fig. 1 Schematic showing the creation of the fingerprint plot from the atomic Hirshfeld surfaces. For each point on each Hirshfeld surface, the distance
to the nearest atom inside the surface, di, and the distance to the nearest atom outside the surface, de, are calculated. These (di, de) pairs are then binned
into a two-dimensional histogram to form the fingerprint plot.
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the dataset through the lens of the octahedral and tolerance
factors.

Methodology

To make our modified fingerprint plots, for each unique atomic
site in the structure, the Hirshfeld surface is calculated, using
the open-source Tonto30 software package, by placing the pre-
calculated31 spherically averaged electron density of the neu-
tral, isolated element around each atom and locating the 3D
surface where 50% of the electron density comes from the
selected atomic site. For each point upon these Hirshfeld
surfaces, the distance to the nearest atom inside, di, and the
nearest atom outside, de, are measured, as shown in Fig. 1.
These (di, de) pairs are then collected from all atomic Hirshfeld
surfaces in the crystal structure and binned into a
2-Dimensional (2D) histogram called the fingerprint plot,
which has the benefit of being rotationally-invariant with
respect to the crystal system orientation. This ‘fingerprint’ plot
of the atomic Hirshfeld surfaces characterizes the nature and
environment of each atom within a crystal structure. The
resultant image is a 2D tensor similar to a depth map or
single-channel image, making it suitable for analysis by

machine learning methods designed for image processing,
such as CNNs.32,33

Our CNN architecture consists of feature extraction layers
followed by fully connected layers used for property prediction,
as shown in Fig. 2. In this particular case of transfer learning
with the cubic perovskite dataset, the source task was the task
of predicting the lattice parameter, while the target task is
predicting the formation energy. The feature extraction layers
are the same as in our previous work, whose network produced
highly accurate predictions.16 The fully connected layers have
been slightly modified. The complete architecture is described
in the ESI.† The feature extraction layers serve to decode
chemistry and geometric relationships between the atoms in
the crystal structure. It produces a collection of reduced-order
matrices, each accentuating different sub-domain inside the
fingerprint plot that differ geometrically than the complemen-
tary region. For example, if we use p kernels or filters in the last
convolution layer, it then produces p distinct such images or
feature maps (see Fig. 2). We are using single-source homo-
geneous inductive transfer learning where the source and the
target input domain are the same, while the target tasks are
different property parameters. We can assume an implicit but
nonlinear correlation between the formation energy and the
lattice parameter.34,35 We implement the concept of transfer
learning by assuming that the features identified by our source

Fig. 2 The feed-forward propagation of our neural networks consists of feature extraction layers (F) and fully connected layers (G). The feature
extraction layers reduce the N by M crystal fingerprint into a flattened set of feature maps that are interpretable by the fully connected layers. The fully
connected layers perform the final property prediction. In this paper, the feature extraction layers for our cubic dataset network are taken from the prior
network16 used to predict lattice parameter and frozen at those values. The fully connected layers are the only ones whose weights are updated,
significantly reducing training time.
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CNN model will be sufficient to predict the formation energy
with the same level of accuracy. The feature maps produced in
the source CNN model and subsequently their vectorized
union, also called a flattened layer, can thus act as descriptors
for our current target model. Therefore, the feature extraction
layers from our previous work16 can be used unaltered in our
current model for the energy of formation. This allows for a
drastic reduction in the number of parameters that require
optimization, down to only those in the fully connected layers
used for property prediction. Additionally, by restricting the
descriptor space to the pre-defined feature maps obtained from
the source model, we narrow down the hypothesis space for the
fully connected layers for the target model.

Our cubic perovskites dataset is the same as from our
previous publication, with one additional restriction.16 To
generate our dataset, the 5321 ABO3 cubic perovskites from
the Open Quantum Materials Database, OQMD,35,36 were initi-
ally selected. These include all elements up to Z = 94 except for
the noble gases, the halogens, H, C, N, O, P, S, Se, and Po. The
exact compositions included in the final dataset are shown in
the ESI.† The dataset was reduced to 5250 structures by
removing cases fitting either of two criteria. First, if the relaxed
lattice parameter was greater than 5 Å or more than 2% larger
than the (generous) unrelaxed lattice parameter used by
OQMD, they were removed as these are likely to be unstable
structures. Second, if the relaxed lattice parameter was equal to
the unrelaxed lattice parameter, they were removed as these
may be unnoticed failed calculations. Finally, the dataset was
trimmed down to 5206 compounds by discarding structures
without a converged non-relaxation energy calculation. The
Hirshfeld surface of each atom in every structure was then
calculated using the Tonto software package, an open-source
tool for Hirshfeld surface and other analyses.30 For both
Hirshfeld surface calculation and comparison CGCNN initiali-
zation, initial lattice constants were assigned to each structure
as a random value in the range of 3.5–5.5 Å, the range of most
oxide cubic perovskites. To achieve smooth fingerprint plots,
the atomic Hirshfeld surfaces were interpolated using 10 points
between each vertex, and then the fingerprint plot for each
structure was created by binning the (di, de) pairs of all inter-
polated surfaces in the structure into 50 � 50 bin histograms
(bin size = 0.04 Å) ranging 0.76–2.8 Å for both di and de (coarser
than shown in Fig. 1). The neural network was trained using the
open-source library Keras with Tensorflow v1.8.0 backend.37

The exact details of the architecture are provided in the ESI.†
For the cubic and non-cubic perovskites dataset, the 5911

tetragonal, orthorhombic, and rhombohedral ABO3 perovskites
from OQMD were combined with the 2501 cubic perovskites
from the cubic perovskite dataset that had the same composi-
tion as one of the non-cubic structures. This was done to create
a dataset that had a roughly normal distribution of the target
property. Many higher formation energy cubic perovskites did
not get their non-cubic variants calculated by OQMD, which
skews the formation energy distribution of the dataset unevenly
if all the cubic perovskites are included. The compositions
included/excluded and the distribution of formation energies

are shown in the ESI.† The lattice parameters of all the
structures were all kept at their DFT relaxed values. Hirshfeld
surface calculations were performed the same as for the cubic
set. A new neural network was trained from scratch for the new
dataset, with the same architecture but without transfer learn-
ing. The B70/30 train/test split was done by chemical composi-
tion, with all structural polymorphs possessing the same
chemistry being assigned to either the test or training set as a
group, to prevent artificially high results from too much
similarity between test and training materials. This resulted
in 5869 and 2543 structures in the training and testing sets,
respectively. Pymatgen38 was used to calculate atomic site
coordination numbers when classifying the relaxed structures
as detailed in the discussion section and to calculate expected
valence states for compositions in the tolerance and octahedral
factor calculations.

Results and discussion

The results for our CNN model based on Hirshfeld surfaces
fingerprints are shown in Table 1 and Fig. 3. For comparison, a
model using the Crystal Graph Convolutional Neural Network
(CGCNN)15 was also trained using the same train/test split and
is shown alongside it. The CGCNN method uses a graph net-
work representation of the crystal structure, with elemental
data for each atomic node and a function of the atom–atom
distance connecting neighboring atoms. Our model achieves
better performance than the CGCNN model on both the test
and training sets and is highly accurate over a wide chemical
space with only a few outliers with large magnitudes.

Despite the overall high accuracy of the model’s fit, there are
some notable outliers in both the testing and training sets. Of
the 11 outliers with greater than 0.5 eV per atom magnitude
residual in the combined testing and training sets for the
Hirshfeld surfaces plus CNN model, 8 possess either Ba, K,
Rb, or Sr in the B site, as shown in Table S2 (ESI†). All of these
elements are group 1 or 2 elements with very similar atomic
radii (B215–248 pm). As the Hirshfeld surface is built upon
spherically-averaged neutral atom electron densities, it appears
that these similarly-sized s-block elements present the most
challenge to the neural network, and it is likely that the network
is sometimes misidentifying one of these elements as another.
The network does make accurate predictions for most of these
compounds, as can be seen in Fig. S8 (ESI†). Also, it does not

Table 1 The R2 value, Mean Absolute Error (MAE), and Mean Squared
Error (MSE) from the CGCNN15 model and our Hirshfeld surface fingerprint
+ CNN model for both training and testing set prediction for the
DFT-calculated system energies of the 5206 cubic oxide perovskites with
converged calculations. In both training and test sets, our model based on
Hirshfeld surface fingerprint outperforms the CGCNN model

Method Split R2 MSE MAE

CGCNN Training 0.9824 0.01753 0.0968
CGCNN Test 0.9780 0.02248 0.1129
Hirshfeld surfaces + CNN Training 0.9926 0.00733 0.0502
Hirshfeld surfaces + CNN Test 0.9899 0.01030 0.0567
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seem impossible for a network to use these feature extraction
layers to tell these atoms apart, as the previous network for
lattice parameter16 did not show large errors on those elements.
The previous network had a bias towards estimating towards
the mean that caused its largest residuals to be for small
elements such as B, Be, and Li, shown in Table S3 (ESI†).
Subtracting out that bias, there is no clear trend to the outliers
in the residuals, as shown in Table S4 (ESI†). For comparison,
the CGCNN had 24 outliers of greater than 0.5 eV per atom
magnitude residual (over twice as many), shown in Table S5
(ESI†). Eight of those contained either Li, Be, or B in the B site.
Twenty-one contained a row 6 or row 7 element, indicating that
the CGCNN method had the largest errors on high and low

atomic number elements. Despite these outliers, the Mean
Absolute Error (MAE) for our model is still o0.06 eV per atom
for both the testing and training sets.

The ability to accurately predict the DFT formation energy of
a cubic perovskite based on its unrelaxed structure should not
be too surprising. The features which control both, and which
are identified by the shared feature extraction layers, are the
same. Atomic species, which determines the number of elec-
trons and contribute to the potentials they exist within, and the
local environment of each atom, control both the lattice con-
stant and the formation energy. With a structure near the
relaxed lattice constant/energy minima, the formation energy
vs. the system volume shares a roughly parabolic relationship.
In effect, predicting the lattice constant is locating the
x position (volume) of the energy minima, while predicting
the formation energy is predicting the magnitude, or y-value, of
that same energy minima.

The results for our CNN model built on Hirshfeld surface
fingerprints and a comparison model using the CGCNN15

model upon the cubic and non-cubic perovskites dataset are
shown in Table 2 and Fig. 4. Our model achieves better
performance upon the training set than the CGCNN model
and comparable, but slightly worse results on the test set. As
can be seen in Fig. 4, the residuals for our model have a
small but notable bias of estimating towards the mean.
Thus, a single step gradient boosting was applied to the
model by fitting a simple linear regression to the training set
predictions and target values, then applying it to all the
model’s predictions. This acts to flatten the linear bias seen

Fig. 3 Training and test set residuals for the prediction of cubic perovskites DFT relaxed formation energies from OQMD using input structures using
randomized lattice parameters using (top) the CGCNN technique15 or (bottom) the atomic Hirshfeld fingerprint plot with a convolutional neural network.
The CNN used the same feature extraction layers as the one previously used to predict relaxed lattice parameters.16 The fingerprint plot plus CNN
method shows superior predictive performance compared to the CGCNN method.

Table 2 The R2 value, Mean Absolute Error (MAE), and Mean Squared
Error (MSE) from the CGCNN15 model, our Hirshfeld surface fingerprint +
CNN model, and our model plus a simple linear residual boosting scheme
for both training and testing set prediction for the DFT-calculated system
energies of the 8412 cubic and non-cubic oxide perovskites with con-
verged calculations. In both training and test sets, our model based on
Hirshfeld surface fingerprint outperforms the CGCNN model after the
boosting technique is applied. The CGCNN method results are negligibly
changed by the boosting method

Method Split R2 MSE MAE

CGCNN Training 0.9781 0.01711 0.0952
CGCNN Test 0.9648 0.02589 0.1131
Hirshfeld surfaces + CNN Training 0.9878 0.00951 0.0719
Hirshfeld surfaces + CNN Test 0.9636 0.02674 0.1029
HFS + CNN + boosting Training 0.9923 0.00602 0.0565
HFS + CNN + boosting Test 0.9663 0.02476 0.0719
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in Fig. 4. With the linear boost applied, our model displays
improved predictive performance over the CGCNN method
on the test set as well. Application of the same boosting

technique to the CGCNN produces a minuscule difference,
as the CGCNN model did not display the same bias towards
the mean.

Fig. 4 Training and test set residuals for the prediction of cubic and non-cubic perovskites DFT relaxed system energies from OQMD using (top) the
CGCNN technique15 or (middle) the atomic Hirshfeld fingerprint plot with a convolutional neural network, or (bottom) the middle network with a simple
linear residual boost applied to reduce the systematic bias towards estimating towards the mean.

Fig. 5 Confusion plot for the relative ordering of same composition phases in the test set of the cubic and non-cubic perovskite dataset as produced by
(left) our model built using a CNN and Hirshfeld surface fingerprint plots and (right) the CGCNN15 model. The linear boosting technique has no effect on
relative orderings, as it scaled linearly based on the predicted value from the CNN.
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The outliers in the predictions for this dataset are listed in
the ESI† and share some trends with the former. The ‘spike’ of
7 large positive outliers around formation energies of B0.1 eV
per atom is caused by several polymorphs of KRbO3 and K2O3,
and 5 more (12 total) of the 23 outliers with residual magnitude
Z0.5 eV per atom contain either K, Rb, or Ba (none contain Sr).
Additionally, all but 2 of the large outliers were for cubic or
rhombohedral structures. For the CGCNN model, row 6 and 7
elements make up 29 of the 40 outliers with residual magnitude
Z0.5 eV per atom. Additionally, half of the large outliers were
for tetragonal structures, and only 2 were orthogonal
structures.

When predicting formation energies of multiple phases of
the same composition, the relative energy ordering is important
for the determination of phase stability or metastability. Fig. 5
shows confusion plots for the predicted vs. actual ordering of
the test set for the CNN and CGCNN15 models, respectively. The
two methods predict nearly the same number of ground states
correctly. The CGCNN method predicts more 2nd and 3rd most
stable states correctly, and the CNN predicts more higher-
energy states correctly. However, the CNN method is notably
closer in its incorrect orderings, with fewer predictions far from
the correct placement. The confusion plots for the full datasets
are shown in the ESI,† and the CNN significantly outperforms
the CGCNN method when including the training set due to its
far better fit upon the training data.

The non-cubic perovskite calculations performed by OQMD
do not enforce a final structure or symmetry upon the calcula-
tion. While all structures began DFT structural relaxation in
one of four perovskite structure prototypes (cubic – based on
SrFeO3’s structure, tetragonal – based on PbTiO3, rhombohe-
dral – based on NdAlO3, or orthorhombic – based on GdFeO3),
many of the compounds underwent significant structural rear-
rangement during relaxation. To classify the relaxed structures,
we took any structure with a coordination number of 8 through
12 for one of the cations and a coordination number of 6 for the
other cation species to be a perovskite class structure. Using
this criterion, B46% of the orthorhombic structure, B55% of
the tetragonal structures, and B58% of the rhombohedral
structures relaxed into a non-perovskite form. All 2501 cubic
perovskites remained cubic perovskites due to enforced cubic
symmetry during their calculations. We then categorized the
perovskite structures by their lattice symmetry. Of the 1947
orthorhombic structures B43% remained orthorhombic while
B5% became tetragonal and B5% became cubic. Of the 1852
tetragonal structures B31% remained tetragonal while the
remaining B14% became cubic. Of the 2112 rhombohedral
structuresB34% remained rhombohedral while the remaining
B9% became cubic.

This categorization of the structures within the dataset allows
us to examine trends in the performance of the two methods
tested based on structural distortion and symmetry. As shown in
Table 3, the CGCNN method struggled with the heavily distorted
structures (the triclinic and non-perovskite) in both the training
and testing sets, as well as had significantly worse results upon
the tetragonal test set structures than the training set.

Contrastingly, the Hirshfeld surfaces fingerprint plot with CNN
method struggled the most upon the most symmetrical struc-
tures, the cubic and rhombohedral perovskites. These trends are
sensible when considering the features used in the respective
methods. The CGCNN method uses a graph network and bond
distances between atoms, but does not include full 3D character-
ization of atomic environment. The Hirshfeld surfaces with CNN
method does include 3D characterization of the atomic environ-
ment, but does not encode atomic composition as directly as the
CGCNN method. The highly symmetric crystal systems have the
most similar fingerprint plots with the fewest differences for the
convolutional neural network to work with, making the Hirshfeld
surfaces relatively better suited for learning the properties of the
more distorted structures of the dataset and the CGCNN method
relatively better suited for the most symmetric structures of the
dataset.

Using the structure categorizations described above, we
perform some descriptive statistics to identify trends in favored
structure types based on chemical composition. Some atoms in
the A or B site largely favor non-perovskite structures for all
chemistries included in the dataset. Structures starting with Li
in the A site relax into a non-perovskite structure as the lowest
formation energy structure for over 50% of the studied compo-
sitions. Pa and Si do the same for structures with them starting
in the B site. For structures started with them in the A site Ac,
Ba, Bi, Ca, Cd, Ce, Cs, Dy, Eu, Gd, K, La, Na, Nd, Np, Pb, Pm, Pr,
Pu, Rb, Sm, Sr, Tb, Th, Y, and Yb formed a perovskite as the
lowest formation energy structure over 50% of the studied
compositions. For structures started with them in the B site
Al, Au, Co, Cr, Cu, Fe, Ga, Hf, Ir, Lu, Mg, Mn, Mo, Nb, Ni, Os,
Pd, Pt, Re, Rh, Ru, Sc, Ta, Tc, Ti, V, W, Nz, and Zr formed a
perovskite as the lowest formation energy structure over 50% of
the studied compositions. Fig. 6 shows a categorical breakdown

Table 3 The R2 values for the CGCNN15 and Hirshfeld surfaces + CNN
models upon separating the dataset by the symmetry and type (perovskite
or non-perovskite) of the relaxed crystal structures from OQMD. The first
five categories (cubic, tetragonal, etc.) are all referring to perovskites of
that symmetry, while the final is for all non-perovskite structures of any
symmetry. The CGCNN method had its worst overall performance on the
most distorted structures, triclinic and non-perovskite, and the worst loss
of performance between the training and test sets upon the tetragonal
structures. The HFS + CNN method had the most difficulty upon the most
symmetric structures, cubic and rhombohedral

Structure type

Test/
train
split

# of
structures

CGCNN
R2

HFS +
CNN R2

HFS + CNN w/
boosting R2

Cubic Train 2126 0.9788 0.9840 0.9905
Test 922 0.9753 0.9442 0.9481

Tetragonal Train 471 0.9841 0.9882 0.9930
Test 210 0.9264 0.9722 0.9757

Orthorhombic Train 591 0.9819 0.9902 0.9932
Test 244 0.9711 0.9781 0.9811

Rhombohedral Train 497 0.9826 0.9881 0.9895
Test 218 0.9714 0.9470 0.9349

Triclinic Train 6 0.9400 0.9852 0.9920
Test 1 — — —

Non-
perovskite

Train 2177 0.9685 0.9892 0.9931
Test 947 0.9490 0.9790 0.9835
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of the strongly perovskite-forming elements. Compared to a
study5 predicting the perovskite formability of ternary and
quaternary compositions, we identify similar trends, with tran-
sition metals in the B site and lanthanides in the A site favoring
perovskite formation. However, as we are analyzing the relia-
bility of elements on a given site towards forming perovskite
structures rather than the total breakdown of the dataset, we
notably do not find any actinides or lanthanides to reliably
form perovskites in the B site, while compounds with a lantha-
nide or actinide composed roughly 1/3 of their5 predicted oxide
perovskites. The ESI† contains additional plots of formation
energy broken down by initial A and B atom species as well as
the final, relaxed structure type.

Finally, we analyze the dataset for the tendency to form or
not form a perovskite structure in the lens of geometrical
analysis using the octahedral and tolerance factors. When
plotting the perovskites according to their tolerance

t ¼ rA þ rXð Þ
� ffiffiffi

2
p

rB þ rXð Þ
� �� �

and octahedral [m = rB/rX] factors

(see Fig. 7), compositions where the most stable structure calculated
was a perovskite mostly adhere to the region defined by the hard
spheres and no-rattling rules.5 These rules are derived by assuming
each atom is a rigid sphere with radius equal to their ionic radius,
and determining the geometric limits of atomic size differences
where atoms can be placed into any distorted perovskite structure
without leaving atoms in any voids too large for them to be
prevented from ‘rattling’ by their neighbors. Using the notation of
Filip and Giustino,5 there are four types of limits imposed by the no-
rattling rules. The Stretch Limit (SL) is defined where the A atom is
so large as to touch all 12 anions around it in a cubic perovskite. In
this situation, the tolerance factor is always 1. The Octahedral Limit
(OL) is where the anions in the same BX6 octahedron are in contact

with one another. In this situation, m always equals
ffiffiffi
2

p
� 1. The

third type of limit are derived by considering tilting of the BX6
octahedra and a resultant displacement of the A atom. This

produces two limiting cases, (TL1) t ¼ ð1:366þ 0:422mÞ
� ffiffiffi

2
p

mþ 1Þ
for mo 0.8 and (TL2) t ¼ ð1:125þ 0:732mÞ

�
ð

ffiffiffi
2

p
mþ 1Þ for m4 0.8.

Fig. 6 Categorical breakdown of the elements found to form a perovskite structure as the lowest formation energy structure for over half of their
compositions when placed into the (left) A site or (right) B site.

Fig. 7 The perovskite structures from the cubic and non-cubic perovskites dataset plotted according to their octahedral and tolerance factors, with
color corresponding to formation energy. (left) Structures where a perovskite was the most stable calculated structure for the composition. (right)
Structures where a non-perovskite structure was calculated to have the lowest formation energy for the composition. The lines and curves labeled OL,
SL, CL1, CL2, TL1, and TL2 correspond to the no-rattling hard spheres model limits,5 with the dashed gray curves being the chemical limits from the
reference and the black curves recalculated for our dataset to account for the different range of elements included.
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Finally, the last limits are from considering the largest and smallest
ionic radii in the elements within the dataset, rather than from
the geometry. The largest cation and smallest anion in the dataset

create the first limit, CL1, as t ¼ rA=rX þ 1ð Þ
�
ð

ffiffiffi
2

p
ðmþ 1ÞÞ, with

rA = rCs = 1.81 Å and rX = rO = 1.26 Å for our dataset. The largest
cation and smallest anion also define the largest octahedral factor
(CL2) for our dataset as m = rB/rX = rCs/rO = 1.81/1.26 = B1.44. Many
of the compounds in the dataset had a lower tolerance factor than
allowed by the Tilt Limits (TL1 and TL2), but only a few very near the
limit formed stable perovskites, corroborating Filip and Giustino’s
findings on the importance of the Tilt Limits.5 However, many
compounds containing Tl, Rb, Cs, or Ba on the A site exceeded the
tolerance factor predicted by the Stretch Limit (SL), beyond which
the hard sphere model would predict rattling of the B site. Finally,
three perovskites with Mn on the B site (orthorhombic TlMnO3,
NaMnO3, and LiMnO3) had lower octahedral factors than predicted
by the Octahedral Limit (OL). These exceptions are further evidence
that the hard spheremodel, while a reasonable approximation, does
not strictly bound the potential perovskite formation region. How-
ever, there were also many compositions located within the pre-
dicted stability region where the lowest energy structure calculated
was a non-perovskite structure (right plot of Fig. 7), showing that a
composition’s presence within the region predicted by the hard
sphere model design rules does not guarantee the perovskite
structure to be the most favorable structure.

Conclusion

In this study, we have further demonstrated that crystal finger-
printing based on atomic Hirshfeld surfaces is a powerful tool
in combination with image processing techniques and presents
a highly-effective method of using deep learning for the pre-
diction of multiple inorganic crystal properties.16 Combining
atomic and three-dimensional geometric data, fingerprints
based on atomic Hirshfeld surfaces are data-rich descriptors
for machine learning. We have shown that transfer learning
can be utilized to speed the training of models on new proper-
ties by taking advantage of the implicit relationships between
material properties. We show generally improved predictive
performance over the CGCNN15 method on the studied dataset,
but note that our method performs relatively better on the more
distorted structures and relatively worse for highly symmetric
subsets of the data compared to the CGCNN method. The
results and transfer learning process described in this paper
establish this method in the toolbox for machine learning of
material properties, as the technique is easily generalizable to
other crystal systems and material properties and is especially
suited to datasets with more complexity in crystal structures.
We also analyze perovskite formation trends, identifying transi-
tion metals on the B site and lanthanides and actinides on the
A site as having a high likelihood to form perovskites. We also
note that while the tilt limits in the hard spheres model of
perovskites are quite effective at determining which materials will
not form perovskites, there still exist numerous compositions

within the expected stability window that prefer a non-
perovskite form.
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