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When is the quantum speed limit (QSL) really quantum? While vanishing QSL times often indicate
emergent classical behavior, it is still not entirely understood what precise aspects of classicality are at
the origin of this dynamical feature. Here, we show that vanishing QSL times (or, equivalently, diverg-
ing quantum speeds) can be traced back to reduced uncertainty in quantum observables and can thus be
understood as a consequence of emerging classicality for these particular observables. We illustrate this
mechanism by developing a QSL formalism for continuous-variable quantum systems undergoing gen-
eral Gaussian dynamics. For these systems, we show that three typical scenarios leading to vanishing
QSL times, namely large squeezing, small effective Planck’s constant, and large particle number, can be
fundamentally connected to each other. In contrast, by studying the dynamics of open quantum systems
and mixed states, we show that the classicality that emerges due to incoherent mixing of states from the
addition of classical noise typically increases the QSL time.
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I. INTRODUCTION

What distinguishes the classical world from the
underlying quantum domain? Arguably the most promi-
nent answers to this question revolve around the exis-
tence of uncertainty relations. While these relations
have been tested, understood, and verified for pairs
of canonical observables, as there is no observable
for time, the uncertainty relation for energy and time
remains harder to interpret. In its modern formulation
the energy-time uncertainty relation is phrased as a
quantum speed limit (QSL). In its original inception, the
QSL reads [1-3] T > nh/2AE = tgs1, Where T is the
evolution time between orthogonal states, under a time-
independent Hamiltonian, H, and AE? = (Y |H*|y) —
(Y|H|¥)?. QSLs have found widespread prominence
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in, e.g., quantum information theory [4,5], while other
formulations of QSLs provide fundamental and prac-
tical insight into the dynamics of complex systems
[6-14]. Formally, QSLs can be elegantly expressed in
terms of the geometry of quantum evolution [15—17],
which in turn reveals a fundamental connection with the
study of quantum parameter estimation [18,19]. In this
geometric setting, QSLs have been generalized and applied
to various scenarios of interest, notably open quantum
systems [20—22] and quantum control [8,23-26].

Nevertheless, it is still debated what is really “quantum”
about the QSL. Only recently, in two almost simultaneous
works, Shanahan ef al. [27] and Okuyama and Ohzeki [28]
showed that bounds resembling the QSL also exist for clas-
sical dynamics. The origin of such speed limits, quantum
as well as classical, rests in the notion of distinguishability
of states. The speed limit is then a bound on the rate with
which states become distinguishable from a previous con-
figuration. While these results appear to put quantum and
classical dynamics on an equal footing, some differences
are expected to persist. The natural question, thus, has to
be if and how a diverging quantum speed may be related
to emergent classical behavior.

In this paper, we tackle this problem for a broad
class of quantum systems, namely a collection of bosonic
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modes described by Gaussian Wigner functions under
Gaussian-preserving dynamics [29,30]. These systems
provide an ideal testbed to study QSLs for both quantum
and classical systems and have widespread applications
in continuous-variable (CV) quantum information [31]. In
general, studying the QSL for CV systems is mathemati-
cally challenging due to their infinite-dimensional Hilbert
spaces [32]. In contrast to previous work [27,33], here we
do not work with a phase-space representation, but rather
develop a QSL theory for Gaussian dynamics directly,
which permits us to derive an expression for the QSL time
in terms of finite-dimensional matrices using symplectic
operators.

Using this formalism, we discuss three limits in which
the QSL time vanishes: (i) A — 0, where A is interpreted
as a parameter of the state, (ii) » — oo, where r denotes
the squeezing in the state, and (iii) » — oo, where 7 is
the number of modes. Thus, we establish that the emergent
classicality linked to a vanishing QSL time can be associ-
ated with the reduced uncertainty in particular observables.
For the special case of a single mode, we develop the
theory further to show that, for each state, there exist
Hamiltonians that maximize and minimize the QSL time.
Finally, by applying our Gaussian QSL theory to general
quantum evolution, we discuss the role of classical noise,
mixed states, and nonunitary evolution. We illustrate how
these aspects, which are related to a transition to classi-
cal behavior due to incoherent mixing of states rather than
reduced uncertainty of observables, cannot decrease the
QSL time.

I1. QUANTUM SPEED LIMIT FOR GAUSSIAN
DYNAMICS

We start by recalling the general formalism of geo-
metric quantum speed limits. Consider a normalized dis-
tance between elements in the space of density operators
given by ®(p,0) = 2arccos /F (p,0), where F(p,0)isa
fidelity function satisfying 0 < F(p,0) < 1,and F = 1 if
and only if p = o. Furthermore, consider general quantum
dynamics given by p; = A;[pg], where {A;, ¢ > 0} is a one-
parameter family of completely positive trace-preserving
maps. The quantum speed V; is computed by expanding the
fidelity between the state p; and the state at a subsequent
time Ortar,

F(pp praar) = 1 — V2 df =  dO* =4V*d. (1)

Note that V; measures how fast quantum states become dis-
tinguishable from each other. Generally, V; is a function
of p,, but may also show an explicit dependence in time.
Moreover, V; can be used to construct bounds on the evo-
lution time in a variety of ways [25,34,35], typically based

on the relation
O (po, pr) < 2[ datV. (2)
0

Equation (2) expresses the fact that the distance between
po and p; must be smaller or equal to the length of the path
taken by p, for ¢ € [0, T].

For unitary dynamics and pure initial states, the nat-
ural choice is the quantum fidelity F = |(y|v¥2)|?, for
which V; = AE;/h and Eq. (2) is the Anandan-Aharonov
relation [15]. For time-independent Hamiltonians, the
Mandelstam-Tamm bound can be easily inferred from Eq.
(2); see also Ref. [36].

In the present analysis, we focus on the speed for
Gaussian states and define the QSL time simply as its
inverse, i.e., Tp = V=1, The time dependence of V has been
dropped, since we can take V to be the speed at the ini-
tial time ¢ = 0. It is straightforward to show (see Appendix
A) that the other usual definitions of a QSL time are
analogous to Ty in the asymptotic limit o — 0. Generic
bosonic systems have a clear-cut classical limit, which
makes them ideal to study the quantum-to-classical transi-
tion. Gaussian-preserving dynamics in systems of » modes
can be efficiently described using finite-dimensional opera-
tors corresponding to the symplectic group Sp(2r) [30,37].
These systems can be characterized by a vector of quadra-
ture operators Z = (g1, p1, - - -,qn, Pn) With commutation
relations [38]

[2k,2/]] = ihQyu, where Q= @ (_01 é) NE)!

Jj=1

A state pg is Gaussian if its Wigner distribution is a
Gaussian function in the quadrature variables. These states
can be fully described by a 2n-dimensional real vector
of expectation values u = tr(pgz) and a real, symmet-
ric 2n x 2n covariance matrix ¥ = tr(pg{62, 627}), where
8z = Z — u, which is such that £ + iAQ2 > 0. Thus, the
purity of p¢ is simply given by

tr{pg} = v/ det(T). 4)

For mathematical convenience, we now choose the
metric F to be the fidelity introduced in Refs. [39,40],

tr{po}
F(p,0) = ———u—ou. 5
(0,0) P (%)

Note that, for purity-preserving dynamics, Eq. (5) reduces
to the relative purity [22] and the corresponding distance,
0, to that studied in Ref. [41]. For a CV system, p is
represented by an infinite-dimensional matrix; however,
Gaussian states can be described by finite-dimensional
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objects p — (X, u). In terms of these, the fidelity of Eq.
(5) can be expressed as [42,43]
[det(21)]"/*[det(E2)]"/*
{det[(Z) + 2)/2]}1/2
x exp[—8u’ (21 + Z)'ou],  (6)

F(p1,p2) =

where du = u; — u;. Consider now a transformation p —
p + dp. If the evolution preserves the Gaussian character
of the state, we can expand Eq. (6) to second order using
¥ — ¥ +d% and u — u + du. This procedure, detailed
in Appendix B, yields the expression

F(p,p+dp)=1— Lr{(Z7'd%)?*)
— ldu"s " du, (7)

which we use to obtain explicit expressions for the quan-
tum speed V for different cases of interest.

We first focus on unitary evolutions generated by
quadratic Hamiltonians of the form H = z’Gz/2, with
G € R¥™2" and symmetric. In this case the quadrature
operators evolve according to z(z) = S(¢)z(0), with S(?)
a symplectic matrix (i.e., such that SQS7 = Q) obeying
S = QGS(#), which in turn implies that initial Gaussian
states remain Gaussian at all times. The unitary evolution
of the covariance matrix and the displacement vector of a
Gaussian state is given by

dY = (QGT — ©GQ)dt and du= QGudt. (8)

Inserting this into Eq. (7) and using Eq. (1), we can eval-
uate the quantum speed for unitary evolution of general
(multimode, mixed) Gaussian states,

Vi = 3[—tr{GQETQGT} + tr{(Q6)*)]
— 'Gex'QGu. ©)

This expression can be further simplified if p — {X,u}
is pure. In this case, using Williamson’s theorem, it
is straightforward to show that — QX 'Q = % /h? (see
Appendix C). This leads to the following general expres-
sion for the quantum speed for a generic pure Gaussian
state undergoing Gaussian-preserving dynamics:

1

= g (GE)) + 7 n((QG)’)]

2
VU

1

+ ﬁuTGEGu. (10)
As expected from the Anandan-Aharonov relation, the
expression in Eq. (9) coincides with the energy variance
AE?/h?, a fact we prove by direct calculation in Appendix
C. In the following, we turn our attention to analyzing
the different limits in which the quantum speed diverges,
leading to a vanishing QSL time.

III. DIVERGING QUANTUM SPEED LIMITS

A. Limit of small Planck’s constant

We begin by analyzing the role of / in the QSL time. It
is instructive to evaluate Eq. (10) for a generic multimode
state evolving on a uniform Harmonic oscillator, where
G = wly,«2,. The covariance matrix of an arbitrary Gaus-
sian pure state can be written as ¥ = h ODO”, where O is
an orthogonal matrix and D is a diagonal positive matrix
of the form

D= 1(’8‘ 1;)xk). (11)

k=

The elements of D describe the magnitude of the squeezing
of the state and can be parametrized as x; = exp(ry), with
rr > 0. The resulting expression for the speed reads

a)2

2 —w—z(tr{Dz}—Z ) +
vT g T on

vIDv, (12)

where v = O"u. Equation (12) exhibits two distinct contri-
butions. The first term corresponds to the speed originating
in the squeezing of the state (and it vanishes in its absence,
i.e., when x; = 1 for all k); the second term indicates the
displacement of the state.

Observe that the speed V%, diverges as i — 0 [44]. This
happens only for displaced states, since the first term is
independent of /. This behavior can be understood in terms
of the evolved state becoming more distinguishable from
the initial one as & is reduced. This is depicted for the sin-
gle mode in Fig. 1(a). The necessary counterpart of i — 0
is that the state becomes more classical in the sense that the
uncertainty in a/l quadratures is reduced. Thus, there is a
straightforward connection between a vanishing QSL time
and a reduced uncertainty associated with the state of the
system. This result makes explicit the fact that the role of
h in the QSL is precisely to set the minimum uncertainty,
which limits the rate of change of the distinguishability.
Since uncertainty can always be introduced in classical
systems, a similar mechanism can be understood to lead
to a speed limit for those systems [27,28].

B. Limit of large squeezing

We now turn to the second limit. For simplicity, we set
without loss of generality u = 0, and therefore restrict to
considering states that are centered at the origin in phase
space. Using the same example as above, we have

tr{D’} =2 "cosh(2r) =4 sinh’(rs) + 21, (13)
k=1 k=1
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(a) pn Pt+dt pn ..... Pt1di
EAe B ~q
......... e
Decreasing h ’
(b)

Increasing r

FIG. 1. Pure Gaussian states undergoing an infinitesimal evo-
lution in phase space quickly become distinguishable if (a) A,
taken as a parameter of the state, is reduced, and (b) the squeezing
parameter 7 is increased.

which leads to
2 @ 2
Vo= > sink? (), (14)
k=1

revealing that, as the squeezing of the state increases,
the quantum speed diverges. This phenomenon can again
be rationalized from the fact that large squeezing allows
for a faster increase in distinguishability, as schematically
depicted in Fig. 1(b). Here we observe that a diverg-
ing speed is again associated with reduced uncertainty, in
this case corresponding to the variance of the squeezed
quadrature operator(s) of the state.

An important observation about the role of states and
generators in the QSL follows from this example. Since
the quantum speed is the rate at which the state of the
system becomes distinguishable from its previous config-
uration under a given evolution, a vanishing QSL time can
be achieved trivially if the generator (Hamiltonian in the
unitary case) itself is unbounded [i.e., ® — oo in Eq. (12)].
What we have shown here is that a vanishing QSL time
with a bounded generator is also possible, even in the case
of a single-mode system (n = 1), provided the state is a
highly squeezed state with » — oo. This is a feature of CV
systems that is absent in the finite-dimensional case where
the quantum speed is strictly upper bounded by the norm
of the Hamiltonian [26,45] and thus vanishing QSL times
are prohibited (for fixed h).

We investigate this behavior further by fully characteriz-
ing the quantum speed for generic, quadratic single-mode
Hamiltonians. The complete derivation is relegated to
Appendix D. For n = 1, we can write a general mixed state
as ¥ = hic ODO”, where O is a rotation matrix by an angle

0, and ¢ > 0. The generator G becomes
G = goGo + gs[sin(2¢) Gy + cos(2¢)Gx], (15)

where gg,gs € R are the weights corresponding to the
number-preserving and number-nonpreserving parts of the
generator; Gy, G, and G, are the 2 x 2 matrix representa-
tions of the single-mode Gaussian-preserving (quadratic)
Hamiltonians ¢ + p2, ¢> —p?, and gp + pg, respec-
tively. The angle ¢ is introduced to parametrize the rel-
ative contribution of each of the squeezing generators
G, and G,. In this case, Vy can be evaluated exactly,
yielding

Vi = %{[go sinh(r) — gg sin(28) cosh(r)]?
+ g3 cos?(28)}, (16)

where we have introduced § = 0 — ¢.

The speed V2, is plotted in Fig. 2 for various combi-
nations of parameters. The maximum speed V2 occurs
when § = 3m/4. Introducing an overall energy scale
g such that gy = ggy and g5 = gds, we have V2 =
g? cosh(2r) /2, which grows as exp(2r) for large » and for
go/gs = tanh(r). For low squeezing, this amounts to set-
ting gs > go, while for high squeezing, it is achieved by
gs >~ go. Consequently, for a single-mode system, there
always exists a Hamiltonian for which the QSL time van-
ishes optimally as exp(—2r) when the squeezing is large.
It can also be shown that, for any degree of squeez-
ing, an “opposite,” minimum-speed Hamiltonian exists,
for which Vy is either zero or independent of r; see
Appendix D.

C. Limit of large system size

Finally, we analyze the large n limit. Taking v =

(g1)> P1)s - -+ (@n), (Pn), Eq. (12) becomes
Vz_a)z ln,h2 n{l < X 2
U= 7|:n<; ; sin (rk)> + E(; ;exp(rk)(qk)
1 n
+ - ZCXP(—rk)@k)Z)]. (17)
k=1

Assuming that the squeezing parameters {r;} and the dis-
placements {{(gx), {px)} are independent of n, the quan-
tities in the parentheses of Eq. (17) remain intensive
as n — oo and thus we find that V3, diverges linearly
with n. This behavior of Vy bears close resemblance
to the origin of the orthogonality catastrophe studied
in Ref. [46].

Interestingly, the role of » in the vanishing QSL time
can be recast in terms of the two limits studied above.
We begin with the first term in Eq. (17). For fixed ry
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FIG. 2. Plots in (a) show F?, normalized to its maximum
value, as a function of § =6 — ¢, where 0 is the angle of the
squeezed quadrature and ¢ is the angle characterizing the squeez-
ing Hamiltonian; cf. Eq. (15). For a given degree of squeezing
(top plot » = 0.35, bottom plot » = 2.00), the maximum speed
is achieved at § = 37 /4, when gy/gs = tanh(r), while the min-
imum is reached when gg/go = tanh(»). These conditions give
gs =~ gy for large r, as can be seen by the curves in the bot-
tom plot. Other choices of gy, gs are shown for comparison. (b)
Schematic showing the action of the optimal Hamiltonians that
maximize (red) and minimize (blue) the speed of a state squeezed
along the p quadrature. The arrows indicate the direction of
squeezing.

values, the resulting multimode speed can be emulated
by a single-mode system where the squeezing parameter
r obeys sinh?(r) = 3, sinh?(r;). For small r, = r™, we
have r ~ /nr™, and, thus, in the absence of displace-
ments, we find that the large-n limit with finite squeezing
is equivalent to the large squeezing limit of a single-mode
evolution. We can include displacements in the analysis
by now considering emulating the second term in Eq.
(17) with a single-mode system. The components of the
required displacement vector read

@ = P2 3 ety @
k=1

(18)
eXP(r)

Zexp( L7

In the absence of squeezing, ry = r =0, the displace-
ment vector length does not scale with n. Thus, the
limit n — oo is equivalent to letting h.y = h/n — 0, and
thus it reduces to the first case considered above. In
the presence of squeezing, the length of the displace-
ment vector increases with n since exp(r) ~ exp( /n).
Thus, we can further normalize v — v/ cosh(r) such that
[|v]|> ~ exp(r)/ cosh(r) ~ 1 as n — oo. Therefore, Aoy =
h/(ncoshr) ~ h/n?, which vanishes for n > 1.

IV. MIXED STATES AND NONUNITARY
EVOLUTION

So far we have analyzed the quantum speed of evolu-
tion for pure Gaussian states, and we have shown a relation
between the diverging speed and a particular aspect of
the classicality of the state, i.e., the uncertainty of an
observable (or set of observables) vanishing. A seem-
ingly separate notion of classicality is given by considering
mixed states and purity-nonpreserving evolution. Mixed
states are classical mixtures of pure states and the addition
of classical noise is expected to reduce distinguishability
[27,28].

To elucidate the matter, we now generalize our QSL the-
ory of Gaussian states for general open quantum dynamics.
Equation (7) can be applied to study any dynamics that
preserves the Gaussian character of the state, such as gen-
eral open diffusive dynamics [47]. Here we focus on the
single-mode case (n = 1), which allows us to treat the most
general Gaussian-preserving evolution in an exact way.
The equations of motion can be written as (see Appendix E
for further details)

Y =QGE - 2GQ —g(T — M), 19)
u=(QG—g/2Du,
where g € Rand M € R?*2, As expected from Eq. (7), the
quantum speed has the form

Vaoen = Ve + V2

open cov mean? (20)
with the first term stemming solely from the covariance
matrix and the second term from the evolution of the
mean values. Focusing on the former, we obtain V2 =
V%, + xnu, Where

2 _ L i 2 2
% nztr{(GZ) } + tr{(RG)%} @1

is the contribution from unitary dynamics, i.e., the gener-
alization of Eq. (9) for single-mode mixed states. Further-
more, we introduced n = /det(X), and

2

X = %[1 — {27 M} + (27 M) /2]

& ({S(GMQ — QMG)) (22)

8 2

is the contribution from the nonunitary part of the dynam-
ics. For any choice of evolution given by G, M, and
g, we can evaluate the speed for a squeezed thermal
state ¥ = n(B,) ODOT, where we have introduced the
effective inverse temperature of the state B, via the
usual parametrization 7(Bs) = 2n; + 1 = coth(B,w/2).
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From Eq. (21), it becomes evident that /%, is independent
of Bs. The nonunitary contribution becomes

g 1
XNU = §|:1 — —tr{OD~' 0" M}
n

+ gintr{ODOT(GMQ - QMG)}] +0m™).
(23)

At large temperatures (small B;), where classical noise
dominates, we have 1 ~ (B,w)~! and thus only the first
term in xny survives. In this limit, the speed has an asymp-
totic, finite value V2, = V2, + g*/8, thus confirming that
increasing classical noise always yields a nonzero speed

limit time.

A. Quantum Brownian motion

As alast point, we explore the effects of the bath temper-
ature on the quantum speed of evolution and compare its
role with respect to the system’s effective temperature. To
this end, we focus on quantum Brownian motion (QBM),
which describes the dynamics of a single harmonic oscil-
lator interacting with a bosonic bath [48,49]. The master
equation reads

+ Mg, {p, p}] = ivlg. {p, p}], (24)
where Hy = w(q* + p?)/2. At high temperatures, the dif-
fusion coefficients A and IT can be written in terms of
the damping rate y as A = y/Bg + 12y (w? — y?)/Bp and
IT = —yBp/12, where Bg is now the inverse temperature
of the bosonic bath [33,50]. The dynamics of the QBM is
Gaussian preserving [51,52] and can thus be cast in the
form of Eq. (19) where G = wl, g = 2y, and

1/ A -1
M:;<—n/z 0)'

To analyze the role of 8z and Bs, we plot in Fig. 3 the
QSL time T = V| In Fig. 3(a), 7 is plotted for fixed bath
temperature Bz as a function of s and for no squeezing,
while in (b) the same is shown for the case of squeez-
ing along ¢ quadrature, or squeezing along p quadrature
(dashed and dotted lines, respectively). As expected, we
observe that the QSL time remains nonzero in all cases.
Furthermore, t reaches a bath-independent value at high
temperature (8s — 0), while it decays to a bath-dependent
regime at low temperatures. In Figs. 3(c) and 3(d) the QSL
time is plotted as a function of the inverse bath temperature
for fixed values of B3, and the same squeezing regimes as
before. The resulting behavior is notably different, since ©
vanishes at high bath temperature for all cases. The shape

(25)

>
3
1157
~
3
D 10
£
S
d 5 SBOJ =0.3
o 24
(a) (b)
0 : T . : 0 : . . .
0 1 2 3 4 5 0 1 2 3 4 5
Inverse system temperature Bsw Inverse system temperature Bsw

124

> 10 1
3
1 81
3
9] 61
£
= 4 1
-
& 2
Bsw = 5.0 |
(c) -
0 . : : . 01 : : ‘ :
0 1 2 3 4 5 0 1 2 3 4 5
Inverse bath temperature Bgw Inverse bath temperature Bgw
FIG. 3. Plots (a) and (b) depict the QSL time 7 = V! as a

function of the inverse effective system temperature Bg for dif-
ferent values of the bath temperature Bgz. (a) » = 0 (vacuum)
and (b) » = 0.1 (squeezing along g or p). In these cases the
QSL time is always nonzero. Plots (c) and (d) show the converse
cases: T = V! as a function of B for fixed values of the system
temperature. In all cases y = 1.

of these curves can be understood by analyzing the expres-
sion of the speed in the case with no squeezing r =0
(which leads to V2, = 0). There, we obtain

)/2

2
VéBM = 7(1 —x(Bs, Bp) + x(Ps: Ps)”

2 ) + O(Bs),

(26)

where x(B;, B5) = Bz tanh(Bsw/2). For fixed Bz, the
speed remains bounded for all Bgs, and reaches a
bath-independent value of y?/4 at large temperatures
Bs < 1. This illustrates the behavior discussed above,
where the system’s effective temperature, related to the
mixed nature of the state, cannot increase the speed arbi-
trarily and thus will not lead to vanishing QSL times. The
role of the bath temperature is markedly different since,
for fixed B, we find that VéBM grows unboundedly as

T2. Note, however, that Tp is a property of the genera-
tor of the nonunitary evolution, and throughout this work
we have focused on vanishing QSL times for bounded
generators.

Finally, other interesting features of the curves in Fig. 3
can be deduced from Eq. (26). First, note that the curves
are not monotonic, and in particular the ones in (a) and (b)
display a peak for a given combination of 8z and Ss. This
behavior is captured by Eq. (26) that predicts a minimum
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of the speed (maximum of QSL time) at x(Bs, 8g) = 1.
This condition corresponds to the case where the temper-
ature of the system is roughly equal to the temperature of
the bath (assumed to be large here). Under these condi-
tions, the QBM dynamics has a steady state that is roughly
equilibrated with the bath, and the closer the system state
is to this equilibrium state, the smaller the speed. For arbi-
trary Bg, this same mechanism explains the emergence of
the peaks, albeit the relation between the equilibrium tem-
perature and the bath temperature is more intricate. On
the other hand, Eq. (26) also predicts the plateau behav-
ior seen at large Bs in Figs. 3(a) and 3(b). For x — o0
(and in the regime of small Bz, where this expression
is valid), we obtain a plateau value of Vggy =~ 1/(283),
which becomes larger as the bath temperature increases
(and thus the state is further away from the equilibrium
configuration).

V. CONCLUDING REMARKS

We have shown that vanishing QSL times in continuous-
variable systems can be traced back to an underlying
property: the asymptotically vanishing uncertainty of a set
of particular observables that depend on the state and the
dynamics. This result shows that a very particular notion
of classicality, strictly related to this vanishing uncertainty,
is responsible for the absence of a QSL. This property can
emerge for systems as simple as a single bosonic mode
in a highly squeezed state, but is absent in quantum sys-
tems with finite-dimensional Hilbert spaces. By studying
the behavior of the QSL in open quantum systems, we
have explored the behavior of other aspects of classical-
ity on the QSL, and showed that, in contrast, the addition
of classical noise, be it from considering mixed states, or
from dissipative dynamics, will not lead to vanishing QSL
times. To derive these results, we have developed a QSL
framework for continuous-variable systems undergoing
Gaussian-preserving dynamics. We expect this framework
to have broader applications, particularly in the study of
quantum control of CV systems and non-Markovianity
[53,54].
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APPENDIX A: DIFFERENT DEFINITIONS OF THE
QSL TIME

In the main text we define the QSL time as 1p = V~';
however, a more common definition is given by

0(po, 1)

S L Ca— Al
(1/0) [y dt V(¥ Al

T1(t) =

An alternative definition is given by 1, (¢), which is implic-
itly defined by the equation [25,34]

(0
000, p) = f at V(t). (A2)
0

In both cases, Eq. (2) ensures that ¢ > t;. For short 7, 7;, one
can approximate V(f) as constant, i.e., evaluated at py, and
thus from the expressions above one gets

Vt)yt, = 0(po, p) — T x V7, (A3)

thus being proportional to 7y, as intended.

APPENDIX B: DERIVATION OF THE QUANTUM
SPEED

Here we derive Eq. (7) in the main text, which gives
the expression for the quantum speed V; associated with
the fidelity F'(p1, 02). First, take the Gaussian states p; —
(X,u) and p - (X 4+ dX,u + du). Using Eq. (6), we get

det(I + =~ 'dx)/4
det(I + =-1d%/2)!/2
x exp[—du’ 2% + d=)"du],

F(p1,02) =

(B

where we exploit the fact that ¥ is invertible and prop-
erties of the determinant. Consider the first factor in the
equation above, which is the ratio of two expressions
of the form det(I + «B)”. Any matrix 4 obeys det4d =
exp{tr[log(4)]}, and so one can expand the determinant to
obtain

det(I + aB)” = exp <ytr{aB — %asz} + 0(33)>

2
— 1 + aytr(B) — %tr{Bz}

2.,2
+ 2 4By + OB

: (B2)

Using the general expression Eq. (B2), we can expand the
first factor in Eq. (B1) in a straightforward way. The result
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reads
det(I + =~ 1dx)/4 -
~1— —tr{B h
det(I + £-1dx/2)1/2 I3 1{B”}, where
B=yx"l4%. (B3)

The second factor in Eq. (Bl) is of the form
exp(—du’L~'du), where L =2% + d¥. Expanding the
inverse, one finds that up to terms that are quadratic in
(du,dY), the leading term corresponds to L~! ~ %~1/2.
The resulting expansion reads
exp[—du’ 2% +d) ldu] ~ 1 —

ldu"="'du. (B4)

Combining Egs. (B3) and (B4) we get Eq. (7).

APPENDIX C: QUANTUM SPEED FOR PURE
STATES

In order to derive Eq. (10) in the main text, we note that a
general covariance matrix ¥ can be decomposed according
to Williamson’s theorem [30] as ¥ = hSKS”, where S e
Sp(2n) and

K:@(‘gf &) (1)

k=1

The {v;} are the symplectic eigenvalues of ¥ such that the
purity of the state is given by [ [, v. A state is pure if and
only if all vy = 1. In that case, & = ASST and, thus,

1
Z‘lzi—i(ST)‘lS‘l = QxlQ

1 T\—1 —1
—5e@heas e, (C2)

where we have exploited the fact that Q2 = —I,.,.
Now, recall that, by definition, a symplectic matrix 7 is
such that TQTT = Q. This condition can be rewritten as
QT 'Q = —T7. By evaluating 7 = S and 7 = S, we then
obtain QS7!'Q = —87 and Q(S7)~'Q = —S. Then, Eq.
(C2) reads

QE*IQ—JSST —iz
TR 2

(C3)
which is used to derive Eq. (10) in the main text.

The Anandan-Aharonov relation [15] states that the
speed of unitary evolution for Pure states is given by
AE? /12, where AE? = (H?) — (H)2. Thus, the expression
for the speed in Eq. (10) has to be equal to this quantity.
Here we check that this is indeed true by direct calculation.

First, recall that A = % ZU Gjjzizj, and so

ZG,J Gz — (£5)). (C4)

We can rewrite this expression in terms of the displaced
quadrature operators 82 = Z — u,

T 1 Z PR PR . A
— <H> = 5 ((SZI'(SZ]' — <(SZ,‘(SZJ> + ui(Szj + I/lj(SZi).
i

(C5)

Then, we work out ((H — (H))?), and use the fact that
expectation values of even powers of the §Z; are zero,
due to the Gaussian character of the state. The resulting
expression reads

A

((H — (H))*) Z Gy Gri((85:82;82485)

Z/kl
— (82:6%)) (52051) + uiue (82 62)
+ uiu;(&j 824) + U; i (82;8z;)
+ oy (52:85,)). (C6)

The next step is to use Wick’s theorem in order to write
the fourth-order moment in terms of the second-order
moments,

(82,02, 02:021) = (82:85;) (82482)) +
+ (82:82,)(85,8%1),

(82:82x) (821 8z;)
(C7)
and to note that
82:8z; = %({62,-,82;} +[82:,82;]) — (82:8z;)

= 1(Zy + ihQy) = 1V (C8)

With these elements in place, we now can combine Eq.
(C6) with Egs. (C7) and (C8). The resulting expression
reads

AE? Z Gy Gu(VieViy + VaaVie)
ykl

+ 3 % Gy Gu(uuiVy

+ wi Vg + wjup Vg + ujug Vi)

1 T 1 T
= tlGVGY] + Ju'GVGu

= %{tr[(GZ)z] + Rr[(G)*]) + %uTGEGu,
(C9)

where we have used the fact that u GQ2Gu = 0 for all u
since GQ2G is an antisymmetric matrix.
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APPENDIX D: QSL FOR SINGLE-MODE
GAUSSIAN UNITARY EVOLUTION

For n =1, the most general covariance matrix can be

written as
sin @
cosf

(D)

cosf

¥ = heR(O)DR(®)" with R(®) = (_ <0

and D = diag[exp(r), exp(—r)]. For this analysis, we focus
on the role of squeezing, and we thus consider undisplaced
states (u = 0). The Hamiltonian generating the evolution
is an element of the algebra sp(2), which has dimension
2n — 1 = 3 and is spanned by the elements

10 10 0 1
=6 1) =0 5 e=(l o)

(D2)
So, we consider dynamics driven by the most general
generator
G =g0Go + 216Gl + 22Gy = gyGo + gsGs(¢p), (D3)
where we have introduced the alternative parametriza-
tion Gs(¢) = R®)GR(@)", g1 = g;sin(2¢), and g =
g5 cos(2¢). In this notation, g is the weight of the number-
preserving part of the Hamiltonian, while gy is the weight
of the number-nonpreserving part of G. Using the expres-
sions in Egs. (D1) and (D3), we can evaluate the speed in
Eq. (9). After some algebraic manipulation, the result reads

Vi, = Hlgo sinh(r) — g sin(28) cosh(r)]* + g5 cos®(26)},
(D4)

where we have introduced § = 6 — ¢.

Our goal is to derive, for a given value of squeezing,
the Hamiltonian that maximizes and minimizes the speed.
Differentiating Eq. (D4) with respect to § and equating it to
zero reveals the existence, in the interval § € [0, ], of the
extrema

3

v T
s =7 ad 0 =7

(D5)

for all values of parameters, while two extra extrema §*)
appear if go/gs < tanh(r), which obey the equation

sin(26®) = 22 coth(r). (D6)
8s

Straightforward stability analysis reveals that §% is always
a maximum (and furthermore, it is global), the §* are
always minima (when they exist), and thus §{" is a minima
for gy/gs > tanh(r) and a maxima otherwise. The resulting
situation is depicted in Fig. 2.

Let us now discuss the maximum speed, which is given
by
Viax = V@) = 3[gosinh(r) + gs cosh(nT.

m

(D7)

For a fixed degree of squeezing r, the above expression
reaches its maximum value gZcosh(2r)/2 when gy/gs =
tanh(r). Here g is taken to be some overall Hamiltonian
strength that we assume to be fixed, i.e., gy = ggo and
gs = gg,. This result tells us that we can always achieve
a maximum speed proportional to cosh(2r) ~ exp(2r) by
using an optimal choice Hamiltonian. If » is small, the
choice is to set gg > go. For large r, on the other hand,
the best choice is to set gs =~ go.

Conversely, one can analyze the minimum possible
speed V2. for these systems. In this case, the expression
for V2. is different depending on the relation between gy
and gs. If gy > gs tanh(r) then the minimum occurs at 5
and we obtain
(D8)

min

Vain = V3(8") = 1[go sinh(r) — gs cosh(r)]*.

This is the naturally opposite situation to the one described
before. The minimum possible speed is 0, and its achieved
for gg/go = tanh(r); for low squeezing, the optimal choice
is one where gy > gs. At higher squeezing, the optimal
choice is gy >~ gs as before. If gy < ggtanh(r) then the
minimum occurs at both §*), for which

Vinin = Vo) = (g5 — 20).

Interestingly, even when the speed cannot be turned to zero
in this parameter regime, it will always be independent of
the amount of squeezing in the system.

(D9)

APPENDIX E: QUANTUM SPEED FOR OPEN
SYSTEM DYNAMICS

Markovian Gaussian-preserving evolution can be shown
to lead to the following general equations of motion for a
n-mode system [47]:

> =BY 4+ XBT+D,

i = Bu. (ED

Here B and D are generic 2n x 2n matrices that obey the
relation D + iQB,Q7 > 0, where B, = QTB — BTQ. It is
convenient to write B = Q(G + F), where G is symmet-
ric (i.e., corresponding to the unitary dynamics, QG = A)
and F is antisymmetric. For a single-mode system, n = 1,
expressions simplify considerably since the most general
antisymmetric matrix can be written as

_( 0 g/
F= (—g/z 0 ) |
Then, the generator takes the form B = Q(G+ F) =
A+ QF = A4 — gl/2. By defining M = D/g, this proves

(E2)
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Eq. (19) in the main text. Note that the condition over D
reads det D > det(2F) = g and so detM > 1.

The quantum speed arising from the evolution of the
covariance matrix is

V: o=

2 Etr{(z—lz)z}. (E3)

Since ¥ is the sum of a unitary and a nonunitary contri-
bution, and given the quadratic dependence of the speed,
naturally one obtains ng = V%] + xnu, 1.€., a contribution
solely from unitary dynamics plus a nonunitary correction,
which itself can be thought of as a combination of a purely

nonunitary and a cross term.

[1] L. Mandelstam and I. Tamm, The uncertainty relation
between energy and time in non-relativistic quantum
mechanics, J. Phys. USSR 9, 249 (1945).

[2] G. N. Fleming, A unitarity bound on the evolution of non-
stationary states, Il Nuovo Cimento A (1965-1970) 16, 232
(1973).

[3] K. Bhattacharyya, Quantum decay and the Mandelstam-
Tamme-energy inequality, J. Phys. A: Math. Gen. 16, 2993
(1983).

[4] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum lim-
its to dynamical evolution, Phys. Rev. A 67, 052109
(2003).

[5] L. B. Levitin and T. Toffoli, Fundamental Limit on the Rate
of Quantum Dynamics: The Unified Bound is Tight, Phys.
Rev. Lett. 103, 160502 (2009).

[6] S. Deffner and S. Campbell, Quantum speed limits: From
Heisenberg’s uncertainty principle to optimal quantum con-
trol, J. Phys. A: Math. Theor. 50, 453001 (2017).

[7] M. R. Frey, Quantum speed limits—primer, perspectives,
and potential future directions, Quantum Inf. Process 15,
3919 (2016).

[8] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Mon-
tangero, V. Giovannetti, and G. E. Santoro, Optimal Control
at the Quantum Speed Limit, Phys. Rev. Lett. 103, 240501
(2009).

[9] C. Arenz, B. Russell, D. Burgarth, and H. Rabitz, The roles
of drift and control field constraints upon quantum control
speed limits, New J. Phys. 19, 103015 (2017).

[10] P. M. Poggi, Geometric quantum speed limits and short-
time accessibility to unitary operations, Phys. Rev. A 99,
042116 (2019).

[11] M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens, D.
Meschede, A. Negretti, S. Montangero, T. Calarco, and
A. Alberti, Demonstration of Quantum Brachistochrones
between Distant States of an Atom, Phys. Rev. X 11,
011035 (2021).

[12] G. Ness, M. R. Lam, W. Alt, D. Meschede, Y. Sagi, and
A. Alberti, Observing quantum-speed-limit crossover with
matter wave interferometry, ArXiv:2104.05638 (2021).

[13] A. del Campo, Probing Quantum Speed Limits with Ultra-
cold Gases, Phys. Rev. Lett. 126, 180603 (2021).

[14] R. Puebla, S. Deffner, and S. Campbell, Kibble-Zurek scal-
ing in quantum speed limits for shortcuts to adiabaticity,
Phys. Rev. Res. 2, 032020 (2020).

[15] J. Anandan and Y. Aharonov, Geometry of Quantum Evo-
lution, Phys. Rev. Lett. 65, 1697 (1990).

[16] A. K. Pati, New derivation of the geometric phase, Phys.
Lett. A 202, 40 (1995).

[17] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D.
0. Soares-Pinto, Generalized Geometric Quantum Speed
Limits, Phys. Rev. X 6, 021031 (2016).

[18] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[19] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Metrology, Phys. Rev. Lett. 96, 010401 (2000).

[20] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de
Matos Filho, Quantum Speed Limit for Physical Processes,
Phys. Rev. Lett. 110, 050402 (2013).

[21] S. Deftner and E. Lutz, Quantum Speed Limit for Non-
Markovian Dynamics, Phys. Rev. Lett. 111, 010402 (2013).

[22] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F.
Huelga, Quantum Speed Limits in Open System Dynamics,
Phys. Rev. Lett. 110, 050403 (2013).

[23] M. H. Goerz, T. Calarco, and C. P. Koch, The quantum
speed limit of optimal controlled phasegates for trapped
neutral atoms, J. Phys. B 44, 154011 (2011).

[24] G. C. Hegerfeldt, Driving at the Quantum Speed Limit:
Optimal Control of a Two-Level System, Phys. Rev. Lett.
111, 260501 (2013).

[25] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, Quan-
tum speed limit and optimal evolution time in a two-level
system, Europhys. Lett. 104, 40005 (2013).

[26] P. Poggi, Analysis of lower bounds for quantum control
times and their relation to the quantum speed limit, Anales
AFA 31, 29 (2020).

[27] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo,
Quantum Speed Limits across the Quantum-To-Classical
Transition, Phys. Rev. Lett. 120, 070401 (2018).

[28] M. Okuyama and M. Ohzeki, Quantum Speed Limit is not
Quantum, Phys. Rev. Lett. 120, 070402 (2018).

[29] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaus-
sian states in continuous variable quantum information,
ArXiv:quant-ph:0503237 (2005).

[30] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable
quantum information: Gaussian states and beyond, Open
Syst. Inf. Dyn. 21, 1440001 (2014).

[31] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[32] P. Marian and T. A. Marian, Quantum speed of evolution
in a markovian bosonic environment, Phys. Rev. A 103,
022221 (2021).

[33] S. Deftner, Geometric quantum speed limits: A case for
Wigner phase space, New J. Phys. 19, 103018 (2017).

[34] N. Mirkin, F. Toscano, and D. A. Wisniacki, Quantum-
speed-limit bounds in an open quantum evolution, Phys.
Rev. A 94, 052125 (2016).

[35] E. O’Connor, G. Guarnieri, and S. Campbell, Action quan-
tum speed limits, Phys. Rev. A 103, 022210 (2021).

[36] S. Deffner and E. Lutz, Energy—time uncertainty relation
for driven quantum systems, J. Phys. A: Math. Theor. 46,
335302 (2013).

[37] B. Hall, Lie Groups, Lie Algebras, and Representations:
an Elementary Introduction Vol. 222 (Springer, New York,
2015).

040349-10


https://doi.org/10.1007/978-3-642-74626-0_8
https://doi.org/10.1007/BF02819419
https://doi.org/10.1088/0305-4470/16/13/021
https://doi.org/10.1103/PhysRevA.67.052109
https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1007/s11128-016-1405-x
https://doi.org/10.1103/PhysRevLett.103.240501
https://doi.org/10.1088/1367-2630/aa8242
https://doi.org/10.1103/PhysRevA.99.042116
https://doi.org/10.1103/PhysRevX.11.011035
https://arxiv.org/abs/2104.05638
https://doi.org/10.1103/PhysRevLett.126.180603
https://doi.org/10.1103/PhysRevResearch.2.032020
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1016/0375-9601(95)00299-I
https://doi.org/10.1103/PhysRevX.6.021031
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.110.050402
https://doi.org/10.1103/PhysRevLett.111.010402
https://doi.org/10.1103/PhysRevLett.110.050403
https://doi.org/10.1088/0953-4075/44/15/154011
https://doi.org/10.1103/PhysRevLett.111.260501
https://doi.org/10.1209/0295-5075/104/40005
https://doi.org/10.31527/analesafa.2020.31.1.29
https://doi.org/10.1103/PhysRevLett.120.070401
https://doi.org/10.1103/PhysRevLett.120.070402
https://arxiv.org/abs/quant-ph:0503237
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevA.103.022221
https://doi.org/10.1088/1367-2630/aa83dc
https://doi.org/10.1103/PhysRevA.94.052125
https://doi.org/10.1103/PhysRevA.103.022210
https://doi.org/10.1088/1751-8113/46/33/335302

DIVERGING QUANTUM SPEED LIMITS. ..

PRX QUANTUM 2, 040349 (2021)

[38] Since we are interested in studying the role of & in the QSL,
we have defined the quadrature operators to be indepen-
dent of 7. For the typical harmonic oscillator Hamiltonian,
Hyo = P?/2m + mw? /20?, the definition used in the main
text corresponds to taking ¢ = /mwQ and p = P//mw
such that [¢,p] = [Q, P] = ih.

[39] X. Wang, C.-S. Yu, and X. X. Yi, An alternative quantum
fidelity for mixed states of qudits, Phys. Lett. A 373, 58
(2008).

[40] Z.Sun, J. Liu, J. Ma, and X. Wang, Quantum speed limits in
open systems: Non-Markovian dynamics without rotating-
wave approximation, Sci. Rep. 5, 8444 (2015).

[41] F. Campaioli, F. A. Pollock, F. C. Binder, and K. Modi,
Tightening Quantum Speed Limits for Almost all States,
Phys. Rev. Lett. 120, 060409 (2018).

[42] P. Marian and T. A. Marian, Uhlmann fidelity between two-
mode Gaussian states, Phys. Rev. A 86, 022340 (2012).

[43] V. Link and W. T. Strunz, Geometry of Gaussian quantum
states, J. Phys. A: Math. Theor. 48, 275301 (2015).

[44] K. Bolonek-Lason, J. Gonera, and P. Kosinski, Classical
and quantum speed limits, Quantum 5, 482 (2021).

[45] D. C. Brody, G. W. Gibbons, and D. M. Meier, Time-
optimal navigation through quantum wind, New J. Phys.
17, 033048 (2015).

[46] T.Fogarty, S. Deffner, T. Busch, and S. Campbell, Orthogo-
nality Catastrophe as a Consequence of the Quantum Speed
Limit, Phys. Rev. Lett. 124, 110601 (2020).

[47] M. G. Genoni, L. Lami, and A. Serafini, Conditional
and unconditional Gaussian quantum dynamics, Contemp.
Phys. 57, 331 (2016).

[48] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian
motion in a general environment: Exact master equation
with nonlocal dissipation and colored noise, Phys. Rev. D
45,2843 (1992).

[49] M. A. Schlosshauer, Decoherence: and the Quantum-To-
Classical Transition (Springer Science & Business Media,
New York, 2007).

[50] S. Deffner, Quantum entropy production in phase space,
Europhys. Lett. 103, 30001 (2013).

[51] R. Vasile, S. Olivares, M. G. A. Paris, and S.
Maniscalco, Continuous-variable-entanglement dynamics
in structured reservoirs, Phys. Rev. A 80, 062324
(2009).

[52] G. Torre and F. Illuminati, Exact non-Markovian dynam-
ics of Gaussian quantum channels: Finite-time and
asymptotic regimes, Phys. Rev. A 98, 012124
(2018).

[53] R. Wu, R. Chakrabarti, and H. Rabitz, Optimal control the-
ory for continuous-variable quantum gates, Phys. Rev. A
77, 052303 (2008).

[54] H. R. Jahromi, K. Mahdavipour, M. Khazaei Shadfar, and
R. Lo Franco, Witnessing non-Markovian effects of quan-
tum processes through Hilbert-Schmidt speed, Phys. Rev.
A 102, 022221 (2020).

040349-11


https://doi.org/10.1016/j.physleta.2008.10.083
https://doi.org/10.1038/srep08444
https://doi.org/10.1103/PhysRevLett.120.060409
https://doi.org/10.1103/PhysRevA.86.022340
https://doi.org/10.1088/1751-8113/48/27/275301
https://doi.org/10.22331/q-2021-06-24-482
https://doi.org/10.1088/1367-2630/17/3/033048
https://doi.org/10.1103/PhysRevLett.124.110601
https://doi.org/10.1080/00107514.2015.1125624
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1209/0295-5075/103/30001
https://doi.org/10.1103/PhysRevA.80.062324
https://doi.org/10.1103/PhysRevA.98.012124
https://doi.org/10.1103/PhysRevA.77.052303
https://doi.org/10.1103/PhysRevA.102.022221

	I.. INTRODUCTION
	II.. QUANTUM SPEED LIMIT FOR GAUSSIAN DYNAMICS
	III.. DIVERGING QUANTUM SPEED LIMITS
	A.. Limit of small Planck's constant
	B.. Limit of large squeezing
	C.. Limit of large system size

	IV.. MIXED STATES AND NONUNITARY EVOLUTION
	A.. Quantum Brownian motion

	V.. CONCLUDING REMARKS
	. ACKNOWLEDGMENTS
	. APPENDIX A: DIFFERENT DEFINITIONS OF THE QSL TIME
	. APPENDIX B: DERIVATION OF THE QUANTUM SPEED
	. APPENDIX C: QUANTUM SPEED FOR PURE STATES
	. APPENDIX D: QSL FOR SINGLE-MODE GAUSSIAN UNITARY EVOLUTION
	. APPENDIX E: QUANTUM SPEED FOR OPEN SYSTEM DYNAMICS
	. REFERENCES

