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Abstract

It is an established fact that quantum coherences have thermodynamic value.
The natural question arises, whether other genuine quantum properties such
as entanglement can also be exploited to extract thermodynamic work. In the
present analysis, we show that the ergotropy can be expressed as a function of
the quantum mutual information, which demonstrates the contributions to the
extractable work from classical and quantum correlations. More specifically,
we analyze bipartite quantum systems with locally thermal states, such that the
only contribution to the ergotropy originates in the correlations. Our findings
are illustrated for a two-qubit system collectively coupled to a thermal bath.

Keywords: quantum thermodynamics, quantum correlations, ergotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

What is a resource in thermodynamics? From the inception of the theory, the question appears
rather simple to answer—namely a thermodynamic resource is any energy that can be extracted
from, e.g. a heat or particle reservoir, and transformed into work [1]. However, it has been
debated since essentially the beginnings of thermodynamics if and to what extent informa-
tion can also be considered a resource [2—5]. Remarkably, the thermodynamics of information
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[6, 7] was fully established only rather recently, which was spurred by developing the stochas-
tic thermodynamics with feedback [8, 9] and by proposing the notion of information reservoirs
[10].

Evidently, describing information in quantum systems is more subtle, and hence also the
thermodynamics of quantum information requires more thorough analyses [11, 12]. This area
of research has received a boost by the realization that quantum thermodynamics contributes
profoundly to the development of new generation quantum technologies [13, 14]. Among
these emerging technologies, in particular quantum thermal machines [15-20] and quantum
information engines [21-25], aka quantum computers [26] necessitate a comprehensive study
of quantum information as a thermodynamic resource. In this context, it is important to realize
that from a thermodynamic perspective quantum information as quantified by the von Neumann
entropy is not the only notion of information to be considered. Rather, understanding the con-
tribution of information encoded in marginals [27-29], and in particular the thermodynamic
value of genuine quantum correlations [30—32] is instrumental.

Therefore, the present analysis specifically focuses on the role that correlations (quantum
or classical) play in the maximum extractable work, i.e. the ergotropy. In the literature, this
problem was partially addressed from different perspectives, by relating work extraction to
either coherences [33—36] or correlations [37—47], for a wide variety of scenarios. Neverthe-
less, all previous studies either rely on correlations with an ancillary system together with a
feedback mechanism [37-40], are restricted to specific dynamical models [35, 42], or estab-
lish a connection between extractable work and the average energy for correlated states [41].
To the best of our knowledge, a general mathematical relationship between the correlations
among the constituents of a quantum system and its work content is still lacking.

To address this void in our understanding of the thermodynamics of correlations, we prove
a direct relationship between the ergotropy and the quantum mutual information in a bipartite,
and locally thermal, quantum state. The locally thermal states are a judicious choice such that
the only resources available for work extraction are total bipartite correlations. Furthermore,
we derive an equality relating the ergotropy to both the quantum mutual information and the
bound ergotropy [48]. We illustrate and analyze these general results in the specific context
of an array of qubits collectively coupled to a thermal bath at a finite temperature. Finally,
we upper bound the average power that can be extracted from an arbitrary quantum state. Our
results explicitly quantify the role of correlations in the process of work extraction by means
of cyclic and unitary processes, during which the system of interest is isolated and the only
available resources are in the form of bipartite correlations.

2. Ergotropy and the process of work extraction

Ergotropy is the maximum amount of work that can be extracted from a quantum system by
means of cyclic and unitary operations [49]. From a thermodynamic standpoint, work is then
simply given by the change of internal energy, since the corresponding process is unitary, or in
other words thermally isolated. Therefore, we consider the dynamics of a system governed by
the Hamiltonian Hyy = H + 1'(¢), where H denotes the self-Hamiltonian of the system and
I'(¢) is a time-dependent coupling term responsible for the extraction of work during time 7.
Note that by construction I'(¢) fulfills I'(0) = 0 and I'(7) = 0, such that the operation is cyclic
with respect to H.

Now, consider a quantum system described by H = Zles,- lei) (€i] and quantum state
p= Z‘}:lrj |7j) (rj|, such that &; < ;41 and r; > rjy;. The ergotropy is then calculated by
performing an optimization over all possible unitary operations to achieve a final state that has
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the minimum average energy with respect to H,
E(p) = Tr{Hp} — min {Tr {HUpU'}} = Tr{H(p— P,)}, (1)

where P, = ), 7« |x) (k] is called the passive state [S0]. By plugging the explicit form of P,
in the equation above, we obtain the well-known expression [49]

g(p) = Zr]f,‘ (|rj€i\2 — (5,‘]‘) . (2)
b
The specific unitary U that takes an arbitrary state p to its corresponding passive state P, is
givenby U = ), |ex) (ri]. Hence, we have a general form for the potential I'(r), that generates
the desired unitary operation, such that [49]

(1) = (1) exp (—iHt/h) A exp (iH/R) 3)

where ©(0) = ¢p(0) = (1) =0, @(1) =7, and in the interaction picture Ui(T) = exp
(iHT/h) U = exp (—iA7/h). Note that the freedom to choose ¢ implies that the potential
I'(¢) is not unique. Finally, it is interesting to note that with the exception of thermal states, it is
possible to extract work from multiple copies of passive states by processing them collectively
[48]. For this reason, thermal states are also referred to as completely passive states [50].

3. Extractable work from correlations

3.1. Ergotropy and the mutual information

For the following analysis, we consider a quantum system &, that can be separated into two par-
titions A and B. For such scenarios, we now prove a direct relationship between the ergotropy
and the mutual information,

1(A : B) = S(pa) + S(ps) — S(p), “)

where S(p;) = —Tr{p; In(p;)} denotes the von Neumann entropy, and p is the quantum state
of S.

Our goal is now to assess how much work can be extracted from the quantum correlations
between A and B. To this end, we consider a two-stroke operation on S: (i) correlations are
built-up and S is driven into thermal (passive) states in A and B; and (ii) work is extracted
under a cyclic, unitary operation on S, for which we can compute the ergotropy.

More specifically, consider the following situation: (i) the quantum system S evolves from
t = —19tot =0 under

H(t) = Hy ® Ip + 14 ® Hp + Hy(1), S)

where Hi(7) contains interactions among the subsystems and their interactions with the envi-
ronment. We assume that at = 0 the interaction Hamiltonian is negligible compared to the
self-Hamiltonians of A and B, i.e. H(0) = H4 ® Ig + [4 ® Hg = H. This part can be viewed
as a state preparation stage in which one tries to obtain a globally active state by means of cre-
ating and/or sustaining correlations between the bipartitions. We would like to highlight that
there are no restrictions on the nature of the dynamics here, i.e. it can be open or closed. As a
result, we evolve an initially arbitrary density matrix p(—7) to a steady state density matrix
p such that both py = Trg {p} = exp(—SH,) /Zs and pp = Try {p} = exp(—SBHp) /Zp are
thermal states at inverse temperature /3.
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Figure 1. Sketch of the successive processes (i) and (ii), where the build up of correla-
tions between the partitions A and B (process (i)) through either open or closed dynamics
enables work extraction by means of unitary evolution (process (ii)).

Then, (ii) work is extracted during time 7 by unitary means. The latter implies that any pos-
sible interaction with the surroundings must be cut off, i.e. the system is isolated. As outlined
above, the total Hamiltonian reads,

H(t) = Hy ® g+ 14 ® Hp +T'(1), (6)

where I'(0) = I'(7) = 0. It is then a simple exercise to show that the ergotropy £(p) can be
written as

BE(p) =T(A: B) — D(Pyllpa @ pa), (M

where D(p||o) = Tr{p In(p) — p In(0)} is the relative entropy, between the states p and o [26].
Note that p, and pg and Z(A : B) are evaluated at = O (see figure 1).

Equation (7) constitutes our main result and shows that there are two additive contributions
to the ergotropy of locally thermal states. While the mutual information between A and B is
the main resource for the finite ergotropy, the distance between P, and the tensor product of
local states, at the beginning of the work extraction process, reduces the amount of ergotropy,
owing to the non-negativity of the relative entropy. This suggests that the optimal work
extraction process erases all correlations (quantum and classical) between the subsystems at
the end of the process. However, in general this is not possible due to the fact that the entropies
of the states P, and p, ® pjg can be different in magnitude®. To further elaborate, there exists an

4 Equation (7) can be equivalently obtained using the fact that for any two different density matrices p, and p,, with
S(py) = S(p,), we have

BTr{(p1 — p2)H} = D(p1lps) — D(p2lpp), 3

where p; = exp(—fSH)/Z is the global thermal state.



J. Phys. A: Math. Theor. 55 (2022) 025301 A Touil et al

interplay/trade-off between the mutual information Z(A : B) and the Kullback—Leibler diver-
gence D(P,||p, ® pp). Maximizing the mutual information between the partitions does not
guarantee higher ergotropy since the two terms in equation (7) can cancel each other and result
in zero ergotropy for finite amount of correlations. Therefore, equation (7) conveys that both the
mutual information and D(P, | p4 ® pg) play an important role in the work extracted through
cyclic and unitary operations.

Additionally, it is important to note that the Kullback—Leibler divergence D(P,||p, ® pg)
is a measure of divergence, or the overlap between two density matrices [26] (P, and
P4 ® pp). From a thermodynamic standpoint, since we are dealing with locally thermal states,
the quantity D(P,||p, ® pp)/ 3 can be interpreted as the energy, or the available energy, of the
system in a relaxation process [51, 52] (a process that would take the density matrix P, to
Pa ® Pp)-

It is also interesting to note that equation (7) implies an ‘inverse Landauer’ inequality for
correlation,

BE(p) <I(A:B). €))

The maximum amount of work that can be extracted from a closed, bipartite quantum system
with locally thermal states, is given by the mutual information between its subsystems. The
bound is saturated if and only if P, = p, ® pp.

Finally, it is interesting to see how the present findings relate to established work extraction
schemes, for which S is in contact with a heat bath. In general, the nonunitary schemes, in
which the system is weakly coupled to the bath and the process is isothermal, outperform
the unitary procedure since the presence of the bath lifts the constant entropy restriction on
the system. In this case, the maximum amount of extractable work Es(p) is determined by
the difference in the non-equilibrium free energies of the state at hand and the thermal state,
Es(0) = Fg(o) — Fs(op), where Fs(o) = Tr{Ho} — 1/3S(o) [6, 40, 53, 54]. For a general
bipartite system, it is then possible to write [40]

Es(p) = F3(p) — Fa(pag ® prg),
= Es(pa) + Es(pp) + 1/BI(A : B). (10

In our case, we have Es(ps) = E3(pp) = 0. Comparing this with equation (7) we can immedi-
ately identify the difference between the maximum extractable work in unitary and non-unitary
approaches as D(P,||p, ® pp). Shortly, we will see the present work extraction scheme (for
process (ii)) can be further improved, when we utilize multiple copies of the same quantum
state.

3.2. Bound ergotropy and multipartite correlations

For a given entropy, the quantum state with the minimum average energy is the thermal state.
For states P,, that are passive, but not thermal, i.e. not completely passive, the remaining
energy in P, can be accessed by implementing a secondary process. It has been shown that
this secondary process can be constructed through multiple copies of P, and the additionally
extractable work has been dubbed bound ergotropy E,(p) [48]. It can be written as

Ev(p) =Tr {(P, — PHH} > 0, (1)

where P! is the thermal state corresponding to P,, such that S(P,) = S(P'"). In other words, the
bound ergotropy is the amount of additional ergotropy that can be extracted from N copies of

5
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the system per copy in the limit of N — oo. Exploiting equations (7) and (8) we further have
B(E(p) + En(p)) = Z(A : B) — D(P) || pa © pp). (12)
Again noting that the relative entropy is non-negative, we can write

B (E(p) + &E(p)) < I(A:B). 13)

Equation (13) is a tighter version of the inverse Landauer’s principle (7), and it is in fact tight.
Below in section 4, we will show that the bound can be saturated for qubits collectively coupled
to a thermal bath.

Moreover, it is interesting to note that the ergotropy is a non-extensive quantity. Namely, it is
easy to see from the strong subadditivity of the von Neumann entropy that the global ergotropy,
Ec(p), for N copies of p is greater or equal to NE(p). Hence, we have

BEs(p) = BN (E(p) + Ev(p)) S NL(A: B). (14)

Note, however, that the bound ergotropy can be extracted by acting globally on the N copies
of p (since P, is not completely passive). Inequality (14) is saturated if and only if the thermal
state can be expressed as follows py © pg = PP

We conclude this section by noting that equations (7) and (14) can be readily generalized to
multipartite correlations. Using equation (8), and assuming that S is composed of ‘k’ thermal
states correlated with each other, we obtain

BE(P) KT(A1:Ay: ...  Ap), (15)
and

B (E(p) +E(p) < I(Ar 1 Art ...t Ap), (16)
where Z(A; : Ayt ... 1 AY) = D(pa,..allpa, ® ... @ pa,)is the multipartite mutual information

between the k partitions of S [55].

3.3. Ergotropy and quantum discord

‘We continue with a closer analysis of the nature of the correlations. It has been established that
the quantum mutual information quantifies the amount of total correlations between two parties
A and B [56, 57]. In particular, this means that Z(A : B) is comprised of classical and quantum
correlations. An accepted measure for the purely quantum contribution is the quantum discord
[57], which is typically written as

DA:B)=I(A:B)—J(A:B), a7

where J(A : B) is the Holevo information [26] that quantifies the maximum amount of classical
information that is determined from optimized generalized measurements on B. Hence, J(A : B)
quantifies the maximal, classical information that B can carry about A. Therefore, ©(A : B) is
the genuinely quantum information. Using the definition of the quantum discord, equation (7)
can be written as
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BE(p) = D(A:B) +J(A: B) — D(P,||ps ® pp), (18)

which highlights the interplay of classical and quantum correlations. It is then instructive to
consider under what conditions and for what states p, the ergotropy vanishes, £(py) = 0. For
such p, we have

D(A:B)+J(A:B)=D(P,llps @ pp). (19)

We immediately conclude that the existence of correlations (quantum or classical) is necessary,
but not sufficient, for a non-zero ergotropy in locally thermal states.

3.4. Ergotropy and system-environment correlations

As alluded to above, £(p) is a lower bound on the work that can be extracted by non-unitary
operations on S,

E(p) < Es(p) (20)

which follows from exploiting correlations between S and its environment [37-40]. Addition-
ally, equation (7) can also be written as [58],

BE(p) = ASy + ASp — (S : E) — B(Q) — D(Pyllpa @ pa), 21

where (Q) is the heat exchanged between system and environment, and Z(S : E) quantifies the
buildup of correlations. Equation (21) demonstrates that system-environment correlations and
the dissipated heat diminish the amount of work that can be extracted by unitary processes. This
insight is complementary to what has been shown in the literature [38—40], and emphasizes our
different approach that focuses on work extraction by means of cyclic and unitary operations

on a state that is locally completely passive®.

4. lllustrative case study: ergotropy from X-states

After having established the conceptual framework, the remainder of the analysis is dedicated
to an instructive case study. In particular, we elucidate the conditions and physical mechanisms
that lead to locally thermal states.

4.1. Two-qubit systems and X-states

Consider now that S is comprised of two qubits, which are initially prepared in an arbitrary
quantum state. Note that working with qubits makes the analysis particularly simple, since any
diagonal qubit state can be described by a thermal state at an effective inverse temperature /3.
A straightforward, though not the most general, way to then have locally thermal states is if S
relaxes into an X-state

pt 0 0 pu
pn p3 0
¥ . 22
Pz P33z 0 @2)
pia 0 0 pa

p(t) = 8

5 As aside note, it is interesting to consider our result, in equation (21), in context of work extraction from information
scrambling [58—64]. However, a thorough analysis of extracting work from scrambled states, or even from quantum
chaos, is beyond the scope of the present work, see also references [65, 66].
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Such states have been widely studied in the literature [67], as they can be found in generalized
Pauli channels [68] or in collective dephasing models for two-qubit systems [69]. Moreover,
the ground state of one-dimensional spin chains that are invariant under translations, and par-
ity transformations, i.e. exhibit Z, symmetry, also have reduced bipartite density matrices in
X-shape [70-72]. For a more detailed discussion of X-states we refer to the literature [67].

4.2. A physical model: collective dissipation

We continue with an even more specific scenario, and now consider two interacting qubits,
which are assumed to behave as point-like dipoles with identical dipole moments, and which
are immersed in a finite-temperature environment composed of thermal photons resonant with
the qubits’ transition frequency. The master equation governing the dynamics is given by
[73-78]

dp

o
where Hy=hw(o o, + o5 0y)and Hy=hf(o; o, + 03 o, ) are the self-Hamiltonian of the
whole system and the interaction Hamiltonian between the qubits, respectively. As usual,
o =le;){gi| (;7 = (o;7)1) is the raising (lowering) operator with i € {1,2} denoting the qubit
label. The explicit form of the dissipators describing the interaction with the bath reads

—%[(Ho FHy), pl+ D (p) + D (p) = L(p), (23)

2
1
D_(p) = vij (A + 1) (cfj_porfr - 2{ai+aj_,p}> ,
ij=1
' (24)
2

_ S S
Di(p)= ) vijh (fffpo,- — 510 Uf,p})
1

i,j=

Here, 71=[exp(B.w) — 1]~ is the mean number of photons at the temperature of the envi-
ronment [3,, and v;; are the spontaneous decay rates. Without loss of generality, we assume
Yij = Vji-

]Depénding on the spatial configuration of the system qubits, the model above has two dis-
tinct limits. If the qubits are well separated, i.e. the distance between them is much larger
than the wavelength of the thermal photons in the environment, they individually couple to
the bath and their steady-state is simply described by the Gibbs state, at the bath temperature,
ps, = exp(—p.Hp)/Z. Naturally, such a steady-state is completely passive. On the other hand,
when the qubits are closely packed, such that the separation between them is much smaller
than the wavelength of the thermal photons, they collectively couple to the environment. In
this regime, the qubits become indistinguishable due to the impossibility of resolving which
qubit absorbed or emitted a photon. Thus, their steady-state admits coherences in the energy
eigenbasis [73, 74] and has the following form [74]

Pss = 1—-o0) |¢—> <¢—| + CZ_T.1 (Be) (CXP (_Zwﬁe) |wee> <¢ee|
+ exp (—wfe) [4) (Y] + [Yge) (Wgel) - (25)

Here, [t) = [8). [thec) =lee). [tic) =ge) £ leg) /V/2. ¢ = (thee] po ltoee) + (el po [thee) +
(V1] po |y), and Z4 (B,) = 1 + exp (—wf,) + exp (—2wpf,).

Consequently, the steady-state preserves some information about the initial state of the
dynamics through the parameter ‘c’, and thus it is not unique. Only recently, it has been shown
that such states possess a finite amount of ergotropy [35] for a wide range of initial states and

8
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Figure 2. Ergotropy and bound ergotropy as a function of the initial state parameter ¢
for g, = 0.01 (a), 5, = 1 (b) and S, = 10 (c).

environment temperatures. Further, equation (25) is also in the X-shape form (22) with p;, = 0.
Note, however, that the local temperature of the qubits, 3, is generally different from the bath
temperature /3,. In fact, it is a simple exercise to show that

1 1 + 2 cosh(f8,w) + 2¢ sinh(f5,w)

B = w In 1 4 2 cosh(few) — 2¢ sinh(Bew) |- -

As we have seen above (7), to maximize the ergotropy the target passive state needs to
be as close as possible to the product state p, ® pp. However, achieving such a passive state
through any unitary process is generally not possible since the states P, and p4 ® pp have dif-
ferent values of entropy. Despite this fact, it is still possible to further process the passive state
P, provided that it is not a completely passive state, and we have access to, and ability to act
on, multiple copies of it. To this end, we are interested in the bound ergotropy &,(p) (11), which
also can be determined analytically.

In figure 2, we plot £(p) and &y(p) as a function of ¢, that is, for different initial states of
the open system dynamics. Note that the ergotropy is evaluated using equation (7). In con-
trast to the ergotropy, which bears a finite value for nearly all values of ¢ at high environment
temperatures (low 3,), the overall magnitude of bound ergotropy is the largest at low environ-
ment temperatures (high /3,). However, the amount of the bound ergotropy does not represent
a significant amount as compared to the ergotropy. A two-qubit system with a self-Hamiltonian
of Hy has an energy gap of 27w, which corresponds to the highest amount of ergotropy that one
can get out of this system if both qubits were to be in their excited states. Comparing &, with
the maximum we observe for the steady-states of the considered model and with the absolute
maximum of 27w, we conclude that &, is reasonably smaller than both of these quantities, and
the difference is more pronounced for the latter case. This result can be expected considering
that the bound ergotropy is actually the amount of extractable work from a state that is already
passive, and can only be accessed by acting on multiple copies.

The zero of the ergotropy corresponds to situations for which & is prepared in a thermal
state at inverse temperature (3,. For such states it has actually been shown that the quantum
system cannot maintain any ergotropy in the long time limit [35]. Curiously, this behavior is
observed for a range of values of ¢, cf figure 2.

Finally, in figure 3, we depict the global ergotropy, & = £ + &, together with Z(A : B)/ 5.
We observe that the bound is far from tight for high environment temperatures as displayed
in figure 3(a). The only point where we have equality 3 = Z(A : B) is when both quantities
vanish at ¢ = 0.75. This value of the parameter ¢ corresponds to that of a thermal initial state
at the considered environment temperature and hence neither ergotropy nor any form of cor-
relation is generated as a result of the interaction with the bath. As we lower the temperature

9
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(a) (b) (c)
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Figure 3. Total ergotropy (€ + &) and Z(A : B)/ as a function of the initial state
parameter ¢ for 5, = 0.01 (a), 8, = 1 (b) and 3, = 10 (c).

in figures 3(b) and (c), i.e. increase 3,, we observe that the bound is sharp for a wide range
of initial states of the model. Therefore, it is interesting to observe that the ergotropy is aptly
estimated by the mutual information, which is a lot simpler to compute for high-dimensional
scenarios. Also note that the set of states for which we attain equality in equation (13) includes
the ground initial state (¢ = 1), which does not contain any quantum or classical correlations
before the open system evolution.

From a practical point of view, one problem that is critical in the extraction of the bound
ergotropy is the preparation of multiple copies of a quantum state. In this sense, the present
model for collective dissipation can be considered minimal in terms of the resources involved in
the state preparation. An alternative approach, that is particularly useful in creating a number of
copies of bipartite states, is a translationally invariant spin chain with Z, symmetry [70-72]. As
mentioned above, the ground states of such spin chains have reduced bipartite density matrices
in the X-shape (especially see section 3.3 of [71]), and are thus locally thermal. Although it
is in general not an easy task to prepare a complex many-body system in its ground state, if
achieved in a chain of N spins (with N as an even number), we end up with N/2 copies of the
same X-shaped state.

5. Bound on the average extractable power

Finally, we would like to present few considerations on more practical matters. In all realistic
scenarios, one is arguably more interested in the average power, rather than in the total amount
of work that can be generated. Thus we now define

@. 27
.

Pp) =

The natural question arises whether the subtleties of quantum dynamics, in particular the quan-
tum speed limit [79], pose additional constraints. For unitary dynamics under driven Hamil-
tonians it has been shown that a generalized Mandelstam—Tamm bound takes the form [80]

h
T 2 TE'TE (p,Pp) N (28)

where L is the Bures angle [81, 82]
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£(p.P,) = arccos( {W}) (29)

Further, AE; is the time-averaged variance of the Hamiltonian

AE, = i / dt AH, = / dry/ (H(t)?) — (H(D))? (30)

While there are many formulations of the quantum speed limit, see references
[28, 79, 83, 84] and references therein, this version is particularly convenient for the present
purposes. In particular, AE is upper bounded by using the finite energy constraint [85—87]
and the expression of I'(¢) in equation (3). We have,

3 Q>0) (Vte[0,7]):;Tr {H )} < O, 31)
which implies
@ Q>0) (V€ [0,7]);Tr {p()H* (1} < Q. (32)

The above conditions state that the energy bandwidth of the Hamiltonian is uniformly bounded,
simply implying that the physical resources at our disposal are limited. Therefore, we can write

G, A)
hB L (p, Pﬂ) .

Equation (33) gives an upper bound on the average extractable power that only depends on 2
(the upper bound on the bandwidth of the Hamiltonian H(#)), the time-independent potential
A, the temperature T, the overlap between the initial state p and the passive state P,, and the
mutual information. Note that this result is independent of the process duration 7. We have,

P(p) < I(A:B) (33)

G(2, A) = min {Q V(QF (8) + T {Has}) @ <A>0>} , (34)

such that (A), = Tr{pA}. Details of the derivation can be found in appendix A.

6. Concluding remarks

6.1. Outlook and implications

We conclude the analysis with a few remarks on the direct implications of our main results, and
how they relate to the existing literature. Interestingly, it is straightforward to define a notion
of efficiency relating the amount of energy expended in process (i) to create correlations, and
the useful work extracted during process (ii). The work of formation ‘W;’ quantifying the
energetic cost associated with creating correlations was studied in reference [43], and it was
found to be directly related to the multipartite mutual information. Extending this result to
arbitrarily correlated states we can define the upper bound on efficiency as n = £(p)/Wr, see
also reference [88]. We leave the detailed analysis of this bound, and its relation to the mutual
information, for future work. However, it is worth emphasizing already at this point that such an
analysis will constitute an essential step towards a more complete thermodynamic description
of quantum information processing.

Moreover, from a big picture perspective, we point out that the main difference between our
work and what has been established in the literature [40, 41] resides in the fact that we consider

1
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the relationship between the ergotropy (that is work extracted through cyclic and unitary pro-
cesses) and the total correlations, as opposed to the case of work extraction in the presence of
a heat bath. In reference [41], the authors considered locally thermal states and concluded that
the mutual information plays an important role in work extraction, in the presence of a heat
bath. In our analysis, complementary to the result of reference [41], we showcase the seminal
role of the mutual information in the ergotropy extracted from locally thermal states. Addition-
ally, our result (7) can be easily generalized to arbitrary states where we have to account for
additional terms in the ergotropy. Namely, it is a simple exercise to show that the ergotropy,
for general mixed states p, reads

BE(p) = T(A: B) — D (P,||ps) + < In (”Ai”‘*) > + D(pa @ pallps),
X

(35)

such that x =p — p, ® pg is the correlation matrix [89, 90], and <ln (”’*‘/j@)> =
f X

Tr { X In (%) }.6 Note that the last two terms in the above equality vanish in the case

of locally thermal state, where we have P = P @ pp, and we recover our main result in
equation (7).

6.2. Summary

In the present analysis, we derived a general equality relating ergotropy to the quantum mutual
information between thermal partitions, A and B, of a bipartite quantum system S. Our concep-
tual considerations are based on two successive processes: we first create bipartite correlations
as S is coupled to a thermal bath, then we decouple the system from the bath and extract
the work from the resulting state of S, through a cyclic and unitary process. For such scenar-
ios, we proved a relationship between ergotropy, bound ergotropy, and the quantum mutual
information. The resulting inequalities were demonstrated for the experimentally relevant sce-
nario of an array of qubits collectively coupled to a thermal bath at a finite temperature. Our
results demonstrate that correlations shared within a quantum system in fact pertain thermo-
dynamic value while being totally absent in its local states. Such a conclusion can prove to be
useful in designing many-body quantum batteries, which are quantum systems utilized as a
work reservoir, in a non-trivial setting.

Finally, we sketched an analysis of the maximal average power that can be extracted from
quantum correlations. However, due to the intricacies of a more thorough study, we leave
bounds on the instantaneous power for future work.

6 More specifically, starting from the definition of the ergotropy, and for a general quantum state p (such that its
partitions are non-thermal), we get

BE(p) = BTe{(p — PH},
=D (plips) — D (P,llps) -

=I(A:B)7D(Pp|\pﬁ)+Tr{pln (”";@)} (36)

Introducing the correlation matrix [89, 90], x = p — p, ® pg, results in the general equality presented in equation (35).
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Appendix A. Bounding the average extractable power

In this appendix, we outline the derivation of equation (33). To this end, we consider
Hamiltonians fulfilling the finite energy constraint. For such situations we have

AE =1 / anyHGR) - (HOY,
TJo
1 T 2 2
g;/o dr\/Q* — (H(1))”,

1 T T
< T\//o dr (Q — (H(1)) \//0 dr (Q+ (H(®))), (A.1)

which follows from the Cauchy—Schwarz inequality. Using the fact that 0 <
1/7 [y dt Tr{p()Has} < 1/7 [ dt Tr{Hsp} when the self-Hamiltonian’s eigenvalues
are greater or equal to zero, we obtain

AE. < \/ Q- % / "t o) \/ Q+ % / "4 (T(2)) + Tr {Hyg}. (A.2)
0 0
Furthermore, it can be shown that
1 T
;/ dr (L) = Tr{pA} = (A),. (A.3)
0

In conclusion, the time-averaged variance is upper bounded by

AE, < /(9 + () + Tr {Hap}) (@ — (A)), (A4)
from which we obtain equation (33).
ORCID iDs
Akram Touil ' https://orcid.org/0000-0002-2405-7883

Baris Cakmak 2 https://orcid.org/0000-0002-6124-3925
Sebastian Deffner (' https://orcid.org/0000-0003-0504-6932

13


https://orcid.org/0000-0002-2405-7883
https://orcid.org/0000-0002-2405-7883
https://orcid.org/0000-0002-6124-3925
https://orcid.org/0000-0002-6124-3925
https://orcid.org/0000-0003-0504-6932
https://orcid.org/0000-0003-0504-6932

J. Phys. A: Math. Theor. 55 (2022) 025301 A Touil et al

References

[1] Callen H B 1998 Thermodynamics and an Introduction to Thermostatistics (College Park, MD:
American Association of Physics Teachers)
[2] Leff H S and Rex A F 2014 Maxwell’s Demon: Entropy, Information, Computing (Princeton, NJ:
Princeton University Press)
[3] Landauer R 1961 IBM J. Res. Dev. 5 183-91
[4] Bennett C H 1982 Int. J. Theor. Phys. 21 905-40
[5] Zurek W H 1989 Nature 341 119-24
[6] Parrondo J M R, Horowitz J] M and Sagawa T 2015 Nat. Phys. 11 131
[7] Wolpert D H 2019 J. Phys. A: Math. Theor. 52 193001
[8] Sagawa T and Ueda M 2008 Phys. Rev. Lett. 100 080403
[9] Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 090602
[10] Deftner S and Jarzynski C 2013 Phys. Rev. X 3 041003
[11] Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A: Math. Theor. 49 143001
[12] Deftner S and Campbell S 2019 Quantum Thermodynamics (San Mateo, CA: Morgan Kaufmann
Publishers)
[13] Dowling J P and Milburn G J 2003 Phil. Trans. R. Soc. A 361 1655-74
[14] Deutsch I H 2020 PRX Quantum 1 020101
[15] Tuncer A and Miistecaplioglu O E 2020 Turk. J. Phys. 44 404
[16] Bhattacharjee S and Dutta A 2020 arXiv:2008.07889
[17] Mitchison M T 2019 Contemp. Phys. 60 164—87
[18] Latune C, Sinayskiy I and Petruccione F 2020 arXiv:2006.01166
[19] Mukherjee V and Divakaran U 2021 Many-body quantum technologies (arXiv:2102.08301)
[20] Ghosh A, Mukherjee V, Niedenzu W and Kurizki G 2019 Eur. Phys. J. Spec. Top. 227 2043-51
[21] Quan HT, Wang Y D, Liu Y-X, Sun C P and Nori F 2006 Phys. Rev. Lett. 97 180402
[22] Deftner S 2013 Phys. Rev. E 88 062128
[23] Strasberg P, Schaller G, Brandes T and Esposito M 2017 Phys. Rev. X 7 021003
[24] Stevens J and Deffner S 2019 Phys. Rev. E 99 042129
[25] Ashrafi M, Anza F and Crutchfield J P 2020 arXiv:2010.14652
[26] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information (Cambridge:
Cambridge University Press)
[27] Polkovnikov A 2011 Ann. Phys., NY 326 486—99
[28] Deftner S 2020 Phys. Rev. Res. 2 013161
[29] Deftner S 2021 arXiv:2102.05118
[30] Chapman A and Miyake A 2015 Phys. Rev. E 92 062125
[31] Safranek D and Deffner S 2018 Phys. Rev. A 98 032308
[32] Dag C B, Niedenzu W, Miistecaplioglu O E and Kurizki G 2016 Entropy 18 244
[33] Francica G, Binder F C, Guarnieri G, Mitchison M T, Goold J and Plastina F 2020 Phys. Rev. Lett.
125 180603
[34] Korzekwa K, Lostaglio M, Oppenheim J and Jennings D 2016 New J. Phys. 18 023045
[35] Cakmak B 2020 Phys. Rev. E 102 042111
[36] Guarnieri G, Morrone D, Cakmak B, Plastina F and Campbell S 2020 Phys. Lett. A 384 126576
[37] Funo K, Watanabe Y and Ueda M 2013 Phys. Rev. A 88 052319
[38] Francica G, Goold J, Plastina F and Paternostro M 2017 npj Quantum Inf. 3 12
[39] Bernards F, Kleinmann M, Giithne O and Paternostro M 2019 Entropy 21 771
[40] Manzano G, Plastina F and Zambrini R 2018 Phys. Rev. Lett. 121 120602
[41] Perarnau-Llobet M, Hovhannisyan K V, Huber M, Skrzypczyk P, Brunner N and Acin A 2015 Phys.
Rev. X 5041011
[42] Fusco L, Paternostro M and De Chiara G 2016 Phys. Rev. E 94 052122
[43] Sapienza F, Cerisola F and Roncaglia A J 2019 Nat. Commun. 10 2492
[44] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[45] Jevtic S, Jennings D and Rudolph T 2012 Phys. Rev. Lett. 108 110403
[46] Morris B, Lami L and Adesso G 2019 Phys. Rev. Lett. 122 130601
[47] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122
047702
[48] Niedenzu W, Huber M and Boukobza E 2019 Quantum 3 195
[49] Allahverdyan A E, Balian R and Nieuwenhuizen T M 2004 Europhys. Lett. 67 565-71

14


https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/bf02084158
https://doi.org/10.1007/bf02084158
https://doi.org/10.1007/bf02084158
https://doi.org/10.1007/bf02084158
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1103/physrevlett.100.080403
https://doi.org/10.1103/physrevlett.100.080403
https://doi.org/10.1103/physrevlett.104.198904
https://doi.org/10.1103/physrevlett.104.198904
https://doi.org/10.1103/physrevx.3.041003
https://doi.org/10.1103/physrevx.3.041003
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1103/prxquantum.1.020101
https://doi.org/10.1103/prxquantum.1.020101
https://doi.org/10.3906/fiz-2009-12
https://doi.org/10.3906/fiz-2009-12
https://arxiv.org/abs/2008.07889
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://arxiv.org/abs/2006.01166
https://arxiv.org/abs/2102.08301
https://doi.org/10.1140/epjst/e2019-800060-7
https://doi.org/10.1140/epjst/e2019-800060-7
https://doi.org/10.1140/epjst/e2019-800060-7
https://doi.org/10.1140/epjst/e2019-800060-7
https://doi.org/10.1103/physrevlett.97.180402
https://doi.org/10.1103/physrevlett.97.180402
https://doi.org/10.1103/physreve.88.062128
https://doi.org/10.1103/physreve.88.062128
https://doi.org/10.1103/physrevx.7.021003
https://doi.org/10.1103/physrevx.7.021003
https://doi.org/10.1103/physreve.99.042129
https://doi.org/10.1103/physreve.99.042129
https://arxiv.org/abs/2010.14652
https://doi.org/10.1016/j.aop.2010.08.004
https://doi.org/10.1016/j.aop.2010.08.004
https://doi.org/10.1016/j.aop.2010.08.004
https://doi.org/10.1016/j.aop.2010.08.004
https://doi.org/10.1103/physrevresearch.2.013161
https://doi.org/10.1103/physrevresearch.2.013161
https://arxiv.org/abs/2102.05118
https://doi.org/10.1103/physreve.92.062125
https://doi.org/10.1103/physreve.92.062125
https://doi.org/10.1103/PhysRevA.98.032308
https://doi.org/10.1103/PhysRevA.98.032308
https://doi.org/10.3390/e18070244
https://doi.org/10.3390/e18070244
https://doi.org/10.1103/physrevlett.125.180603
https://doi.org/10.1103/physrevlett.125.180603
https://doi.org/10.1088/1367-2630/18/2/023045
https://doi.org/10.1088/1367-2630/18/2/023045
https://doi.org/10.1103/physreve.102.042111
https://doi.org/10.1103/physreve.102.042111
https://doi.org/10.1016/j.physleta.2020.126576
https://doi.org/10.1016/j.physleta.2020.126576
https://doi.org/10.1103/physreva.88.052319
https://doi.org/10.1103/physreva.88.052319
https://doi.org/10.1038/s41534-017-0012-8
https://doi.org/10.1038/s41534-017-0012-8
https://doi.org/10.3390/e21080771
https://doi.org/10.3390/e21080771
https://doi.org/10.1103/physrevlett.121.120602
https://doi.org/10.1103/physrevlett.121.120602
https://doi.org/10.1103/physrevx.5.041011
https://doi.org/10.1103/physrevx.5.041011
https://doi.org/10.1103/physreve.94.052122
https://doi.org/10.1103/physreve.94.052122
https://doi.org/10.1038/s41467-019-10572-8
https://doi.org/10.1038/s41467-019-10572-8
https://doi.org/10.1103/physrevlett.89.180402
https://doi.org/10.1103/physrevlett.89.180402
https://doi.org/10.1103/physrevlett.108.110403
https://doi.org/10.1103/physrevlett.108.110403
https://doi.org/10.1103/physrevlett.122.130601
https://doi.org/10.1103/physrevlett.122.130601
https://doi.org/10.1103/physrevlett.122.047702
https://doi.org/10.1103/physrevlett.122.047702
https://doi.org/10.22331/q-2019-10-14-195
https://doi.org/10.22331/q-2019-10-14-195
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2

J. Phys. A: Math. Theor. 55 (2022) 025301 A Touil et al

[50] Pusz W and Woronowicz S L 1978 Commun. Math. Phys. 58 273—-90

[51] Schlogl F 2013 Probability and Heat: Fundamentals of Thermostatistics (Wiesbaden: Springer)

[52] Deftner S and Lutz E 2010 Phys. Rev. Lett. 105 170402

[53] Bergmann P G and Lebowitz J L 1955 Phys. Rev. 99 578-87

[54] Esposito M and Van den Broeck C 2011 Europhys. Lett. 95 40004

[55] Watanabe S 1960 IBM J. Res. Dev. 4 66—82

[56] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899-905

[57] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901

[58] Touil A and Deffner S 2021 PRX Quantum 2 010306

[59] Campisi M and Goold J 2017 Phys. Rev. E 95 062127

[60] Yan B, Cincio L and Zurek W H 2020 Phys. Rev. Lett. 124 160603

[61] Nakamura S, Iyoda E, Deguchi T and Sagawa T 2019 Phys. Rev. B 99 224305

[62] Iyoda E and Sagawa T 2018 Phys. Rev. A 97 042330

[63] Touil A and Deftner S 2020 Quantum Sci. Technol. 5 035005

[64] Zanardi P and Anand N 2020 arXiv:2012.13172

[65] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402

[66] Rosa D, Rossini D, Andolina G M, Polini M and Carrega M 2020 J. High Energy Phys.
JHEP11(2020)067

[67] Quesada N, Al-Qasimi A and James D F V 2012 J. Mod. Opt. 59 1322-9

[68] CaiJ M, Zhou Z W and Guo G C 2005 Phys. Rev. A 72 022312

[69] Carnio E G, Buchleitner A and Gessner M 2016 New J. Phys. 18 073010

[70] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517-76

[71] Sarandy M S, De Oliveira T R and Amico L 2013 Int. J. Mod. Phys. B 27 1345030

[72] Cakmak B, Karpat G and Fanchini F 2015 Entropy 17 790-817

[73] Cakmak B, Manatuly A and Miistecaplioglu O E 2017 Phys. Rev. A 96 032117

[74] Latune C L, Sinayskiy I and Petruccione F 2019 Phys. Rev. A 99 052105

[75] Gross M and Haroche S 1982 Phys. Rep. 93 301-96

[76] Stephen M J 1964 J. Chem. Phys. 40 669-73

[77] Lehmberg R H 1970 Phys. Rev. A 2 8838

[78] Damanet F and Martin J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 225501

[79] Deftner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001

[80] Deftner S and Lutz E 2013 J. Phys. A: Math. Theor. 46 335302

[81] Kakutani S 1948 Ann. Math. 49 214-24

[82] Bures D 1969 Trans. Am. Math. Soc. 135 199-212

[83] Deftner S 2017 New J. Phys. 19 103018

[84] O’Connor E, Guarnieri G and Campbell S 2021 Phys. Rev. A 103 022210

[85] Allan D, Hornedal N and Andersson O 2021 Quantum 5 462

[86] Wakamura H and Koike T 2020 New J. Phys. 22 073010

[87] Deftner S 2021 Quantum Views 5 55

[88] Niedenzu W, Mukherjee V, Ghosh A, Kofman A G and Kurizki G 2018 Nat. Commun. 9 165

[89] Alipour S, Tuohino S, Rezakhani A T and Ala-Nissila T 2020 Phys. Rev. A 101 042311

[90] Alipour S, Rezakhani A T, Babu A P, Mglmer K, Mottonen M and Ala-Nissila T 2020 Phys. Rev.
X 10 041024

15


https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1103/physrevlett.105.170402
https://doi.org/10.1103/physrevlett.105.170402
https://doi.org/10.1103/physrev.99.578
https://doi.org/10.1103/physrev.99.578
https://doi.org/10.1103/physrev.99.578
https://doi.org/10.1103/physrev.99.578
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1103/physrevlett.88.017901
https://doi.org/10.1103/physrevlett.88.017901
https://doi.org/10.1103/prxquantum.2.010306
https://doi.org/10.1103/prxquantum.2.010306
https://doi.org/10.1103/physreve.95.062127
https://doi.org/10.1103/physreve.95.062127
https://doi.org/10.1103/physrevlett.124.160603
https://doi.org/10.1103/physrevlett.124.160603
https://doi.org/10.1103/physrevb.99.224305
https://doi.org/10.1103/physrevb.99.224305
https://doi.org/10.1103/physreva.97.042330
https://doi.org/10.1103/physreva.97.042330
https://doi.org/10.1088/2058-9565/ab8ebb
https://doi.org/10.1088/2058-9565/ab8ebb
https://arxiv.org/abs/2012.13172
https://doi.org/10.1103/physrevlett.125.236402
https://doi.org/10.1103/physrevlett.125.236402
https://doi.org/10.1007/jhep11(2020)067
https://doi.org/10.1080/09500340.2012.713130
https://doi.org/10.1080/09500340.2012.713130
https://doi.org/10.1080/09500340.2012.713130
https://doi.org/10.1080/09500340.2012.713130
https://doi.org/10.1103/physreva.72.022312
https://doi.org/10.1103/physreva.72.022312
https://doi.org/10.1088/1367-2630/18/7/073010
https://doi.org/10.1088/1367-2630/18/7/073010
https://doi.org/10.1103/revmodphys.80.517
https://doi.org/10.1103/revmodphys.80.517
https://doi.org/10.1103/revmodphys.80.517
https://doi.org/10.1103/revmodphys.80.517
https://doi.org/10.1142/s0217979213450306
https://doi.org/10.1142/s0217979213450306
https://doi.org/10.3390/e17020790
https://doi.org/10.3390/e17020790
https://doi.org/10.3390/e17020790
https://doi.org/10.3390/e17020790
https://doi.org/10.1103/physreva.96.032117
https://doi.org/10.1103/physreva.96.032117
https://doi.org/10.1103/physreva.99.052105
https://doi.org/10.1103/physreva.99.052105
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1103/physreva.2.883
https://doi.org/10.1103/physreva.2.883
https://doi.org/10.1103/physreva.2.883
https://doi.org/10.1103/physreva.2.883
https://doi.org/10.1088/0953-4075/49/22/225501
https://doi.org/10.1088/0953-4075/49/22/225501
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1088/1751-8113/46/33/335302
https://doi.org/10.1088/1751-8113/46/33/335302
https://doi.org/10.2307/1969123
https://doi.org/10.2307/1969123
https://doi.org/10.2307/1969123
https://doi.org/10.2307/1969123
https://doi.org/10.2307/1995012
https://doi.org/10.2307/1995012
https://doi.org/10.2307/1995012
https://doi.org/10.2307/1995012
https://doi.org/10.1088/1367-2630/aa83dc
https://doi.org/10.1088/1367-2630/aa83dc
https://doi.org/10.1103/PhysRevA.103.022210
https://doi.org/10.1103/PhysRevA.103.022210
https://doi.org/10.22331/q-2021-05-27-462
https://doi.org/10.22331/q-2021-05-27-462
https://doi.org/10.1088/1367-2630/ab8ab3
https://doi.org/10.1088/1367-2630/ab8ab3
https://doi.org/10.22331/qv-2021-06-04-55
https://doi.org/10.22331/qv-2021-06-04-55
https://doi.org/10.1038/s41467-017-01991-6
https://doi.org/10.1038/s41467-017-01991-6
https://doi.org/10.1103/physreva.101.042311
https://doi.org/10.1103/physreva.101.042311
https://doi.org/10.1103/physrevx.10.041024
https://doi.org/10.1103/physrevx.10.041024

	Ergotropy from quantum and classical correlations
	1.  Introduction
	2.  Ergotropy and the process of work extraction
	3.  Extractable work from correlations
	3.1.  Ergotropy and the mutual information
	3.2.  Bound ergotropy and multipartite correlations
	3.3.  Ergotropy and quantum discord
	3.4.  Ergotropy and system-environment correlations

	4.  Illustrative case study: ergotropy from X-states
	4.1.  Two-qubit systems and X-states
	4.2.  A physical model: collective dissipation

	5.  Bound on the average extractable power
	6.  Concluding remarks
	6.1.  Outlook and implications
	6.2.  Summary

	Acknowledgments
	Data availability statement
	ORCID iDs
	References


