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ABSTRACT

Structured Query Language (SQL), the de facto standard language
for relational database systems management, proves to be a vital
skill for a wide array of users, developers, and researchers who
interact with databases. Given that there are many diverse ways for
people to acquire SQL as a skill set, and various methods to write
semantically equivalent SQL queries, this presents to us both the
challenge and opportunity of understanding how students learn
SQL as they work on homework assignment questions. In this
paper, we analyze students’ SQL submissions to the homework
assignment problems of the Database Systems course available to
upper-level undergraduate and graduate students at the University
of Illinois at Urbana-Champaign. For each student, we compute
the sequence alignment scores between every submission and their
final submission to understand how students reached their final
solution, and whether there were any obstacles in their learning
process. We also utilize hierarchical clustering techniques to create
a class-wide aggregate view to determine the number of different
approaches used by students in the course. We compute the result-
ing dendrogram visualization based upon students’ final attempt to
a homework problem. Our system enables instructors with more
visibility to identify interesting learning patterns and approaches.
These findings aim at supporting instructors to target their instruc-
tion in difficult SQL areas for the future so students may learn SQL
more effectively.
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1 INTRODUCTION

The Structural Query Language (SQL) is the defacto data manage-
ment language that is supported by most Database Management
Systems [DiFranza 2020]. Being the dominant database language,
acquiring SQL skills is crucial for users, developers, and researchers
alike who interact with databases [Mitrovic 1998]. With an English-
like syntax, this language is highly structured and accessible for
beginners, as it does not depend on expertise of other programming
languages. However, many students still experience difficulties in
learning SQL [Mitrovic 1998], and more research is needed in this
area to closely analyze how students learn SQL and the challenges
they face in their learning path.

In order to analyze how students are learning SQL more ef-
fectively and efficiently, database instructors could benefit from
examining student SQL submissions in an automated fashion. This
is especially the case for instructors who utilize auto-graders to
accept student submission attempts to a given SQL problem, as trac-
ing through their attempts will uncover valuable insights regarding
how they progressed toward the correct solution. Such insights may
then assist instructors in determining difficult SQL concept areas
that students more often struggle with, and adjust instruction plans
to mitigate these challenges. Our research questions include: 1) how
do students learn SQL and come up with their final solution to a
SQL problem? and 2) how can we empower database instructors
to deliver SQL concepts more effectively, adapting to the diverse
student population?

Our research questions aim at improving students’ educational
quality for learning SQL in the Database Systems course offered
at the University of Illinois at Urbana-Champaign. The Database
Systems course usually has an enrollment of more than 400 stu-
dents. Students in this course are given multiple SQL in-class group
exercises and an individual homework assignment containing 10-
15 SQL problems to complete. All SQL questions are auto-graded,
and students receive immediate feedback after each submission
attempt. It is difficult for the instructor to quickly identify common
class-wide areas of struggle in SQL or pinpoint students who are
challenged to delegate more attention and support. Due to the class
size, the number of submissions for the SQL problems is too large to
manually examine as students can submit well over 20 submissions
on a single problem, on average.

Previous research work shows that students may take different
learning paths, and their learning experience may be significantly
enhanced given the instructor’s ability to identify the way students
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learn [Jinkens 2009]. Based upon these findings, this paper intro-
duces a technique for examining students’ progress as they work
to solve an SQL problem, and make it easier for instructors to iden-
tify different approaches students take to solving the same SQL
problem. This technique builds upon our previous research work,
which uses the Levenshtein Edit Distance to compute the distance
between each students’ submission with their final submission to
understand their thought-processes for reaching their final solution
[Yang et al. 2021]. We optimized our technique to use the global
sequence alignment scores instead, due to the algorithm’s customiz-
ability. For example, by using the global sequence alignment scores,
we may use custom scoring matrices that helps to reduce noise in
the dataset and increase accuracy in our analyses.

We examine students’ submissions to SQL homework assign-
ment problems offered in the Spring 2021 semester. Our system
visualizes the global sequence alignment scores of each student’s
submissions with their final submission on a SQL problem. We also
visualize the global sequence alignment scores of each student’s
final submission with the instructor’s solution to the SQL problem,
in order to cluster students’ approaches for a class-wide aggrega-
tion visualization. These visualizations empowers instructors to
identify interesting learning patterns and approaches, which will
help target their instruction in difficult SQL areas for the future and
support students to learn SQL more effectively.

2 RELATED WORKS

In our previous work-in-progress research, we examined student
SQL submissions by computing the Levenshtein Edit Distance be-
tween each students’ submission with their final submission [Yang
et al. 2021]. The resulting visualization was a line chart with the
Levenshtein Edit Distances between each of the submission num-
bers and the final submission [Yang et al. 2021]. The Levenshtein
Edit Distance algorithm was a variation of the global sequence
alignment algorithm, computing the global alignment score with
a scoring matrix of +1 for matches and -1 for mismatches/gaps.
However, it provides little opportunity for optimizations based on
our use-case; we build upon this work but instead utilize the global
sequence alignment scores for an improved accuracy. We explored
variations of scoring matrices and opted for one (+3 matches;-1
mismatches/gaps) that worked well with reducing noise in our data,
making it easier to extract insights from our dataset. We also opt
to use SQL keywords to be used as keys for comparisons in the
sequence alignment (instead of a letter-by-letter comparison); this
optimizes the accuracy of our alignments by assigning an equiv-
alent weight for each SQL keyword, instead of varying weights
based on the length of the arbitrary SQL keyword. This helps to
focus our analyses based on the structure of the SQL query, instead
of the non-semantically related components of a SQL query.

We leverage hierarchical clustering techniques to generate a den-
drogram visualization that shows distinctive approaches to solving
a SQL problem from the class. The hierarchical clustering is per-
formed via single-linkage which utilizes the least interconnecting
dissimilarity between two elements (in this case is the SQL query
submission, with the similarity being represented by the alignment
score) [Murtagh and Contreras 2012; Nielsen 2016]. The dendro-
gram visualization is a graphical representation of the tree-structure
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that embodies all the data elements and their distances between
the subsets that they belong to [Nielsen 2016]. We construct our
dendrogram using the Scipy cluster library [Virtanen et al. 2020].

Park et al. utilize sequence pairwise alignment techniques to de-
tect SQL injection attacks, which is a security phenomenon where
malicious attackers retrieved access to the database behind an ap-
plication, and can reveal or exploit confidential data [Park and Noh
2007]. Park et al. applied sequence alignment algorithms to the web
application parameters to detect and prevent SQL injection attacks
[Park and Noh 2007]. Our work differs such that sequence align-
ment techniques are applied directly to the SQL queries in order to
gain insights regarding how the students progressed through their
thought-processes for forming their final solution.

Argenta et al. combines tokenization, sequence alignment, and
clustering techniques to events in the adaptive game-based train-
ing (AGBT) domain [Argenta and Hale 2015]. They define their
alignment keys as the tokenized events, instead of the string DNA
sequence alphabet (more commonly what the algorithm is used
for) [Argenta and Hale 2015]. Similarly, our work tokenizes the
SQL Keyword and Name elements, and constructs our alignment
dictionary based on these elements instead of the DNA sequence
alphabet. However, the applications of such techniques differ dras-
tically between Argenta et al’s work and our research work.

The SQL-Tutor is an intelligent tutoring system aimed at guiding
students toward a correct SQL solution through on-demand feed-
back [Mitrovic 1998]. Feedback is divided into five levels, which
gives students varying amounts of information to troubleshoot their
query, or understand why their query was wrong (given the correct
solution at the highest level)[Mitrovic 1998]. SQL-Tutor analyzes
students’ submissions by comparing them with a knowledge base
of correct solutions based on constraints[Mitrovic 1998]. It supports
SELECT statements, but does not support advanced SQL queries
involving subqueries. This work focuses on assisting students to
write correct SQL queries, while our research work focuses on as-
sisting instructors to understand how students struggle in writing
SQL queries.

Cagliero et al. similarly examined errors and challenging areas
of SQL [Cagliero et al. 2018]; however, their analyses only includes
data in an aggregate form which limits the opportunity for in-
structors to pinpoint specific students who require more attention
and assistance [Cagliero et al. 2018]. Our research work empowers
instructors with both an aggregate class-wide view with the den-
drogram visualizations and an individual view of each student with
line-chart visualizations showcasing how the student progressed
through constructing their final solution query.

QueryViz is a novel visualization tool for helping pupils to read,
understand, and comprehend existing SQL queries in a more effi-
cient manner [Danaparamita and Gatterbauer 2011]. Our research
work instead allows instructors to examine changes in students’
solutions between submissions in order to identify new approaches
or thought-processes that students utilized while constructing a
SQL solution query.

Ahadi et al. conducted work [Ahadi et al. 2015] that evaluated the
difficulty of constructing particular types of SQL queries through
examining whether a student reached the correct solution. Our re-
search work instead looks at how each student may have overcame
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Figure 1: System Overview Diagram.

obstacles in their learning journey to progress toward the correct
SQL solution query for a given problem.

3 DATA COLLECTION

We collected data from CS 411 Database Systems, a course available
to upper-level undergraduate and graduate students at the Univer-
sity of Illinois at Urbana-Champaign. The data collected from the
Spring 2021 semester was amidst the COVID-19 pandemic where
instruction was delivered remotely following a flipped-classroom
model; students are assigned pre-recorded lectures to review fol-
lowed by a short quiz about the lecture video. The bulk of the class
meeting time is dedicated for students to collaborate on group ex-
ercises aimed at solidifying their understanding of the concepts
presented in the pre-recorded lectures. Students were also assigned
a week-long homework assignment consisting of approximately 10-
15 SQL questions. Course enrollment for the Spring 2021 semester
consists of 417 students.

3.1 Description of Homework Assignments

We collected our data in PrairieLearn, an online learning man-
agement system that auto-grades code and provides immediate
feedback to students regarding their submissions [West et al. 2015].
PrairieLearn showcases and compares the student query’s data re-
sult output against the expected solution’s data result output to
validate the student’s solutions on a binary grading scale (no partial
credit is given, although students may see that their query passed
some test cases). Students may answer the homework questions in
any order with unlimited attempts up until the deadline. Students
may also choose to move on and/or come back to homework ques-
tions, even if the question had already been answered correctly. An
example of an SQL problem from the Spring 2021 semester and its
instructor solution is shown below.

Write an SQL query that returns the ProductName of
each product made by the brand ‘Samsung’ and the
number of customers who purchased that product. Only
count customers who have purchased more than 1 Sam-
sung product. Order the results in descending order of
the number of customers and in descending order of
ProductName.
SELECT Pr1.ProductName, COUNT(C1.Customerld) as numCustomers

FROM Products Prl NATURAL JOIN Purchases Pul
NATURAL JOIN Customers C1
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WHERE Pr1.BrandName = 'Samsung'’
AND C1.Customerld IN (
SELECT C2.Customerld
FROM Customers C2 NATURAL JOIN Purchases Pu2
NATURAL JOIN Products Pr2
WHERE Pr2.BrandName =
GROUP BY C2.Customerld
HAVING COUNT(C2. Customerld) > 1
)
GROUP BY Pr1.ProductName
ORDER BY numCustomers DESC, Prl.ProductName DESC;

‘Samsung '

3.2 Data Cleansing

Given that students are allowed unlimited attempts on a given SQL
problem, we only kept the submission attempts up till and including
the first correct submission receiving full-credit (according to the
auto-grader feedback in PrairieLearn). If the student did not receive
credit for a homework problem, we assumed that the last submission
is their best solution attempt and kept all of their submissions.
We labeled the .sql files in our dataset such that they are sorted
based on the semester the course was delivered, student, homework
problem number, and submission number. The submission number
is sorted using natsort [Morton 2021] to determine the chronological
order of submission, since larger submission numbers indicate a
later submission while smaller submission numbers indicate earlier
submissions.

Upon obtaining a clean dataset, we followed all of the Univer-
sity of Illinois at Urbana-Champaign (UIUC) Institutional Review
Board (IRB) specified data safety protocols to maintain maximum
anonymity for the students whom we collected the SQL submissions
from. We removed all identifiers from the SQL files and assigned a
randomized number to represent each student.

4 SYSTEM OVERVIEW

Figure 1 is our system overview diagram. First, we collect our data
from PrairieLearn [West et al. 2015], where students submit their
SQL solution queries for the Database Systems course. Our dataset
is a collection of .sql files, where each file represents one submis-
sion attempt of a student to a particular SQL homework assignment
problem. After the data cleansing process, the .sql files undergo
transformations in the pre-processing module which utilizes the
Python sqlparse library [Albrecht 2020] to parse and tokenize the
SQL queries based on their component type (Punctuation, Key-
word, Comment, Name, Literal, Operator, etc.). Components of SQL
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Figure 3: Dendrogram representation of the hierarchical clustering of students’ final SQL solution query submission attempt
against the instructor’s solution query. The "lastp" truncate_mode parameter is used, resulting in both the student ID and

student count (when truncated) being shown.

queries that do not contribute to the meaning of the query (such as
comments, white-spaces, new-line characters, etc.) were excluded
to reduce noise in our dataset. We also only decided to include
SQL Keyword andName elements in the sequence alignment score
computations for the sake of better understanding changes in the
students’ semantic approaches for tackling the SQL problem. These
elements include strings such as SELECT, FROM, NATURAL JOIN,
and table name aliases. We generate our tree-like structure based on
these elements, and compute the global sequence alignment scores
between a student’s submission to their final submission attempt.
These scores are utilized to generate the line-chart visualization for
depicting how the student progressed to their final solution. We
also compute the global sequence alignment scores between each
students’ final submission and the instructor’s solution, so that we
may cluster similar approaches that were used in the class by stu-
dents while also examining if certain students had overwhelmingly
similar solutions.

4.1 Computing the Global Alignment Scores

A global alignment is an optimal end-to-end alignment of the keys
within two given sequences. By using the global alignment scores
instead of the fitting or local alignment scores, our computations

will be the most sensitive to differences in the lengths of the two se-
quences. We implemented the global alignment algorithm based on
the Needleman-Wunsch[Needleman and Wunsch 1970] algorithm
using dynamic programming with modifications to the scoring
matrix and keys. We define our alignment dictionary with the tok-
enized Keyword and Name components of the SQL queries, instead
of using the simple alphabet of letters. This allows us to give an
equivalent weight in the alignment scores for each component, in-
stead of having varying scores being biased based upon the length
of each token. To demonstrate this concept, a match with a SELECT
would give the same value as an alignment match with a NATURAL
JOIN, instead of having the SELECT count as 6 matches and the
NATURAL JOIN count as 12 matches (by characters).

We experimented with various scoring matrices to find a de-
sirable balance between penalties (for gaps and mismatches) and
additions (for matches) to highlight findings in our line-chart and
dendrogram visualizations. From our experimentation, we decided
to continue using the scoring matrix +3 for matches and -1 for
mismatches/gaps.

To help visualize the global alignment score computation, we
present an example from two submissions of student number 0 to

Alignment

Score 3 6 9 15 17 20 23 26 29

Submission | select | product | count - as num from | products natural | purchases | where | brandname | group | product | having num - - - - -
2 name customers join by name customers

Submission | select | product | count | customerid | as | customers | from | purchases | natural | products | where | brandname | group | product | having | customers | order | customers | desc | product | desc
3 name join by name by name

Figure 4: Global sequence alignment for submission 2 and 3 of student number 0 for homework question 12.
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Figure 5: Student 277’s visualization of SQL submissions for question 12

question 12 on the SQL homework assignment. Submission number
2 and 3 are shown, after they have been pre-processed.

Submission 2:

["select', 'productname', 'count', 'as', 'numcustomers', 'from',
‘products ', 'natural_join', ‘'purchases', 'where', 'brandname’,
‘group _by', 'productname’', 'having', 'numcustomers']

Submission 3:

["select', 'productname', 'count', 'customerid', 'as', ‘'customers’,
‘from ', 'purchases', 'mnatural_join', 'products’', 'where",
‘brandname ', 'group _by', 'productname', 'having', ‘customers’,
‘order by ', 'customers', 'desc', 'productname’, ‘'desc']

The resulting global alignment is shown in figure 4. The matches
(+3 in alignment score) are shown in green, and the mismatches/-
gaps (-1 in alignment score) are shown in red. The final alignment
score is 23 as highlighted in blue. The numbers in the top row rep-
resent the current alignment score up till the indicated sequence
component.

4.2 Visualization

We create our visualizations with Python’s matplotlib library [Hunter
2007] and Scipy cluster framework [Virtanen et al. 2020]. We visual-
ize the global alignment scores between each student’s submission
with their final submission for a particular SQL problem. This list
of global alignment scores become the basis for generating the
line-chart visualizations depicting how the student made changes
to their query and progressed towards their final solution query.

We also compute the global alignment scores between all the final
submission queries of students in the Database Systems course and
the instructor’s solution query. We utilize the Scipy cluster library
[Virtanen et al. 2020] to generate the dendrogram visualization
representing the hierarchical clustering of these final submission
attempts. The dendrogram easily depicts the number of dissimilar
approaches taken by the class to solve the given SQL problem, as
well as if any students had extremely similar submissions.

5 RESULTS

We present our insights from the visualizations generated by the
matplotlib line-charts and Scipy dendrograms as part of our system.
In figure 2, we present the dendrogram representation resulting
from hierarchical clustering of students’ first SQL submission at-
tempt (based on its global alignment score with the instructor’s
solution query). In figure 3, we present the dendrogram resulting
from the hierarchical clustering of students’ final SQL submission
attempt. We can see that based on the disparities of the two figures,
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students in the course start out with different starting points and
approaches to solving the same SQL question, but tend to converge
to only a few different approaches (approximately 2-3) in their final
attempt. Instructors can identify the number of approaches and
their similarity level by tracing the number of branches extending
from the root of the dendrogram. For each type of approach, an
instructor may observe students displaying similar behaviors, and
the visualization may thus help instructors divide students into
categories that may need varying types of support. Although most
students share a generally similar approach, they have slight vari-
ations in their SQL solutions, resulting in a more densely packed
lower level and a more sparse upper level in the diagram. For the
sake of readability, the “lastp” truncate_mode parameter was used
in the display of figures 2 and 3. We are able to identify students
who had extremely similar solution queries at the leaf node level
where the distance in global alignment scores between them are
0. Similarly, we are enabled with the feature to identify the most
common approaches being utilized to solve the SQL problem by
looking at the branch with the highest number of leaf nodes.

By identifying the students who utilize similar approaches and
the approach they take (using a non-truncated dendrogram visual-
ization), instructors may target instruction to include such types
of approaches in lectures to strengthen students’ understanding.
Students may have a tendency to write SQL queries based on the
structure of queries demonstrated in the lecture; these approaches
may contain novel ways of solving SQL queries previously not
taught in the lectures, and by exposing students to various ap-
proaches, it may potentially strengthen students’ problem-solving
capabilities. Instructors may also group students who utilize differ-
ing approaches to work on SQL problems together on the course
collaborative learning assignments, so students can have the op-
portunity to familiarize themselves with different approaches to
SQL problems.

In figure 5, we present the line-chart that showcases all of a
sample student’s submission being compared with their final sub-
mission using the global sequence alignment score. We can observe
from the visual that the student was struggling during the earlier
submissions. This observation is validated with the auto-grader
results indicating that the student had syntactical errors with these
submissions. Between submissions 15 and 17, while the student
resolved their syntax error, a semantic error was present, imply-
ing that the submitted queries were logically incorrect. The dip in
figure 5 here is supported by the fact that the student submitted a
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much shorter, simpler query. The rise at submission 18 is explained
by the student readopting the earlier approach, while only minor
changes were made to the submitted attempts between submis-
sions 19-32. At submissions 33 and 47, the student utilizes new
approaches to build upon for solving this SQL problem, in which
we can see that submissions 48-64 continuously builds upon itself
by wrapping earlier submissions as sub-queries to the final solution.
We have analyzed other case studies of students’ line-chart visual-
ization, and were presented with similar and consistent findings
and patterns.

By validating our visualizations against the student submissions,
we can see that there are a few approaches students take to tackling
the homework problem, empowering instructors with a more well-
rounded understanding of how their students learn.

6 CONCLUSION AND FUTURE WORK

We have presented a novel system for analyzing students’ SQL
submissions by visualizing the global sequence alignment scores
between their submission attempts and their final submission. The
dendrogram generated from the hierarchical clustering helps data-
base instructors to quickly identify 1) how many different ap-
proaches did the students of the course utilize for solving the same
SQL problem? and 2) which students had submitted a SQL solution
query that highly resembled others in the class, and whom? An-
swering such questions for instructors who manually sift through
SQL submissions in a large-class setting is highly unrealistic and
time-consuming; however, with our system, the analyses process is
more straightforward and done in a much more automated fash-
ion, empowering instructors with insights on a class-wide level.
Essentially, this enables instructors the opportunity to familiarize
themselves with how their students are picking up SQL.

For our future work, we propose to construct an interactive tool
that encompasses the mentioned types of visualizations in this
paper, in a more user-friendly, user-facing application. Based on
the visualizations generated by the tool back-end system, action
items may be automatically proposed to the instructor which may
include 1) a list of student names that require more attention and
support, and with which SQL concepts and 2) a list of set of students
who had SQL submission attempts that shared an extremely high
resemblance for further investigation of possible plagiarism.
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