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ABSTRACT

Peridotite xenoliths entrained in magmas near the Alpine fault (New Zealand) provide the
first direct evidence of deformation associated with the propagation of the Australian-Pacific
plate boundary through the region at ca. 25-20 Ma. Two of 11 sampled xenolith localities
contain fine-grained (40-150 pwm) rocks, indicating that deformation in the upper mantle
was focused in highly sheared zones. To constrain the nature and conditions of deformation,
we combine a flow law with a model linking recrystallized fraction to strain. Temperatures
calculated from this new approach (625-970 °C) indicate that the observed deformation
occurred at depths of 25-50 km. Calculated shear strains were between 1 and 100, which, given
known plate offset rates (10-20 mm/yr) and an estimated interval during which deformation
likely occurred (<1.8 m.y.), translate to a total shear zone width in the range 0.2-32 km. This
narrow width and the position of mylonite-bearing localities amid mylonite-free sites suggest
that early plate boundary deformation was distributed across at least ~60 km but localized in
multiple fault strands. Such upper mantle deformation is best described by relatively rigid,

plate-like domains separated by rapidly formed, narrow mylonite zones.

INTRODUCTION

The width of plate boundary shear zones
in Earth’s mantle is a long-standing first-order
question in geodynamics (e.g., Vauchez et al.,
2012) and a poorly constrained boundary con-
dition for models of major earthquakes and
postseismic deformation (e.g., Blirgmann and
Dresen, 2008). Teleseismic methods cannot
resolve narrow shear zones (<~30 km) but
commonly constrain—with poor depth resolu-
tion—wide (>100 km scale) zones of anisot-
ropy beneath plate boundaries (e.g., Zietlow
et al., 2014). Thus, it is unclear if continental
strike-slip faults generally overlay wide defor-
mation zones immediately beneath the Moho
(e.g., Collins and Molnar, 2014) or if narrow
shear zones penetrate the entire mantle litho-
sphere (e.g., Ford et al., 2014). Distinguish-
ing between these possibilities using geologic
evidence is difficult for a number of reasons,
including (1) appropriate rock masses are rarely
exposed, (2) microstructures formed during
exhumation can be difficult to distinguish from
those formed at deep levels, and (3) adequate

barometers are commonly unavailable (e.g.,
Titus et al., 2007; Vauchez et al., 2012).

We describe a suite of mantle xenoliths from
near New Zealand’s Alpine fault (Fig. 1), an
active continental transform fault (e.g., Nor-
ris and Toy, 2015). These xenoliths are unique
in that (1) they sampled multiple locations
(N = 11) near the fault, (2) some samples are
mylonites (highly sheared), and (3) their erup-
tion coincided with the onset of plate boundary
motion. We present a new approach that allows
strain rate, deformation temperature, and shear
zone width to be estimated from a xenolith
“snapshot” of the critical, earliest moments of
faulting.

GEOLOGIC BACKGROUND

The Alpine fault comprises the ~800 km
stretch of the Australia-Pacific plate bound-
ary crossing New Zealand’s South Island (e.g.,
Sutherland et al., 2000). Dextral strike-slip
motion began at ca. 25-20 Ma following a
period of extension and north-propagating rift-
ing (Fig. 1; Sutherland et al., 2000). The mod-

ern transpressional period began at ca. 5-8 Ma
(Batt et al., 2004). The trace of the Alpine fault
coincides with preexisting structures that may
have influenced its position (Sutherland et al.,
2000; Lamb et al., 2016).

The studied spinel peridotite xenoliths occur
in the Alpine dike swarm (Fig. 1), which also
dates to ca. 25-20 Ma (Cooper, 2020). The xeno-
liths are mainly harzburgites and dunites (oliv-
ine Mg# [100 x Mg/{Mg + Fe}] commonly
>90; Scott et al., 2014; Liu et al., 2015). Some
xenoliths contain minor hydrous phases (Scott
etal., 2014), and calculated H,O concentrations
in olivine are high (~80 ppm; Li et al., 2018).
Two-pyroxene thermometry on coarse-grained
samples indicates peak or retrograde tempera-
tures ranging from 800 to 1200 °C (Scott et al.,
2014, 2016). These temperatures may pre-date
deformation, but deformation temperatures are
bracketed by these values and lower crustal tem-
peratures of 600-700 °C at the onset of Alpine
fault deformation (Vry et al., 2004; Briggs and
Cottle, 2018; Kidder et al., 2018). The xeno-
lith source depth exceeded ~25 km based on
constraints on paleo-Moho depth (Lamb et al.,
2015).

MICROSTRUCTURES

The peridotite xenoliths can be sorted into
coarse- and fine-grained types (Fig. 2). Coarse-
grained xenoliths (Fig. 2A) make up ~90% of
84 observed samples and occur at all the local-
ities. Coarse-grained xenoliths are dominated
by millimeter- to centimeter-scale grains, with
grains of size 300-600 pwm also found in some
samples along grain boundaries.

Fine-grained xenoliths were found at two
localities: the 25-20 Ma Moeraki River valley
and the 23.3 £ 0.1 Ma Lake Wanaka diatreme
(Fig. 1; Cooper, 2020). Fine-grained peridotites
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are absent at all 64 other known New Zea-
land xenolith localities (Fig. 1; Scott, 2020).
The fine-grained Lake Wanaka xenoliths are
mylonitic and layered and comprise a roughly
50:50 mixture of (1) large, millimeter-scale
grains (“relicts”) with aspect ratios as high as
10:1, and (2) zones of fine (40-150 pm) recrys-
tallized grains (grains formed during deforma-
tion) made up of olivine or orthopyroxene or
mixtures of the two (Fig. 2B). Olivine relicts
contain subgrains and undulose extinction. The
fine-grained xenoliths at the Moeraki locality
are unlayered and comprise a variably propor-
tioned mixture of relicts and pure olivine matrix
that also averages 50:50; i.e., overall recrystal-
lized fraction of ~50%. The matrix grains in
these samples have a size of 100-200 pm and

their boundaries tend to be straight or gently
curved and commonly intersect at 120° triple
junctions (Fig. 2C).

TIMING OF GRAIN SIZE REDUCTION
The microstructures of the fine-grained
xenoliths are typical of highly deformed rocks
from shear zones and deformation experiments
(e.g., Warren and Hirth, 2006; Cross and Ske-
mer, 2017). Fine-grained areas of such rocks
composed of a single phase (e.g., lower part
Fig. 2B; Fig. 2C) are energetically unstable and
experience grain growth following deformation
(e.g., Karato, 1989; Kidder et al., 2016). Using
either the wet or dry grain growth equations
from Karato (1989) at temperatures of 600—
1200 °C and any initial grain size, we calculate

that the observed grains (Fig. 2C) would have
increased beyond 150 pm if formed more than
~20,000 yr before entrainment. This calcula-
tion suggests that the mylonites are not inherited
features pre-dating the Alpine fault but instead
capture active deformation at the time of entrain-
ment. We note that while the grain growth rela-
tionships of Karato (1989) are widely used, they
may predict faster growth rates than occur in nat-
ural samples (e.g., Speciale et al., 2020). How-
ever, both in New Zealand and globally, xenolith
localities containing fine-grained spinel peri-
dotite are extremely rare (n = 7) and unique to
active tectonic areas (Vauchez et al., 2012). We
infer that the occurrence of mylonitic xenoliths
near the Alpine fault at the moment of its for-
mation is not coincidental but that the xenoliths
are representative of the mantle at 25-20 Ma.

DEFORMATION TEMPERATURE AND
STRAIN

To constrain conditions of deformation
recorded in the xenoliths, we apply a new
technique combining three relationships:
(1) a paleopiezometer based on experiments
that link recrystallized grain size to differential
stress (referred to as “stress” throughout); (2) a
flow law that yields strain rate as a function of
stress and temperature; and (3) a relationship
between finite strain (“strain” hereafter) and
recrystallized fraction (percentage of recrys-
tallized grains versus relicts; Cross and Ske-
mer, 2019). Alpine fault history provides a key
additional constraint: the earliest likely onset
of deformation at ca. 25 Ma and entrainment of
mylonites at ca. 23.3 £ 0.1 Ma are separated by
<1.8 m.y. Thus, multiplying strain rates from
the flow law by 1.8 m.y. constrains total strain
accommodated by the xenoliths. Relationships
2 and 3 can both plot on a graph of temperature
versus strain (Fig. 3), with their intersection

Figure 2. Micrographs of three xenolith types highlighting phase (olivine is false-colored green, pyroxene is yellow) and grain boundaries
(darkened). “N” indicates numbers of each sample type. Note that the scale in A is 15x that of B and C. (A) Coarse-grained sample (MOE18).
(B) Fine-grained mylonite sample (LWA10) containing a mixture of olivine and pyroxene. (C) Fine-grained unlayered sample (MOE 12) showing
several 120° triple junctions.
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Figure 3. Relationships 2 and 3 plotted on a graph of temperature versus strain. Black-outlined
area shows calculated deformation temperature, strain, and shear zone width based on the
intersection of wet dislocation creep flow law (blue) and recrystallization relationship (green).
Flow law (blue area) uses recrystallized grain sizes from fine-grained xenoliths (40-150 um)
and uncertainties in flow law and piezometer formulations. Shear strains were calculated
from flow law—derived axial strain rates by multiplying by: (1) 1.8 m.y. over which deformation
occurred, and (2)\/5 (to convert axial to shear strain rate). Variations in recrystallization rela-
tionship due to variable recrystallized fraction (40%—-60%) are shown to be relatively small.
Alternative scales for shear zone width correspond to plausible 25 Ma Alpine fault offset rates

of 10-20 km/m.y. (Sutherland et al., 2000).

constraining the temperature, strain, and strain
rate of a plate boundary shear zone in the mantle
within 1.8 m.y. of its initiation.

Relationship 1: Paleopiezometer

Recrystallized grain size is inversely propor-
tional to stress (e.g., Twiss, 1977). To bracket
reasonable stresses, we employed the olivine
piezometer of Van der Wal et al. (1993) using
recrystallized grain sizes from the coarsest and
finest observed zones: a 150 um grain size of a
region that likely experienced post-deformation
grain growth (e.g., Fig. 2C) corresponds to a
stress of 217§ MPa; a 40 um grain size (e.g.,
Fig. 2B) provides a stress of 57} MPa. The
higher stress value is a maximum constraint
because it comes from a phased-mixed zone
(e.g., Fig. 2B); such zones are routinely finer
grained than coexisting pure-phase regions (e.g.,
Cross and Skemer, 2017). We used a stereologic
correction factor of 1.75 in these calculations
(Van der Wal et al., 1993).

Relationship 2: Viscous Flow Law

Using the stresses from the piezometer, we
calculated strain rates as a function of tempera-
ture using the wet dislocation creep flow law for
olivine (Fig. 3; Hirth and Kohlstedt, 2003). This
flow law was chosen based on the evidence of
wet conditions and microstructures indicative of
dislocation activity in the mylonites. The other
common deformation mechanism involving
dislocations (dislocation-accommodated grain
boundary sliding [disGBS]; e.g., Warren and
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Hirth, 2006) is slower than dislocation creep at
the conditions in Figure 3 (Hansen et al., 2011).

Relationship 3: From Recrystallized
Fraction to Finite Strain

Cross and Skemer (2019) demonstrated that
recrystallized fraction is a largely material-
independent function of strain and homologous
temperature (the fraction of the material melt
temperature). To plot this relationship for the
xenoliths and estimate uncertainties (Fig. 3), we
used the Cross and Skemer (2019) database to fit
a new curve with the Polyfit function in Matlab
(https://www.mathworks.com/help/matlab/ref/
polyfit.html; see the Supplemental Material')
using only samples containing similar recrys-
tallized fractions as the xenoliths (50% =+ 10%
recrystallized).

The intersection of relationships 2 and 3 in
Figure 3 indicates deformation temperatures in
the range 625-970 °C and shear strains of 1-100.
If deformation began more recently than 25 Ma
(i.e., an interval shorter than 1.8 m.y. between
deformation and entrainment), then the plotted
flow-law lines would shift slightly to the right;
e.g., an order of magnitude shorter time causes
a +50° change in temperature.

'Supplemental Material. Supplemental figures,
data, and code related to shear zone width estimates.
Please visit https://doi.org/10.1130/GEOL.S.14605269
to access the supplemental material, and contact
editing @geosociety.org with any questions.

DISCUSSION
Narrow Upper Mantle Shear Zones

‘When combined with an estimated ~20 °C/km
paleo-geothermal gradient (Scott et al., 2014),
the calculated deformation temperatures indi-
cate a depth of no more than 50 km. Oligocene—
Miocene crustal thickness is estimated at ~25 km
(Lamb et al., 2016), thus the mylonites formed in
the uppermost mantle (25-50 km).

Mantle shear zone widths can be estimated
if strains in the xenoliths (Fig. 3) are represen-
tative of a strike-slip shear zone deformed at
10-20 km/m.y. (Sutherland et al., 2000) for
1.8 m.y. For shear strains of 1-100, calculated
widths are 0.2-32 km (Fig. 3). If the interval
between the initiation of deformation and xeno-
lith entrainment was shorter, estimated widths
are reduced, e.g., a time interval of 0.2 m.y.
results in widths of 0.02-3 km (see the Supple-
mental Material for examples).

The upper mantle within 60 km horizontal
distance of the fault (or perhaps ~30%—-40%
larger given likely Neogene crustal shortening;
e.g., Little et al., 2002) was thus characterized
by at least two narrow shear zones within mini-
mally deformed wall rock. This interpretation is
supported by four observations. First, the region
affected by mylonitization (>120 km, assuming
symmetry across the fault) is one or two orders
of magnitude larger than the calculated shear
zone widths. Second, several sites with exclu-
sively coarse-grained xenoliths lie between sites
containing evidence of mylonitization (Fig. 1).
Third, a locality displaying exclusively coarse-
grained xenoliths is found ~10 km distant from
the fault (Fig. 1). Thus, from geometric argu-
ments alone, if a highly localized main fault
strand was centered over the present-day surface
expression of the fault, its width was <20 km.
Fourth, fine-grained, mixed-phase shear zones
(e.g., Fig. 2B) are generally dominated by dif-
fusion creep rather than dislocation creep, mak-
ing the above strain rate estimates minima and
estimated shear zone widths an upper bound
(e.g., Cross and Skemer, 2017; Mulyukova and
Bercovici, 2019).

These observations are consistent with mul-
tiple, highly localized upper mantle fault strands
running sub-parallel to the early Alpine fault
trend in a region ~150 km wide (Fig. 4A). Such
an array may have linked to more-distributed
deformation at depth; e.g., Collins and Molnar
(2014) interpreted from Pn wave anisotropy a
modern 100-200-km-wide zone of penetrative
deformation at depths of 40-60 km. Alterna-
tively, the Alpine dike swarm may have intruded
along a lithosphere-scale Riedel shear zone (e.g.,
Cooper, 2020), and the xenoliths could thus pre-
serve deformation associated with this structure
(Fig. 4B). Either way, these rocks indicate that
upper mantle deformation associated with the
early Australian-Pacific plate boundary was
highly localized.
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Figure 4. Cartoon showing two scenarios consistent with highly localized deformation in sub-Moho mantle lithosphere at ca. 23 Ma.The upper
crust (white) is the same in both panels and is based on reconstructed paleogeography (Fig. 1 inset). Mantle is shown in green. Distributed
deformation in the deep lithospheric mantle (40-90 km) is based on modern-day seismic anisotropy (e.g., Collins and Molnar, 2014). (A) Scenario
1: xenoliths sample an ~150-km-wide, Alpine fault—parallel, heterogeneous zone containing both localized shear zones and coarse-grained
rocks relatively unaffected by shearing. (B) Scenario 2: xenoliths sample an isolated fault splay (Riedel shear).

Relevance to Modern Strike-Slip Faults

Seismic anisotropy occurs at poorly con-
strained depths in the present-day mantle
beneath the modern Alpine fault, with a fast
direction oriented within 5°-25° of strike (e.g.,
Collins and Molnar, 2014; Zietlow et al., 2014).
Such anisotropy results from the preferred ori-
entation of olivine crystals in zones wider than
~50 km (e.g., Vauchez et al., 2012; Skemer and
Hansen, 2016). Thus, mylonite zones such as
those sampled are too narrow to affect seismic
anisotropy.

The modern degree of mantle localization
may also differ from that recorded in the xeno-
liths due to crustal thickening and extensive
deformation since 25 Ma, but if a narrow shear
zone persisted, it could explain the sharp change
in lithospheric thickness across the Alpine fault
(Hua et al., 2018).

In terms of Moho depth and rates of plate
motion, the 25-20 Ma Alpine fault was similar
to the modern San Andreas fault (California,
USA;e.g., Ford et al., 2014). Mylonites are not
present at the single known xenolith locality
adjacent to the San Andreas fault (Titus et al.,
2007). The absence of mylonites at one local-
ity should not be considered evidence against
a highly localized shear zone, however: for the
early Alpine fault example, only 18% of locali-
ties contain mylonites. It appears most likely
that a single xenolith locality would not sample
a highly localized shear zone.

CONCLUSIONS

The xenoliths provide rare samples of an
initiating continental transform fault at mantle
depths and the earliest-known physical evidence

of Alpine fault deformation. Within ~1.8 m.y.
of likely fault initiation, mantle deformation
was focused in narrow, highly localized shear
zones with a total width of 0.2-32 km. These
findings support the view that the upper mantle
lithosphere consists of relatively rigid, plate-like
domains separated by rapidly developed zones
of focused deformation (Bercovici and Ricard,
2014; Ford et al., 2014).
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