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may not fit all data formats and datasets. This allows the
separation of algorithmic specification from the scheduling
details of the computation. Once both are specified, code
can be generated to implement the desired algorithm and
schedule.

One important consequence of TACO’s code generation is
that the asymptotic complexity of the kernels grows with the
number of index variables in the tensor index notation [2].
For example, the complexity of A𝑖 𝑗 =

∑
𝑘 B𝑖 𝑗 · 𝐶𝑖𝑘 · 𝐷 𝑗𝑘

1 is

𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 )𝐾)
2, where𝐵 is sparse. If this example is extended

with an additional computation, as in 𝐴𝑖𝑙 =
∑
𝑘 𝑗 B𝑖 𝑗 · 𝐶𝑖𝑘 ·

𝐷 𝑗𝑘 · 𝐸 𝑗𝑙 , then the complexity is 𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 )𝐾𝐿)
3Ðand this

complexity increases with each additional index variable.
Hence, with increasing terms in the tensor expression, the
asymptotic complexity of the resulting code blows up.
Interestingly, this asymptotic blowup is a consequence

of doing multiple tensor operations in a single kernel. The
computation could instead be expressed as two separate
kernels, with the result of the first computation stored in a
temporary tensor: T 𝑖 𝑗 =

∑
𝑘 B𝑖 𝑗 · 𝐶𝑖𝑘 · 𝐷 𝑗𝑘 ; 𝐴𝑖𝑙 =

∑
𝑗 T 𝑖 𝑗 ·

𝐸 𝑗𝑙 . This computation has a complexity of 𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 ) (𝐾 +
𝐿)). However, writing complex computations as separate
TACO expressions has two downsides. First, it is no longer
possible to apply schedule transformations, such as outer-
loop parallelization, across the entire computation. Second,
if the computations require large temporaries, materializing
them results in performance degradation due to exhaustion
of the last-level cache.
The correct schedule looks like neither the single-kernel

approach nor the separate-kernels approach. Instead, it per-
forms a single outer loop over the 𝑖 and 𝑗 indices and then
performs the inner loop of the first kernel, stores the re-
sults in a temporary, then uses those results in the inner
loop of the second kernel. This approach has an asymptotic
complexity of 𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 ) (𝐾 + 𝐿)), comparable to the sepa-
rate kernel approach, but because the temporary is only live
within the inner loops, it is much smaller and hence can fit
in cache. Moreover, the overall computation is a single loop
nest, allowing for the outer loops to be parallelized, tiled, etc.

The above schedule transformation is analogous to ones in
dense tensor contraction that combine loop distribution and
fusion to create imperfectly-nested loops [4]. But it is less
clear how to use this technique on sparse loops for several
reasons: (i) analysis is harder, because of the sparse tensor
accesses and non-affine bounds, as polyhedral techniques do
not work due to the use of dynamic array bounds in loops;
(ii) producing good schedules is harder because performance
can degrade by forcing a sparse tensor to be processed using
dense iteration; and (iii) code generation is harder, as you

1Highlighted tensors denote sparse tensors.
2𝑛𝑛𝑧 (𝐵𝐼 𝐽 ) denotes the nonzero values of the sparse tensor B bounded by

the hierarchical accesses 𝑖 and 𝑗 .
3𝐾 and 𝐿 denote the number of iterations or the dimensionality of 𝑘 and 𝑙

dimensions respectively.

need to deal with storage format-specific iteration machin-
ery. For example, a sparse matrix and dense matrix multi-
plication (SpMM) may be performed with a sparse matrix
of Compressed Sparse Row format (CSR), Coordinate for-
mat (COO), etc. [8]. Hence, the compiler needs to tackle
format-specific access patterns to generate code for SpMM
for different storage formats.
Our insight for tackling the complex scheduling trans-

formations needed to avoid asymptotic blowup while pre-
serving locality, is to use dense temporaries and introduce
Sparse Loop Nest Restructuring (SparseLNR)4 for tensor com-
putations. Crucially, these transformations can co-exist with
TACO’s other scheduling primitives [30].

This paper introduces a new representation called branched
iteration graphs that support imperfect nesting of sparse it-
eration. Given this representation, our compiler can restruc-
ture sparse tensor computations to remove the asymptotic
blowup in sparse tensor algebra code generation while de-
livering good locality. Our specific contributions are;

Branched iteration graph for tensor multiplications We
generalize the iteration graph intermediate representa-
tion (IR) of TACO to support imperfectly nested loop
structures.

Branch IR transformation Wedesign a sparse tensor trans-
formation that transforms iteration graphs to express
fusion and distribution.

New scheduling primitives We introduce a new schedul-
ing primitive that lets programmers integrate fusion
and distribution into TACO schedules.

For several real-world tensor algebra computations (De-
scribed in Section 6.2) on various datasets (Shown in Ta-
ble 1), using our new representation and transformations,
we show that SparseLNR can achieve 1.23ś1997x (single-
thread) and 0.86ś1263x (multi-thread) speedup over base-
line TACO schedules, and 0.27ś3.21x (single-thread) and
0.51ś3.16x (multi-thread) speedup over TACO schedules of
manually separated computations.

2 Background

This section provides the necessary background to under-
stand sparse tensor algebra computations and different ways
to schedule those computations.

2.1 Tensor Index Notation

Tensor index notation is a high-level representation used for
describing tensor algebra expressions [17]. Throughout the
paper we will be using both the standard notation and tensor

index notation to denote tensor operations. For instance, the
tensor computation 𝐴𝑖𝑘 =

∑
𝑗 B𝑖 𝑗𝐶 𝑗𝑘 written in standard

notation is equivalent to 𝐴(𝑖, 𝑘) = B(𝑖, 𝑗) ∗𝐶 ( 𝑗, 𝑘), written
in tensor index notation.5 Here, all the tensors are matrices

4https://github.com/adhithadias/SparseLNR
5This computation is classic matrix-matrix multiply.
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and indices 𝑖, 𝑗, and 𝑘 are used to iterate over matrices 𝐴, 𝐵,
and𝐶 . In this computation, index 𝑗 must be iterated over the
intersection of second dimension coordinates of 𝐵 and first
dimension coordinates of 𝐶 , whereas index 𝑖 and 𝑘 must be
iterated over the first and second dimension coordinates of
𝐵 and 𝐶 respectively.

2.2 Iteration Graph

We first summarize TACO’s iteration graph representation,
which Kjolstad et al. describes in great detail [17]. When
computing the tensor expression A𝑖 𝑗 =

∑
𝑘 B𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘 , co-

ordinates (𝑖, 𝑗) of B, coordinates (𝑖, 𝑘) of C, and ( 𝑗, 𝑘) of D
need to be iterated. An iterator on indices (𝑖, 𝑗, 𝑘) can it-
erate through all the coordinates of 𝐵, 𝐶 , and 𝐷 and store
the results in 𝐴. TACO represents the iteration space of a
tensor expression using an iteration graph, an intermediate
representation that defines tensor access patterns of indices.
Figure 1 shows a few examples of iteration graphs. For

example, a tensor expression A𝑖 𝑗 =
∑
𝑘 B𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘 results

in an iteration graph as shown in Figure 1a such that the
indices lay in 𝑖, 𝑗, 𝑘 order. Here, the order of 𝑗 and 𝑘 is not
strict if C and D are dense. Figures 1b and 1c are the iteration
graphs of tensor expressions 𝐴𝑖𝑘 =

∑
𝑘𝑙 B𝑖𝑘𝑙𝐶𝑙 𝑗𝐷𝑘 𝑗 and 𝑦𝑖 =∑

𝑗𝑘 B𝑖 𝑗C 𝑗𝑘𝑣𝑘 respectively.
Nodes in the iteration graph represent indices of tensor

index notation. In other words, the iteration graph is a di-
rected graph of these indices. These indices of the graph are
topologically sorted such that it imposes sparse iteration con-
straints (i.e.,constraints that define the sparse tensor access
patterns of indices due to lack of random access in general).
Each index in the iteration graph can be expressed as a loop
to iterate through a tensor. Therefore, a given tensor multi-
plication can be computed using nested loops, where each
loop corresponds to an index variable in the iteration graph.

Definition 2.1. An iteration graph is a directed graph 𝐺 =

(𝑉 , 𝑃) where 𝑉 = 𝑣1, 𝑣2, ..., 𝑣𝑛 defines the set of index vari-
ables in the tensor index notation, and 𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑛 de-
fines the set of tensor paths, a tensor path is a tuple of index
variables associated with a particular tensor variable.

2.3 Scheduling Primitives

A tensor expression can have multiple valid schedules of
computation as there are different valid orders of iterating
through indices and multiple parallelization strategies. Kjol-
stad et al. [17] and Senanayake et al. [30] have introduced
scheduling primitives for tensor computations, with which
the user can describe schedules to execute a given tensor
computation. The scheduling primitives in TACO are the
split directive to split a loop into two loops for tiling, col-
lapse directive to collapse doubly nested loops into a single
loop for balancing load among threads, reorder directive6

6Also referred to as permute directive in the literature.

(a) (b) (c)

Figure 1. Iteration graphs (a) SDDMM kernel A𝑖 𝑗 =
∑
𝑘 B𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘 (b) Khatri-Rao product (MTTKRP) kernel

A𝑖𝑘 =
∑
𝑘𝑙 B𝑖𝑘𝑙𝐶𝑙 𝑗𝐷𝑘 𝑗 (c) Sparse matrix vector multipli-

cation (SpMV) kernel preceded by another SpMV kernel
𝑦𝑖 =

∑
𝑗𝑘 B𝑖 𝑗 (C 𝑗𝑘𝑣𝑘 )

to reorder loops, unroll directive to perform loop unrolling,
parallelize directive to parallelize loops with OpenMP-based
multithreaded execution (for outer loops) or vectorized ex-
ecution (for inner loops). Furthermore, Kjolstad et al. [16]
added precompute scheduling directive to use intermediate
dense workspaces to remove sparse accesses when storing
data values to output tensors.

3 Overview

There are a number of factors taken into account when decid-
ing whether to apply transformations across kernels. If the
working sets are small, running the kernels separately with
good schedules defined on each individual kernel maybe
faster than a fused kernel. But if the working sets are large
resulting in large temporaries that do not fit in caches, it is
better to fuse two kernels and try to maximize the data reuse
by using the results produced by the first kernel and execute
part of the second kernel without waiting for the completion
of the first kernel.

3.1 Motivating Example

Consider the computation, 𝐴 = 𝑆𝑝𝑎𝑟𝑠𝑒 𝐵 ⊙ (𝐶𝐷) · 𝐸 that is
used in graph embedding and graph neural networks [27, 36].
The Hadamard product, or element-wise product, is denoted
by ⊙ and matrix multiplication is denoted by ·. We can per-
form the above computation in the following order with
fine-grained smaller tensor operations. 𝑇 = 𝑔𝑒𝑚𝑚(𝐶, 𝐷),
𝑆𝑝𝑎𝑟𝑠𝑒 𝑈 = 𝑠𝑝𝑒𝑙𝑚𝑚(𝑆𝑝𝑎𝑟𝑠𝑒 𝐵,𝑇 ), 𝐴 = 𝑠𝑝𝑚𝑚(𝑆𝑝𝑎𝑟𝑠𝑒 𝑈 , 𝐸).
Here, 𝑔𝑒𝑚𝑚 stands for the generalized matrix multiplication,
𝑠𝑝𝑒𝑙𝑚𝑚 stands for sparse element-wise multiplication, and
𝑠𝑝𝑚𝑚 stands for sparse matrix multiplication. Materializa-
tion of these intermediate tensors leads to multiple issues:

1. Dense matrix multiplication results in redundant calcula-
tions and unnecessary increase in asymptotic complexity,
because later it is sampled by the Sparse B matrix.
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1 int32_t jY = 0;

2 for (int32_t i = 0; i < C1_dimension; i++) {

3 for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {

4 int32_t j = B2_crd[jB];

5 double tkY_val = 0.0;

6 for (int32_t k = 0; k < D2_dimension; k++) {

7 tkY_val += B_vals[jB] ∗ C_vals[i,k] ∗ D_vals[j,k];

8 }

9 Y_vals[jY] = tkY_val;

10 jY++;

11 }

12 }
(a) Y 𝑖 𝑗 =

∑
𝑘 B𝑖 𝑗𝐶 𝑗𝑘𝐷𝑘 𝑗

1 for (int32_t i = 0; i < Y1_dimension; i++) {

2 for (int32_t jY = Y2_pos[i]; jY < Y2_pos[(i + 1)]; jY++) {

3 int32_t j = Y2_crd[jY];

4 for (int32_t l = 0; l < E2_dimension; l++) {

5 A_vals[i,l] = A_vals[i,l] + Y_vals[jY] ∗ E_vals[j,l];

6 }

7 }

8 }
(b) 𝐴𝑖𝑙 =

∑
𝑗 Y 𝑖 𝑗𝐸 𝑗𝑙

1 for (int32_t i = 0; i < C1_dimension; i++) {

2 for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {

3 int32_t j = B2_crd[jB];

4 for (int32_t l = 0; l < E2_dimension; l++) {

5 double tkA = 0.0;

6 for (int32_t k = 0; k < D2_dimension; k++) {

7 tkA += B_vals[jB]∗ C_vals[i,k]∗ D_vals[j,k]∗ E_vals[j,l];

8 }

9 A_vals[i,l] = A_vals[i,l] + tkA;

10 }

11 }

12 }
(c) 𝐴𝑖𝑙 =

∑
𝑗𝑘 B𝑖 𝑗𝐶 𝑗𝑘𝐷𝑘 𝑗𝐸 𝑗𝑙

1 for (int32_t i = 0; i < C1_dimension; i++) {

2 for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {

3 int32_t j = B2_crd[jB];

4 double Y_val = 0.0;

5 for (int32_t k = 0; k < D2_dimension; k++) {

6 Y_val += B_vals[jB] ∗ C_vals[i,k] ∗ D_vals[j,k];

7 }

8 for (int32_t l = 0; l < E2_dimension; l++) {

9 A_vals[i,l] = A_vals[i,l] + Y_val ∗ E_vals[j,l];

10 }

11 }

12 }
(d) 𝐴𝑖𝑙 =

∑
𝑗 (
∑
𝑘 B𝑖 𝑗𝐶 𝑗𝑘𝐷𝑘 𝑗 )𝐸 𝑗𝑙

Figure 2. Different schedules of executing𝐴𝑖𝑙 =
∑
B𝑖 𝑗 ·𝐶 𝑗𝑘 ·𝐷𝑘 𝑗 · 𝐸 𝑗𝑙 . The code snippet 2b executed immediately after the code

snippet 2a computes the same result as fused operations explained in the code snippets 2c and 2d. Here, the code snippet 2c
has a perfectly nested loop structure while the code 2d describes a nested loop structure for the same computation.

2. Values are produced long before they are consumed, which
may cause them to be evicted from caches.

3. Having intermediate tensors is justifiable if intermediate
results are needed for some other computation, neverthe-
less a single kernel maybe needed for faster operation.

Introducing kernel fusion to tensor computations can re-
duce these issues [27]. In this section, we discuss different
schedules for performing the computation 𝐴 = 𝑆𝑝𝑎𝑟𝑠𝑒 𝐵 ·

(𝐶𝐷) ∗ 𝐸, and motivate the need for supporting loop fusion
for sparse tensor computations.
First, we discuss the opportunities for distribution in the

running example using a fused kernel with high asymptotic
complexity (Section 3.1.1). Next, we discuss opportunities for
fusion when the computation is split into two smaller kernels
(Section 3.1.2). Finally, in Section 3.1.3 we discuss howwe can
exploit these different scenarios to construct a distributed
(versus the fused kernel in Section 3.1.1) and then fused (as
compared to the kernel in Section 3.1.2) implementation.

3.1.1 Asymptotic expensive fused kernel. The compu-
tation 𝐴𝑖𝑙 =

∑
B𝑖 𝑗 ·𝐶𝑖𝑘 · 𝐷 𝑗𝑘 · 𝐸 𝑗𝑙 can be fully realized using

a nested loop iterator defined by all indices 𝑖, 𝑗, 𝑘, and 𝑙 . The
generalized way of producing kernels for a tensor multipli-
cation of this kind in TACO is by generating an iteration
graph (see Section 2.2). Since the iteration graph contains all
the indices in a linear tree pattern, TACO generates a kernel

as in Figure 2c, with time complexity of𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 )𝐾𝐿) due
to the quadruple linearly nested loops (lines 1ś6).

3.1.2 Asymptotically inexpensive distributed kernels.

However, the computation𝐴𝑖𝑙 =
∑
𝑘 𝑗 B𝑖 𝑗 ·𝐶𝑖𝑘 ·𝐷 𝑗𝑘 ·𝐸 𝑗𝑙 can be

performed by evaluating two smaller kernels: sampled dense-
densematrixmultiplication (SDDMM):Y 𝑖 𝑗 =

∑
𝑘 B𝑖 𝑗 ·𝐶𝑖𝑘 ·𝐷 𝑗𝑘

followed by SpMM: 𝐴𝑖𝑙 =
∑
𝑗 Y 𝑖 𝑗 · 𝐸 𝑗𝑙 . As these separate

kernels are triply nested loops (lines 2ś6 in Figure 2a and
1ś3 in Figure 2b), they have lower asymptotic complexity.

Here, the Hadamard product, in SDDMM, results in Y 𝑖 𝑗
matrix’s sparse structure to be same as B𝑖 𝑗 . Therefore, the
asymptotic complexity of performing two tensor computa-
tions with an intermediary matrix Y 𝑖 𝑗 is𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 ) (𝐾 +𝐿)).
These separate kernels can be realized through loop distri-
bution of the kernel from Section 3.1.1.
Although we achieve a lower asymptotic complexity, we

are using an intermediary tensor to pass values between SD-
DMM and SpMM, Hence, we miss the opportunity to exploit
the temporal locality of the operation. The tensor contrac-
tion computed using linearly nested loops in Section 3.1.1.
is expensive because of the high degree of nesting in the
computation and the redundant duplicate computations, but
may still be good for memory-constrained systems because
the computation does not require any memory for storing
intermediate results.
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Using a temporary tensor to hold the result of the SDDMM
operation is acceptable as long as the dimensionality of the
index variables 𝑖 and 𝑗 , and the density of the temporary
tensor, are small. The code generation algorithm in TACO
is limited to generating sequential code when the output
tensor is of sparse format, (see 𝑗𝑌 variable in Figure 2a). The
kernel is sequential because the data format used to store
the results of the computation limits random accesses. Here,
the output of SDDMM operation is sparse (and the output
from SpMM is dense) in which case we cannot parallelize
the outermost loop of the SDDMM operation in separate
kernel execution whereas the kernel in Figure 2c can be
parallelized because the output of the combined kernel is
dense. This is another valid reason to prefer the single kernel
implementation despite its high asymptotic complexity.

3.1.3 Fused kernel with low asymptotic complexity.

Since both the kernels Y 𝑖 𝑗 =
∑
B𝑖 𝑗 ·𝐶𝑖𝑘 ·𝐷 𝑗𝑘 in Figure 2a and

𝐴𝑖𝑙 =
∑
Y 𝑖 𝑗 · 𝐸 𝑗𝑙 in Figure 2b have the same access patterns

in their two outer-most loops, we can fuse them as shown
in Figure 2d, removing the use of the intermediary tensor
to pass the values between the two separate kernels as ex-
plained in Section 3.1.2. This execution has a time complexity
of 𝑂 (𝑛𝑛𝑧 (𝐵𝐼 𝐽 ) (𝐾 + 𝐿)), and at the same time removes the
usage of a large tensor temporary by using an imperfectly
nested loop structure (Lines 1ś2,5 and 8 in Figure 2d).
Note that this partially-fused kernel provides the best of

both worlds. Like the separate kernel approach, it has low
asymptotic complexity. Like the fused kernel approach, it
has good locality (since the temporaries only need to store
data from the inner loops, their sizes much smaller and the
reuse distances are reduced). Furthermore, because the outer
loops of the partially fused are shared between both compu-
tations, and there is no longer a loop-carried dependence for
SDDMM, the overall kernel can be parallelized in the same
way as the kernel of Figure 2c.

3.2 Our approach: SparseLNR

While the schedule of computation in Figure 2d provides
both good asymptotic complexity and good locality, no exist-
ing system can automatically generate this type of schedule
when generating code for sparse computations. TACO only
handles łlinearž iteration graphs that yield perfectly-nested
loops, and hence cannot handle the partially-fused, imper-
fectly nested loop structure needed by our example. On the
other hand, prior work on distribution and fusion for tensor
computations [4], can support this type of code structure
only for operations on dense tensors.

SparseLNR provides mechanisms for generating the code
in Figure 2d from a high level representation of the computa-
tion as well as scheduling directives that inform the structure
of the code. We introduce several components to perform
this code generation and Section 4 discuss them in detail.

1. We introduce a new representation called a branched itera-
tion graph that allows the representation of partially-fused
iteration structures, where some loops in a loop nest are
common between computations and others are separate.
Hence, this graph represents imperfect nesting. We care-
fully place constraints on these graphs to ensure that the
requirements of nested iteration over sparse structures are
met. The branched iteration graph is described in more
detail in Section 4.2.

2. We introduce new scheduling primitives for loop distri-
bution and fusion that allow programmers to generate the
branched iteration graph by applying scheduling trans-
formations to linear TACO iteration graph. We describe
the primitives and describe how they systematically trans-
form a branched iteration graph in Section 4.3.1.

3. We adapt TACO’s code generation strategies to the branched
iteration graph, allowing SparseLNR to generate sparse
iteration code for tensor kernels that have had our distri-
bution and fusion transformations applied to them. We
discuss code generation in Section 4.4.

4 Detailed Design

This section describes the key components of SparseLNR.
Section 4.1 describes SparseLNR’s new branched iteration
graph representation. Section 4.2 shows how partial fusion
is represented through iteration graph transformations. Sec-
tion 4.3.1 explains how scheduling directives can guide par-
tial fusion while still composing with TACO’s existing sched-
uling language. Finally, Section 4.4 explains how SparseLNR
generates code.

4.1 Representation

SparseLNR uses a branched iteration graph to represent sparse
tensor algebra kernels, which is an extension to the concrete
index notation described in [16]. A branched iteration graph
can be understood as an iteration graph with branches in
index access patterns. By transforming the linear index tree
iteration graph generated by TACO to a branched iteration
graph in the context of tensor multiplication, we try to re-
move the asymptotic complexity that arises from perfectly
linearly nested loops in dense/sparse iterations.

Definition 4.1. A branched iteration graph is a directed
graph 𝐺 = (𝑉 ,𝐺𝑝 ,𝐺𝑐 , 𝑃), where 𝑉 is a set of unbranched
indices, organized as a sequence starting from the root of
the iteration graph that then has two children graphs, 𝐺𝑝
(producer) and 𝐺𝑐 (consumer), that define the two branches
of 𝐺 , where 𝐺𝑝 and 𝐺𝑐 themselves are branched iteration
graphs, such that there is a dependence edge from 𝐺𝑝 to 𝐺𝑐
and a boundary between 𝑉 and (𝐺𝑐 ,𝐺𝑝 ). The dependence

edge tracks the common set of indices in 𝐺𝑝 and 𝐺𝑐 . 𝑃 =

𝑝1, 𝑝2, . . . , 𝑝𝑛 defines the set of tensor paths, a tuple of indices
associated with a particular tensor variable.
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(a) Original kernel (b) SDDMM (c) SpMM (d) Producer/Consumer kernels (e) Fused kernel

Figure 3. loopfuse transformation performed on 𝐴𝑖𝑙 =
∑
𝑗𝑘 B𝑖 𝑗𝐶𝑖𝑘𝐷 𝑗𝑘𝐸 𝑗𝑙

Intuitively, where a TACO iteration graph corresponds to
a perfectly-nested loop where the order of the vertices in
the graph corresponds to the nesting order of the loops, a
branched iteration graph represents an imperfectly nested
loop. 𝑉 corresponds to the common outer loops, just as in a
TACO graph, while 𝐺𝑝 and 𝐺𝑐 correspond to the inner loop
nests (which can themselves be imperfectly nested). For ex-
ample, in Figure 3e,𝑉 refers to the set of indices {𝑖, 𝑗 }, and𝐺𝑐 ,
𝐺𝑝 refer to the boxes Producer and Consumer, respectively.

4.2 Branched Iteration Graph Transformation

In Section 3.1 we saw how we could perform loop fusion
or distribution for a sparse tensor algebra computation. We
recognize this pattern in index traversal and exploit it to
generate the branched iteration graph. We name this pat-
tern recognition algorithm fusion after distribution because
it proceeds in two steps as described in Algorithm 1: (i) dis-
tributing the perfectly-nested indices in the iteration graph,
and then (ii) fusing the common indices.

Topologically sorted iteration graph. The iteration graph
in Figure 3a relates to the index expression 𝐴(𝑖, 𝑙) = B(𝑖, 𝑗) ∗

𝐶 (𝑖, 𝑘)∗𝐷 ( 𝑗, 𝑘)∗𝐸 ( 𝑗, 𝑙), where B is sparse.We denote this ker-
nel as <SDDMM, SpMM>. The indices here are topologically
ordered such that the ordering of the indices are constrained
by the sparsity patterns of the sparse tensors. The ordering
𝑖 → 𝑗 → 𝑘 → 𝑙 would be consistent with the access pat-
terns of all the tensors 𝑖 → 𝑙 in A, 𝑖 → 𝑗 in B, 𝑖 → 𝑘 in C,
𝑗 → 𝑘 in D, and 𝑗 → 𝑙 in E. However, there should be a
hard ordering imposed on 𝑖 and 𝑗 index variables because
𝑗 cannot be accessed without accessing 𝑖 first. The index
access patterns of the tensor access variables are marked in
the graph as paths. 𝐴1 denotes the first access dimension
of the A and 𝐴2 denotes the second access dimension of
the A tensor. The fusion algorithm requires the iteration
graph in Figure 3a and the tensor index notation expression

Algorithm 1 Loop fusion after distribution

Input: Topologically Ordered Iteration Graph 𝐺𝐼 = (𝐼𝐺 , 𝑃)
Input: Index Expression 𝐸𝑥𝑝𝑟 : 𝐴𝑜𝑢𝑡 = 𝐴1 ∗𝐴2 ∗ ... ∗𝐴𝑛
Input: Bool 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒
Output: Branched Iteration Graph 𝐺 ′𝐼

1: fusible = isFusible(𝐺𝐼 )
2: if !fusible then return 𝐺𝐼
3: 𝑃𝑇 ′ = 𝑃𝐴𝑜𝑢𝑡

− 𝑃𝐴𝑛
⊲ index path for temporary tensor 𝑇 ′

4: 𝐺𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐸𝑥𝑝𝑟𝑡𝑒𝑚𝑝 := 𝑇 ′(𝑃𝑇 ′) = 𝐸𝑥𝑝𝑟 \𝐴𝑛
5: 𝐺𝐼−𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐸𝑥𝑝𝑟𝑡𝑒𝑚𝑝 := 𝐴𝑜𝑢𝑡 = 𝑇

′(𝑃𝑇 ′) ∗𝐴𝑛
6: if recursive then
7: 𝐺𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐶𝑎𝑙𝑙 (𝐺𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 ,

↩→ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐸𝑥𝑝𝑟𝑡𝑒𝑚𝑝 , 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒)

8: 𝐿𝑖𝑠𝑡𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = 𝐺𝑒𝑡𝐼𝑛𝑑𝑖𝑐𝑒𝑠 (𝐺𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 )

9: 𝐿𝑖𝑠𝑡𝐼−𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 = 𝐺𝑒𝑡𝐼𝑛𝑑𝑖𝑐𝑒𝑠 (𝐺𝐼−𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 )

10: Define: 𝐼𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 = ∅
11: for Each 𝑖 ∈ 𝐼𝐺 do

12: if 𝑖 ∈ 𝐿𝑖𝑠𝑡𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 and 𝑖 ∈ 𝐿𝑖𝑠𝑡𝐼−𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 then

13: 𝐼𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 = 𝐼𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 ∪ 𝑖

14: else break;

15: Define: 𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 = ∅
16: for 𝑖 ← 1 to 𝑁 do

17: if 𝑖 ∉ 𝐼𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 and 𝑖 ∈ 𝐿𝑖𝑠𝑡𝐼−𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 and

↩→ 𝑖 ∈ 𝐿𝑖𝑠𝑡𝐼−𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 then

18: 𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 = 𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 ∪ 𝑖

19: else break;

20: Define: 𝑇 (𝑃𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 )
21: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐸𝑥𝑝𝑟 := 𝑇 (𝑃𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 ) = 𝑇

′(𝑃𝑇 ′)

22: 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝐸𝑥𝑝𝑟 := 𝐴𝑜𝑢𝑡 = 𝑇 (𝑃𝐼𝑓 𝑢𝑠𝑎𝑏𝑙𝑒 ) ∗𝐴𝑁
23: return 𝐺𝑟𝑎𝑝ℎ𝑅𝑒𝑤𝑟𝑖𝑡𝑒 (𝐺𝐼 , 𝐼𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 ,

↩→ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐸𝑥𝑝𝑟,𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝐸𝑥𝑝𝑟 )

𝐴(𝑖, 𝑙) = B(𝑖, 𝑗) ∗ 𝐶 (𝑖, 𝑘) ∗ 𝐷 ( 𝑗, 𝑘) ∗ 𝐸 ( 𝑗, 𝑙). We identify the
iteration graph as fusible if there are indices that are only
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present in the last tensor and the output tensor in the tensor
expression (line 1 of the Algorithm 1).

Distribution into two kernels. The description of the
tensor kernel above captures all the information of perform-
ing kernel executions SDDMM: T ′(𝑖, 𝑗) = B(𝑖, 𝑗) ∗𝐶 (𝑖, 𝑘) ∗

𝐷 ( 𝑗, 𝑘) and SpMM: 𝐴(𝑖, 𝑙) = T ′(𝑖, 𝑗) ∗ 𝐸 ( 𝑗, 𝑙) sequentially.
(Notice that separation of kernels requires a temporary ma-
trix 𝑇 ′) Therefore, we can recover the separate 2 smaller
kernels that would yield the same result given the larger
tensor expression. We denote the first kernel as the producer
and the second kernel as the consumer. To find these sepa-
rate smaller kernels, we need to remove the last tensor 𝐸 ( 𝑗, 𝑙)
from the original expression. Line 8 of the Algorithm 1 cre-
ates the producer index expression and iteration graph for
the tensor computation performed first (SDDMM in our run-
ning example) by removing the last tensor from the original
expression, and then line 9 of the Algorithm 1 creates the
consumer index expression and iteration graph for the tensor
computation that is performed second (SpMM in our run-
ning example) by adding it back to the producer’s expression.
These 2 separate kernels would have iteration graphs shown
in Figures 3b and 3c respectively. We perform this recovery
of the two separate operations in order to identify the fusible
and shared indices between two separate tensor operations
as we will further explain in a next paragraph.

Fusing common loops. Oncewe have the iteration graphs
for the separate kernels we reason about them together
(See 3d). We reason that both the sparse iterations need
to iterate through the space using index variables 𝑖 and 𝑗 .
Also, iteration space defined by the index 𝑘 is iterated only
by the SDDMM operation, and the iteration space defined
by the index 𝑙 is only iterated by the SpMM operation. But
those iterations over index 𝑘 and 𝑙 need to happen one af-
ter the other. The producer-consumer dependence must be
satisfied such that the values consumed by the consumer
must have been produced by the producer before its use.
The values shared between the producer and consumer can
be stored in an intermediate scratch memory. Furthermore,
the comparison of the two graphs, the producer graph and
the consumer graph, helps identify the indices that can and
cannot be shared among the iterations.

The producer graph in Figure 3b and the consumer graph
in Figure 3b have a common prefix defined by some indices
in their iteration graphs. We run a prefix match to identify
the shared indices by the two kernels (lines 8ś14 of the Al-
gorithm 1), in Figure 3d. We see that both 𝑖 and 𝑗 indices are
shared, and the other variables are not shared. The addition
of indices 𝑖 and 𝑗 to the set of sharable indices is described
in lines 10ś14 of the Algorithm 1. We identify this point as
a nest boundary in the iteration graph 3d, and denote the
indices above the nest boundary as fusible. The final out-
put of executing the fusion after distribution algorithm is a

branched iteration graph. Therefore, if the algorithm is ap-
plied recursively (see the kernel <SDDMM, SpMM, GEMM>
in the benchmark Section 6.2) on the producer (lines 6ś7 of
the Algorithm 1), our algorithm can still match the prefix
even if the producer graph is already branched.

Materializing temporary variables. The next step of
the Algorithm is to identify the indices that cannot be fused
as outermost loops but are common to the producer and the
consumer. In Figure 3d we see that there are no common
variables below the nest boundary. The variables that are
below the nest boundary line and common to both the pro-
ducer and consumer define the dimensions of the temporary
variable that is shared between them. For the case of <SD-
DMM, SpMM> described in Figure 3d, since no indices are
common below the nest boundary line, we can define the
temporary as a scalar. However, for the same case of <SD-
DMM, SpMM> described in Section 4.3.1, where transpose of
𝐷 is used to define the computation, we can see that index 𝑗
is a common index below the nest boundary line. Therefore,
the algorithm defines a temporary vector bounded by the
size of the index 𝑗 , Lines 15-19 of the Algorithm 1 explain
how we perform the identification of the common indices
below the nest boundary, and line 20 defines this temporary
variable.

Rewrite the iteration graph. After we find the fusible
indices, shared indices and define the temporary variable,
we define the producer expression and consumer expression
using the temporary variable that is shared between the
producer and the consumer (lines 21, 22 of the Algorithm 1).
Then, we rewrite the iteration graph to model this behavior
with the temporary variable, the producer and the consumer
(see Figure 3d) which would eventually generate the code
shown in Figure 2d for our running example.

4.3 Scheduling

In this section we describe, (1) the invocation of scheduling
transformation and (2) the impact it has on the space of
possible schedules.

4.3.1 Scheduling Directive. SparseLNR introduces a new
scheduling directive to TACO. The user can call the loopfuse
scheduling transformation as shown in Figure 4b with other
scheduling directives. Here, 1 refers to applying the algo-
rithm once. By passing 2 or a higher number, the algorithm
can be applied recursively.

Sometimes it is necessary to combine loopfusewith other
TACO scheduling directives. Hence, it is important that our
new directive compose with the existing scheduling lan-
guage. For example, applying Algorithm 1 to the tensor ex-
pression𝐴(𝑖, 𝑙) = B(𝑖, 𝑗) ∗𝐶 (𝑖, 𝑘) ∗𝐷 (𝑘, 𝑗) ∗𝐸 ( 𝑗, 𝑙) would not
yield the code in Figure 2d by default because now the access
pattern of the D matrix is different since we are using the
transpose of 𝐷 for this example. This difference results in a



ICS ’22, June 28ś30, 2022, Virtual Event, USA Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, and Milind Kulkarni

(a) Original kernel

(b) Scheduling directives

(c) Transformed kernel

Figure 4. The loopfuse transformation performed on 𝐴𝑖𝑙 =∑
𝑗𝑘 𝐵𝑖 𝑗𝐶𝑖𝑘𝐷𝑘 𝑗𝐸 𝑗𝑙 .

different iteration graph as shown in Figure 4a, because now
the iteration graph needs to preserve the ordering of 𝑖 → 𝑗

for B, 𝑖 → 𝑘 for D, 𝑘 → 𝑗 for D, 𝑗 → 𝑙 for E, and 𝑖 → 𝑙 for A,
with a hard ordering of 𝑖 → 𝑗 because B is a sparse matrix.
Applying the fusion after distribution algorithm would result
in an iteration graph as depicted in Figure 4c.

However, since D is dense, there is no hard constraint on
the ordering of indices 𝑘 and 𝑗 . Therefore, to arrive at the
code in Figure 2d, a loop reordering can be performed before
the loopfuse scheduling directive (See Figure 4b).
The nest boundary between the branching point in the

iteration graph constrains loop reordering between the nest
boundary. But loop reordering can be still allowed in indices
within nest boundaries.

4.3.2 Scheduling Space. In our current implementation,
if two kernels have 𝑛 common outer loops, we fuse them all.
However, if loop reordering is possible, and we choose only
certain loops to be fused, then there are 2𝑛 possible sched-
ules to start with, given that there are 𝑛 number of fusible
loops (i.e. 𝑛 number of common iterators in the two kernels).
This is an upper bound without considering any constraints
of sparse access patterns. Reordering of inner loops can be
performed after fusion, and other scheduling directives (split,
parallelization, etc.) can be applied separately, giving more
scheduling opportunities with imperfect nesting. This sched-
uling space is obviously very large, so smart strategies for
searching that space is a promising avenue for future work.

4.4 Code Generation

We carefully redesigned intermediate representation (IR) in
TACO to support the branched iteration graph and manage
temporaries such that code generation backend does not re-
quire any changes. We rewrite the graph loop structure with

where statements defining a producer-consumer relationship.
This placement of temporaries for the producer-consumer
relationship and the change of iteration graph explained in
Section 4.2 preserves all the attributes that are necessary for
TACO code generation backend.

In TACO each index in the iteration graph is converted
to one or more loops to iterate through dense loops or co-
iterate over the levels of sparse data formats. An iteration
lattice [17] is used to co-iterate through the intersections
of the sparse dimensions which results in a single for-loop,
single while-loop or multiple while-loops.

5 Implementation

We implement the branch iteration graph transformation
described in Section 4 on top of the TACO [17] intermedi-
ate representation (IR). Furthermore, we introduce a new
scheduling directive to separate it from the algorithmic lan-
guage and to provide the scheduling language with more
opportunities to generate more (performant) schedules.
We change the iteration graph [17] and use the concrete

index notation [16] to introduce intermediate temporaries
that are shared between the producer and the consumer. We
implement a nest boundary between the fused loops and
shared index loops to constrain performing loop reordering
transformations between them. In our running example, the
user cannot interchange loops with an outer level, once the
distribution operation is performed.
This new transformation can be used in the context of

tensor multiplication. Hence, it does not generalize to ten-
sor expressions with tensor additions. We limit the number
of tensors and index variables removed from the index ex-
pression, to identify the producer and consumer graphs, per
iteration to one. We believe that the algorithm could be gen-
eralized to support fusion of indices shared between multiple
tensors which would be able to support high order tensors
and complex tensor contractions.

6 Evaluation

We compare SparseLNR to two other techniques:
TACO Original. Given a large combined index expression
containing multiple smaller index expressions, the code gen-
erated by TACO has a perfectly nested loop structure with at
least one loop per each index variable in the index expression.
We refer to this version as TACO Original.
TACO Separate. In some cases, the asymptotic complexity
of TACO Original can be reduced by manually separating a
larger index expression into multiple smaller index expres-
sions by using temporary tensors to store the intermediate
results. We refer to this version as TACO Separate. When
there are multiple ways to break down the computation into
smaller kernels, we evaluate all those combinations and re-
port the best execution time.
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