2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) | 978-1-6654-0584-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/CG053902.2022.9741285

DARM: Control-Flow Melding for SIM

Divergence Reduction

Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, USA
cgusthin@purdue.edu, ksundar@purdue.edu, milind@purdue.edu

Abstract—GPGPUs use the Single-Instruction-Multiple-
Thread (SIMT) execution model where a group of threads—
wavefront or warp—execute instructions in lockstep. When
threads in a group encounter a branching instruction, not
all threads in the group take the same path, a phenomenon
known as control-flow divergence. The control-flow divergence
causes performance degradation because both paths of the
branch must be executed one after the other. Prior research
has primarily addressed this issue through architectural
modifications. We observe that certain GPGPU kernels with
control-flow divergence have similar control-flow structures with
similar instructions on both sides of a branch. This structure
can be exploited to reduce control-flow divergence by melding
the two sides of the branch allowing threads to reconverge early,
reducing divergence. In this work, we present DARM, a compiler
analysis and transformation framework that can meld divergent
control-flow structures with similar instruction sequences. We
show that DARM can reduce the performance degradation from
control-flow divergence.

Index Terms—GPGPUs, Control-Flow Divergence, Compiler
Optimizations

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPU) are
capable of executing thousands of threads in parallel, effi-
ciently. Advancements in the programming models and com-
pilers for GPUs have made it much easier to write data-
parallel applications. Unfortunately, exploiting data parallelism
does not immediately translate to better performance. One key
reason for the lack of performance portability is that GPGPUs
are not capable of executing all the threads independently.
Instead threads are grouped together into units called warps,
and threads in a warp execute instructions in lockstep. This
is commonly referred to as the Single Instruction Multiple
Thread (SIMT) execution model.

The SIMT model suffers performance degradation when
threads exhibit irregularity and can no longer execute in lock-
step. Irregularity comes in two forms, irregularity in memory
accesses patterns (i.e. memory divergence) and irregularity in
the control-flow of the program (i.e. control-flow divergence).
Memory divergence occurs when GPGPU threads needs to
access memory at non-uniform locations, which results in un-
coalesced memory accesses. Un-coalesced memory accesses
are bad for GPU performance because memory bandwidth can
not be fully utilized to do useful work.

978-1-6654-0584-3/22/$31.00 © 2022 IEEE

28

TABLE I
COMPARISON OF TECHNIQUES FOR DIVERGENCE REDUCTION
Control-flow and instruction Technique
Pattern Tail Branch
. . DARM
Merging | Fusion
Diamond control-flow with
. - . v v v
identical instruction sequences
Diamond control-flow with
S L X v v
distinct instruction sequences
Complex control-flow X X v

Control-flow divergence occurs when threads in a warp
diverge at branch instructions. At the diverging branch, lock-
step execution can not be maintained because threads in a
warp may want to execute different basic bocks (i.e. diverge).
Instead, when executing instructions along a diverged path,
GPGPUs mask out the threads that do not want to take
that path. The threads reconverge at the Immediate Post-
DOMinator (IPDOM) of a divergent branch—the instruction
that all threads from both branches want to execute. This style
of IPDOM-based reconvergence is implemented in hardware
in most GPGPU architectures to maintain SIMT execution.
Even though IPDOM-based reconvergence can handle arbi-
trary control-flow, it imposes a significant performance penalty
if a program has a lot of divergent branches. In the IP-
DOM reconvergence model, instructions executed on divergent
branches necessarily cannot utilize the full width of a SIMD
unit. If the code has a lot of nested divergent branches or
divergent branches inside loops, this style of execution causes
significant under-utilization of SIMD resources.

For some GPGPU applications divergent branches are un-
avoidable, and there have been many techniques proposed to
address this issue both in hardware and software. Proposals
such as Dynamic warp formation [1], Thread block com-
paction [2] and Dual-path execution [3] focus on mitigating
the problem at the hardware level by changing how threads
are scheduled for execution and making sure that threads
following the same path are grouped together. Unfortunately,
such approaches are not useful on commodity GPGPUs.

There have also been efforts to reduce divergence through
compiler approaches that leverage the observation that dif-
ferent control-flow paths often contain similar instruction
(sub)sequences. Tail merging [4] identifies branches that have
identical sequences of code and introduces early jumps to

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

merged basic blocks, with the effect of reducing divergence.
Branch fusion generalizes tail merging to work with instruction
sequences that may not be identical [S]. However, branch
fusion cannot analyze complex control-flow and hence it is
restricted to simple if-then-else branches where each path has
a single basic block (i.e. diamond-shaped control-flow).

This paper introduces a more general, software-only ap-
proach of exploiting similarity in divergent paths, called
control-flow melding. Control-flow melding is a general
control-flow transformation which can meld similar control-
flow subgraphs inside a if-then-else region (not just individual
basic blocks). By working hierarchically, recursively melding
divergent control-flow at the level of subgraphs of the CFG,
control-flow melding can handle substantially more general
control structures than prior work. This paper describes DARM,
a realization of control-flow melding for general GPGPU
programs. Table I compares the capabilities of DARM with
branch fusion and tail merging.

DARM works in several steps. First, it detects divergent if-
then-else regions and splits the divergent regions into Single
Entry Single Exit (SESE) control-flow subgraphs. Next it uses
a hierarchical sequence alignment technique to meld profitable
control-flow subgraphs, repeatedly finding subgraphs whose
control-flow structures and constituent instructions can be
aligned. Once a fixpoint is reached, DARM uses this hierar-
chical alignment to generate code for the region with reduced
control-flow divergence.

The main contributions of the paper are,

« Divergence-Aware-Region-Melder (DARM), a realization of
control-flow melding that identifies profitable melding op-
portunities in divergent if-then-else regions of the control-
flow using a hierarchical sequence alignment approach and
then melds these regions to reduce control-flow divergence.

« An implementation of DARM in LLVM [6] that can be ap-
plied to GPGPU programs written in HIP [7] or CUDA [8].
Our implementation of DARM is publicly available as an
archival repository! and up-to-date version is available in
GitHub?,

o An evaluation of DARM on a set of synthetic GPU programs
and a set of real-world GPU applications showing its effec-
tiveness

II. BACKGROUND
A. GPGPU Architecture

Modern GPGPUs have multiple processing cores, each of
which contains multiple parallel lanes (i.e. SIMD units), a
vector register file and a chunk of shared memory. The unit
of execution is called a warp (or wavefront). A warp is a
collection of threads executed in lock-step on a SIMD unit.
Shared memory is shared among the warps executing on a
core. A branch unit takes care of control-flow divergence by
maintaining a SIMT stack to enforce IPDOM based recon-
vergence, as discussed in Section I. GPGPU programming

Thttps://doi.org/10.5281/zenodo.5784768
Zhttps://github.com/charitha22/cgo22ae-darm-code

1 __global__ static void bitonicSort(int xvalues) {
2 /I copy data from global memory to shared memory
3 __syncthreads();

4 for (unsigned int k = 2; k <= NUM; k #= 2) {

5 for (unsigned intj =k /2;j>0;j/=2){

6 unsigned int ixj = tid * j;
7 if (ixj > tid) {
8 if ((tid & k) == 0) {
9 if (shared[ixj] < shared|[tid])
10 swap(shared[tid], shared[ixj]);
11
}
12 else {
13 if (shared[ixj] > shared[tid])
14 swap(shared[tid], shared[ixj]);
15
}
16
17 __syncthreads();
18 }
19 } /1 write data back to global memory

0}

Fig. 1. Bitonic sort kernel
abstractions like CUDA [8] or HIP [7] gives the illusion of
data parallelism with independent threads. However, during
real execution, a group of program instances (i.e. threads)
are mapped to a warp and executed in lock-step. Therefore
control-flow divergence in SPMD programs is detrimental to
the performance because of the SIMT execution limitations.

B. LLVM SSA Form and GPU Divergence Analysis

LLVM [6] is a general framework for building compilers,
optimizations and code generators. Most of the widely adopted
GPGPU compilers [9], [10] are built on top of the LLVM
infrastructure. LLVM uses a target-independent intermediate
representation, LLVM-IR, that enables implementing portable
compiler optimizations. LLVM-IR uses static single assign-
ment form [11] which requires that every program variable
is assigned once and is defined before being used. SSA form
uses ¢ nodes to resolve data-flow when branches are present,
selecting which definition should be chosen at a confluence of
different paths. In GPGPU compilers, a key step in identifying
divergent control-flow regions is performing compiler analyses
to identify divergent variables (or branches) [5], [12]. A branch
is divergent if the branching condition evaluates to a non-
uniform value for different threads in a warp. If the branching
condition is divergent, threads in a warp will have to take
different control-flow paths at this point. LLVM’s divergence
analysis tags a branch as divergent, if the branching condition
is either data-dependent or sync-dependent on a divergent
variable (such as thread ID) [12], though more sophisticated
divergence analyses have been proposed [13].

III. MOTIVATING EXAMPLE

Bitonic sort is a kernel used in many parallel sorting
algorithms such as bitonic merge sort and Cederman’s quick-
sort [14], [15]. Figure 1 shows a CUDA implementation of
bitonic sort. This kernel is our running example for describing
DARM’s control-flow melding algorithm.

29

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

In this kernel, the branch condition at line 8 depends on
the thread ID. Therefore it is divergent. Since the divergent
branch is located inside a loop, the execution of the two sides
of the branch needs to be serialized many times, resulting
in high control-flow divergence. However the code inside the
if (line 9-10) and else (line 13-14) sections of the divergent
branch are similar in two ways. First, both code sections
have the same control-flow structure (i.e. if-then branch).
Second, instructions along the two paths are also similar. Both
conditions compare two elements in the shared array and
perform a swap operation. Therefore the contents of the if and
else sections can be melded to reduce control-flow divergence.
Both code sections consists of shared memory loads and store
operations. In the unmelded version of the code these shared
memory operations will have to be serialized due to thread-
divergence. However, if the two sections are melded threads
can issue the memory instructions in the same cycle resulting
in improved performance.

Existing compiler optimizations such as tail merging and
branch fusion cannot be applied to this case. Tail merging is
applicable only if two basic blocks have a common destination
and have identical instruction sequences at their tails. However
in bitonic sort, the if and then sections of the divergent branch
have multiple basic blocks, and the compiler cannot apply
tail merging. Similarly branch fusion requires diamond shaped
control-flow and does not work if the if and else sections of
the branch contain complex control-flow structures.

DARM solves this problem in two phases. In the analysis
phase (Section IV-C), DARM analyzes the control-flow region
dominated by a divergent branch to find isomorphic sub-
regions that are in the true and false paths of the divergent
branch. These isomorphic sub-region pairs are aligned based
on their melding profitability using a sequence alignment
strategy. Melding profitability is a compile-time approximation
of the percentage of thread cycles that can be saved by melding
two control-flow regions. Next, DARM choses profitable sub-
region pairs in the alignment (using a threshold) and computes
an instruction alignment for corresponding basic blocks in the
two regions. In the code generation phase (Section IV-D),
DARM uses this instruction alignment to meld corresponding
basic blocks in the sub-region pair. This melding is applied
iteratively until no further profitable melding can be per-
formed. DARM’s melding transformation is done in SSA form,
therefore the resulting CFG can be optimized further using
other compiler optimizations (Sections IV-E and IV-F).

IV. DETAILED DESIGN

In this section we describe the algorithm used by DARM
to meld similar control-flow subgraphs. First we define the
following terms used in our algorithm description.

A. Preliminaries and Definitions

Definition 1. Simple Region : A simple region is a subgraph
of a program’s CFG that is connected to the remaining CFG
with only two edges, an entry edge and an exit edge.

30

Definition 2. Region : A region of the CFG is characterized
by two basic blocks, its entry and exit. All the basic blocks
inside a region are dominated by its entry and post-dominated
by its exit. Region with entry E and exit X is denoted by the
tuple (E, X). LLVM regions are defined similarly [16], [17].

Definition 3. Single Entry Single Exit Subgraph : Single
entry single exit (SESE) subgraph is either a simple region or
a single basic block with a single predecessor and a successor.

Note that a region with entry F and exit X can be transformed
into a simple region by introducing a new entry and exit
blocks F, e, Xnew- All successors of £ are moved to E,,cqp
and E,., is made the single successor of E. Similarly, all
predecessors of X are moved to X,,.,, and a single exit edge
is added from X,,.,, to X.

Definition 4. Simplified Region : A region with all its sub-
regions transformed into simple regions is called a simplified
region.

We now turn to the steps the DARM compiler pass takes to
reduce control divergent code.

B. Detecting Meldable Divergent Regions

First DARM needs to detect divergent branches in the CFG.
We use LLVM’s built-in divergence analysis to decide if a
branch is divergent or not (Section II). The smallest CFG
region enclosing a divergent branch is called the divergent
region corresponding to this branch. Melding transformation
is applied only to divergent regions of the CFG. The next
step is to decide if a divergent region contains control-flow
subgraphs (definition 3) that can be safely melded.

Definition 5. Meldable Divergent Region: A simplified region
R with entry FE and exit X is said to be meldable and divergent
if the following conditions are met,

1) The entry block of R has a divergent branch
2) Let By and B be the successor blocks of E. B does not
post-dominate Br and Br does not post-dominate Bt

According to definition 5, a meldable divergent region has a
divergent branch at its entry (condition 1). This makes sure
that our melding transformation is only applied to divergent
regions, and non-divergent parts of the control-flow are left
untouched. Condition 2 ensures that paths By — X (i.e. true
path) and Br — X (i.e. false path) consists of at least
one SESE subgraph and these subgraphs from the two paths
can potentially be melded to reduce control-flow divergence.
Consider our running example in Figure 1. When this kernel
is compiled with ROCm HIPCC GPU compiler [7] with -O3
optimization level into LLVM-IR, we get the CFG shown in
Figure 4a. Note that the compiler aggressively unrolls both
the loops (lines 4 and 5) in the kernel, and the resulting CFG
consists of multiple repeated segments of the inner loop’s body
(lines 6-17). In Figure 4a, only one unrolled instantiation of
the loop body is shown. As explained in Section III, this kernel
contains a divergent branch, which is at the end of basic block

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Examples showing the 3 cases considered by DARM to detect meldable
subgraphs

%B. Also %B’s two successors %C and %D do not post-
dominate each other. Therefore the region (%B,%G) is a
meldable divergent region.

C. Computing Melding Profitability

Definition 5 only allows us to detect regions that may
contain meldable control-flow subgraphs. It does not tell us
whether it is legal to meld them or melding them will improve
performance. First we need to define what conditions needs to
be satisfied for two SESE subgraphs to be meldable.

Definition 6. Meldable SESE Subgraphs: SESE subgraphs
S1 and 52 where S1 belongs to the true path and S2 belongs
to the false path are meldable if any one of the following
conditions are satisfied,

1) Both S1 and S2 have more than one basic block and they
are structurally similar i.e. isomorphic.

2) S1 is a simple region and S2 consists of a single basic
block or vice versa.

3) Both S1 and S2 consists of single basic block.

Definition 6 ensures that any two SESE subgraphs that meets
any one of these conditions can be melded without introducing
additional divergence to the control-flow. Note that we do not
consider subgraphs that contain warp-level intrinsics [18] for
melding because melding such subgraphs can cause deadlock.
Figure 2 shows three examples where each of the above
conditions are applicable. Assume in each example subgraphs
L and M are in a divergent region (E, X) and only one of
the subgraphs are executed from any program path from E
to X. (i.e. any thread in warp that executes £ must either go
through L or M but not both).

Region to Region Melding : In case (D, two SESE subgraphs
L and M are isomorphic, therefore they can be melded to
have the same control-flow structure (subgraph N in Figure 2-
D). In the melded subgraph N, basic blocks %C_P and
%D_R are guaranteed to post-dominate E and threads can
reconverge at these points resulting in reduction in control-flow
divergence. Also the structural similarity in case (D ensures
that we do not introduce any additional branches into the
melded subgraph.

31

Basic Block to Region Melding : In case), basic block
%A (in subgraph L) can potentially be melded with any basic
block in CFG M. Assume that basic blocks %A and %E have
the most melding profitability (melding profitability described
later). First we replicate the control-flow structure of M to
create a new CFG L’. Then we place %A in L’ such that
%A and %E are in similar positions in the the two CFGs
L’ and M. We also ensure the correctness of the program by
concretizing the branch conditions in L’ to always execute % A
and create ¢ nodes at dominance frontiers of %A to make sure
values defined inside %A are reached to their users [11]. In
this example branch at end of basic block %R1 will always
take the edge %R1 — %A (bold arrow in subgraph L’) and ¢
nodes will be added to % R2. Now subgraphs L’ and M are
isomorphic and therefore can be melded similar to case (.
We refer to this process as Region Replication. Main benefit
of region replication is that it allows us to meld %A with any
profitable basic block in subgraph M and resultant subgraph
N has less divergence because threads can reconverge at basic
blocks %R1_C and % R2_D in melded subgraph N.

Basic Block to Basic Block Melding : Case Q) is the simplest
form where two SESE basic blocks are melded.

A meldable divergent region can potentially have multiple
SESE subgraphs in its true and false paths. Therefore we need
a strategy to figure out which subgraph pairs to meld. We
formulate this as a sequence alignment problem as follows.
First, we obtain a ordered sequence of subgraphs in true path
and false of the divergent region. Subgraphs are ordered using
the post-dominance relation of their entry and exit blocks. For
example, if entry node of subgraph Sy post-dominates exit
node of subgraph S1, then S2 comes after S1 in the order
and denoted as S1 < S2. A subgraph alignment is defined as
follows,

Definition 7. Subgraph Alignment: Assume a divergent re-
gion (E, X) has ordered SESE subgraphs {S¥,S¥, ..., ST}
in its true path and ordered subgraphs {St, S, ... SEY} in
the false path. A subgraph alignment is an ordered sequence
of tuples A = {(S%,,5}), (S5, Sf1), .., (Sk. Sﬁc)} where,

i1> 951

1) if(SpT, Sf) € A then Sg and 55 are meldable subgraphs

2) if (S5, 8E) < (8L, SE) then ST, < ST, and ST, < ST,

According to definition 7, only meldable subgraphs are al-
lowed in a alignment tuple and if the aligned subgraphs
are melded, the resultant control-flow graph does not break
the original dominance and post-dominance relations of the
subgraphs.

Given a suitable alignment scoring function F' and gap
penalty function W, we can find an optimal subgraph align-
ment using a sequence alignment method such as Smith-
Waterman [19] algorithm. The scoring function F' measures
the profitability of melding two meldable subgraphs S1 and
S52. Prior techniques have employed instruction frequency to
approximate the profit of merging two functions [20], [21]. We
use a similar method to define subgraph melding profitability.
First we define the melding profitability of two basic blocks

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

bl and b2 as follows,

ZieQ min(fTeq(iv b1)7 fre(I(iv 62)) X Wi

MPp(b1,62) = lat(b1) + lat(b2)

Here (@ is set of all possible instruction types available in
the instruction set (i.e. LLVM-IR opcodes). lat(b) is the static
latency of basic block which can be calculated by summing the
latencies of all instructions in b. w; is the latency of instruction
type ¢. The idea here is to approximate the percentage of
instruction cycles that can be saved by melding the instructions
in bl and b2 assuming a best-case scenario (i.e. all common
instructions in b1 and b2 are melded regardless of their order).
For example, two basic blocks with identical opcode frequency

profile will have a profitability value 0.5.

Because meldable subgraphs are isomorphic, there is
a one-to-one mapping between basic blocks (i.e. corre-
sponding basic blocks). For example, in Figure 2 case
@D the basic block mapping for CFGs L and M are
{(%C, %P),(%E, %Q), (%D, %R)}. Assume the mapping
of basic blocks in S1 and S2 is denoted by O. Subgraph
melding profitability M Pg of subgraphs S1 and S2 is defined
in terms of melding profitabilities of their corresponding basic
blocks.

M Pg(b1,b2) x (lat(bl) + lat(b2
MPs(S1,52) = 2 v1,p2ye0 M Ps() % (lat(b1) (b2))
Z(m,bz)eo lat(bl) + lat(b2)

Similar to M Pg, M Pg measures the percentage of instruc-
tion cycles saved by melding two SESE subgraphs. This metric
is an over-approximation, however it provides a fast way of
measure the melding profitability of two subgraphs that works
well in practice. We use M Pg as the scoring function for
subgraph alignment.

Instruction Alignment: Notice that our subgraph melding
profitability metric (i.e. M Pg) prioritizes subgraph pairs that
have many similar instructions in their corresponding basic
blocks. Therefore when melding two corresponding basic
blocks we must ensure that maximum number of similar
instructions are melded together. This requires computing
an alignment of two instruction sequences such that if they
are melded using this alignment, the number of instruction
cycles saved will be maximal. We use the approach used in
Branch Fusion [5] to compute an optimal alignment for two
instructions sequences. In this approach compatible instruc-
tions are aligned together and instructions with higher latency
are prioritized to be aligned over lower latency instructions.
Compatibility of two instructions for melding depends on a
number of conditions like having the same opcode and types of
the operands being compatible. We used the criteria described
by Rocha et al. [21] to determine this compatibility. This
instruction alignment model uses a gap penalty for unaligned
instructions because extra branches needs to be generated
to conditionally execute these unaligned instructions. Our
melding algorithm does not depend on the sequence alignment
algorithm used for instruction alignment computation. We use
Smith-Waterman algorithm [19] to compute the instruction
alignment because prior work [5] has shown its effectiveness.
Figure 3a shows the instruction alignment computed for two

basic blocks A and B. Aligned instructions are shown in green
and instructions aligned with a gap are in red.

D. DARM Code Generation

Algorithm 1: DARM Algorithm
Input: SPMD function F'
Output: Melded SPMD function Fj,;
do

changed < false

for BB in F do
R, C + GetRegionFor(BB)
if IsMeldableDivergent(R) then
SimplifyRegion(R)
A < ComputeSubgraphAlignment(R)
for (St, Sk, profit) in A do
if profit > threshold then
Meld(ST, SF, C)
changed < true
end
end
end
if changed then
SimplifyFunction(F)
RecomputeControlFlow Analyses(F)

break
end

end
while changed,

Algorithm 2: SESE Subgraph melding Algorithm
Input: SESE subgraphs S7,Sp, Condition C
Output: Melded SESE subgraph S,

List blockPairs < Linearize(St, Sg)
List A + empty

for (B, Br) in blockPairs do
List instrPairs <— ComputelnstrAlignment(Br, Br)

A.append(instrPairs)

end

PreProcess(St, Sg)

Map operandMap <+ empty

for P in A do

Im,eldcd — CIOHG(P)
Update(operandMap, Ineiged, P)

end
for P in A do

| SetOperands(P, operandMap, C)
end
RunUnpredication()
RunPostOptimizations()

DARM'’s control-flow melding procedure is shown in algo-
rithm 1. This algorithm takes in a SPMD function F' and
iterates over all basic blocks in F' to check if the basic block
is an entry to a meldable divergent region (R) according to

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

| Ghadd = addnowiS2%0,%1 || %add1 = add newiS2 %A, %5
i %sub = sub nsw i32 %2, %3 i g %sub2 = sub nsw i32 %2, %5
i E %or = or i32 %sub2, %4
%xor = xor i32 %4, %5

%div = sdiv i32 %2, 5 %div3 = sdiv i32 %or, 4
%shr = ashr 32 %3, 2 :
%shl = shli32 %add, 2
1 %muld = mul nsw i32 %xor, %sub2

| %mul = mul nsw i32 %4, %5

E %and = and i32 %shl, %sub H E %and5 = and i32 %xor, %sub2

%sel1 = select i1 %cmp, i32 %0, i32 %4
%sel2 = select i1 %cmp, i32 %1, i32 %5
%6 = add nsw i32 %sel1, %sel2

%sel3 = select i1 %cmp, i32 %3, i32 %5
%7 = sub nsw i32 %2, %sel3

%sel7 = select i1 %cmp, i32 %12, i32 %9
%14 = and i32 %sel7, %7

%M: ’

Il instructions
br i1 %cmp, label %M.tail, label %M.split
F

gl

132 %7, %4

ri32 %4, %5
br label %M.tail

®!

%M.tail:
%10 = phi i32 [%8, %M.split], [undef, %M]
%11 = phi 32 [%9, %M.split], [undef, %M]
Il instructions

Tr.

(©)

a7

(b)

Fig. 3. (a) Instruction alignment result for two basic blocks A and B, (b) Code generated by DARM for aligned instructions @, ® and (© in Figure 3a, (c)
Unpredication applied to the unaligned instructions of basic block B in figure 3a

the conditions in Definition 5. We use Simplify to convert all
subregions inside R in to simple regions.

We compute the optimal subgraph alignment for the two
sequences of subgraphs in the true and false paths of R.
We meld each subgraph pair in the alignment if the melding
profitability is greater than some threshold. Subgraph melding
changes the control-flow of F'. Therefore we first simplify the
control-flow (using LLVM’s simplifycfg) and then recompute
the control-flow analyses (e.g. dominator, post-dominator and
region tree) required for the melding pass. We apply the
melding procedure on F' again until no profitable melds can
be performed.

Algorithm 2 shows the procedure for melding two
subgraphs Sp and Sg. C is the branching condition of the
meldable divergent region containing S and Sp. First the
two subgraphs are linearized in pre-order to form a list of
corresponding basic block pairs. Processing the basic blocks
in pre-order ensures that dominating definitions are melded
before their uses. For each basic block pair in this list we
compute an optimal alignment of instructions. Each pair
in the alignment falls into two categories, I-I and I-G. I-1
is a proper alignment with two instructions and I-G is an
instruction aligned with a gap. Our alignment makes sure that
in a match the two instructions are always meldable into one
instruction (e.g. a load is not allowed to align with a store).
First we traverse the alignment pair list and clone the aligned
instructions. For I-I pairs, we clone a single instruction
because they can be melded. During cloning, we also update
the operandMap, which maintains a mapping between
aligned and melded LLVM values. We perform a second pass
over the instruction alignment to set the operands of cloned
instructions (SetOperands). Assume we are processing an
I-I pair with instructions I, Ir and cloned instruction is
Lnetdeq- For each operand of I,,ci4eq, the corresponding
operands from I7 and I are looked up in operandMap
because an operand might be an already melded instruction.
If the resultant two operands from I7 and Ip are the same,
we just use that value as the operand. If they are different,
we generate a select instruction to pick the correct operand
conditioned by C. For an I-G pair, operands are first looked
up in operandMap and the result is copied to Ieideq-
Consider the instruction alignment in figure 3a. Figure 3b

33

shows the generated code for aligned instruction pairs (@),
® and ©. In case (@, two select instructions are needed
because both operands maps to different values (%0, %4
and %1, %5). In case (®), the first operand is the same (%2)
for both instructions, therefore only one select is needed.
In case (©), both first and second operands are different for
the two instructions. However the second operands map to
same melded instruction %7, so only one select is needed.
Note that %cmp is the branching condition for the divergent
region, and we use that for selecting the operands.

Melding Branch Instructions of Exit Blocks: Setting
operands for branch instructions in subgraph exit blocks is
slightly different than that for other instructions. Let BE,BE
be the exit blocks of St and Sg. Successors BE,BE can
contain ¢ nodes. Therefore we need to ensure that successors
of BE and BE can distinguish values produced in true path
or false path. To solve this we move the branch conditions of
BE and BE in to newly created blocks By and Bj.. Now we
can conditionally branch to BlT and B;; depending on C'. For
example, in Figure 4c basic blocks %M and %N are created
when when melding the exit branches of % X1 and %X2 in
figure 4b. Any ¢ node in %G (figure 4c) can distinguish the
values produced in true or false path using %M and %N.
Melding ¢ Nodes : In LLVM SSA form ¢ nodes are always
placed at the beginning of a basic block. Even if the instruction
alignment result contains two aligned ¢ nodes we can not meld
them into a single ¢ node because select instructions can not
be inserted before them. Therefore we copy all ¢ nodes into
the melded basic block and set the operands for them using
the operandMap. This can introduce redundant ¢ nodes which
we remove during post-processing.

E. Unpredication

In our code generation process, unaligned instructions are
inserted to the same melded basic block regardless of whether
they are from true or false paths (i.e. fully predicated).
This can introduce overhead due to several reasons. If the
branching conditions C' is biased towards the true or false
path, it can result in redundant instruction execution. Also
full predication of unaligned store instructions require adding
extra loads to makes sure correct value is written back to

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

(b)

(a)

the memory. Unpredication splits the melded basic blocks
at gap boundaries and moves the unaligned instructions into
new blocks. Figure 3c shows unpredication applied to the
unaligned instructions of basic block B in Figure 3a. The
original basic block is split to two parts (%M and %M tail)
and unaligned instructions (%8 and %9) are moved to a new
basic block, %M.split. ¢ nodes ((%10 and %11)) are added
to %M.tail to ensure unaligned instructions dominate their
uses. %8 and %9 are never executed in the true path, therefore
¢ nodes’ incoming values from block %M are undefined
(LLVM undef). Note that in region replication (Section IV-C)
we apply unpredication only to the melded basic blocks. Store
instructions outside the melded blocks are fully predicated by
inserting extra loads.

FE. Pre and Post Processing Steps

%A

%P:
%m = phi [undef, %A], [%a, %B]

|

%x =mul %m ...

B)
Fig. 5. DARM pre-processing example

In SSA form, any definition must dominate all its users.
However DARM’s subgraph melding can break this property.
Consider the two meldable subgraphs St, Sp in figure 5
®. Definition %a dominates its use %z before the melding.
However if St and Sg are melded naively then %a will no
longer dominate %z. To fix this we add a new basic block
%P with a ¢ node %m. All uses of %a are replaced with
%m (Figure 5 ®). Notice that value %m is never meant to
be used in the true path execution. Therefore it is undefined
in true path (undef). We apply this preprocessing step before
the melding (PreProcess in Algorithm 2).

Subgraph melding can introduce branches with identical
successors, ¢ nodes with identical operands and redundant ¢
nodes. RunPostOptimizations in Algorithm 2 removes these
redundancies.

34

EZTIN
%M.3

T[F

(e)

(@
Fig. 4. DARM melding algorithm applied to bitonic sort (Figure 1) (a) Original control-flow graph, (b) Region simplification, (c) DARM subgraph melding,
(d) Unpredication, (e) Final optimized control-flow graph

G. Putting All Together

Figure 4 shows how each stage of the pipeline of subgraph-
melding transforms the CFG of bitonicSort kernel. The orig-
inal CFG is shown in Figure 4a. Region (%B, %G) is a
meldable divergent region. Figure 4b shows the CFG after re-
gion simplification. Subgraphs (%C, %X1) and (%D, %X 2)
are profitable to meld according to our analysis. Figure 4c
shows the CFG after subgraph-melding. The result after ap-
plying unpredication is shown in Figure 4d. Notice that the
unpredication splits the basic block %C_D (in Figure 4c)
into 5 basic blocks (zoomed in blue-dashed blocks in Fig-
ure 4d). Basic blocks %P.S.1 and %P.S.2 are the unaligned
groups of instructions and they are executed conditionally.
Figure 4e shows the final optimized CFG after applying post
optimizations. Note that ROCm HIPCC compiler applied if-
conversion aggressively. Therefore the effect of unpredication
step is nullified in this case.

Figure 4 only shows how DARM transformation changes
the CFG of our running example. It does not show how
the instructions inside these transformed basic blocks are
generated. We use Figure 6 to explain the generation of melded
instructions for the running example. Figure 6a shows the
LLVM-IR of the meldable divergent region ((%B,%G) in
Figure 4b) in our running example. During DARM code genera-
tion, basic blocks in subgraphs (%C, %X1) and (%D, %X2)
are linearized to compute the instruction alignment. Notice
that [%C, %D], [%E, %F], [%X1,%X2] are the correspond-
ing basic block pairs. In this example all instructions perfectly
align with each other except for the compare instructions
(%34 and %31) in basic blocks %D and %C. These compare
instructions can not be aligned because their comparison kind
is different (greater than vs less than). Figure 6b shows the
LLVM-IR after applying subgraph melding and unpredication
(similar to Figure 4d). Note that because instructions %34
and %31 are unaligned, unpredication step introduced basic
blocks %P.S.1 and %P.S.2 to execute them conditionally
based on the divergent condition %16. Extra ¢ instructions
%phi.1 and %phi.2 are inserted to ensure def-use chains
are not broken during the unpredication step. Out of the all
aligned instructions only the branch instructions at the end of
basic blocks %C and %D require select instructions during
instruction-melding. For example the store instructions in basic

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

v

%B :

br %16, label %C, label %D
%C :

%D :
%31 = icmp slt %28, %29

%34 = icmp sgt %28, %29
br %31, label %E, label %X1 br %34, label %F, label %X2
%E :

%F :
store %28, %9

store %28, %9
store %29, %27 store %29, %27
br label %X1

br label %X2
%X1 : %X2 :
br label %G br label %G

%C_D:
br %16, label %C_D.T1, label %P.S.1
T [F

%P.S.1:
%34 = icmp sgt %28, %29
br label %C_D.T.1
—een

%C_D.T1:
%phi.1 = phi [undef, %C_D], [%34, %P.S.1]
br %16, label %P.S.Z‘ label %C_D.T.2

T

F

%P.S.2:
%31 = icmp slt %28, %29
br label %C_D.T.2

%C_D.T.2:
%phi.2 = phi [%31, %P.S.2], [undef, %C_D.T.1]
%37 = select %16, %phi.2, %phi.1
br %37, label %E_F, Iabel %X1_X2

%E_F :
store %28, %9
store %29, %27
br label %X1_X2
br /16 Iabel %M, label %N
T]
%M : %N
br label %G br Iabel %G

(b)

Fig. 6. LLVM-IR before and after applying DARM transformation to our
running example (a) meldable divergent region (b) instruction alignment (b)
LLVM-IR generated after subgraph melding and unpredication

blocks %FE, %F use matching operands, therefore can be
melded without adding selects. On the other hand, conditional
branch instructions uses values %34 and %31 and select
instruction %37 is inserted (Figure 6b) to pick the branching
condition conditionally. Note that the values %34 and $31
will flow to their users via the ¢ nodes %phi.1 and %phi.2
respectively. Therefore the select instruction (i.e. %37) uses
these ¢ nodes as its operands.

V. IMPLEMENTATION

We implemented the DARM algorithm described in Sec-
tion IV as an LLVM-IR analysis and transformation pass
on top of the ROCM HIPCC* GPU compiler [10]. Both the
analysis and transformation are function passes that operate

3LLVM version 12.0.0, ROCm version 4.2.0

35

on GPGPU functions. The analysis pass first detects meld-
able divergent regions using LLVM’s divergence analysis.
Then it finds all the profitable subgraph pairs that can be
melded. We use a default melding profitability threshold of
0.2 (algorithm 1). We also provide a sensitivity analysis on
this threshold in Section VI-E. We use modified version of
LLVM cost model [22] to obtain instruction latencies for
melding profitability and instruction alignment computations.
The transformation uses the output of analysis to perform
DARM'’s code generation procedure (Section IV-D). The trans-
formation pass also performs the unpredication, pre- and post-
processing steps described in Sections IV-E and IV-F. LLVM
pass is implemented in ~ 2500 lines of C++ code. In order
to produce the program binary with our pass, we had to
include our pass in the ROCM HIPCC compilation pipeline.
Most GPGPU compilers (e.g. CUDA nvcc, ROCm HIPCC)
use separate compilation for GPU device and CPU host codes.
Final executable contains the device binary embedded in the
host binary. In the modified workflow, we first compile the
device code into LLVM-IR and run DARM on top of that
to produce a transformed IR module. Our pass runs only on
device functions and avoids any modifications to host code.
After that, we use the LLVM static compiler (llc) [23] to
generate an object file for the transformed device code. The
rest of the compilation flow is as same as the one without any
modification.

VI. EVALUATION
A. Evaluation Setup and Benchmarks

We evaluate the performance of DARM on a machine with
a AMD Radeon Pro Vega 20 GPU. This GPU has 16 GBs
of global memory, 64 kB of shared memory (i.e. Local Data
Share (LDS)) and 1700 MHz of max clock frequency. The
machine consists of AMD Ryzen Threadripper 3990X 64-Core
Processor with 2900 MHz max clock frequency.

We use two different sets of benchmarks. First, to assess the

generality of DARM, we create several synthetic programs that
exhibit control divergence of varying complexity. While many
real-world programs are hand-optimized to eliminate diver-
gence, these synthetic programs qualitatively demonstrate the
generality of DARM over prior automated divergence-reduction
techniques, and show that DARM can automate the control-flow
melding that would be otherwise done by hand. For detailed
description of the evaluation on synthetic benchmarks, please
refer the extended version of our paper [24].
Real-world Benchmarks We show DARM’s effectiveness on
real-world programs. We consider 7 benchmarks written in
HIP [7]. These benchmarks were taken from well-known
highly hand-optimized GPU benchmark suites or optimized
reference implementations of papers. We selected these bench-
marks because they contain divergent if-then-else regions that
present melding opportunities for DARM. We do not consider
benchmarks that do not present any melding opportunities for
DARM because they are not modified by DARM in any way.

Bitonic Sort (BIT) Our running example is bitonic
sort [14]. In this kernel, each thread block takes in a bucket

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

ZZ1 DARM [BF
+ + 1.15 1.16
77 o + ;
a &_g_j//__ﬁ__ — s el
B EENE
v 7z Zz 7
T I S e T S P N o o v S S S © A b R Al &
NI é‘\’ éo Qc“‘ Qc}" QCFQ Q(},g, R @6\, \‘\(,;L \>§> \>>o \90 \90\’ é0\> @00 \;00\’ @Q\ﬂ’ Q}o\,@t 0’9’*06\“ e O%OCO@L 0“\55@

=) =)

Fig. 7. Real-world Benchmark Performance. + marks block size with best baseline runtime. GM is geo-mean of DARM’s speedup on all benchmarks; GM-Best

is DARM’s speedup on + configurations.

226 elements

and performs parallel sort. We used an input of
and varied the bucket (i.e. block) size.

Partition and Concurrent Merge (PCM) PCM is a parallel
sorting algorithm based on Batcher’s odd-even merge sort [25].
PCM performs odd-even merging of buckets of sorted elements
at every position of the array leading to loops with nested data-
dependent branches. We used an array of 22® elements with
different number of buckets.

Mergesort (MS) A parallel bottom-up merge sort imple-
mentation. The kernel has data-dependent control-flow diver-
gence in the merging step. We used an input array with 220
elements.

LU-Decomposition (LUD) LUD implementation from the
Rodinia benchmark suite [26]. We focus our evaluation on
the lud_perimeter kernel in this benchmark. lud_perimeter
contains multiple divergent branches that depend on thread
ID and block size. We use a randomly generated matrix of
size 16384 x 16384 as the input.

N-Queens (NQU) N-Queens solver uses backtracking to
find all different ways of placing N queens on a NxN chess-
board without attacking each other. We have used the kernel
from the GPGPU-sim benchmark suite [27] with N is 15.

Speckle Reducing Anisotropic Diffusion (SRAD) SRAD
is diffusion based noise removal method for imaging applica-
tions from Rodinia benchmark suite [26]. We have used an
image of size 4096 x 4906 as input.

DCT Quantization (DCT) An in-place quantization of a
discrete cosine transformation (DCT) plane [28]. The quan-
tization process is different for positive and negative values
resulting in data-dependent divergence. We use a randomly
generated DCT plane of size 21° x 215 as input.

Baseline and Branch Fusion Our baseline implementations
of these kernels have been hand-optimized (except, obviously,
for optimizations that manually remove control divergence
by applying DARM-like transformations). This optimization
includes using shared memory when needed to improve per-
formance. The baseline implementations were compiled with
-O3. Branch fusion [5] was implemented in the Ocelot [29]
open-source CUDA compiler that is no longer maintained
and does not support AMD GPUs. We implemented branch
fusion by modifying DARM to apply melding for diamond-
shaped control-flow (if-then-else). We use this for comparison
against branch fusion. Branch fusion cannot fully handle the

36

control-flow of BIT, PCM, and NQU. Loop unrolling enables
successful branch fusion in LUD.
Block Size Each of these kernels has a tunable block size—
essentially, a tile size that controls the granularity of work
in the inner loops. Because the correct block size can be
dependent on many parameters (though for a given input and
GPU configuration, one is likely the best), our evaluation treats
block size as exogenous to the evaluation, and hence considers
behavior at different block sizes for each kernel. In other
words, our evaluation asks: if a programmer has a kernel with
a given block size, what will happen if DARM is applied?
Note that of these kernels, only LUD exhibit divergence
that depends on block size. This means that all the other
benchmarks will experience divergence regardless of block
size. LUD’s divergence, on the other hand, is block size
dependent. For some block sizes, the kernel will be divergent,
while for others, it will be convergent.

B. Performance

Figure 7 shows the speedups for real benchmarks DARM
always improves the performance (1.15x geo-mean speedup
over all benchmarks and 1.16x geo-mean speedup over the
best baseline variants) except for SRAD (see below). The
highest relative improvement in performance can be seen
in BIT and PCM for all block sizes. This is because both
these benchmarks are divergent regardless of the block size
and they have complex control-flow regions with shared
memory instructions. DARM successfully melds these regions
and reduces divergence significantly. Branch fusion improves
performance in PCM by melding if-then-else blocks. In LUD,
the divergence is block size dependent, and the kernel is
divergent only at block sizes 16, 32 and 64, where we see
a visible performance improvement introduced by DARM.
NQU contains a time-consuming loop with divergent if-then-
elseif-then section. DARM applies region replication to remove
divergence, achieving superior performance. SRAD kernel
has both block size-dependent and data-dependent divergent
regions (say Rp and Rp respectively). Both Rp and Rp
consists of if-then-else—if-then-else chains. Rp contains no
shared memory instructions and melding does not improve
performance (for both DARM and branch fusion). However
Rp contains a 3-way divergent branch with shared memory
instructions and the divergence is biased i.e. execution only
takes 2 of the 3 ways. In this case branch fusion has better

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

performance at block size 16, because blocks that get melded
happen to be on the divergent paths. However DARM has
more melding options than branch fusion, and it melds all
3 paths adding extra overhead. At block size 32, the extra
overhead introduced by melding Rp becomes significant and
both DARM and branch fusion exhibit a performance drop.
Performance drop for DARM can be avoided by prioritizing
the melding order (i.e. apply melding to divergent regions with
most profitable subgraphs first). However, prioritizing melding
order is not considered in this paper.

In most cases (except SRAD), the block size for best
performing baseline is also the one that gives the best absolute
performance for DARM. Interestingly, for 4/7 benchmarks
(BIT, PCM, MS, and DCT), not only does this best baseline
block size produce the best absolute DARM performance, it
also produces the best speedup relative to the baseline: the
block size that makes the baseline perform the best, actually
exposes more optimization opportunities to DARM.

We use rocprof [30] to collect ALU utilization and memory
instruction counters to reason about performance. We focus on
the block sizes for each benchmark where DARM has highest
improvement over the baseline.

C. ALU Utilization

DARM’s melding transformation enables the ALU instruc-
tions in divergent paths to be issued in the same cycle. This
effectively improves the SIMD resource utilization. Figure 8
shows the ALU utilization (%). As expected DARM improves
the ALU utilization significantly for most benchmarks. In BIT,
divergent paths does not have common comparison operators
(> and < comparisons in lines 9 and 13 in Figure 1). Even
though DARM unpredicates these instructions, later optimiza-
tion passes decide to fully-predicate them resulting in lower
ALU utilization.

D. Melding of Memory Instructions

Figure 9 shows the normalized number of global and shared
memory (i.e. local data share) instructions issued after apply-

100

mmm O3 wmzm DARM s BF
80 4
60

40

ALU Utilization (%)

20 4

o 4

BIT PCM Ms LUD NQU SRAD

Fig. 8. ALU Utilization.

1.5 4 s Vector Mem RD+RW (DARM)
Vector Mem RD+RW (BF)
Shared Mem (DARM)

Shared Mem (BF)

1.0 4 —_ —_—

0.5 1

Normalized Counters

0.0 -

BIT

PCM Ms LUD NQU SRAD DCT

Fig. 9. Normalized Memory Instruction Counters.

37

1.5 W 0.2 s 0.3 W 04 Wmm 05

Speedup

BIT PCM Ms LUD

NQU

SRAD

Fig. 10. Variation of melding profitability thresholds.

ing DARM. In LUD, there are many common shared memory
instructions in divergent paths. However these instructions do
not have different memory alignments, therefore cannot be
melded into a single instruction. Unpredicated shared memory
instructions are predicted by other optimization passes in
LLVM resulting in higher instruction count. Melding reduces
the global memory instruction count in LUD. DCT does not
have any memory instructions in the divergent region and does
not use shared memory. In BIT and PCM, the melded regions
contain a lot of shared memory instructions. Therefore the
reduction in shared memory instructions is significant and
correlate with the performance gain. We find that melding
shared memory instructions is more beneficial than melding
ALU instructions because shared memory instructions have
higher latency than most ALU instructions, though lower
latency than global memory instructions. Therefore there is
2x improvement in cycles spent if two divergent shared
memory instructions are issued in the same cycle. In contrast,
melding global memory instructions does not always improve
performance. This is because the data requested by divergent
memory instructions might be on different cache lines and
these requests are serialized by the memory controller even if
they are issued in the same cycle.

E. Melding Profitability Threshold

Figure 10 shows the performance of DARM for different
melding profitability thresholds on the real-world benchmarks
considering DARM’s best performing block sizes. For all
benchmarks, we observe that DARM’s speedup reduces as
we increase the threshold due to lost opportunities.When we
reduce the threshold, increment in the improvement of the
performance of DARM becomes insignificant (after 0.2). But
we cannot reduce it to zero because every possible pair would
be melded and the subsequent CFG simplification passes
would unpredicate them. As a result, DARM may become non-
convergent.

FE. Compile Time
TABLE II

AVERAGE COMPILE TIME (S)
03 DARM Normalized

0.4804 0.5018 1.0444
0.5690 0.5942 1.0443
0.8037 0.8064 1.0035
0.5993 0.6294 1.0502
0.4687 0.4738 1.0109
0.4999 05121 1.0244
0.4398 0.4439 1.0093

Benchmark

BIT
PCM
MS
LUD
NQU
SRAD
DCT

Table II shows the device code compilation times for the
baseline and DARM. We omit the time for compiling host

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

code and linking because it is constant for both the baseline
and DARM. Since we perform the analysis and the instruction
alignment — the most costly parts — at the basic block level
rather than performing at a higher level (i.e. function or region
level), we incur negligible compilation overhead. Compilation
time overhead introduced by DARM is a small fraction of total
compilation time (including host code) for all cases.

DARM’s compile time depends on the size of basic blocks
that get melded and the structure of the program since it
determines different types of melding opportunities. A slight
overhead in compilation time of LUD is caused by sequence
alignment overhead on large basic blocks (created by loop
unrolling). PCM and BIT have divergent regions inside an
unrolled loop, therefore DARM’s meldable subgraph detection
incurs overhead. Only BIT and PCM has opportunities for
region to region melding, and only PCM, NQU, and SRAD
have opportunities for basic block to region melding. Presence
of basic block to region melding opportunity results in region
replication.

VII. RELATED WORK

Impact of control-flow divergence has extensively studied
in different contexts [31]-[34]. Reducing control-flow diver-
gence requires finding the source of divergence in a program.
Coutinho et al. constructed a divergence analysis to statically
identify variables with the same value for every SIMD unit and
used this analysis to drive Branch Fusion [5]. A divergence
analysis of similar fashion based on data and sync dependences
has been integrated to the LLVM framework [12]. Recently,
Rosemann et al. has presented a precise divergence analysis
based on abstract interpretation for reducible CFGs [13]. Using
a precise divergence analysis improves the opportunities of
melding for DARM.

Tail Merging is a standard, but restrictive, compiler op-
timization used to reduce the code size by merging identi-
cal sequences of instructions. Chen et al. used generalized
tail merging to compact matching Single-Entry-Multiple-Exit
regions [4]. Recently, Rocha et al. has presented Function
Merging, an advanced sequence-alignment based technique for
code size reduction [20], [21]. Even though parts of DARM has
some similarities with function merging, it does not tackle
divergence.

In addition to branch fusion, Anantpur and Govindarajan
proposed to structure the unstructured CFGs and then linearize
it with predication [35]. More recently, Fukuhara and Takimoto
proposed Speculative Sparse Code Motion to reduce diver-
gence in GPU programs [36], which preserves the CFG and
it is orthogonal to DARM. Collaborative Context Collection
copies registers of divergent warps to shared memory and
restores them when those warps become non-divergent [37].
Iteration Delaying is a complementary compiler optimization
to DARM that delays divergent loop iterations [38] and can
be applied following DARM. Recently, Damani et al. has
presented a speculative reconvergence technique for GPUs
similar to iteration delaying [39]. Common Subexpression
Convergence (CSC) [40] works similar to branch fusion but

38

uses branch flattening (i.e. predication) to handle complex
control-flow. In contrast, DARM does not require predication
to meld complex control-flow, thus more general than CSC.

Architectural techniques such as Thread Block Com-
paction [41] and Dynamic Warp Formation [1] involve repack-
ing threads into non-divergent warps. Variable Warp Siz-
ing [42] and Dynamic Warp Subdivision [43] depend on
smaller warps to schedule divergent thread groups in parallel.
Independent Thread Scheduling helps to hide the latency
in divergent paths by allowing to switch between divergent
threads inside a warp [3], [44].

VIII. DI1SCUSSION AND FUTURE WORK

Most of the GPGPU benchmarks are heavily hand optimized
by expert developers and this often include DARM like trans-
formations to remove control-flow divergence [5]. We evaluate
DARM on limited set of real-world benchmarks mainly because
of this reason. However we also emphasize that doing DARM-
like transformations by hand is time-consuming and error-
prone. For example, it took us several hours to manually apply
control-flow melding to LUD kernel. Therefore, offloading this
to the compiler can save a lot of developer effort.

The benefits of DARM is not limited to reducing control-
flow divergence in GPGPU programs. DARM can be used to
reduce control-flow divergence in any hardware backends and
programming models that employ SIMT execution (e.g. in-
tel/AMD processors with ISPC [45]). DARM can be used to
reduce branches in a program. This property can be exploited
to accelerate software testing techniques such as symbolic
execution [46]. DARM factor out common code segments
within if-the-else regions of a program. Therefore it can be
used as an intra-function code size reduction optimization as
well. Aforementioned applications of DARM suggest that it is
useful as a general compiler optimization technique. We plan
to explore some of these applications in our future work.

IX. CONCLUSION

Divergent control-flow in GPGPU programs causes perfor-
mance degradation due to serialization. We presented DARM,
a new compiler analysis and transformation framework for
GPGPU programs implemented on LLVM, that can detect and
meld similar control-flow regions in divergent paths to reduce
divergence in control-flow. DARM generalizes and subsumes
prior efforts at reducing divergence such as tail merging and
branch fusion. We showed that DARM improves performance
by improving ALU utilization and promoting coalesced shared
memory accesses across several real-world benchmarks.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation awards CCF-1919197 and CCF-1908504. We would
like to thank Tim Rogers, Rodrigo Rocha and anonymous
reviewers for their help during various stages of this work.

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient gpu control flow,” in
40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007), 2007, pp. 407-420.

W. W. L. Fung and T. M. Aamodt, “Thread block compaction for
efficient simt control flow,” in 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, 2011, pp. 25-36.

M. Rhu and M. Erez, “The dual-path execution model for efficient gpu
control flow,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), 2013, pp. 591-602.
W.-K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-
entry multiple-exit regions,” in Proceedings of the 10th International
Conference on Static Analysis, ser. SAS’03. Berlin, Heidelberg:
Springer-Verlag, 2003, p. 401-417.

B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr., “Diver-
gence analysis and optimizations,” in 2011 International Conference on
Parallel Architectures and Compilation Techniques, 2011, pp. 320-329.
C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86.
“HIP Programming Guide v4.1,” [Accessed 17-Dec-2021]. [Online].
Available: https://rocmdocs.amd.com/en/latest/

“CUDA C++ Programming Guide,” [Accessed 17-Dec-2021]. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-programming- guide/
index.html

“NVCC :: CUDA Toolkit Documentation,” [Accessed 17-
Dec-2021]. [Online]. Available: https://docs.nvidia.com/cuda/

cuda-compiler-driver-nvcc/index.html

“ROCm Compiler SDK,” [Accessed 17-Dec-2021]. [Online].
Available: https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/
ROCm-Compiler-SDK.html

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, p. 451490, Oct. 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

R. Karrenberg and S. Hack, “Improving performance of opencl on
cpus,” in Compiler Construction, M. O’Boyle, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 1-20.

J. Rosemann, S. Moll, and S. Hack, “An abstract interpretation
for spmd divergence on reducible control flow graphs,” Proc. ACM
Program. Lang., vol. 5, no. POPL, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3434312

K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, spring joint computer conference (AFIPS
’68 (Spring)), 1968, p. 307-314.

D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort
algorithm for graphics processors,” ACM J. Exp. Algorithmics, vol. 14,
Jan. 2010. [Online]. Available: https://doi.org/10.1145/1498698.1564500
“llvm::RegionBase Class Template Reference,” [Accessed 17-
Dec-2021]. [Online]. Available: https:/llvm.org/doxygen/classllvm_
1_1RegionBase.html

R. Johnson, D. Pearson, and K. Pingali, “The program structure
tree: Computing control regions in linear time,” SIGPLAN Not.,
vol. 29, no. 6, p. 171-185, Jun. 1994. [Online]. Available:
https://doi.org/10.1145/773473.178258

“Using cuda warp-level primitives,” [Accessed 17-Dec-
2021]. [Online]. Available: https://developer.nvidia.com/blog/
using-cuda-warp-level-primitives/

T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp.
195-197, 1981. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0022283681900875

R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), 2019,
pp. 149-163.

R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Effective function merging in the ssa form,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association

39

[22]

[23]

[24]

(25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

(36]

(371

[38]

(39]

[40]

[41]

for Computing Machinery, 2020, p. 854-868. [Online]. Available:
https://doi.org/10.1145/3385412.3386030

“CostModel.cpp File Reference,” [Accessed 17-Dec-2021]. [Online].
Available: https://llvm.org/doxygen/CostModel_8cpp.html

“llc - LLVM static compiler,” [Accessed 17-Dec-2021]. [Online].
Available: https://llvm.org/docs/CommandGuide/llc.html

C. Saumya, K. Sundararajah, and M. Kulkarni, “Darm: Control-flow
melding for simt thread divergence reduction - extended version,” 2021.
E. Herruzo, G. Ruiz, J. I. Benavides, and O. Plata, “A new parallel
sorting algorithm based on odd-even mergesort,” in 15th EUROMICRO
International Conference on Parallel, Distributed and Network-Based
Processing (PDP’07), 2007, pp. 18-22.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44-54.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 163-174.

“CUDA Samples,” [Accessed 17-Dec-2021].
https://docs.nvidia.com/cuda/cuda-samples/

A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and
analysis of ptx kernels,” in 2009 IEEE International Symposium on
Workload Characterization (IISWC), 2009, pp. 3—12.

“ ROCm-Developer-Tools / rocprofiler ,” [Accessed 17-Dec-2021]. [On-
line]. Available: https://github.com/ROCm-Developer-Tools/rocprofiler
T. Schaub, S. Moll, R. Karrenberg, and S. Hack, “The impact of
the simd width on control-flow and memory divergence,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, Jan. 2015. [Online]. Available:
https://doi.org/10.1145/2687355

R. Karrenberg and S. Hack, “Whole Function Vectorization,” in
International Symposium on Code Generation and Optimization, ser.
CGO, 2011. [Online]. Available: http://www.cdl.uni-saarland.de/papers/
karrenberg_wfv.pdf

S. Moll and S. Hack, ‘“Partial Control-flow Linearization,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 543-556. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192413

T. Lloyd, K. Ali, and J. N. Amaral, “Gpucheck: Detecting cuda thread
divergence with static analysis,” Deparment of Computer Science,
University of Alberta, Tech. Rep., 2019. [Online]. Available: https:
/lera.library.ualberta.ca/items/7ab2b28d-b111-448¢f-8273-2£f219132908
J. Anantpur and G. R., “Taming control divergence in gpus through
control flow linearization,” in Compiler Construction, A. Cohen, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 133-153.

J. Fukuhara and M. Takimoto, “Branch divergence reduction based on
code motion,” Journal of Information Processing, vol. 28, pp. 302-309,
2020.

F. Khorasani, R. Gupta, and L. N. Bhuyan, “Efficient warp
execution in presence of divergence with collaborative context
collection,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 204-215. [Online]. Available:
https://doi.org/10.1145/2830772.2830796

T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in
gpu programs,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-4.
New York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/1964179.1964184

S. Damani, D. R. Johnson, M. Stephenson, S. W. Keckler, E. Yan,
M. McKeown, and O. Giroux, “Speculative reconvergence for improved
simt efficiency,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, ser. CGO 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
121-132. [Online]. Available: https://doi.org/10.1145/3368826.3377911
S. Damani and V. Sarkar, “Common subexpression convergence: A new
code optimization for simt processors,” in Languages and Compilers
for Parallel Computing, S. Pande and V. Sarkar, Eds. Cham: Springer
International Publishing, 2021, pp. 64-73.

W. W. L. Fung and T. M. Aamodt, “Thread block compaction for
efficient simt control flow,” in 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, 2011, pp. 25-36.

[Online]. Available:

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

[42]

[43]

[44]

T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler, “A
variable warp size architecture,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
489-501. [Online]. Available: https://doi.org/10.1145/2749469.2750410
J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision
for integrated branch and memory divergence tolerance,” SIGARCH
Comput. Archit. News, vol. 38, no. 3, p. 235-246, Jun. 2010. [Online].
Available: https://doi.org/10.1145/1816038.1815992

A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt, “A scalable
multi-path microarchitecture for efficient gpu control flow,” in 20714

40

[45]

[40]

IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), 2014, pp. 248-259.

M. Pharr and W. R. Mark, “ispc: A spmd compiler for high-performance
cpu programming,” in 2012 Innovative Parallel Computing (InPar),
2012, pp. 1-13.

C. Cadar, “Targeted program transformations for symbolic execution,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 906-909. [Online].
Available: https://doi.org/10.1145/2786805.2803205

Authorized licensed use limited to: Purdue University. Downloaded on November 10,2022 at 19:17:20 UTC from IEEE Xplore. Restrictions apply.

