


merged basic blocks, with the effect of reducing divergence.

Branch fusion generalizes tail merging to work with instruction

sequences that may not be identical [5]. However, branch

fusion cannot analyze complex control-flow and hence it is

restricted to simple if-then-else branches where each path has

a single basic block (i.e. diamond-shaped control-flow).

This paper introduces a more general, software-only ap-

proach of exploiting similarity in divergent paths, called

control-flow melding. Control-flow melding is a general

control-flow transformation which can meld similar control-

flow subgraphs inside a if-then-else region (not just individual

basic blocks). By working hierarchically, recursively melding

divergent control-flow at the level of subgraphs of the CFG,

control-flow melding can handle substantially more general

control structures than prior work. This paper describes DARM,

a realization of control-flow melding for general GPGPU

programs. Table I compares the capabilities of DARM with

branch fusion and tail merging.

DARM works in several steps. First, it detects divergent if-

then-else regions and splits the divergent regions into Single

Entry Single Exit (SESE) control-flow subgraphs. Next it uses

a hierarchical sequence alignment technique to meld profitable

control-flow subgraphs, repeatedly finding subgraphs whose

control-flow structures and constituent instructions can be

aligned. Once a fixpoint is reached, DARM uses this hierar-

chical alignment to generate code for the region with reduced

control-flow divergence.

The main contributions of the paper are,

• Divergence-Aware-Region-Melder (DARM), a realization of

control-flow melding that identifies profitable melding op-

portunities in divergent if-then-else regions of the control-

flow using a hierarchical sequence alignment approach and

then melds these regions to reduce control-flow divergence.

• An implementation of DARM in LLVM [6] that can be ap-

plied to GPGPU programs written in HIP [7] or CUDA [8].

Our implementation of DARM is publicly available as an

archival repository1 and up-to-date version is available in

GitHub2.

• An evaluation of DARM on a set of synthetic GPU programs

and a set of real-world GPU applications showing its effec-

tiveness

II. BACKGROUND

A. GPGPU Architecture

Modern GPGPUs have multiple processing cores, each of

which contains multiple parallel lanes (i.e. SIMD units), a

vector register file and a chunk of shared memory. The unit

of execution is called a warp (or wavefront). A warp is a

collection of threads executed in lock-step on a SIMD unit.

Shared memory is shared among the warps executing on a

core. A branch unit takes care of control-flow divergence by

maintaining a SIMT stack to enforce IPDOM based recon-

vergence, as discussed in Section I. GPGPU programming

1https://doi.org/10.5281/zenodo.5784768
2https://github.com/charitha22/cgo22ae-darm-code

1 __global__ static void bitonicSort(int *values) {
2 // copy data from global memory to shared memory
3 __syncthreads();
4 for (unsigned int k = 2; k <= NUM; k *= 2) {
5 for (unsigned int j = k / 2; j > 0; j /= 2) {
6 unsigned int ixj = tid ^ j;
7 if (ixj > tid) {
8 if ((tid & k) == 0) {
9 if (shared[ixj] < shared[tid])

10 swap(shared[tid], shared[ixj]);
11 }
12 else {
13 if ( shared[ixj] > shared[tid])
14 swap(shared[tid], shared[ixj]);
15 }
16 }
17 __syncthreads();
18 }
19 } // write data back to global memory
20 }

Fig. 1. Bitonic sort kernel

abstractions like CUDA [8] or HIP [7] gives the illusion of

data parallelism with independent threads. However, during

real execution, a group of program instances (i.e. threads)

are mapped to a warp and executed in lock-step. Therefore

control-flow divergence in SPMD programs is detrimental to

the performance because of the SIMT execution limitations.

B. LLVM SSA Form and GPU Divergence Analysis

LLVM [6] is a general framework for building compilers,

optimizations and code generators. Most of the widely adopted

GPGPU compilers [9], [10] are built on top of the LLVM

infrastructure. LLVM uses a target-independent intermediate

representation, LLVM-IR, that enables implementing portable

compiler optimizations. LLVM-IR uses static single assign-

ment form [11] which requires that every program variable

is assigned once and is defined before being used. SSA form

uses φ nodes to resolve data-flow when branches are present,

selecting which definition should be chosen at a confluence of

different paths. In GPGPU compilers, a key step in identifying

divergent control-flow regions is performing compiler analyses

to identify divergent variables (or branches) [5], [12]. A branch

is divergent if the branching condition evaluates to a non-

uniform value for different threads in a warp. If the branching

condition is divergent, threads in a warp will have to take

different control-flow paths at this point. LLVM’s divergence

analysis tags a branch as divergent, if the branching condition

is either data-dependent or sync-dependent on a divergent

variable (such as thread ID) [12], though more sophisticated

divergence analyses have been proposed [13].

III. MOTIVATING EXAMPLE

Bitonic sort is a kernel used in many parallel sorting

algorithms such as bitonic merge sort and Cederman’s quick-

sort [14], [15]. Figure 1 shows a CUDA implementation of

bitonic sort. This kernel is our running example for describing

DARM’s control-flow melding algorithm.
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In this kernel, the branch condition at line 8 depends on

the thread ID. Therefore it is divergent. Since the divergent

branch is located inside a loop, the execution of the two sides

of the branch needs to be serialized many times, resulting

in high control-flow divergence. However the code inside the

if (line 9-10) and else (line 13-14) sections of the divergent

branch are similar in two ways. First, both code sections

have the same control-flow structure (i.e. if-then branch).

Second, instructions along the two paths are also similar. Both

conditions compare two elements in the shared array and

perform a swap operation. Therefore the contents of the if and

else sections can be melded to reduce control-flow divergence.

Both code sections consists of shared memory loads and store

operations. In the unmelded version of the code these shared

memory operations will have to be serialized due to thread-

divergence. However, if the two sections are melded threads

can issue the memory instructions in the same cycle resulting

in improved performance.

Existing compiler optimizations such as tail merging and

branch fusion cannot be applied to this case. Tail merging is

applicable only if two basic blocks have a common destination

and have identical instruction sequences at their tails. However

in bitonic sort, the if and then sections of the divergent branch

have multiple basic blocks, and the compiler cannot apply

tail merging. Similarly branch fusion requires diamond shaped

control-flow and does not work if the if and else sections of

the branch contain complex control-flow structures.

DARM solves this problem in two phases. In the analysis

phase (Section IV-C), DARM analyzes the control-flow region

dominated by a divergent branch to find isomorphic sub-

regions that are in the true and false paths of the divergent

branch. These isomorphic sub-region pairs are aligned based

on their melding profitability using a sequence alignment

strategy. Melding profitability is a compile-time approximation

of the percentage of thread cycles that can be saved by melding

two control-flow regions. Next, DARM choses profitable sub-

region pairs in the alignment (using a threshold) and computes

an instruction alignment for corresponding basic blocks in the

two regions. In the code generation phase (Section IV-D),

DARM uses this instruction alignment to meld corresponding

basic blocks in the sub-region pair. This melding is applied

iteratively until no further profitable melding can be per-

formed. DARM’s melding transformation is done in SSA form,

therefore the resulting CFG can be optimized further using

other compiler optimizations (Sections IV-E and IV-F).

IV. DETAILED DESIGN

In this section we describe the algorithm used by DARM

to meld similar control-flow subgraphs. First we define the

following terms used in our algorithm description.

A. Preliminaries and Definitions

Definition 1. Simple Region : A simple region is a subgraph

of a program’s CFG that is connected to the remaining CFG

with only two edges, an entry edge and an exit edge.

Definition 2. Region : A region of the CFG is characterized

by two basic blocks, its entry and exit. All the basic blocks

inside a region are dominated by its entry and post-dominated

by its exit. Region with entry E and exit X is denoted by the

tuple (E,X). LLVM regions are defined similarly [16], [17].

Definition 3. Single Entry Single Exit Subgraph : Single

entry single exit (SESE) subgraph is either a simple region or

a single basic block with a single predecessor and a successor.

Note that a region with entry E and exit X can be transformed

into a simple region by introducing a new entry and exit

blocks Enew, Xnew. All successors of E are moved to Enew

and Enew is made the single successor of E. Similarly, all

predecessors of X are moved to Xnew and a single exit edge

is added from Xnew to X .

Definition 4. Simplified Region : A region with all its sub-

regions transformed into simple regions is called a simplified

region.

We now turn to the steps the DARM compiler pass takes to

reduce control divergent code.

B. Detecting Meldable Divergent Regions

First DARM needs to detect divergent branches in the CFG.

We use LLVM’s built-in divergence analysis to decide if a

branch is divergent or not (Section II). The smallest CFG

region enclosing a divergent branch is called the divergent

region corresponding to this branch. Melding transformation

is applied only to divergent regions of the CFG. The next

step is to decide if a divergent region contains control-flow

subgraphs (definition 3) that can be safely melded.

Definition 5. Meldable Divergent Region: A simplified region

R with entry E and exit X is said to be meldable and divergent

if the following conditions are met,

1) The entry block of R has a divergent branch

2) Let BT and BF be the successor blocks of E. BT does not

post-dominate BF and BF does not post-dominate BT

According to definition 5, a meldable divergent region has a

divergent branch at its entry (condition 1). This makes sure

that our melding transformation is only applied to divergent

regions, and non-divergent parts of the control-flow are left

untouched. Condition 2 ensures that paths BT → X (i.e. true

path) and BF → X (i.e. false path) consists of at least

one SESE subgraph and these subgraphs from the two paths

can potentially be melded to reduce control-flow divergence.

Consider our running example in Figure 1. When this kernel

is compiled with ROCm HIPCC GPU compiler [7] with -O3

optimization level into LLVM-IR, we get the CFG shown in

Figure 4a. Note that the compiler aggressively unrolls both

the loops (lines 4 and 5) in the kernel, and the resulting CFG

consists of multiple repeated segments of the inner loop’s body

(lines 6-17). In Figure 4a, only one unrolled instantiation of

the loop body is shown. As explained in Section III, this kernel

contains a divergent branch, which is at the end of basic block
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b1 and b2 as follows,

MPB(b1, b2) =

∑
i∈Q

min(freq(i, b1), freq(i, b2))× wi

lat(b1) + lat(b2)

Here Q is set of all possible instruction types available in

the instruction set (i.e. LLVM-IR opcodes). lat(b) is the static

latency of basic block which can be calculated by summing the

latencies of all instructions in b. wi is the latency of instruction

type i. The idea here is to approximate the percentage of

instruction cycles that can be saved by melding the instructions

in b1 and b2 assuming a best-case scenario (i.e. all common

instructions in b1 and b2 are melded regardless of their order).

For example, two basic blocks with identical opcode frequency

profile will have a profitability value 0.5.
Because meldable subgraphs are isomorphic, there is

a one-to-one mapping between basic blocks (i.e. corre-
sponding basic blocks). For example, in Figure 2 case
1© the basic block mapping for CFGs L and M are
{(%C,%P ), (%E,%Q), (%D,%R)}. Assume the mapping
of basic blocks in S1 and S2 is denoted by O. Subgraph
melding profitability MPS of subgraphs S1 and S2 is defined
in terms of melding profitabilities of their corresponding basic
blocks.

MPS(S1, S2) =

∑
(b1,b2)∈O

MPB(b1, b2)× (lat(b1) + lat(b2))
∑

(b1,b2)∈O
lat(b1) + lat(b2)

Similar to MPB , MPS measures the percentage of instruc-

tion cycles saved by melding two SESE subgraphs. This metric

is an over-approximation, however it provides a fast way of

measure the melding profitability of two subgraphs that works

well in practice. We use MPS as the scoring function for

subgraph alignment.

Instruction Alignment: Notice that our subgraph melding

profitability metric (i.e. MPS) prioritizes subgraph pairs that

have many similar instructions in their corresponding basic

blocks. Therefore when melding two corresponding basic

blocks we must ensure that maximum number of similar

instructions are melded together. This requires computing

an alignment of two instruction sequences such that if they

are melded using this alignment, the number of instruction

cycles saved will be maximal. We use the approach used in

Branch Fusion [5] to compute an optimal alignment for two

instructions sequences. In this approach compatible instruc-

tions are aligned together and instructions with higher latency

are prioritized to be aligned over lower latency instructions.

Compatibility of two instructions for melding depends on a

number of conditions like having the same opcode and types of

the operands being compatible. We used the criteria described

by Rocha et al. [21] to determine this compatibility. This

instruction alignment model uses a gap penalty for unaligned

instructions because extra branches needs to be generated

to conditionally execute these unaligned instructions. Our

melding algorithm does not depend on the sequence alignment

algorithm used for instruction alignment computation. We use

Smith-Waterman algorithm [19] to compute the instruction

alignment because prior work [5] has shown its effectiveness.

Figure 3a shows the instruction alignment computed for two

basic blocks A and B. Aligned instructions are shown in green

and instructions aligned with a gap are in red.

D. DARM Code Generation

Algorithm 1: DARM Algorithm

Input: SPMD function F

Output: Melded SPMD function Fout

do
changed ← false

for BB in F do
R, C ← GetRegionFor(BB)

if IsMeldableDivergent(R) then
SimplifyRegion(R)

A ← ComputeSubgraphAlignment(R)

for (ST , SF , profit) in A do

if profit ≥ threshold then
Meld(ST , SF , C)

changed ← true
end

end

end

if changed then
SimplifyFunction(F)

RecomputeControlFlowAnalyses(F)

break
end

end

while changed;

Algorithm 2: SESE Subgraph melding Algorithm

Input: SESE subgraphs ST ,SF , Condition C

Output: Melded SESE subgraph Sout

List blockPairs ← Linearize(ST , SF )

List A ← empty

for (BT , BF ) in blockPairs do
List instrPairs ← ComputeInstrAlignment(BT , BF )

A.append(instrPairs)
end

PreProcess(ST , SF )

Map operandMap ← empty

for P in A do
Imelded ← Clone(P )

Update(operandMap, Imelded, P )
end

for P in A do
SetOperands(P , operandMap, C)

end

RunUnpredication()

RunPostOptimizations()

DARM’s control-flow melding procedure is shown in algo-

rithm 1. This algorithm takes in a SPMD function F and

iterates over all basic blocks in F to check if the basic block

is an entry to a meldable divergent region (R) according to
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%B :                                      
..... 

br %16, label %C, label %D 

 %C :                                      
 %31 = icmp slt %28, %29
 br %31, label %E, label %X1 

 %D :                                      
 %34 = icmp sgt %28, %29   
 br %34, label %F, label %X2 

 %E :                 
 store %28, %9
 store %29, %27
 br label %X1
 

 %F :                 
 store %28, %9
 store %29, %27
 br label %X2

 

 %X1 :             
  br label %G

%X2 :              
br label %G 

%G :                
    ..... 
 

(a)

%B :                     
  ..... 
  br label %C_D 

%P.S.1 :                                   
  %34 = icmp sgt %28, %29 
   br label %C_D.T.1 

%N :                 
 br label %G 

 %C_D :                                     
 br %16, label %C_D.T1, label %P.S.1 

T F

 %X1_X2 :                                   
    br %16, label %M, label %N

T F

 %G :                                     
  ............

T F

%P.S.2 :                                 
   %31 = icmp slt %28, %29 
   br label %C_D.T.2

%E_F :                       
   store %28, %9 
   store %29, %27
   br  label %X1_X2 

%M :                     
  br label %G 

 %C_D.T.1 :                                      
   %phi.1 = phi [undef, %C_D], [%34,   %P.S.1] 
    br %16, label %P.S.2, label %C_D.T.2  

T F

%C_D.T.2 :                                      
   %phi.2 = phi [%31, %P.S.2], [undef, %C_D.T.1] 
   %37 = select %16, %phi.2, %phi.1    
   br %37, label %E_F, label %X1_X2 

T F

(b)

Fig. 6. LLVM-IR before and after applying DARM transformation to our
running example (a) meldable divergent region (b) instruction alignment (b)
LLVM-IR generated after subgraph melding and unpredication

blocks %E, %F use matching operands, therefore can be

melded without adding selects. On the other hand, conditional

branch instructions uses values %34 and %31 and select

instruction %37 is inserted (Figure 6b) to pick the branching

condition conditionally. Note that the values %34 and $31
will flow to their users via the φ nodes %phi.1 and %phi.2
respectively. Therefore the select instruction (i.e. %37) uses

these φ nodes as its operands.

V. IMPLEMENTATION

We implemented the DARM algorithm described in Sec-

tion IV as an LLVM-IR analysis and transformation pass

on top of the ROCM HIPCC3 GPU compiler [10]. Both the

analysis and transformation are function passes that operate

3LLVM version 12.0.0, ROCm version 4.2.0

on GPGPU functions. The analysis pass first detects meld-

able divergent regions using LLVM’s divergence analysis.

Then it finds all the profitable subgraph pairs that can be

melded. We use a default melding profitability threshold of

0.2 (algorithm 1). We also provide a sensitivity analysis on

this threshold in Section VI-E. We use modified version of

LLVM cost model [22] to obtain instruction latencies for

melding profitability and instruction alignment computations.

The transformation uses the output of analysis to perform

DARM’s code generation procedure (Section IV-D). The trans-

formation pass also performs the unpredication, pre- and post-

processing steps described in Sections IV-E and IV-F. LLVM

pass is implemented in ∼ 2500 lines of C++ code. In order

to produce the program binary with our pass, we had to

include our pass in the ROCM HIPCC compilation pipeline.

Most GPGPU compilers (e.g. CUDA nvcc, ROCm HIPCC)

use separate compilation for GPU device and CPU host codes.

Final executable contains the device binary embedded in the

host binary. In the modified workflow, we first compile the

device code into LLVM-IR and run DARM on top of that

to produce a transformed IR module. Our pass runs only on

device functions and avoids any modifications to host code.

After that, we use the LLVM static compiler (llc) [23] to

generate an object file for the transformed device code. The

rest of the compilation flow is as same as the one without any

modification.

VI. EVALUATION

A. Evaluation Setup and Benchmarks

We evaluate the performance of DARM on a machine with

a AMD Radeon Pro Vega 20 GPU. This GPU has 16 GBs

of global memory, 64 kB of shared memory (i.e. Local Data

Share (LDS)) and 1700 MHz of max clock frequency. The

machine consists of AMD Ryzen Threadripper 3990X 64-Core

Processor with 2900 MHz max clock frequency.

We use two different sets of benchmarks. First, to assess the

generality of DARM, we create several synthetic programs that

exhibit control divergence of varying complexity. While many

real-world programs are hand-optimized to eliminate diver-

gence, these synthetic programs qualitatively demonstrate the

generality of DARM over prior automated divergence-reduction

techniques, and show that DARM can automate the control-flow

melding that would be otherwise done by hand. For detailed

description of the evaluation on synthetic benchmarks, please

refer the extended version of our paper [24].

Real-world Benchmarks We show DARM’s effectiveness on

real-world programs. We consider 7 benchmarks written in

HIP [7]. These benchmarks were taken from well-known

highly hand-optimized GPU benchmark suites or optimized

reference implementations of papers. We selected these bench-

marks because they contain divergent if-then-else regions that

present melding opportunities for DARM. We do not consider

benchmarks that do not present any melding opportunities for

DARM because they are not modified by DARM in any way.

Bitonic Sort (BIT) Our running example is bitonic

sort [14]. In this kernel, each thread block takes in a bucket
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code and linking because it is constant for both the baseline

and DARM. Since we perform the analysis and the instruction

alignment – the most costly parts – at the basic block level

rather than performing at a higher level (i.e. function or region

level), we incur negligible compilation overhead. Compilation

time overhead introduced by DARM is a small fraction of total

compilation time (including host code) for all cases.

DARM’s compile time depends on the size of basic blocks

that get melded and the structure of the program since it

determines different types of melding opportunities. A slight

overhead in compilation time of LUD is caused by sequence

alignment overhead on large basic blocks (created by loop

unrolling). PCM and BIT have divergent regions inside an

unrolled loop, therefore DARM’s meldable subgraph detection

incurs overhead. Only BIT and PCM has opportunities for

region to region melding, and only PCM, NQU, and SRAD

have opportunities for basic block to region melding. Presence

of basic block to region melding opportunity results in region

replication.

VII. RELATED WORK

Impact of control-flow divergence has extensively studied

in different contexts [31]–[34]. Reducing control-flow diver-

gence requires finding the source of divergence in a program.

Coutinho et al. constructed a divergence analysis to statically

identify variables with the same value for every SIMD unit and

used this analysis to drive Branch Fusion [5]. A divergence

analysis of similar fashion based on data and sync dependences

has been integrated to the LLVM framework [12]. Recently,

Rosemann et al. has presented a precise divergence analysis

based on abstract interpretation for reducible CFGs [13]. Using

a precise divergence analysis improves the opportunities of

melding for DARM.

Tail Merging is a standard, but restrictive, compiler op-

timization used to reduce the code size by merging identi-

cal sequences of instructions. Chen et al. used generalized

tail merging to compact matching Single-Entry-Multiple-Exit

regions [4]. Recently, Rocha et al. has presented Function

Merging, an advanced sequence-alignment based technique for

code size reduction [20], [21]. Even though parts of DARM has

some similarities with function merging, it does not tackle

divergence.

In addition to branch fusion, Anantpur and Govindarajan

proposed to structure the unstructured CFGs and then linearize

it with predication [35]. More recently, Fukuhara and Takimoto

proposed Speculative Sparse Code Motion to reduce diver-

gence in GPU programs [36], which preserves the CFG and

it is orthogonal to DARM. Collaborative Context Collection

copies registers of divergent warps to shared memory and

restores them when those warps become non-divergent [37].

Iteration Delaying is a complementary compiler optimization

to DARM that delays divergent loop iterations [38] and can

be applied following DARM. Recently, Damani et al. has

presented a speculative reconvergence technique for GPUs

similar to iteration delaying [39]. Common Subexpression

Convergence (CSC) [40] works similar to branch fusion but

uses branch flattening (i.e. predication) to handle complex

control-flow. In contrast, DARM does not require predication

to meld complex control-flow, thus more general than CSC.

Architectural techniques such as Thread Block Com-

paction [41] and Dynamic Warp Formation [1] involve repack-

ing threads into non-divergent warps. Variable Warp Siz-

ing [42] and Dynamic Warp Subdivision [43] depend on

smaller warps to schedule divergent thread groups in parallel.

Independent Thread Scheduling helps to hide the latency

in divergent paths by allowing to switch between divergent

threads inside a warp [3], [44].

VIII. DISCUSSION AND FUTURE WORK

Most of the GPGPU benchmarks are heavily hand optimized

by expert developers and this often include DARM like trans-

formations to remove control-flow divergence [5]. We evaluate

DARM on limited set of real-world benchmarks mainly because

of this reason. However we also emphasize that doing DARM-

like transformations by hand is time-consuming and error-

prone. For example, it took us several hours to manually apply

control-flow melding to LUD kernel. Therefore, offloading this

to the compiler can save a lot of developer effort.

The benefits of DARM is not limited to reducing control-

flow divergence in GPGPU programs. DARM can be used to

reduce control-flow divergence in any hardware backends and

programming models that employ SIMT execution (e.g. in-

tel/AMD processors with ISPC [45]). DARM can be used to

reduce branches in a program. This property can be exploited

to accelerate software testing techniques such as symbolic

execution [46]. DARM factor out common code segments

within if-the-else regions of a program. Therefore it can be

used as an intra-function code size reduction optimization as

well. Aforementioned applications of DARM suggest that it is

useful as a general compiler optimization technique. We plan

to explore some of these applications in our future work.

IX. CONCLUSION

Divergent control-flow in GPGPU programs causes perfor-

mance degradation due to serialization. We presented DARM,

a new compiler analysis and transformation framework for

GPGPU programs implemented on LLVM, that can detect and

meld similar control-flow regions in divergent paths to reduce

divergence in control-flow. DARM generalizes and subsumes

prior efforts at reducing divergence such as tail merging and

branch fusion. We showed that DARM improves performance

by improving ALU utilization and promoting coalesced shared

memory accesses across several real-world benchmarks.
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