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Highlights
Many biotic responses to nitrogen
(N) vary with climate, suggesting that
the intersection of climate and N inputs
is a critical area to build understanding.

Elevated N often results in reduced
grassland species richness, elevated
foliar N concentrations, and more non-
native species, but soil chemistry can
control the direction and magnitude of
these changes.
Human activities have more than doubled reactive nitrogen (N) deposited in eco-
systems, perturbing the N cycle and considerably impacting plant, animal, and
microbial communities. However, biotic responses to N deposition can vary
widely depending on factors including local climate and soils, limiting our ability
to predict ecosystem responses. Here, we synthesize reported impacts of
elevated N on grasslands and draw upon evidence from the globally distributed
Nutrient Network experiment (NutNet) to provide insight into causes of variation
and their relative importance across scales. This synthesis highlights that climate
and elevated N frequently interact, modifying biotic responses to N. It also dem-
onstrates the importance of edaphic context and widespread interactions with
other limiting nutrients in controlling biotic responses to N deposition.
Plant aboveground biomass is often in-
creased by N, but responses can take
decades to emerge and can interact
with climate; in addition, growth in many
grasslands is co-limited by other
elements.

Grassland consumers often increase
with, and have increasing impact on, ele-
vated N, but climate contributes, and
mechanisms linking N via plants to con-
sumers remain a key knowledge gap.

The relationship between carbon cycling
and elevated N varies among locations,
likely reflecting interactions with climate
and co-limitation by other nutrients.
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Reactive nitrogen and biotic responses
Reactive N impacts human health [1] and shapes the diversity, composition, and function of the
biosphere [2–4]. Yet, in less than a century, human activities have more than doubled the reactive
N supplied to Earth’s ecosystems via atmospheric deposition [5], with some regions currently re-
ceiving more than 50 kg N ha–1 year–1 [6]. The supply of reactive N deposition (Ndep) on Earth is
regionally variable because it is associated with agriculture and fossil fuel emissions and can be
transported long distances via weather systems [6,7].

Policies recognizing the threats of anthropogenic N to human health and ecosystem functioning
have focused on regulating oxidized N, or NOx, emissions, inducing new regional variability in
Ndep trends. For example, Ndep is increasing rapidly in some regions, including East Asia and
Brazil [7,8], while declining due to regulations in the USA and many European Union countries.
Nonetheless, although Ndep in the USA, for example, declined following successes of the Clean
Air Act, it remains five to ten times higher than preindustrial levels [8], and Ndep across the USA
increased by 8% between 1984 and 2016, even with strong regulatory policies [6]. However,
while some regional emissions have declined directly in response to NOx regulation and indirectly
via regulation of CO2 [9,10], less regulated N forms (e.g., reduced N, or NHx) have come to
dominate Ndep, with some regions experiencing substantial net increases [6,11,12].

From the perspective of Earth’s biota, Ndep is occurring in the context of many ongoing changes to
ecosystems, including changing climate and atmospheric CO2. Given that biotic responses to Ndep

can varywidely depending on abiotic factors, such as temperature and precipitation, our ability to pre-
dict the effects of N supply on diversity and functioning from reviews of empirical studies remains a key
challenge [13]. Furthermore, while syntheses and reviews of studies performed in different locations
provide a powerful basis for summarizing published work, these approaches are limited in their ability
to capture sources of variation in biotic responses across edaphic and climatic gradients because of
differences in methods and heterogeneous reporting of environmental conditions among studies.
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Reviews of N effects on biota also typically combine differing N sources, even though oxidized and
reduced N forms can differ in their effects on species growing under the same conditions [14].
Thus, while existing reviews and syntheses have generated important insights into the threats
posed by Ndep in some regions and to some components of the environment, this knowledge is
patchy on a global basis and can provide only limited insight into causes of variation in biotic re-
sponses and their relative importance across sites, continents, and studies.

Here, we fill this gap with a focus on Earth’s grasslands. We briefly review studies of multitrophic
impacts of Ndep to summarize the current state of knowledge. We build from this by synthesizing
the range of biotic responses to identical, experimental N addition across climatic gradients in the
long-term, multicontinent NutNeti experiment (Box 1). While Ndep varies widely and is lower than
Box 1. The Nutrient Network

TheNutrient Network, or NutNet, a global change study begun in 2007, is currently replicated at 152 grassland sites in 29 countries, spanning Earth’s climates (Figure I). The
NutNet collaboration is generating three interoperable data sets [99]: (i) Observational data. Using identical methods at all sites, this project is generating a spatially extensive
data set on grassland biodiversity and ecosystem characteristics; (ii) multinutrient experiment. At >100 sites, NutNet scientists are applying a factorial combination of N (10 g
N m–2 year–1 as slow-release urea, CH N O), phosphorus [P: 10 g P m–2 year–1 as Ca(H2PO4)2], and potassium (K: 10 g K m–2 year–1 as K2SO4) with micronutrients (one-
time addition in K treatment plots of a micronutrient mix, μ, containing calciummagnesium, sulfur, boron, copper, iron, manganese, molybdenum, and zinc); (iii) nutrient and
herbivory experiment. At >100 sites, NutNet scientists are applying a factorial combination of large herbivore exclusion (via fences) and annual NPKμ addition.

At all NutNet sites, annual data on grassland plant species identity, cover, biomass, and light interception have been collected from a median of 30 plots per site using
identical sampling protocols. Soil chemistry and texture data have also been collected from every plot around the world at regular intervals. Many sites have collaborated
on collection of additional response data, including arthropods, foliar chemistry and damage, and soil microbial composition and functioning. Slow-release urea, re-
leased into the environment as a function of site-level precipitation, is an effective proxy for N deposition [100], and the experimental N supply rate, while high, is less
than double some currently observed regional deposition rates [6]. High experimental addition rates are often used as a proxy for chronic, multidecadal nutrient inputs
by pollution. Thus, NutNet’s factorial experimental design provides directly comparable, integrated data on a range of biotic responses to identical inputs of a single form
of N (CH N O) across a range of global climate regimes.
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Figure I. Nutrient Network (NutNet) site locations represent a wide, globally relevant range of mean annual precipitation (MAP) and mean annual
temperature (MAT).
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NutNet addition rates in most locations [6], even under future scenarios [15], this synthesis pro-
vides novel insights into the types of biotic responses most likely to simultaneously depend
upon N inputs and climatic conditions. Using this approach, we fill knowledge gaps about N
impacts on grassland populations, communities, and ecosystem processes, including in the
context of climate, and we point to future opportunities for understanding N impacts to support
ongoing development of environmental standards (Box 2).

Plant diversity and species traits
One of the most widely reported responses to Ndep across the ecological literature is the loss of
species from plant communities, with abundance declines and local extinction even at low rates
of N input [14,16,17]. Across experiments, climate can determine species loss rates, which can
continue for years [14]. While the responses of individual species to Ndep vary among sites and
studies [8,16], compositional changes frequently result in reduced species richness [17,18].
Ndep can favor grasses over forbs, with shorter-statured, low tissue N species at greatest risk
of local extinction [8]. Invasive species often increase with elevated Ndep [8]. While competition
for light may underlie N-induced changes in species composition and biodiversity loss [19], soil
acidification can exacerbate biodiversity loss in unbuffered soils [18]. Long-term simulated Ndep

can even deplete seed banks, reducing the capacity for recovery [20].

Diversity trajectories and N
Results from the NutNet experiment (Box 1) are concordant with this literature, showing that
grassland plant diversity responds similarly to identical rates of N addition across continents and
conditions, with continued losses over a decade of chronically elevated N [21]. These directly compa-
rable data further demonstrate that this diversity loss trajectory is exacerbated by high background
rates of other soil elements [22] and is compounded when other elements, such as phosphorus,
which arrives in many locations via long-distance transport [23], are also added. These results
corroborate consistent N impacts on grassland plant diversity across conditions, and advance
understanding by demonstrating that the magnitude of N impacts on diversity loss through time
depend on edaphic conditions and input rates of other elements (Figure 1 and Table 1). Although
herbivory can maintain grassland diversity at sites where it increases ground-level light, herbivores
do not consistently counteract the effect of elevated N on diversity [24].
Box 2. Standards for the control of nitrogen emissions and deposition

Following the United Nations Conference on the Human Environment, the Convention on Long-Range Transboundary Air
Pollution (CLRTAP) was signed in Geneva in 1979. This was the first multilateral convention addressing air pollution, signed
by 51 primarily European parties, and supported by several protocols, including the Gothenburg Protocol, focused on re-
ducing acidifying pollutants, including N. The CLRTAP introduced the critical loads concept, defined as ‘a quantitative es-
timate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of
the environment do not occur according to present knowledge’ [101]. Empirical critical loads are based on evidence from
studies [102] and are subject to routine review.

The USA has National Ambient Air Quality Standards for NOx, introduced in 1971, and is a signatory of CLRTAP. National
critical loads for Ndep into ecosystemswere published in 2011 [103]. Due to lower levels of background N deposition in the
USA, critical loads are often lower than European equivalents and may be accompanied by lower protective target loads.

China is one of the dominant emitters of reactive N. In China, Ndep peaked around the year 2000 and declined dramatically
between 2010 and 2018, as NOx emission controls came into effect [104]. Critical loads in China are largely based on the
steady-state mass balance approach [105], although empirical evidence that could be used to create empirical critical
loads is growing [106].

In other regions of the world, there is increasing awareness of the need to control N emissions, but emissions policies must
be balanced with food security. For example, regions in Africa and Latin America have considerable shortages of agricul-
tural N, while other regions are experiencing unwanted impacts of N deposition [107,108].
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Figure 1. Many biotic responses to elevated nitrogen (N) depend on climate. In the Nutrient Network experiment
replicated across global climates, N supply affects biotic responses, and climate modifies some, but not all, biotic
responses to elevated N supply. Icons indicate whether climate modifies a response to N; they do not imply magnitude or
direction of effect. See Table 1 and the main text for effect direction and additional details.
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Plant trait responses to N
Leaf N concentrations in 243 species of dominant plants in NutNet plots spanning four continents
increased with a consistent rate of N addition due to elevated within-species N content (via
e.g., luxury uptake [25]) and increased domination by N-rich species [26]. Non-native graminoids
in sites around the world also tend to have more N-rich foliage compared with their native coun-
terparts [27], and native abundance and richness decline while non-native dominance and rich-
ness increase with N addition [28,29], suggesting a likely trait advantage under increasing Ndep.
This shift induced by elevated N alters community trait distributions, favoring grasses and annual
plants [28] and causing widespread declines in legumes [30] (Figure 1 and Table 1). Plant com-
munity trait shifts induced by N supply can arise from, and impact, consumer communities (see
‘Consumer responses’ section). For example, the supply of nutrients, including N, can interact
with usually unmeasured traits, such as foliar sodium, to alter trait abundances as a function of
herbivory [31].

Traits, N, and climate
Whereas elevated N across NutNet sites tends to increase the local richness (m2 scale) of non-
native species, this effect is reversed with increasing interannual precipitation variability, such
that, at sites with highly variable precipitation, added N tends to cause non-native species losses.
By contrast, native species tend to persist with N addition when interannual precipitation is vari-
able [29]. Added N also reduces legume abundance, particularly at sites with high mean annual
temperatures, suggesting that N deposition is increasingly detrimental to biological N cycling
with increasing annual temperatures [30] (Figure 1 and Table 1).

Plant live biomass
Increased aboveground biomass is a frequently reported response to elevated N across the
literature, both via Ndep and experimental fertilization [32]. However, increasing Ndep shifts commu-
nities toward limitation or co-limitation of biomass production by other elements, including phos-
phorus [33] or micronutrients [34,35]. Precipitation can interact with N to constrain biomass
production [36]. Plant diversity can also constrain biomass production, and biomass can have a
reciprocal effect on diversity [37], with chronically elevated nutrient supply potentially reducing bio-
mass gains via species extinctions over the long term [38] and reducing temporal stability [39].
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Table 1. N and climate impacts in the NutNet experimenta

Response category Response variable N effect direction Climate interaction with N Refs

Plant species Plant diversity ↓ [21,22]

Plant species Foliar nitrogen ↑ Herbivores reduce plant community foliar N at low
precipitation sites

[26,61]

Plant species Plant provenance
(non-native species)

↑ Precipitation variability increases native plant species
despite elevated N

[28,29]

Plant species Functional group
(legumes)

↓ Elevated temperature increases legume loss with N [30]

Plant species Functional group
(grasses, annuals)

↑ [28]

Plant community Plant biomass ↑ Most consistently with addition
of other nutrients

Strongest effect of N at high latitude, cool sites [21,42]

Plant community Plant biomass variability ↑ Stability is further reduced with drought and aridity [47–49]

Plant community Plant community
phenology

N can change community
phenology in some regions

[62]

Plant community Plant community
defense

↓ [63]

Consumers Arthropod foliar damage ↑ Damage increases with precipitation, but this is
independent of N addition

[64]

Consumers Vertebrate impacts on
plant biomass

↑ Large herbivores most strongly reduce N-fertilized
biomass at low precipitation sites

[31,61,65]

Consumers Foliar pathogen damage ↑ Infection increases with site-level precipitation
independent of N supply

[64]

Soil microbes Soil pathogenic fungi
diversity

↑ [75]

Soil microbes Arbuscular mycorrhizal
fungi

↓ [74]

Soil microbes P-solubilizing bacteria ↓ [76]

Ecosystem Soil microbial growth ↓ [77-79]

Ecosystem Soil microbial
respiration

↓ [78,80]

Ecosystem Litter decomposition ↑ Early, ↓ late-stage
decomposition

Likely interacts with climate and other factors
(vegetation, microbial community)

[21,87,109]

Ecosystem N-mineralization Highest at sites with a warm, wet growing season [93]

Ecosystem Soil carbon stock Losses and gains across sites Varies with precipitation, particularly when other
elements are added in addition to N

[90,91]

aIn the NutNet experiment, climate modifies many of the biotic responses to experimental N supply. Response categories relate to Figure 1 in the main text.

Trends in Ecology & Evolution
Although aboveground biomass is often reported to increase with added N, this is reported less
often for belowground biomass, leading to reduced root:shoot ratios [40]. However, reviews
across studies are limited in their ability to uncover climatic and edaphic interactions with N that
may control biomass production.

Biomass and Ndep

While most work in NutNet has focused on experimentally added N, the network has also quan-
tified impacts of Ndep on grassland biomass around the world. Directly comparable NutNet data
spanning five continents demonstrate that, for every 1 kg N ha–1 year–1, standing plant biomass
increased by 3%. Ndep was a better predictor of plant biomass than was site-level climate or even
plot-scale edaphic properties [41].
Trends in Ecology & Evolution, June 2022, Vol. 37, No. 6 545
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Nutrient effects on above- and belowground biomass
NutNet experimental N supply increased grassland aboveground biomass at only ~24% of sites
after 3 years [42], but this effect amplified at most sites over a decade [21]. However, the availabil-
ity of other elements determines the strength of this response [43]. When N is supplied with other
elemental nutrients, peak season biomass increased rapidly at ~66%of sites [42], and biomass at
most sites increased in response to a chronic supply of multiple nutrients after a decade [21],
demonstrating widespread nutrient co-limitation and impacts that can take years to manifest.
Root allocation increased in response to N supply at grasslands spanning four continents [44],
but canopy density determined site effects. Root mass declined with N addition at sites with
dense aboveground canopies but increased at sites where canopies were sparse [44].

Nutrient effects on diversity, production, and stability of biomass
After a decade of chronic N addition at NutNet sites spanning continents, biomass continued to
increase despite widespread diversity loss [21]. N supply reduced the temporal stability of peak
biomass across NutNet, acting primarily by reducing the stabilizing force of interannual species
asynchrony rather than via diversity loss [45,46]. Thus, while grassland diversity loss from
elevated N is widespread, diversity loss is not likely to be the most common pathway by which
Ndep will alter peak biomass and interannual variation.

Biomass, N, and climate
Aboveground biomass responsiveness to NutNet N addition is generally greatest at cooler,
higher latitude sites, with weaker responses to the same N supply rate at warmer, low latitude
sites [42], suggesting that, with rising temperatures, grassland aboveground biomass will be in-
creasingly limited by factors other than N supply. NutNet studies examining drought effects
have focused on N addition in combination with other elements; however, these results build
on previous studies of N alone at single sites or in syntheses. Chronically elevated nutrients in-
crease dominance by grasses, which exacerbated impacts on biomass of a widespread
European drought [47]. Across sites, nutrient impacts during drought depend on site aridity
and regional floras [48,49]. Across regions, elevated nutrients generally increase grassland sen-
sitivity to precipitation variability [50] (Figure 1 and Table 1).

Consumers: grassland vertebrates, arthropods, and pathogens
Ndep may impact consumers through changes in plant quality and quantity, stoichiometric imbal-
ances, and, for arthropods and pathogens, a cooler, moister microclimate resulting from increased
aboveground biomass, decreased reproductive habitat, or reduced availability of host or prey species
[51]. Increased insect herbivory in response to elevated foliar N concentrations has been reported in
some locations [52], even inducing a population explosion in one documented case [53]. Ndep can
alter nectar chemistry [54] and may reduce forb richness [18], inducing pollinator declines [55,56]. Al-
thoughwidespread butterfly population declines in Europe have been linked toNdep-related increases
in vegetation productivity and resulting changes in microclimates [57], most evidence demonstrating
an impact of Ndep on arthropods comes from studies of individual herbivore species [52]. Pathogen
infection prevalence can increase with N because N supply tends to favor faster growing, less-
defended plant species [58]. Ndep can impact vertebrate consumers via reduced habitat quality
and invertebrate food sources (e.g., northern flying squirrel,Glaucomys sabrinus [59] and red-backed
shrike, Lanius collurio [60]), although extensive knowledge gaps remain about N impacts on higher
trophic levels [4].

Plant quantity and quality changes with N
N addition in NutNet alters plant traits, generally increasing foliar N at the species level [26] and
in aggregate biomass [61], likely improving foliage quality as a food source. Ndep [41] and
546 Trends in Ecology & Evolution, June 2022, Vol. 37, No. 6
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experimental N supply [42] also tend to increase aboveground grassland biomass. From the
perspective of plant pollinators, NutNet provides some evidence that elevated N can
change flowering phenology, at least in some regional floras [62]. Finally, while there are
no direct tests of the impact of N alone on plant defense in NutNet, an experiment per-
formed at the same sites but with the addition of multiple elements, including N, uncovered
evidence for increased investment in growth and reduced defense with elevated nutrients
[63]. This is consistent with reduced defense in simulated Ndep studies [52] but extends
the meta-analytical result by demonstrating the consistency of this response across sites
and continents.

Consumption, infection, N, and climate
Invertebrate damage on plant foliage at nearly 30 NutNet sites increased in response to N addi-
tion, with greatest damage on grasses and nonleguminous forbs [64]. Pathogen damage on
these same plants increased with N addition on grasses and legumes [64]. Arthropod and path-
ogen damage increase with site-level precipitation, but variation in damage with climate is inde-
pendent of N supply. By contrast, when plants are protected from vertebrate herbivores, the
supply of nutrients, including N, increases biomass N most strongly at low precipitation sites,
but when vertebrate herbivores at dry sites can access fertilized plants, they consume the nutri-
tious biomass, reducing aggregate biomass N content [61,65]. Nutrient supply also interacts with
foliage chemistry and herbivory across this climate gradient. In particular, foliage at sites with low
precipitation is relatively high in sodium, a critical element for consumers, and, under dry condi-
tions, vertebrate herbivores tend to consume foliage of high-sodium plant species in fertilized
plots [31] (Figure 1 and Table 1).

Consumer biomass and N
The NutNet experiment demonstrates that the N supply supports a greater mass of arthropods
(i.e., secondary production) via compositional turnover to favor arthropod species with larger av-
erage body sizes [66]. Arthropod abundance also increases with N supply across these sites
[66,67], particularly in response to greater mass of live and dead vegetation [66].

Consumers: soil microbial communities
While soil microbes have long been considered in the context of ecosystem processes and
agriculture, the edaphic and climatic characteristics controlling microbial biomass and
diversity across global gradients are only beginning to be uncovered [68,69]. N addition is
known to impact soil microbial communities, often reducing biomass [70] and increasing
dominance of bacteria over fungi [71]. Impacts of N via soil acidification may be especially
important in controlling species composition [72]. N also has the potential to shift the
relative abundance of functional groups, with loss of, for example, mycorrhizal fungal
mutualists [73].

Soil communities, functional traits, N, and climate
NutNet data demonstrate that elevated N causes predictable responses in soil microbial com-
position, and that the magnitude of these changes tends to mirror the magnitude of plant com-
munity changes in response to N [74]. N addition tends to increase soil pathogenic fungi [75]
and the abundance of archaea and fungal groups such as Ascomycota, whereas
Glomeromycota, a group that dominates the arbuscular mycorrhizal fungi, consistently decline
in abundance [74]. Across NutNet sites, N also reduces phosphorus-solubilizing bacteria [76].
These soil pathogens and mutualists do not vary with climate, but are, instead, constrained by
plant composition and edaphic characteristics [75] which change with N supply (Figure 1 and
Table 1).
Trends in Ecology & Evolution, June 2022, Vol. 37, No. 6 547
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Soil microbial biomass and N
Grassland microbial biomass and microbial biomass C:N chemistry were unchanged in
response to NutNet’s consistently increased N supply across a range of climatic and edaphic
conditions [77–79]. Although N did not generally reduce soil pH, N supply reduced microbial
genes associated with metabolism, reducing both microbial growth and respiration,
particularly in surface soils [78,80].

Ecosystem pools and rates
N addition to ecosystems has considerable potential to alter processes, including cycling of N,
carbon, and other nutrients. Recent focus has been on impacts of Ndep on carbon cycling [81],
uncovering high among-study variability in the response of soil processes to Ndep. For example,
a meta-analysis of the effect of N on litter decomposition showed that responses depended on
Ndep or N addition rate and litter quality [82]. While soil respiration is commonly reduced by N ad-
dition [83], impacts on soil carbon stocks are variable [84]. Although some studies found relation-
ships between N addition and N mineralization (Nmin) (e.g., unimodal relationship in a tropical
grassland) [85], the documented impacts on N cycling are variable in the literature, apparently
due to dependence of microbially driven processes, such as mineralization and immobilization,
on climate, management, and other factors (e.g., [86]).

Litter and decomposition, N, and climate
Although N increases live biomass in the NutNet experiment, elevated N supply has variable
effects on litter across sites around the world [21]. Litter disappearance is poorly predicted
by climate alone, instead varying most among continents, suggesting the combined
importance of factors including vegetation, microbial communities, and climate [87]. N
accelerates initial decomposition and biochemical transformation of standard substrates,
particularly at cool sites, but not at warm sites [88]. Furthermore, similar to aboveground
biomass, decomposition is co-limited by multiple nutrients, and precipitation jointly determines
this rate. However, while N speeds decomposition in the initial years, it slows late-stage
decomposition [109] (Figure 1 and Table 1).

Soil carbon, N, and climate
Among sites, NutNet N addition causes losses and gains of soil carbon, but identical
treatments do not induce consistent responses after 2–3 years [89] or 10 years [90]. N
effects on soil carbon likely occur where N supply reduces the soil organic carbon to N
ratio and increases soil aggregation, reducing microbial respiration and increasing soil
microbial carbon-use efficiency [78,80]. The availability of other elements likely has an
important role in constraining N effects on changes in soil carbon [91]. When other elements
are supplied along with N, changes in both soil carbon stocks [89] and microbial carbon-use
efficiency [78] vary along a moisture gradient (precipitation and soil sand content) (Figure 1
and Table 1).

Soil nutrient cycling, N, and climate
Across NutNet, Nmin in grassland soils is greatest at sites with highmicrobial biomass, soil organic
C, and warm, wet, growing seasons [92], and elevated nutrients tend to reduce Nmin only when
vertebrate herbivores are excluded from plots. Particularly under elevated nutrients, the impact of
herbivory on the soil N pool varies with climate [93]. While these studies received N in combination
with other nutrients, they demonstrate that N cycling is controlled via multiple, interactive factors,
including elevated N, under field conditions. Other work in NutNet demonstrates that elevated N
alone increases P cycling by increasing bacterial phosphatase production [76] (Figure 1 and
Table 1).
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Outstanding questions
Where will N limitation shift to nutrient
co-limitation of biomass in the future?
Co-limitation is far more common than
thought previously. It remains unclear
where that will change in the future,
with rising CO2 possibly offsetting in-
creasing Ndep in some regions.

Under what conditions are Ndep

impacts on grassland consumers
greatest? Identifying species, regions,
and conditions where Ndep will spread
through above- and belowground
grassland foodwebs and feed back to
impact plant biomass and soils is an
open question.

Howwill concurrently changing climate
and Ndep impact grassland soil carbon
storage? Grasslands store ~20% of
the world’s soil carbon, yet this review
highlights large, mostly unexplained,
variation in the soil carbon response
to N addition. Uncovering how cli-
matic, biotic, and edaphic factors inter-
act with Ndep to control soil organic
carbon stocks remains a key chal-
lenge.

How can we best translate knowledge
into habitat management to mitigate
Ndep impacts? Ndep is impacting
protected habitats in many areas of
moderate and high deposition. Yet
limited research exists into the efficacy
of offsetting elevated N via vegetation
removal or increasing habitat resistance
via other management approaches.

Which existing knowledge is
generalizable to understudied regions?
Regional policies rely on biotic
response data to inform critical load
values, yet the existence of data on
responses to Ndep varies among
continents, with a near absence in
several global regions. Supporting
and engaging with scientists in these
regions is a critical need for informing
policy development.

Which habitats will recover from the
impacts of Ndep? Results are mixed on
the potential for recovery from Ndep

but suggest that recovery will be slow,
and alternative states are possible,
requiring active management for a
return to previous conditions.
Concluding remarks
Given that regions around the world differ in climate, biota, and input rates of N and other
elements, and changes in these factors differ among regions in both direction and pace,
sorting apart the sources of variation in biotic responses to Ndep remains a difficult challenge.
This is particularly true because most experiments are performed at single sites and
characterize one or a limited suite of response variables, making it difficult to uncover site or
regional contingencies. The NutNet experiment, adding an identical rate of N across locations
and conditions, demonstrates that impacts of elevated N on plant species traits, plant
biomass, and ecosystem rates (e.g., decomposition) are strongly contingent on local climatic
conditions (Figure 1). The interplay of this multicontinent experiment with the existing literature
on Ndep highlights emergent, synthetic perspectives and points to future research directions
(see Outstanding questions).

Replication across time and space
Variation in Ndep and its effects across both time and space mean that empirical evidence for the
rate, locations, and types of biotic impacts is heterogeneous. Many studies have documented N
limitation of biomass, but this review highlights that, while N limitation is rapidly apparent at a small
subset of sites [42], it becomes apparent in an increasing number of locations with longer, chronic
inputs [21]. This review also highlights that N effects on plants, consumers, and ecosystem pro-
cesses vary with soil mineralogy and micronutrient supply, underscoring the need for
increased attention to the role of inputs of other elements (e.g., [94]) and local edaphic characteris-
tics in controlling biotic responses to Ndep. Effects consistent across conditions raise additional
questions. For example, while Ndep increases plant palatability and reduces defense across a
range of site conditions, successful use of grazing in management will rely on understanding the
condition dependence of response times [95], tipping points [96], and the role of local edaphic
and climate conditions in recovery potential [97]. Results from NutNet and the many other studies
reviewed here suggest that long-term, cross-continent experiments are needed to uncover Ndep

impacts that may take years to emerge and may differ across conditions [98]. Finally, few experi-
ments impose gradients of N addition [14], but these will provide key insights into the shape of biotic
responses and risk of tipping points with increasing Ndep.

Climate and Ndep

While often studied in isolation, changing climate and Ndep rates can interact to impact many bi-
otic responses (Figure 1 and Table 1). Precipitation mean and variation are particularly prominent
in modifying the biotic responses reviewed here. For example, in response to NutNet’s elevated N
supply, control of grassland biomass and plant chemistry shifts from herbivores to nutrients with
increasing precipitation [61,65], whereas precipitation variability determines whether native or non-
native plants decline [29]. Together with scant, but compelling, evidence in the literature about the im-
pacts of Ndep on consumers, this review also demonstrates the importance of climate in mediating N
impacts with potentially far-reaching, but mostly unknown, implications spanning trophic levels. The
results reviewed here emphasize the need to understand the dependence of biotic responses to
Ndep on climate to avoid unexpected outcomes under future climatic conditions.
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