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A physics-guided reinforcement learning framework for an autonomous
manufacturing system with expensive data
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Abstract— Making intelligent decisions is the biggest chal-
lenge in building an autonomous manufacturing system that
can build artifacts with desired properties without human in-
tervention. Although reinforcement learning (RL) has favorable
characteristics for such a task, the sample efficiency of RL is
poor, which makes it difficult to implement on a manufacturing
system due to the expense of producing parts to collect reward
and action data. This paper focuses on building a framework
for implementation of RL on manufacturing systems with
expensive data and presents the framework for autonomous
manufacturing of Phononic Crystals (PnCs), a type of acoustic
metamaterial. Leveraging knowledge from physics-guided mod-
els and temporal abstraction ideas, we detail a framework that
reduces the task of finding optimal manufacturing parameters
from thousands of manufacturing samples to the order of 50
samples. The method is applied in simulation to a stochastic
model of PnC production. Critically, we show that by using
a long temporal abstraction horizon and order of 50 sample
budget, the RL algorithm finds the optimal region greater than
95% of the time.

I. INTRODUCTION

Modern manufacturing systems can benefit by applying
data driven machine learning (ML) methods [1]. The design
of many manufacturing processes is still a very ad hoc
process in which engineers build extension design of ex-
periments type independent parameter selection protocols to
key in on parameter sets that optimize a given production
objective [2]. Furthermore, the selected parameter set is often
highly dependent on a multitude of uncontrollable factors,
such as material feedstock characteristics and environmen-
tal conditions, requiring the process engineer to invest in
expensive feedstock qualification studies and environmental
control chamber, or perform new experiments to re-optimize
the parameter set every time driving factor is uncontrolled.
We along with others [3]-[5] believe that the next revolution
in industrial applications will be the integration of cognitive
elements that will autonomously optimize a process, and be
continually applied to constantly update parameter sets.
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Fig. 1. Reinforcement learning framework for the proposed autonomous
additive manufacturing system

Although recent literature suggest ML applications in a
wide range of manufacturing systems, most works detail
offline ML that is not capable of making real time online
decisions. A potential idea that can solve the issue of online
sequential decision making while dealing with uncertainty is
the implementation of reinforcement learning (RL) [6] that
builds upon the Markov decision process (MDP). In case
of RL, a learning agent interacts with the environment and
tries to find the optimal policy by observing the reward or the
feedback it gets from the environment (see Fig. 1). Primary
applications of reinforcement learning include robotics [7],
[8], mastering complex games [9], operations research [10]
and other relevant fields. Some studies have focused on
using MDP or constrained MDP to solve the problem of
sequential optimization for better build quality [11]. Most of
these ideas are applied to systems in which data is cheap
to procure or to produce, and oftentimes require on the
order of to million data pairs. One of the fundamental
challenges of extending RL to a manufacturing system is
that, in general, the production of a part in a manufacturing
line is expensive. For example, metal parts produced via
directed energy deposition require hours of machine time
and thousands of dollars in powdered metal feedstock [2].
However, most of the RL literature does not consider the
practical difficulties of applying data intensive algorithms to
the manufacturing problem.

Recently the authors proposed that RL can be used in

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 01,2021 at 02:57:30 UTC from |EEE Xplore. Restrictions apply.



a complex task like the manufacture of metamaterials that
attain desired wave propagation properties without manual
design [12]. Sampling efficiency was quantified, but no
methods to reduce sample number were proposed. In general
reinforcement learning suffers from the need of large amount
of samples to make a good decision. Another issue is the po-
tential danger of implementing a non-optimal or a potentially
unsafe policy while interacting with a physical system. We
wish to learn the correct inputs for the manufacturing system
that can produce artifacts with desired output properties with
as few interactions with the real system as possible. One
key challenge in doing so is that the goal is unknown for
this learning task and we have to keep interacting with the
system, incurring expense, to achieve convergence.

To achieve a minimal interaction learning algorithm, we
employ the options framework [13], which is a form of
temporal abstraction, from RL with physics-based guidance.
We propose to leverage physics guided knowledge that
maps the inputs to outputs of the workpiece fabricated in
a manufacturing system. By doing so, RL transforms from
a fully empirical method to semi-empirical method which
still retains beneficial features of RL such as exploration to
compensate for uncontrollable factors, whilst using physics
knowledge to penalize much of the sub-optimal parameter
space. Additionally, the options framework permits state tran-
sitions that jump past large swaths of sub-optimal parameter
space (Fig. 2). Traditional RL transitions through states by
applying primitive actions, unnecessarily requiring multiple
primitive actions to transit out of a sub-optimal region of the
state space. The options framework permits a multi-primitive
horizon to quickly emerge from sub-optimal regions. We
term this integration of physics-guided RL and the options
framework “Physics guided Reinforcement learning enabled
Autonomous Manufacturing” (PRLAM).

The main contributions of this paper are threefold: (1)
Development of a complete framework for autonomous man-
ufacturing system that can be generalized to many applica-
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Fig. 2. Conceptual visualization of the problem and strategy

tions; (2) Demonstration of a detailed case study that shows
the potential of this framework in a real-world manufacturing
system; and (3) Identification of key challenges of building
such a framework. The paper is organized as follows: section
IT provides the preliminary ideas that play crucial role in
developing the rest of the paper, section III discusses prob-
lem formulation for an autonomous manufacturing system,
section IV develops the learning framework with minimal
number of sample fabrication, section V implements the
proposed framework on a case study of acoustic metamaterial
fabrication and section VI provides the corresponding results
and analysis.

II. PRELIMINARIES

The framework proposed in this paper is based on value
function based RL with combination of temporal abstraction
and transfer learning. In this section we provide relevant
background on these topics.

A. Value based reinforcement learning

In principle RL deals with the problem of learning to
control a dynamical system using a Markov decision process
(MDP) [6].

Definition 1. (Markov decision process). The Markov de-
cision process is defined as a tuple M = (X, A, P, R,v),
where & is a set of states x € A (i.e state-space), A is a
set of actions a € A (i.e. action-space), P is the transition
probability that describes the dynamics of the system, R :
X x A — R defines a reward function and v € [0,1] is a
scalar discount factor.

Formally, the goal of an agent is to learn a policy
m(X¢|lat) : X — A that maximizes the expected discounted
future reward from state X;, in the case of the state-value
function V™ (x;), or when starting from a state-action tuple
(x¢,a¢), in the case of the state-action value function,

Q" (x¢,a¢) = Ex lz Wth|Xtaat] . ()
=0

In value based RL, the value function works as an interme-
diate step to find the policy. Intuitively the idea is to recover
a near-optimal policy from an accurate estimation of a state
or a state-action value function. Various algorithms can be
used to find value function estimation. For example, we can
use the SARSA algorithm [6] to continually estimate Q™ for
the behavior policy m and use a similar policy for learning.
These types of algorithms are known as on-policy algorithms
and the update rule is derived from the recursive definition
of the action-value function with learning rate «,

Q(x,a) « Q(x,a) + o[R+7Q(x',d') — Q(x,a)]. (2)

B. Transfer learning

Transfer learning [14] often helps to accelerate the learn-
ing procedure in a target task by transferring previous
knowledge from a source task. For example, simulation to
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real-world transfer is an active research field that uses high-
fidelity simulators for learning policies and then transfer
those policies into real world [15].

C. Temporal abstraction

Previous studies [13], [16] have proposed that temporal
abstraction in RL can increase the speed of learning by
reasoning in terms of high-level abstract actions. These
multi-time actions are often known as “options”. Note that
any MDP with a fixed set of options no longer stays an
MDP, rather the MDP forms a semi-Markov decision process
(SMDP) [13]. To deal with SMDP, a Q-learning update rule
has been proposed and is known as SMDP-Q learning [13],
[17].

Q(x,0) « Q(x,0) + & [r +v*Q(X',0") — Q(x¢,0¢)] (3)
r=Ri+vRiy1+ -+ 1Riia1 “)

Here, o' is the next option that can be chosen at the next
state X" and A is the number of time steps that the option
takes to execute.

ITI. PROBLEM FORMULATION
A. System definition

We consider a manufacturing system at timestep ¢ with
output y¢, inputs X; and stochastic noise &. The noise-free
system can be expressed as F(-) : RV — R, a mapping
between the controllable inputs and the true or measured
output.

ye = F(X¢) + & (3)

where x; = [a:?),xg‘), cees x}é)]T. In our case, the timestep
is also a manufacturing observation index (¢ € Z,). The
stochastic variable & is a product of the uncontrollable
inputs and unmodeled factors. This definition is subjected
to some constraints due to the manufacturing limitation
(i.e. bounded inputs, fabrication resolution, raw materials
feedstock capacity etc.). We assume this system has a total of
N+1 number of constraints, ¢; = x <x<xX,Vi=1,...,N
and manufacturing index ¢ € [0,7T], where X is the minimum
allowable limit of the input variables and X is the maximum
allowable limit of the input variables. Here, < is used to
define the element-wise inequality: x; =< X, means that
[xi1]; < [x2]; Vi. From here on we will label T as the
manufacturing budget or simply budget. We formalize this
learning problem as an MDP where the goal of the agent is
to find the highest reward region or optimal region (unknown
apriori) with minimal number of interactions 7" with the real
manufacturing system (Fig. 2). Note that each real interaction
produces an artifact. The learning problem is described as the
following. We start with a vector of randomly chosen input
parameters,

Xg ~ u [)_(7 )_(] H

interact with the real manufacturing system and obtain some
sort of feedback (reward, R). Then we make an intelligent
transition through an action a to a new vector of input
parameters. From now on we define this vector as the
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state to adopt RL terminologies. As the optimal region/goal
state is unknown, we consider the continuing case of RL
implementation rather than episodic case. Hence the dynamic
evolution of states can be expressed as the markov chain in
Fig. 3. As the goal state Xgoa1 is unknown we wish to find

Xt as close as possible to Xgoal.
fr_

Fig. 3.
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t
N

Evolution of states

B. Reward function

Each time there is a transition from current state to the
next state (x 2 x'), the agent incurs a loss, £;. Here,

ft = E(ydesired: yt)

where, L£(-,-) is an appropriate similarity metric between
desired output ygesirea and current output y; of a user defined
characteristic of the artifact. This metric can be a simple
squared error or a carefully designed complex relation, for
example, a Lo norm based similarity measure would be

L(Yaesired; Yt) = ||Ydesirea — Y¢||2-
Now, we can define the reward function from the loss as
R, =B — ¢, (6)
where we use a baseline value B to keep the reward positive.

IV. FRAMEWORK

We propose a complete framework that we term PRLAM
to implement RL algorithms for online sequential decision
making on data-expensive, stochastic autonomous manufac-
turing system. The framework is presented in Fig. 4 and the
corresponding algorithm is described in Algorithm 1. It is
assumed that we have access to a physics-guided external
simulator Mgy, of the real system M, ea that can map the
inputs x to output y of the corresponding sample fabricated
from the manufacturing system. Mg;m can be a first principle
based model of the system with differential equations or a
physics-based computational engine (FEA, CFD etc.). Let’s
consider the following representation of Mg, similar to
[18] through a set of possibly nonlinear equations G(-,-) and
inequalities H(, -).

 fe@x =0
Moim - {7{(3}, x) <0

9 = Maim(x)

where ¢ is the estimation of the system output obtained from
Msim-

During the first phase of PRLAM framework we use
Mgim as the source task for training the agent. While
learning in the source task we implement any on-policy RL
algorithm &%, (i.e. SARSA etc.) to interact with Mgy,
using policy 7 and receive a reward R with each transition of
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Fig. 4. PRLAM framework

states. Thus, the agent collects experiences and updates the
action-value function Q™. After a sufficiently large number
of interactions, the agent will have an accurate estimation of
Q™ and the near-optimal policy 7* can be retrieved from Q™.
Now we transfer this knowledge to M,ea1. At the start of the
second phase, using a Model Predictive Control (MPC) [19]
like approach we roll out an imaginary trajectory 7%,. of
finite horizon H using the learned policy 7*.

'r,tr, = ()Aft, at, Ry, §C3+1, at41, Rt+1, s ,)ACH-H) )
Next we identify a sub-goal state Xsubgoar from this trajec-
tory. There may be a variety of ways to identify Xsubgoa;
for example, a simple approach is to choose the state with
maximum visitation within this trajectory obtained from
Mgim. Note that we only perform an actual fabrication in
these sub-goal states and achieve an actual reward R. Then
we update the reward in (6) by replacing the A-th reward
of the trajectory with real reward (line 14 in Algorithm 1).
Next we update the learning rule in (3). We keep interacting
with Mea and learning with real data as long as our budget
T allows.

V. CASE STUDY
A. PnC materials

This study implements the PRLAM framework for the
autonomous discovery of PnC materials using fused deposi-
tion (FDM)-based additive manufacturing (AM) system as
a case study. The fabricated artifacts exhibit an acoustic
spectrum with special passband properties corresponding to
their geometric parameters [20], [21]. The spectrum can
be characterized by piezoelectric transducers, as shown in
Fig. 5. In this study we parameterize PnC design using
filament diameter (d) and lattice constant (I;,). Our goal

487

Algorithm 1 Physics-guided Reinforcement learning enabled
Autonomous Manufacturing (PRLAM)
Source task: Mgim : {G(9,x) = 0,H(g,x) < 0}
Target task: Physical Manufacturing system, M.,
Learn in Mgy, using @y, with policy m
Identify optimal policy «* from low level knowledge
Transfer low level knowledge (i.e. 7*, Q™ (X, a))
Input: trajectory horizon H, budget T, initialize Q(x, o)
fort €T do

X; = x : current state in physical system
T,tr: = ()Aft, ag, Rt; )A[H-l; at1, Rt+1, ceey it-ﬁ-H)
10: Identify subgoal state X;,n, A €{0,1,...,H}
Dption, 0 {ﬂ.t,at_;,_]_, Ag4 2, - .- ,G.-H_&_]}
12: x' )A(g_;,_A where it—‘,—& {O—‘ f(t
13: Perform an actual fabrication at x’ and obtain R
14: r=Ri+vRip1+--+7*2Riyn_2++* 'R
15: Q(x,0)+ =a[r++2Q(x,0) — Q(x,0)]
16: X ¢ x'

b=l A O

is to obtain desired spectrum ygesirea through proper tuning
of X = [l d]”.

Fig. 5. Unit cell description and PnC characterization: (a) PnC material,
(b) Unit cell with design parameters I3y and d, (c) PnC Characterization
using ultrasonic transducers

B. Physics guided simulation engine

We perform eigenfrequency analysis of PnCs to identify
the passbands. These calculations are performed on a rep-
resentative unit cell that is the building block of the PnC
and repeats periodically along the three spatial directions
(z,y,2z) (Fig. 5). We develop a computational engine that
uses the acoustics module package of COMSOL® to solve
the elastic wave propagation problem by Finite Element
Method (FEM) at discrete parameter values of Iy, =
[700, 705, ...,1035]um, and d = [300, 305, . .., 635]um, for
a total of 4624 unique design parameter combinations. Note
that in this study G(7,x), H(7,x) are embedded inside the
FEM solver. We refer the interested readers to [22], [23] for
additional details on PnC eigenfrequency analysis. We use
the same spectra characterization and loss definition from
[12]:

l; = L(ydesired, yz) = L1 +aLly + bLs.
Here, £, compares the amplitude of ygesirea and v, Lo is a

normalized metric of the difference between peak amplitude
frequency of Ygesirea and yg, L3 is a normalized metric of
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the difference between peak amplitude of ygesireq and y; and
a, b are scaling constants. Finally we define the reward using
(6) with base value B = 80.

C. Model of the environment

To computationally test the proposed framework we build
Miim and My of F(x) using non-parametric regression
technique Gaussian Process (GP) [24] and denote them as
Mim,gp and Mq gp respectively. A GP can be considered
as a prior over plausible functions F and is characterized by
a mean function m(x) and a covariance function k(x,x").

F ~ GP(m(x), k(x,x")) (8)

Assuming noise £ ~ N (0,07) and using a fixed m(x) and
data {X,y} the predictive distribution for a deterministic
input x; is calculated as

Fi~ N(pi, )
wi = m(x;) + k(x;, X) (K + o3 ) 7 (y — m(X))
B = k(xi, %:) — k(xs, X) (K + 0, 1)k(X, x;)

where K = k(X,X). We choose the squared-exponential
covariance function [25] to build the models.

(x,X) = oFexp(— g (x — ) (x ~ X))

We do not use evidence maximization, a mathematical

E

00
950 o R
1050 300

. 1
© (um)

Fig. 6. My gp obtained from non-parametric GP regression

way to remove hyperparameter oy,l,0y from GP, as it
overfits the original data and Mgngp will work as too
accurate approximation of Ma gp. We manually choose
oy = 50.0,] = 52.0. The GP model of Mgy is shown
in Fig. 6 that is built using the noise variance parameter,
o, = 1.0. On the other hand we use o, = 10.0 to build
stochastic model M, gp which is analogous to a noisy
physical manufacturing system, Ma. Hence, Mgy gp will
be treated as the source task and we will build a stochastic
model Mpa,gp in each iteration as the target task that
mimics the physical system. Note that we only consider
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Fig. 7. An example M, g that mimics the noisy experimental data in
a physical system at timestep ¢.

unbiased noise in M.q gp because the goal of this study
is to show that temporal abstraction is suitable in a noisy
environment. A detailed study of the effect of noise on the
learning algorithm is out of the scope of this paper.

D. Implementation of PRLAM framework

According to Algorithm 1, initially we train our agent
in Mgm,gp using on-policy algorithm average reward dif-
ferential SARSA [6]. Here we start with an action space
|A| = 8 where the primitive actions are eight possible
directions the agent can move. If the agent hits any constraint
c; it stays in the same place on the state space. As there is
no identified goal state Xgoa1, the agent interacts with the
environment continually and keeps updating the Q-function.
The agent is trained for 10 million timesteps using e-greedy
policy with slightly higher exploration factor (e = 0.25). It
means that on average out of every 4 actions the agent tries
one random action. We find out that on-policy algorithms
tend to work better in the training phase. After the agent
is sufficiently trained, we transfer the Q-function to the
stochastic model My gp. At each current state, the agent
rolls out a trajectory of fixed horizon length H based
on training data. The most challenging part is to identify
Xsubgoal from the trajectory. For this study we choose the
maximum visited state within each trajectory as Xsubgoal-
This makes sense because the agent will visit a state more
often than other states if that state has higher action-values
than others. Once the agent identifies Xgubgoar from the
rolled out trajectory it moves to the sub-goal state through
the execution of temporally extended action or option o
(in fact it is a sequence of primitive actions). Once the
agent observes a real reward, the transferred Q-value is also
updated using Q-learning update rule. We repeat this process
until we run out of budget T'. To test the performance of
the framework, we perform 50 such experiments and an
experiment is considered a successful attempt if xpr can
achieve a reward R > 55.0. We choose this reward because
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when the actual spectrum is very close to the
desired spectrum of the PnC material.

We also define a success rate to investigate the performance

of over these  experiments for different values
of horizon length  and budget
number of experiments where has ©)
Total number of experiments performed
VI. RESULTS
We only allow a maximum of interactions

with and the framework is able to
maintain high rewards within this extremely small number of
interactions. The mean reward obtained from  experiments
is shown in Fig. 8. In this case, starting from a lower reward
the agent is able to achieve and maintain . Initially
uncertainty is high due to random initialization and as the
budget increases higher rewards are achieved. Eventually the
agent is able to find the optimal region with high rewards. In

] 0
budget, T

Fig. 8. Final state reward for different budgets, rewards are shown within
one standard deviation limit for ~ experiments with random initialization.

Fig. 9 we show the final state  of these  experiments in
a heat map of a sample stochastic environment
for . We observe that most form
cluster around high reward region while very few of them
fail to converge. The effects of horizon length and the
budget T (interactions with ) on the success rate
is summarized in table I. We use while varying
. Also we keep fixed horizon length
while varying . The results match
the intuitive sense, should increase as we increase the
budget T and also when we increase the trajectory horizon
length . As the interaction with increases the
agent gets better at exploiting the domain knowledge. On the
other hand when we increase the horizon length this allow
the agent to plan for longer period of times. Note that longer
horizon length may harm the performance where noise in
is very high while very short horizon length may
also harm the performance for small budget. We achieve a
maximum of success rate at and

B8 8 B
reward

8

70
%  final state, x7
10
0
—10
0 Th0 &0 850 000 950 1000
Iy

Fig. 9. obtained from

. Most

experiments shown on a sample stochastic
form clusters around high reward region except very
few.

The effect of temporal abstraction can be observed from
Fig. 10 which is shown for a representative experiment with
only interactions with . The agent is able to
execute temporally extended actions and jump multiple states
to reach . Also note that the agent makes longer
jumps from low reward region and and smaller jumps from
high reward region. To verify how is selected based
on visit counts we present Fig. 11. This figure showcases a
single trajectory obtained from  in a single timestep of an
experiment with . We verify that only the maximum

80
70
60
50

=
10 §
@
—_
30
20
10
0

Fig. 10.  Temporal abstraction in a single experiment plotted on an
example stochastic model. Temporally extended actions can execute multiple
primitive actions as a sequence to reach the sub-goal state.

visited state is selected as the subgoal state

=—e— temporally extended action
primitive action

850 900 950 1000
Ty

VII. CONCLUSION

We propose a novel framework for autonomous manu-
facturing system and implements on a computational case
study of PnC manufacturing with desired properties. These
early simulation results demonstrate promise for experimen-
tal application and translation to other autonomous manufac-
turing systems. There are a multitude important follow-up
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TABLE 1
SUCCESS RATE FOR PARAMETER VALUES

Parameter name  Parameter value  Success rate, Sy

10 0.74
Horizon, H 25 0.88
50 0.92
10 0.80
Budget, T’ 25 0.92
50 0.96

—_— T
@ trajectory start
B trajectory end
%  max visit

i
=

visit count

S o wmo w g

Fig. 11. Subgoal state (Xsubgoal) selection criteria based on visit counts
to a state from trajectory 7* using learned policy m*

studies that are prompted by this first work. For instance,
the selection of a sub-goal was largely unexplored in this
studying, opting to select the sub-goal most visited during
the policy development on the physics emulator; one can
envision more sophisticated algorithms which incorporate
parameter region statistics for more robustness or other se-
lection criteria. Additionally, many manufacturing problems
have a high dimensional input parameter space; although we
believe physics integration is necessary to make the higher
dimensional optimization possible, the dimensional limits on
this method are yet to be explored.
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